To Appear in Concurrency: Practice and Experience

Applications Experience in Jade

Martin C. Rinard
Department of Computer Science
University of California, Santa Barbara
Santa Barbara, California 93106
martin@cs.ucsb.edu
(805) 893-2777

Abstract

This paper presents our experience developing applications in Jade, a portable, implicitly parallel program-
ming language designed for exploiting task-level concurrency. Jade programmers start with a program written
in a standard serial, imperative language, then use Jade constructs to describe how parts of the program
access data. The Jade implementation analyzes this information to automatically extract the concurrency and
execute the program in parallel. The resulting parallel execution is guaranteed to preserve the semantics of
the serial program. We have implemented Jade as an extension to C on shared memory multiprocessors, a
homogeneous message-passing machine and networks of heterogeneous workstations.

To evaluate Jade, we obtained several complete scientific and engineering applications and parallelized
them using Jade. We then executed these applications on several computational platforms. We use this
applications experience to evaluate Jade with respect to two properties: how well Jade supports the process
of writing parallel programs and how well the resulting programs perform.

Our applications experience shows that the current version of Jade is a qualified success. For all but one
application the use of Jade entails limited programming overhead. The coarse-grain computations perform
very well, with the dynamic Jade overhead having no significant impact on the performance. The finer-grain
computations suffer from some Jade-specific performance problems, but some of these could be eliminated
with a more advanced Jade implementation.

1 Introduction

Practitioners have implemented a wide range of languages and systems for developing programs that execute on
parallel machines. Existing systems range from low-level macro packages[14] that allow the programmer to directly
control the parallel execution to compilers that automatically parallelize serial computations[1]. Despite this wide
range of systems, there is little consensus on how the characteristics of a given language or system support or
hinder the process of developing parallel programs. We believe that an adequate understanding of this issue can
only emerge from experience using the languages and systems in question to develop parallel applications.

This paper presents our experience developing applications in Jade [17, 18], a portable, implicitly parallel
programming language designed for exploiting task-level concurrency. Jade programmers start with a program
written in a standard serial, imperative language, then use Jade constructs to describe how parts of the program
access data. The Jade implementation analyzes this information to automatically extract the concurrency and
execute the program in parallel. The resulting parallel execution is guaranteed to preserve the semantics of
the serial program. We have implemented Jade as an extension to C on shared memory multiprocessors, a
homogeneous message-passing machine and networks of heterogeneous workstations.

To evaluate Jade, we obtained several complete scientific and engineering applications and parallelized them
using Jade. We then executed these applications on several computational platforms. We use this applications
experience to evaluate Jade with respect to two properties: how well Jade supports the process of writing parallel
programs and how well the resulting programs perform. This paper presents the results of this experience.

The rest of the paper is structured as follows. In Section 2 we describe the Jade language. Section 3 presents
a programming example from one of the applications; Section 4 describes some of the more advanced Jade
constructs. In Section 5 we describe the application set and how it was acquired. In Section 6 we describe some of
the basic characteristics of the application set. In Sections 7 through 10 we present the individual applications in
detail. In Section 11 we discuss the implications of our experience as they relate to programming Jade applications
and in Section 12 we discuss the performance implications of using Jade. We conclude in Section 14.

2 Language Overview

Because of Jade’s sequential semantics, it is possible to implement Jade as an extension to a sequential program-
ming language. This approach allows programmers to learn how to use Jade quickly, and preserves much of the
language-specific investment in programmer training and software tools. We have currently implemented Jade as
an extension to C. We first present the basic Jade constructs and then present a detailed example that illustrates
their use.

2.1 Object Model

Jade supports the abstraction of a single shared memory that all tasks can access; each piece of data allocated
(statically or dynamically) in this memory is called a shared object. Pointers to shared objects are identified in a
Jade program using the shared type qualifier. For example:

double shared A[10];
double shared *Bj;

The first declaration defines a statically allocated shared vector of doubles, while the second declaration defines
a reference (pointer) to a dynamically allocated shared vector of doubles. Programmers use the create object
construct to dynamically allocate shared objects; this construct takes as parameters the type and number of allo-
cated items in the shared object. Given the declaration of B presented above, the programmer could dynamically
allocate a shared vector of 100 doubles as follows:

B = create_object(double, 100);

2.2 Basic Construct

Jade programmers use the withonly construct to identify a task and to specify how that task will access data.
Here is the general syntactic form of the construct:

withonly { access declaration } do
(parameters for task body) {
task body
}

The task body section contains the serial code executed when the task runs. The parameters section declares
a list of variables from the enclosing environment that the task body may access. The access declaration
section summarizes how the task body will access the shared objects.

The access declaration is an arbitrary piece of code containing access specification statements. Each such
statement declares how the task will access a given shared object. For example, the rd(o) (read) statement
declares that the task may read the shared object o. The wr(o) (write) statement declares that the task may
write o. The task’s access declaration section may contain dynamically resolved variable references and control
flow constructs such as conditionals, loops and function calls. The programmer may therefore use information
available only at run time when generating a task’s access specification. Consequently, Jade programs can exploit
dynamic concurrency that can only be determined at run time.

Since the parallelization and data movement is based on access specifications, it is important that the access
specifications be accurate. The Jade implementation therefore dynamically checks each task’s accesses to shared

objects. If a task attempts to perform an undeclared access, the implementation will generate a run-time error.
The Jade type system has a mechanism that allows each task to perform the dynamic access check once for each
object. Because the overhead is then amortized over many object accesses, in practice the total checking overhead
is negligible.

Each shared object represents a unit of synchronization. If one task writes part of a shared object and another
task accesses that object, the implementation executes the tasks serially. Tasks that access different shared objects
or read the same objects can execute concurrently. The programmer must therefore allocate objects at a fine
enough granularity to expose the desired amount of concurrency.

In a message-passing environment, each shared object is also a unit of communication. If a task will access an
object, the implementation will either move (on a write access) or copy (on a read access) the entire object to the
machine on which the task will execute. If the task only accesses a small part of the object, the communication
overhead may negate any performance gains from concurrency. The programmer must therefore allocate objects
at a fine enough granularity to minimize superfluous communication.

3 A Jade Programming Example

In this section we illustrate the use of Jade by showing how a sparse Cholesky factorization algorithm is parallelized
in Jade.

3.1 Sparse Cholesky Factorization

The sparse Cholesky factorization algorithm factors a sparse, symmetric, positive definite matrix A into the form
LLT where L is lower triangular. Because the matrix is symmetric, the algorithm only needs to store the lower
triangle of the matrix. The factorization algorithm then repeatedly updates the data structures that represent
this lower triangle. We assume that the matrix is stored using the data structure in Figure 1. In this data
structure, the nonzeros for each column are stored in a separate packed array. Because the zeros are omitted, the
data structure must represent the sparsity pattern explicitly using separate row index and start row index arrays.
There is one element of the row index array for every nonzero in the packed arrays; that element provides the
row index for the nonzero. The start row index data structure specifies where the row indices for a given column
start. In the example in Figure 2, the row indices for column 0 occur in elements 0 through 2 of the row index
array.! An examination of the row index array shows that element 0 of the packed array for column 0 contains the
nonzero for column 0 and row 0, element 1 contains the nonzero for column 0 and row 3, and element 2 contains
the nonzero for column 0 and row 4. Figure 2 provides the C data structure declarations for the sparse matrix
data structure.

Figure 3 contains the code for the serial factorization algorithm. The algorithm processes the columns of the
matrix from left to right. It first performs an internal update on the current column; this update divides the
column by the square root of its diagonal. After this internal update the current column reaches its final value.
The algorithm then uses the current column to update some subset of the columns to its right. For a dense
matrix, the algorithm would update all of the columns to right of the current column. For sparse matrices, the
algorithm omits some of these updates because they would not change the updated column.

One way to parallelize this algorithm is to turn each update into a task. In this case the parallel computation
consists of a coarse-grain task graph of update tasks. Each update task performs either an InternalUpdate or
an ExternalUpdate; there are precedence constraints between tasks that enforce the dynamic data dependence
constraints of the underlying computation. Figure 4 shows a sparse matrix and its corresponding parallel task
graph. The nodes of the task graph represent update tasks, while the edges represent precedence constraints.
Each InternalUpdate task is labelled with the index of the column that it updates, while each ExternalUpdate
task is labelled with the indices of the two columns that it accesses. The structure of this task graph depends
on the sparsity pattern of the matrix to be factored. Because the sparsity pattern of the matrix depends on the
input, a programmer parallelizing this algorithm must be able to express dynamic, data-dependent concurrency.

I Following the standard C convention, the first element of each array is element 0.

. AL/
¢ — NV column
[N J
° ° —-—|0(3|4|1|/2|2|3 4|4
° ol e ~ row_index
™ |0|3|5|6|8]9
012 3 4 5 .
. start_row_index
matrix

Figure 1: Data Structures for Sparse Cholesky Factorization

typedef double *vector;
struct {
vector *xcolumn;
int *row_index;
int *start_row_index;
int num_columns;
} matrix;

Figure 2: Data Structure Declarations for Sparse Cholesky Factorization

void factor(matrix *m) {
int i, j, first, last;
for (i = 0; i < m—>num_columns; i++) {
/* update column i */
InternalUpdate(m,i);
first = m->start_row_index[i] + 1;
last = m->start_row_index[i+1];
for (j = first; j < last; j++) {
/* update column row_index[j] with column i */
ExternalUpdate(m, i, m->row_index[j]);
}
}
}

Figure 3: Sparse Cholesky Factorization Algorithm

[] []
0 1 2 3 4

Figure 4: Task Graph for Jade Sparse Cholesky Factorization

3.2 Using Jade to Parallelize Sparse Cholesky Factorization

The first step in parallelizing a program using Jade is to determine the design of the shared objects. For some
applications, the programmer may need to explicitly decompose objects into smaller allocation units to allow the
application to concurrently write disjoint parts of the object. In the sparse Cholesky example the objects are
already allocated at the appropriate granularity. The programmer only needs to modify the matrix declaration to
identify the references to shared objects, as shown in Figure 5. The programmer also uses the part type qualifier
to indentify several of the objects that the matrix points to as part of the matrix shared object. The matrix
shared object is therefore a composite shared object that includes the column, row_index and start_row_index
part objects.

typedef double shared *vector;
struct {
vector part *column;
int part *row_index;
int part *start_row_index;
int num_columns;
} matrix;

Figure 5: Data Structure Declarations for Jade Sparse Cholesky Factorization

The programmer next augments the sequential code with withonly constructs to identify the tasks and specify
how they access shared objects. To parallelize the sparse Cholesky factorization code, the programmer adds two
withonly constructs to the original serial code; each construct identifies an update as a task. Figure 6 contains
the Jade version of the sparse Cholesky factorization algorithm. The first withonly construct uses the
rd_wr (m->column[i]) and rd (m) access specification statements to declare that the InternalUpdate will execute
with only reads and writes to the i’th column of the matrix and reads to the column array and row index data
structures. The second withonly construct declares that the ExternalUpdate will execute with only reads and
writes to the r[j1’th column of the matrix, reads to the i’th column of the matrix, and reads to the column
vector and row index data structures.

At this point the programmer is done: the Jade implementation has all the information it needs to execute
the factorization in parallel. When the program executes, the main task sequentially creates the internal and
external update tasks as it executes the body of the factor procedure. When the implementation creates each
task, it first executes the task’s access specification section to determine how the task will access data. It is
this dynamic determination of tasks’ access specifications that allows programmers to express dynamic, data-
dependent concurrency patterns. Given the access specification, the implementation next determines if the task
can legally execute or if the task must wait for other tasks to complete. The implementation maintains a pool
of executable tasks, and dynamically load balances the computation by farming these tasks out to processors as

void factor(matrix shared *m) {
int i, j, first, last;
for (i = 0; i < m—>num_columns; i++) {
/* update column i */

withonly {
rd_wr (m->column[i]); rd(m);
} do (m, i) {
InternalUpdate(m,i);
}
first = m->start_row_index[i] + 1;
last = m->start_row_index[i+1];

for (j = first; j < last; j++) {
/* update column row_index[j] with column i */
withonly {
rd_wr (m->column[m->row_index[j1]);
rd(m->column[i]) ;
rd(m) ;
} do (m, i, j) {
ExternalUpdate(m, i, m->row_index[j]);

Figure 6: Jade Sparse Cholesky Factorization

they become idle. In a message-passing environment the implementation also generates the messages required
to move or copy the columns between processors so that each task accesses the correct version of each column.
As tasks complete, other tasks become legally executable and join the pool of executable tasks. In effect, the
Jade implementation dynamically interprets the high-level task structure of the program to detect and exploit
the concurrency.

4 Advanced Language Features

We have, so far, described the basic programming model in Jade. Here we describe briefly some of the advanced
constructs of the Jade language that allow a Jade programmer to achieve more sophisticated parallel behavior.

4.1 Hierarchical Concurrency

Programmers may create hierarchical forms of concurrency in a Jade program by dynamically nesting withonly
constructs. The task body of a withonly construct may execute any number of withonly constructs, in a fully
recursive manner. The access specification of a task that hierarchically creates child tasks must declare both its
own accesses and the accesses performed by all of its child tasks.

4.2 More Precise Access Specifications

As described so far, Jade constructs support only a limited model of parallel computation in which all synchro-
nization takes place at task boundaries. Two tasks may either execute concurrently (if none of their accesses
conflict) or sequentially (if any of their accesses conflict). The withonly construct by itself allows no partial

overlap in the executions of tasks with data dependence conflicts. This limitation makes it impossible to exploit
pipelining concurrency available between tasks that access the same data.

Jade relaxes this restricted model by allowing the programmer to provide more precise information about
when a task actually accesses data. Jade provides this functionality with an additional construct, with, and the
additional access specification statements df _rd (o), df _wr (o), no_rd(o), and no_wr (o). The general syntactic
form of the with construct is:

with { access declaration} cont;

As in the withonly construct, the access declaration section is an arbitrary piece of code containing access
declaration statements. These statements update the task’s access specification, allowing the specification to
reflect more precisely how the remainder (or continuation, as the cont keyword suggests) of the task will access
shared objects.

The df _rd (o) and df _wr (o) statements declare a deferred access to o. That is, they specify that the task may
eventually read or write the object, but that it will not do so immediately. Because the task cannot immediately
access the object, it can execute concurrently with earlier tasks that do access the object. When the task
reaches the point where it will access the object, it must execute a with construct that uses the rd (o) or wr (o)
access declaration statements to convert the deferred declaration to an immediate declaration. This immediate
declaration then gives the task the right to access the object. In order to preserve the serial semantics, the Jade
implementation may suspend the task at the with construct until preceding tasks with conflicting accesses to the
object have completed. It is also possible to use the df _rd(o) and df _wr (o) statements inside a with construct
to convert immediate declarations to deferred declarations. This may allow the task and any future child tasks
that declare immediate accesses to the objects in question to execute concurrently.

The no_rd(o) (no future read) and no_wr (o) (no future write) statements allow the programmer to declare
that a task has finished its access to o and will no longer read or write o. This declaration dynamically reduces
a task’s access specification, which may potentially eliminate a conflict between the task executing the with and
later tasks. In this case the later tasks may execute as soon as the with executes rather than waiting until the
first task completes.

5 The Application Set

Choosing a set of benchmark applications to evaluate a language design and implementation is a tricky business.
On the one hand it is important to choose applications that are within the target application domain. The
benchmark set is therefore inevitably filtered as applications viewed as outside the application domain are rejected.
But filtering the applications too stringently, on the other hand, can yield a sterile evaluation. How well the
language deals with unforeseen application characteristics will be an important factor in its overall success, and
a balanced benchmark set should include some programs that stretch the capabilities of the language and its
implementation.

Several factors influenced our choice of applications. One major factor was availability. Existing benchmark
sets were one source of applications, and three of the applications originally came from the SPLASH benchmark
suite [20]. We also acquired three applications directly from the research groups that initially developed them.
Another factor was the engineering effort involved in manipulating the application. The engineering effort required
to deal with large programs restricted us to fairly small applications, but we did invest a substantial amount of
time and effort to be sure that we at least developed complete applications. A final factor was our assessment of
how well the application fit the target Jade application domain. When possible we performed an initial assessment
by analyzing the characteristics of an existing parallel version before deciding to develop a Jade version. For two
of the applications, however, the Jade parallelization was the first (and so far the only) parallelization to exist.

We next describe each of the applications. For each application, we briefly summarize the computation that it
performs, then describe how we acquired and parallelized the application.

e Water: A program that evaluates forces and potentials in a system of water molecules in the liquid state.
Water is derived from the Perfect Club benchmark MDG [4] and performs the same computation. The
SPLASH benchmark suite [20] also contains a version of Water. The author developed the Jade version of
Water starting with serial C version that had been translated from the original Fortran.

e String: A program that computes a velocity model of the geology between two oil wells. The author
originally obtained a serial version of String [12] written in a combination of C and Fortran from Jerry
Harris (a professor in the Stanford Geophysics Department), Mark van Schaack (a graduate student in
the Stanford Geophysics Department) and Caroline Lambert (a programmer in the Stanford Geophysics
Department) and, with the help of Brian Schmidt (a graduate student in the Stanford Computer Science
Department), translated the Fortran parts of the application to C. The author then developed the Jade
version starting from that serial C version. The Jade version is the only parallel version of this application
that exists.

e Search: A program that simulates the interaction of electron beams with solids [6, 7]. Jun Ye (a graduate
student in the Stanford Electrical Engineering Department) developed an initial serial version of Search
in C. The author developed the initial Jade version, then handed the program off to Ray Browning (a
researcher in the Stanford Electrical Engineering Department), who substantially modified the program to
generate the final version of Search. The Jade version is the only parallel version of this application that
exists.

e Volume Rendering: A program that renders a three-dimensional volume data set for graphical display.
Jason Nieh (a graduate student in the Stanford Computer Science Department) developed the Jade version of
this application starting from an existing parallel version that he had developed in C using the ANL macro
package. He used compile-time flags to disable the ANL constructs, then inserted the Jade constructs
required to parallelize the application. The SPLASH application suite contains the ANL version of the
Volume Rendering application.

e Panel Cholesky: A program that factors a sparse positive-definite matrix. For Panel Cholesky, the author
obtained a parallel version written in C by Ed Rothberg (a graduate student in the Stanford Computer
Science Department) using the ANL macro package. The author reconstructed a serial version by removing
the ANL constructs and developed the Jade version starting from this serial C version.

e Ocean A program that simulates the role of eddy and boundary currents in influencing large-scale ocean
movements. Jennifer Anderson (a graduate student in the Stanford Computer Science Department) paral-
lelized the Ocean application. She started with the parallel Fortran program from the SPLASH benchmark
suite written using the ANL macro package and reconstructed a serial version by removing ANL constructs.
She then translated the serial Fortran into C and parallelized the serial C version using Jade.

6 Application Characteristics

We next present some basic application characteristics and use these characteristics to discuss several aspects of
the Jade programming process. Table 1 presents some of their static characteristics. A comparison of the number
of lines of code in the serial version (when available) with the number of lines of code in the parallel version
indicates that using Jade usually involves a modest increase in the number of lines of code in the application.
The number of Jade constructs required to parallelize the application (and especially the number of withonly
constructs) is usually quite small.

As these numbers suggest, using Jade did not usually impose an onerous programming burden. For all of
the applications, the key to a successful parallelization was determining an appropriate structure for the shared
objects. Such a structure was always fairly obvious given a high-level understanding of the basic source of
exploited concurrency. Once the structure was in place inserting the Jade constructs required to specify the task
granularity and data usage information was a straightforward process with no complications.

For all of the applications, implementing the correct object structure for the Jade version involved some modi-
fication of the original data structures. Except for Ocean, these modifications were performed without disturbing
the vast majority of the code and generated minimal programming overhead. For Ocean, the programmer had to
decompose many of the arrays in the program. This decomposition forced the programmer to change the index-
ing algorithm for the arrays over large parts of the program. These changes imposed substantial programming
overhead and dramatically increased the size of the Jade program relative to the original serial program.

Object
Application Lines of Code Lines of Code withonly with Creation
Serial Version Jade Version Sites Sites Sites

Water 1219 1471 2 20 7
String 2587 2941 3 37 19
Search - 716 1 9 3
Volume Rendering - 5419 2 8 15
Panel Cholesky 2047 2484 2 15 18
Ocean 1274 3262 27 28 20

Table 1: Static Application Characteristics

Sequential Execution Speedup on Mean Task Size on
Application Time (seconds) 32 Processors 32 Processors (seconds)
Water 2406.72 26.29 4.75
String 19629.42 28.93 74.30
Search 1284.07 27.90 42.61
Panel Cholesky 28.53 0.74 .0020
Ocean 60.99 1.16 .0033

Table 2: Dynamic Application Characteristics for the iPSC/860

We found that several aspects of the Jade language design supported the development of these parallel ap-
plications. Programmers came to rely on the fact that the Jade implementation verified the access specification
information. They typically developed a working serial implementation with the data structured appropriately
for the Jade version, then inserted the Jade constructs. Programmers became quite cavalier about this process,
typically making changes quickly and relying on the implementation to catch any bugs in the parallelization.
This stands in stark contrast to the situation with explicitly parallel languages. The possibility of nondetermin-
istic execution masking errors usually makes programmers paranoid about changing a working program, and the
parallelization proceeds much more slowly.

We next discuss the performance of the resulting parallel computations. We collected extensive performance
measurements for each application on a shared-memory platform (the Stanford DASH machine) and on a message-
passing platform (the Intel iPSC/860). Table 2 presents some basic performance numbers for the iPSC/860 runs,
while Table 3 presents the corresponding results for the DASH runs. For reasons described below in Section 8,
Volume Rendering did not run on the iPSC/860.

To a first approximation there are two kinds of applications: coarse-grain applications with mean task sizes
ranging from several seconds to well over a minute and finer-grain applications with a mean task size measured in
milliseconds. The coarse-grain applications scale almost linearly to 32 processors while the finer-grain applications
do not scale as well. The scaling problem is especially severe on the iPSC/860. On the iPSC/860 the relatively
large message-passing overhead makes it impossible to implement the basic Jade primitives as efficiently as on
DASH, which supports much finer-grain communication.

7 The Water, String and Search Applications

We combine the discussion of the Water, String and Search applications because their computations share the
same basic concurrency structure. We first discuss each specific application, then describe the general form of
concurrency that they all exhibit. We then discuss how to exploit this kind of concurrency in Jade.

Sequential Execution Speedup on Mean Task Size on
Application Time (seconds) 32 Processors 32 Processors (seconds)

Water 3285.90 27.50 6.53
String 19314.80 27.36 81.63
Search 1652.91 31.16 591.52
Volume Rendering 32.44 17.16 0.63

Panel Cholesky 2891 5.02 0.0024

Ocean 100.03 9.34 0.0047

Table 3: Dynamic Application Characteristics for DASH

7.1 Water

The Water computation consists of a sequence of iterations. Each iteration consists of several O(n) phases (where
n is the number of molecules) and two O(n?) phases. One O(n?) phase computes the intermolecular forces acting
on each molecule; the other computes the potential energy of the system of water molecules.

In the force-calculation phase the application computes the total force acting on each molecule as the sum
of the individual forces between that molecule and all other molecules in the system. The result is stored in a
force array indexed by molecule number. This phase also computes the total energy, storing the result in a single
scalar variable. The potential-energy phase is similar, except that it sums the total potential energy into a single
scalar potential-energy variable. Both phases depend on the positions and momentum of the molecules, which
are computed in the O(n) phases.

It is easy to see that all of the interactions can be computed concurrently. The only issue is the accumulation of
the results into the final data structure. Because the basic accumulation operation is addition, the accumulations
commute, associate and have an identity.

7.2 String

String [12] uses seismic travel-time inversion to construct a two-dimensional discrete velocity model of the geo-
logical medium between two oil wells. Each element of the velocity model records how fast sound waves travel
through the corresponding part of the medium. The seismic data are collected by firing non-destructive seismic
sources in one well and recording the seismic waves digitally as they arrive at the other well. The travel times
of the waves can be measured from the resulting seismic traces. The application uses the travel-time data to
iteratively compute the velocity model.

The computationally intensive phase of the application traces rays from one well to the other. The velocity
model determines both the path and the simulated travel time of each ray. The computation records the difference
between the simulated and measured travel times and backprojects the difference linearly along the path of the
ray. At the end of the phase the computation uses the backprojected differences to construct an improved velocity
model. The process continues for a specified number of iterations.

It is easy to see that all of the rays can be traced in parallel. The issue is the accumulation of the backprojected
differences. The serial computation stores the velocity model and the backprojected differences in two-dimensional
arrays. Each element of the difference array stores the running sum of the backprojected differences for the
corresponding element, of the velocity model. As in the Water application, the accumulations commute, associate
and have an identity.

7.3 Search

Search [6, 7] is a program from the Stanford Electrical Engineering department. It simulates the interaction of
several electron beams at different energy levels with a variety of solids. It uses a Monte-Carlo technique to
simulate the elastic scattering of each electron from the electron beam into the solid. The result of this simulation
is used to measure how closely an empirical equation for electron scattering matches a full quantum-mechanical
expansion of the wave equation stored in tables.

For each pair of solids and electron-beam energies, the computation counts the number of electrons that
emerge back out of the solid and (implicitly) the number that remain trapped inside. It is easy to see that the
electron paths can be simulated concurrently. The only issue is managing the array that stores the counts of
emerged electrons. Each element of this array stores the total count for one pair of solids and electron-beam
energies. Because the result of each electron computation is a potential increment to an element of the array, the
accumulations commute, associate and have an identity.

7.4 The Concurrency Stucture

Water and String alternate serial and parallel phases. Each phase reads data produced in the previous phase
and generates data read in the next phase. Search consists of an initialization phase, a parallel phase and a
termination phase that collects and prints out the results.

The parallel phases consist of many small pieces of computation. For convenience, we call each piece of
computation a tasklet. In Water each tasklet computes the interaction of two molecules, in String each tasklet
traces one ray through the velocity model and in Search each tasklet simulates the path of one electron. Each
tasklet generates a contribution; the contributions are combined to produce the final result of the parallel phase.
In Water the final result is either the total force acting on each molecule and the total-energy or the potential-
energy contribution of the interactions, in String the final result is the mean velocity difference at each element
of the velocity model and in Search the final result is the number of emerged electrons for each pair of solids and
electron-beam energies.

The first issue we consider is the management of the data structure used to store the contributions. The most
straightforward management strategy is to accumulate the contributions into the final result data structure as
they are generated. Each accumulation would then execute with exclusive access to the result data structure.
The problem is that using a single result data structure could cause a sequential bottleneck.

For these applications, an effective way to eliminate this bottleneck is to create multiple copies of the result
data structure and distribute the accumulations across the copies. Each copy is initialized to the identity for the
accumulation operation. At the end of the parallel phase the computation combines all of the copies to generate
the final result. We note that this general approach is the classic, correct way to parallelize the applications, and
there is nothing specific to Jade about this particular parallelization.

There is a trade-off between the amount of exposed concurrency and the amount of space required for copies of
the result data structure. Each of the applications takes a granularity parameter that determines the number of
copies. This granularity parameter is typically set to the number of processors executing the parallel application.

The next issue is the aggregation of tasklets into Jade tasks. One strategy exposes all of the concurrency by
generating one task per tasklet. This strategy maximizes both the amount of task management overhead and the
effectiveness of the implementation’s dynamic load balancing algorithm. Another strategy generates one task per
copy of the result data structure, assigning tasklets to tasks in a round robin fashion. This strategy generates the
least task management overhead but leaves the execution vulnerable to poor load balance. Intermediate strategies
assign different numbers of tasklets to tasks.

Water, String and Search all use the one task per copy of the result data structure strategy. For these
applications, the round robin mapping of tasklets to tasks generates an acceptable load balance.

7.5 Parallel Reductions

All three applications combine intermediate copies of the result data structure to generate the final result. One
way to perform this computation is to use a parallel reduction. This section shows how to code a parallel reduction
in Jade. We introduce parallel reductions by showing how to compute the sum of a set of doubles. In the eventual
Jade version each double will be a shared object, so we represent the set as an array of pointers to doubles. The
parallel reduction is computed in place, so the shared objects hold intermediate values during the computation.
The final value is stored into the shared object that the first array element points to. Figure 7 shows the operations
performed in a parallel reduction of a set of four doubles. Each operation adds two elements then stores the
result back into the first element. Each array element participates in a sequence of such operations.

To express the reduction in Jade, we first develop a serial procedure to perform the operations in the reduction.
Figure 8 contains this serial procedure. It takes two parameters: a, which is the array pointing to the set of

“a[3]

T el
&y — \
*a[0] += *a[2]
*a[1] /
T~ *a[0] += *a[1]
xa[0] —

Figure 7: Parallel Reduction

elements to reduce, and g, which tells how many elements there are in the set. The procedure processes the
elements, starting with the element that the last array entry points to and ending with the first. The procedure
brings each element to its final value before proceeding on to the next. The for loop in line 3 handles each
element *ale] in turn. The computation from lines 4 to 8 generates the offsets o of the elements to add to
element *ale], with line 6 performing the addition. Every offset is twice as far away as the last offset, so the
next offset o (computed in line 7 of Figure 8) is always the next power of two.

1: reduce(double shared * shared *a, int g) {
2 int e, o;

3 for (e = g-1; e >= 0; e—-) {

4: o=1;

5: while (((e + 0) < g) && !'(e & 0)) {

6 xa[e] += *al[e+o];

7 0 = 0%2;

8 }

9 }

1o; }

Figure 8: Serial Code for Parallel Reduction

The condition in the while loop in line 5 exits when the current element *a[e] has reached its final value. The
first clause in the condition ((e + o) < g) exits when the offset of the next element to add to *a[e] is outside
the range of the array. All succeeding offsets will be outside the range and *a[e] has reached its final value.

The second clause in the condition (!(e & o)) exits when the bit in the binary representation of e that
corresponds to the current value of o is 1. To provide insight into why the element has reached its final value
when the bit is 1, we label the branches of the reduction tree with either a 0 or a 1 as demonstrated in Figure
9. If you read off the labels along any path from the root to a leaf element, you get the binary representation of
the index of the element at the leaf. At every internal node of the tree the reduction adds the two elements that
contain the sums of the left and right subtrees to generate the total sum of the subtree rooted at that internal
node. It must then write the total sum back into one of the elements for use in the next level of the reduction. The
reduction always uses the element that corresponds to the branch labeled 0. The code can therefore determine
when the current element will not be used in the next level of the reduction (and has therefore reached its final
value) by detecting the first 1 in its binary representation.

To clarify the presentation of later algorithms we define combine(e,g) to be the sequence of values that e+o
takes on in line 5 of Figure 8. We will use combine (e, g) as an abstraction to hide the details of computing which
elements to add with each other in the reduction. Figure 10, which performs the same computation as Figure 8,
illustrates how we will use this notation.

To parallelize the reduction in Jade, we generate a task for each element. Each task adds the correct sequence
of other elements to its element. It declares an immediate read and write access on its element and a deferred read

*a[3] 1
*a[2] += *a[3]

*a[2] 5 1
*a[0] += *a[2]
*a[1] 1 .
*a[0] += *al1]
*a[0]
0

Figure 9: Labeled Parallel Reduction

reduce(double shared * shared *a, int g) {
int e, o;
for (e = g-1; e >= 0; e—-) {
for (j in combine(e, g)) {
xale] += xa[j];
}
}
}

O ~NO O WN -

Figure 10: Serial Code for Parallel Reduction using combine(e,g)

access on all the elements it will add to its element. As the task reads the elements it uses a with construct to
change the deferred declaration to an immediate declaration. Figure 11 contains the Jade code for the reduction.

7.6 Expressing the Concurrency in Jade

We next show how to express the three applications in Jade. We emphasize the similarity between the three
applications by presenting a general concurrency schema that covers the specific concurrency pattern in each
application. This schema uses a general abstraction (called the accumulator abstraction) that encapsulates the
replication of the result data structures, the accumulation of the tasklets’ contributions and the parallel reduction.
While it would be possible (and even beneficial) to code the applications using this general abstraction, each
application currently uses less general data structures.

The accumulator abstraction exports several operations. These operations include create_accumulator, which
creates an accumulator, the init_accumulator operation, which is invoked at the beginning of every parallel phase
to initialize the accumulator, the update_accumulator operation, which each task invokes to combine a newly
generated contribution into the accumulator, and result_accumulator, which each task invokes at the end of its
computation to generate the final result. The declare update accumulator operation encapsulates the access
specification statements required to declare how the update_accumulator and result_accumulator operations
access data.

Figure 12 contains the Jade psuedo code that illustrates how to use the accumulator. The code first initializes
the accumulator, then creates the tasks that perform the actual computation. The granularity parameter g
controls the granularity of the computation by determining how many tasks are created. As described in Section
7.4, the tasklets are distributed to tasks in a round-robin fashion.

Each task’s access specification section first invokes the operation that declares how the accumulator will
access data, then declares how it will access the global shared objects and shared objects generated in the previous
serial phase to compute its contributions. In Water each task declares that it will access the molecule positions
and momentum data computed in the previous section and an object that holds some global variables. In String

1: reduce(double shared * shared *a, int g) {
2: int e, j;

3: for (e = g-1; e >= 0; e—-) {

4: withonly {

5: rd(a);

6: rd_wr(alel);

7: for (j in combine(e, g)) df_rd(aljl);
8: } do (a, e, g) {

9: for (j in combine(e, g)) {

10: with { rd(aljl; } cont;

11: xale] += xalj]l;

12: }

13: }

14: }

15: }

Figure 11: Jade Code for Parallel Reduction

each task declares that it will access the new velocity model and an object that holds some data initialized at the
start of the computation and read thereafter. In Search each task declares that it will access several objects that
hold input parameters.

When the task runs, it computes its set of tasklets, updating the accumulator with each contribution as it
is generated. When the task finishes with its set of tasklets it invokes the result_accumulator operation to
perform its part of the parallel reduction.

We next describe the implementation of the accumulator abstraction. Figure 13 contains the data structure
definition for the accumulator object. This object points to the copies of the result data structure and stores the
granularity parameter g. The granularity parameter determines the number of copies of the result data structure.
The accumulator data structure also stores the function pointers that implement the operations of the specific
result data structure. The client of the abstraction provides these operations when the accumulator is created.
The accumulator requires operations to create a copy of the result data structure, copy one result data structure
into another result data structure, zero a result data structure, add one result data structure to another and store
the result back into the first data structure, and an operation to update a result data structure with a tasklet’s
contribution.

Actually performing the modifications to integrate the replicated data structures into the application involved
relatively little programming overhead. The vast majority of the modifications took place on the boundaries of
the code that performs the computation of each tasklet. The core parts of the program remained unchanged.
The only other modifications involved the aggregation of global variables into a single global data structure. The
globals are typically written once in an initialization phase of the computation and only read in the rest of the
computation. The aggregation simplifies the access declarations and has minimal programming impact.

7.7 Water Performance Results

Table 4 presents the running times for Water on the iPSC/860; Table 5 presents the running times on DASH.
The ANL figures are from the explicitly parallel version of this application from the SPLASH benchmark suite.
Figures 16 and 17 present the corresponding speedup curves. The speedups are given with respect to the execution
times of the sequential version from Tables 2 and 3. The sequential version is the serial program generated by
stripping all of the Jade constructs out of the Jade version of the program. It executes with no Jade overhead.

accumulator shared *a;

init_accumulator(a);
for (i =g -1; i > 0; i--) {
withonly {
declare_update_accumulator(a, i);
/*
The programmer inserts here the application-specific
access specification statements required to declare
how the task reads shared objects. The task typically
reads two kinds of shared objects:
1) Global objects written once in an initialization
phase and read by the rest of the program.
2) Objects computed in the preceding serial phase.
*/
}do (i, g) {
for (every g’th tasklet t starting with tasklet i) {
compute contribution c from tasklet t;
update_accumulator(a, c, i);
3
result_accumulator(a, i);
X
}

Figure 12: Parallel Schema for Water, String and Search

typedef struct {
/*
result_copy points to the copies of the result data
structure. It must be big enough to hold pointers to
all of the copies.
*/
void shared#* result_copy[MAX_NUM_PROC];
/*
These point to the functions that implement the basic
operations of the result data structure.
*/
void shared (*copy) Q);
void shared (*zero)();
void shared (*add) ();
void shared (*update) ();
/*
The number of actually allocated copies of the result
data structure is g.
*/
int g;
} accumulator;

Figure 13: Accumulator Data Structure

create_accumulator (g, create, copy, zero, add, update) {
a = create_object(accumulator);
with { rd_wr(a); } cont;
a=>g = g;
a->copy = copy;
a->zero = zero;
a->add = add;
a—->update = update;
for (1 = 0; i < g; i++) {
a->result_copy[i] = (*create)();
}
with { df_wr(a); } cont;
return a;

init_accumulator(a) {
zero = a->zero;
for (1 = 0; i < a->g; i++) {
copy = a->result_copyl[il;
withonly { rd_wr(copy); } do (copy, zero) {
(*zero) (copy) ;
}
}
}

Figure 14: Accumulator Creation and Initialization

declare_update_accumulator(a, i) {
rd(a);
rd_wr (a->result_copyl[il);
for (all j in combine(i, g)) {
df _rd(a->result_copyl[jl);
}
}

update_accumulator(a, c, i) {
(*(a->update)) (a->result_copyl[i], c);
}

result_accumulator(a, i) {
for (all j in combine(i, a->g)) {
with { rd(a->result_copyl[il); } cont;
(*(a->add)) (a->result_copy[jl, a->result_copyl[il);
}
}

Figure 15: Accumulator Operations

1 2 4 8 16 24 32
Jade|2452.24 1231.70 622.14 318.00 166.43 118.96 91.86

Table 4: Execution Times for Water on the iPSC/860 (seconds)

8 16 24 32
223.13 152.83 118.54
254.04 175.85 144.10

1 2 4
Jade | 3283.92 1655.66 835.88 425.40
ANL | 3677.57 1834.83 927.96 501.00

Table 5: Execution Times for Water on DASH (seconds)

= 32t
;g_ 24 |
16 |

0 L L L L
0 8 16 24 32
Processors

Figure 16: Speedups for Water on the iPSC/860

= 32
g 24 |
16 }

0 . . N .
0 8 16 24 32
Processors

Figure 17: Speedups for Water on DASH

7.8 String Performance Results

Table 6 presents the running times for String on the iPSC/860, Table 7 presents the running times on DASH.
Figures 18 and 19 present the corresponding speedup curves.

1 2 4 8 16 24 32
Jade|18876.92 9496.70 4764.54 2415.14 1248.62 865.97 676.48

Table 6: Execution Times for String on the iPSC/860 (seconds)

1 2 4 8 16 24 32
Jade|19280.41 9794.00 4926.22 2502.83 1287.95 886.70 693.26

Table 7: Execution Times for String on DASH (seconds)

= 32t p
;g_ 24 //
16 |

0 L L L L
0 8 16 24 32
Processors

Figure 18: Speedups for String on the iPSC/860

7.9 Search Performance Results

Table 8 presents the running times for Search on the iPSC/860, Table 9 presents the running times on DASH.
Figures 20 and 21 present the corresponding speedup curves.

8 Volume Rendering

The Volume Rendering application generates a sequence of images, each corresponding to a given view of a set of
volume data. The application manipulates three major data structures: the voxel array, which holds the volume
data, the image array, which is an array of pixels holding the rendered image, and a shading-table array. For each
view, the program first computes the shading table then renders the image onto the image array.

The computationally intensive section of the Volume Rendering application shoots a ray from each pixel into
the voxel array. The computation associated with this ray determines the value of the pixel. It is easy to see that
the computation can trace all of the rays in parallel. Each ray only reads part of the voxel array and writes its pixel
in the image array. The basic computational issues are maximizing locality, minimizing overhead and balancing
the load. Because rays from adjacent pixels tend to access similar regions of the voxel array, shooting rays from
contiguous sets of pixels on the same processor enhances locality. The original developers [15] determined that
distributing pixels to processors in 8 by 8 chunks yields acceptable locality.

32t
24 |
16 |

Speedup

0 . . N .
0 8 16 24 32
Processors

Figure 19: Speedups for String on DASH

1 2 4 8 16 24 32
181.66 94.33 62.75 47.63

Jade | 1420.05 71549 371.87

Table 8: Execution Times for Search on the iPSC/860 (seconds)

4 8 16 24 32

1 2
130.46 77.77 61.06

Jade | 1813.67 910.70 459.16 242.34

Table 9: Execution Times for Search on DASH (seconds)

= 32
g o4 |
16 }

0 . . N .
0 8 16 24 32
Processors

Figure 20: Speedups for Search on the iPSC/860

= 32
g o4 |
16 }

0 . . N .
0 8 16 24 32
Processors

Figure 21: Speedups for Search on DASH

Because the rays generate different amounts of computation, a static assignment of 8 by 8 chunks to processors
has the potential to generate an unbalanced load. Ideally, the programmer would create one task per chunk and
rely on the implementation to dynamically balance the load by moving chunks to idle processors. With the current
implementation this strategy generates more concurrency management overhead than strategies that aggregate
chunks into larger-grain tasks. Static analysis would eliminate this problem by allowing the implementation to
employ a task management strategy efficient enough to profitably exploit concurrency at the granularity of the 8
by 8 pixel chunks. In the current version the programmer minimizes the overhead by maximizing the task size.
The application matches the number of tasks to the number of processors, mapping the 8 by 8 pixel chunks onto
tasks in a round robin fashion.

The image data structure is allocated in one contiguous chunk. Each image task computes its part of the image
into a private data structure, then copies the result into the image data structure. This allows all of the tasks to
execute concurrently with a serial copyback phase at the end of the image computation. Because the tasks write
disjoint pieces of the image, providing more precise access declarations would allow the tasks to concurrently
write the image data structure, eliminating the serial copyback phase. Because the shading table is also allocated
in one chunk, the shading-table computation has a similar copyback phase.

For the timing runs, the application rendered the head dataset described in [15]. This dataset has a 256 by 256
by 226 voxel array and a 416 by 416 image array. Each element of the voxel array takes up 4 bytes; each element
of the image array takes up 1 byte. The voxel array dominates the storage requirements; it is approximately 58
megabytes long. The size of the voxel array interacts poorly with the communication mechanism of the message-
passing implementation. In this implementation each object is a unit of communication and is transferred as a
unit between processors. If a processor accesses part of an object the entire object must fit into the memory
associated with the processor. Because the voxel array is larger than the 16 megabyte per-node memory on
the iPSC/860, this application will not run on this platform. A communication mechanism that allowed the
implementation to store large objects in a distributed fashion across all of the memories would eliminate this
problem.

1 2 4 8 16 24 32
Jade | 33.06 16.49 8&8.70 4.58 284 210 2.01
ANL | 31.60 15.00 7.67 3.88 1.97 - 1.01

Table 10: Execution Times for Volume Rendering on DASH (seconds)

= 32t p
;g_ 24 | //
/
16 | p
/

0 L L L L
0 8 16 24 32
Processors

Figure 22: Speedups for Volume Rendering on DASH

Table 10 presents the execution times for Volume Rendering; Figure 22 presents the corresponding speedup
curves. We were able to obtain performance numbers for the explicitly parallel version described in [15]. This
version was written using the ANL macro package [14]. The Jade performance tails off quickly after 16 processors,
while the explicitly parallel version scales almost linearly to 32 processors. The sources of inefficiency for the Jade
version include slow task creation and startup, a load imbalance, and the serial copyback phase. See [16] for a

full analysis of each source of inefficiency.

9 Panel Cholesky

Panel Cholesky factors a sparse positive-definite matrix. The computation is basically the same as in the Cholesky
factorization algorithm presented in Section 3 except that the columns of the matrix have been aggregated into
larger-grain objects called panels. This aggregation increases both the data and task grain sizes. See Rothberg’s
thesis [19] for a comprehensive discussion of parallel sparse Cholesky factorization algorithms, including this one.

The serial program stores all of the panels contiguously in one long array. In the Jade version each panel is an
object, so the programmer had to change the parts of the code that allocated and accessed the panels. Because the
serial program logically accessed the matrix at the granularity of panels (even though the panels were allocated
contiguously), this data structure modification did not significantly complicate the development.

There was one other data structure modification besides the decomposition of the matrix into panels: the
programmer aggregated multiple global variables into a single shared object. As for other Jade applications, the
global variables are written once at the start of the computation and read by the rest of the computation. The
aggregation simplified the access declarations and drove down the access declaration overhead.

Table 11 presents the running times for Panel Cholesky on the iPSC/860, Table 12 presents the running times
on DASH. The ANL version is an explicitly parallel version of the computation written in the ANL macro package;
the COOL version is an explicitly parallel version written in the concurrent object-oriented language COOLIS].
Figures 23 and 24 present the corresponding speedup curves.

| 1 2 4 8 16 24 32
Jade | 53.62 3411 33.91 3554 43841 47.77 49.73

Table 11: Execution Times for Panel Cholesky on the iPSC/860 (seconds)

| 1 2 4 8 16 24 32

Jade | 3384 17.47 11.03 7.21 6.93 7.29 7.36
COOL | 3497 1863 10.36 6.82 4.10 3.33 -
ANL | 2990 1527 820 4.67 298 270 -

Table 12: Execution Times for Panel Cholesky on DASH (seconds)

= 32t p
;g_ 24 | //
/
16 | p
/
/

0
0 8 16 24 32
Processors

Figure 23: Speedups for Panel Cholesky on the iPSC/860

The ANL macro package and COOL versions of this application differ substantially from the Jade version. The
ANL macro package and COOL are explicitly parallel programming systems that allow the programmer to control

= 32t p
-(% 24 t p 4
/
16 | p
| /
/
/ﬁ
0 L L L L
0 8 16 24 32
Processors

Figure 24: Speedups for Panel Cholesky on DASH

the computation at a low level. Both the ANL macro package and COOL versions exploit this control to use a
highly tuned, application-specific concurrency exploitation algorithm. This algorithm first analyzes the structure
of the matrix in a preprocessing phase, then uses the extracted information to drive an application-specific task
queue algorithm that generates the parallel computation. The Jade version, on the other hand, contains neither
a preprocessing phase to extract scheduling information about the computation nor an application-specific task
queue algorithm. It instead uses the general-purpose concurrency exploitation algorithms embedded in the Jade
implementation. While the Jade approach places less of a burden on the programmer, for this application it also
generated poorer performance than the explicitly parallel approach.

We next analyze the factors that contribute to the poor performance of the Jade versions. The first factor
is an inherent lack of concurrency in the application. Even for the ANL version the maximum speedup is less
than 10 for a 24 processor run, with much of the performance loss caused by an inherent lack of concurrency
[19]. A second performance factor is that the general-purpose object queue and task queue algorithms in the
Jade implementation are less efficient than the special-purpose algorithms used in hand-coded implementations.
The overhead associated with the Jade synchronization and scheduling algorithms is especially severe for this
application because much of it is serialized — the Jade version of Panel Cholesky creates tasks sequentially. While
the sequential task creation is not itself the critical path (even for the fastest runs the sequential task creation
time takes only about one half of the total execution time), it may delay the creation of enabled tasks. This
delayed enabled task creation wastes concurrency, potentially hurting the performance if an idle processor could
have executed the task sooner.

10 Ocean

The computationally intensive part of Ocean uses an iterative method to solve a set of spatial partial differential
equations. It stores the state of the system in several two-dimensional arrays. On every iteration the solver
recomputes each element of the array using a standard five-point stencil algorithm. The new value of the element
depends on its old value and on the values of the four elements above it, below it, to the left of it and to the right
of it. The solve terminates when the differences between the old values and the new values drop below a given
threshold.

The programmer parallelized this application by assigning contiguous blocks of columns to different tasks. The
tasks recompute the values of the elements in their blocks, concurrently writing the new values back into the
blocks.

To express this computation in Jade the programmer explicitly decomposed the arrays so that the concurrent
writes go to different shared objects. This decomposition is complicated by the fact that two tasks must access
the boundary elements. The programmer handles this situation by decomposing the arrays along one dimension
into block objects and border objects as illustrated in Figure 25. The decomposition takes place under the control
of a granularity parameter. The number of blocks is typically the same as the number of processors executing

the program minus one.>

borders
Y

‘\ blocks/‘

Figure 25: Ocean Data Decomposition

The resulting Jade computation behaves as follows. In each iteration of the solve phase, the main thread
generates a new task for each block of the decomposed array. Fach task processes its data from left to right, first
accessing the left border, then the interior, then the right border. The tasks are created from right to left, which
exposes the concurrency in the computation. For the version with explicit task placement, the programmer places
each task on the processor in whose memory the task’s block was allocated.

The solve converges when the change in every element in the array is less than a given tolerance. Each task
has its own convergence flag, which is set when the change in all of the task’s elements is less than the tolerance.
The main thread tests for convergence by testing each convergence flag in turn. If all of the flags are set, the
main thread proceeds on the next phase of the computation. As soon as it finds a flag that is not set, it creates
the set of tasks for the next iteration of the solve.

Table 13 presents the running times for Ocean on the iPSC/860, Table 14 presents the running times on DASH.
The COOL version is an explicitly parallel version written in the concurrent object-oriented language COOLJ8].
Figures 26 and 27 present the corresponding speedup curves.

| 1 2 4 8 16 24 32
Jade | 77.75 9249 96.38 60.35 39.15 4521 56.95

Table 13: Execution Times for Ocean on the iPSC/860 (seconds)

1 2 4 8 16 24 32
Jade | 104.13 99.58 37.24 25.00 17.69 14.13 13.21
COOL | 104.99 53.56 28.36 14.57 7.54 540 4.75

Table 14: Execution Times for Ocean on DASH (seconds)

On the iPSC/860 the limiting factor is the task management overhead, more specifically the large latency
required for the task management messages. On DASH the task management overhead is again the limiting factor

20cean has a small grain size and creates tasks sequentially. For such applications, the best performance is obtained by devoting
one processor to creating tasks. Allocating no blocks or boundaries on the first processor biases the locality heuristic away from
executing worker tasks on the processor that creates the tasks.

32t
s

o
=]
-g_ 24 //
/
16 | p
/
81 v
0 L—r—’ﬁ\
0 8 16 24 32
Processors

Figure 26: Speedups for Ocean on the iPSC/860

= 32t p
-(%24 //
/
16 | p
8—W
0

0 8 16 24 32
Processors

Figure 27: Speedups for Ocean on DASH

on the performance. But since DASH supports a more efficient Jade implementation than does the iPSC/860,
the DASH performance is substantially better than the iPSC/860 performance. See [16] for a complete analysis
of these effects.

11 Programming Discussion

Our applications experience shows that the key to developing successful Jade applications is devising and imple-
menting an appropriate structure for the shared objects. Given such a structure, inserting the with and withonly
constructs and the access specifications is a straightforward process that involves little coding effort.

In all of the applications the major data structure modifications were designed to enable concurrent writes.
In Water, String and Search the programmer explicitly replicated the result data structure to enable parallel
tasks to concurrently write the replicas instead of serially writing the original. In Volume Rendering each task
allocated private temporary storage to hold the results of the image pixel calculation. This modification allowed
the computation to replace serialized writes to the original image data structure with concurrent writes to the
private data structures. In Panel Cholesky and Ocean the programmer decomposed a central data structure so
that the tasks could concurrently write different parts.

Even though all of the applications substantially modified some of the original data structures, the programming
overhead associated with performing the modifications varied widely from application to application. For all of
the applications except Ocean, the modifications were confined to small, peripheral sections of the code, and there
was little programming overhead associated with the use of Jade. The key to the success of these applications
was the programmer’s ability to preserve the original data indexing algorithm for the core of the computation.

For Ocean, on the other hand, the array decompositions generated wholesale changes throughout the entire
program. The programmer had to change the basic indexing algorithm for almost all of the program’s data and
the program almost tripled in size. It is interesting that decomposition does not always generate such a large
amount of programming overhead. In Panel Cholesky, for example, the decomposition of the array used to hold
the factored matrix had very little effect on the overall structure of the program. Again, the key determining
factor is whether or not the programmer has to change the indexing algorithm in the core of the computation.

The preceding discussion focuses on the specific properties of the parallelization visible in the final Jade version
of each application. While we believe such an analysis can provide useful insight into how the language structures
the program, it misses the dynamic nature of the interaction between the language, the programmer and the
application during the program development process. Although we only have anecdotal data about this process,
our experience using Jade leads us to believe that several aspects of Jade help programmers successfully navigate
the program parallelization process.

Parallel program development proceeds most smoothly when the development can proceed via a sequence of
small, incremental modifications to a working program, with the programmer checking the correctness of each
modification before proceeding on to the next. Because the parallelization often requires a major restructuring of
some part of the program, the programmer often reaches a stage where he must make several major modifications
without being able to test any modification until all are performed. If anything goes wrong with one of the
modifications it can be difficult to isolate the resulting bug because it could have been caused by any one of the
multiple changes.

Jade programmers typically develop a program in two stages. In the first stage they start with a serial
program that performs the desired computation, then apply the data structure modifications required for the
Jade parallelization. They then insert the Jade constructs required to parallelize the program. The major
modification stage, if there is one, occurs when the programmer makes the data structure modifications. It is
always possible to incrementally insert the Jade constructs with no fear of changing the program’s behavior.
Furthermore, deterministic execution ensures that a single run completely characterizes a program’s behavior on
a given input, which supports the incremental development process by making it easier to verify the correctness
of each modification.

An interesting aspect of this program development process is that the potentially troublesome phase takes place
before the programmer ever deals with the complication of parallel execution. The programmer can therefore use
all of the existing infrastructure for the development of serial programs and can count on deterministic execution
to simplify the debugging process. Our experience developing Jade applications combined with our previous

experience developing explicitly parallel applications showed us that this approach can make it much easier to
develop working parallel programs.

12 Performance Evaluation

The coarse-grain Jade applications (Water, String and Search) all perform quite well. The computations are
inherently well suited for parallel execution and the use of Jade entails no significant performance penalty.

The finer-grain computations (Panel Cholesky and Ocean) have significant performance problems, especially
on the iPSC/860 platform. While some of these performance problems are caused by inherent limitations of the
applications and computational platforms, the Jade overhead has a substantial negative impact on the performance
of both applications on both platforms. In particular, the serialized overhead on the main processor is a Jade-
specific problem that limits the performance of both applications.

For Ocean, an improved implementation would eliminate virtually all of the dynamic Jade overhead. Static
analysis would allow the implementation to discover the basic concurrency pattern of the computation and
generate code that is substantially more efficient. The resulting optimized computation would generate one
large task per block for each solve phase. This task would repeatedly recompute its new values, periodically
synchronizing with the tasks to its left and right. This would eliminate the serial task management bottleneck
and substantially improve the performance of the computation.

Given the dynamic, data-dependent nature of the Panel Cholesky computation, however, there is very little
hope for improvement from static analysis. No existing or envisioned compiler technique could automatically
extract enough information from the program to substantially reduce the dynamic Jade overhead. A maximally
efficient implementation therefore seems to require the knowledge, insight and programming effort that only a
skilled programmer using an explicitly parallel language can provide.

The Volume Rendering application exposed several limitations of the current Jade implementation. The most
severe limitation was the fact that the message-passing implementation requires each accessed shared object to fit
into the memory of the accessing processor. Because the voxel array is too large to fit in the per-node memories of
the iPSC/860, the application would not run on that platform. An implementation that distributed the storage
for individual objects across the memories of the machine would eliminate this limitation. Volume Rendering
also illustrated how the inability to express concurrent writes to the same object can limit the performance. This
inability led to the serial copyback phase, which substantially impaired the DASH performance.

We note that the three applications that exhibited the best overall performance (Water, String and Search)
share a common concurrency pattern: independent computations linked by parallel reductions. We believe,
however, that Jade is suitable for a much more general class of applications. The primary determining factors are
grain size and amount of concurrency, not the specific concurrency pattern. Water, String and Search perform
well because they have a large grain size and because almost all of the computation takes place inside parallel
phases. We expect Jade to work well for any computation that exhibits these characteristics, regardless of its
specific concurrency pattern.

13 Related Work

Many researchers have built systems that are designed to exploit task-level parallelism. We briefly survey several
of these systems and compare them to Jade. PVM [21] and MPI [11] are message passing systems. They provide
standard message passing constructs such as send and receive that allow parallel programs to communicate by
sending messages. The major functionality that these systems provide over the standard Unix system calls is
support for heterogeneity and a clean interface that eliminates much of the complexity of process creation and
low-level communication details. Programmers who use such systems, however, are still responsible for explicitly
extracting the concurrency and generating all of the communication. Jade is designed to provide a much higher
level interface: the Jade implementation, not the programmer, automatically exploits the concurrency and, on
message-passing machines, generates the communication. We have found PVM useful, however, as a portable
communication platform — one implementation of Jade uses PVM as its communication library [16].

Fortran M supports a more abstract message passing model of computation [10]. Programmers structure the
computation as a set of modules that interact by passing messages through channels. The model of communication
is much more flexible than in PVM or MPI, which require the program to specify the specific process to which
every message will be sent. Fortran M is also has a clean theoretical foundation and supports language restrictions
that guarantee deterministic execution. Fortran M programmers, however, are still responsible for extracting the
concurrency and generating the communication.

CODE and HeNCE [2, 5] provide a graphical interface for creating modules and channels and linking them
together into a communicating system. The modules are typically written in a sequential language such as C or
Fortran. Although programmers that use either of these systems must still extract the concurrency and generate
the communication manually, the graphical interface does make it much easier to link the modules together. The
graphical representation can also make it easier to understand the parallel structure of the final program.

CC++ supports a shared-memory model of computation [9]. Instead of sending messages, processes commu-
nicate by reading and writing a shared memory. The CC++ implementation is responsible for implementing this
abstraction on message passing machines. CC++ provides definitional, or write-once variables, which support a
channel-based programming style similar to Fortran M. Munin [3] and TreadMarks [13] are two other systems that
provide the abstraction of shared memory in a message passing environment. They support a more conventional
shared memory programming model based solely on mutable data and synchronization constructs such as mutual
exclusion locks. Shared memory systems are one step closer to Jade than message passing systems — both Jade
and shared memory systems provide the abstraction of a single mutable memory. The major distinction is that
the shared memory systems discussed here are explicitly parallel systems that rely on the programmer to express
the concurrency explicitly. In Jade, the implementation automatically extracts the concurrency, which frees the
programmer having to write detailed code to control the parallel execution.

14 Conclusion

Our applications experience shows that the current version of Jade is a qualified success. For all but one appli-
cation, the use of Jade entails limited programming overhead. The coarse-grain computations perform very well,
with the dynamic Jade overhead having no significant impact on the performance. The finer-grain computations
suffer from some Jade-specific performance problems, but some of these could be eliminated with a more advanced
Jade implementation.

References

[1] U. Banerjee, R. Eigenmann, A. Nicolau, and D. Padua. Automatic program parallelization. Proceedings of
the IEEE, 81(2):211-243, February 1993.

[2] A.Beguelin, J. Dongarra, G. Geist, R. Manchek, and V. Sunderam. Graphical development tools for network-
based concurrent supercomputing. In Proceedings of Supercomputing ’91, Albuquerque, NM, November 1991.

[3] J. Bennett, J. Carter, and W. Zwaenepoel. Munin: Distributed shared memory based on type-specific
memory coherence. In Proceedings of the Second ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Seattle, WA, March 1990.

[4] W. Blume and R. Eigenmann. Performance analysis of parallelizing compilers on the Perfect Benchmarks
programs. IEEE Transactions on Parallel and Distributed Systems, 3(6):643-656, November 1992.

[5] J. Browne, S. Hyder, J. Dongarra, K. Moore, and P. Newton. Visual programming and debugging for parallel
computing. IEEE Parallel and Distributed Technology: Systems and Applications, 3(1):75-83, Spring 1995.

[6] R.Browning, T. Li, B. Chui, J. Ye, R. Pease, Z. Czyzewski, and D. Joy. Empirical forms for the electron/atom
elastic scattering cross sections from 0.1-30keV. Journal of Applied Physics, 76(4), August 1994.

[7] R. Browning, T. Li, B. Chui, J. Ye, R. Pease, Z. Czyzewski, and D. Joy. Monte-carlo calculations of
electron/atom elastic scattering from 0.1-30keV. Scanning, 1994. To appear.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

R. Chandra, A. Gupta, and J. Hennessy. Data locality and load balancing in COOL. In Proceedings of the
Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, San Diego, CA,
May 1993.

I. Foster. Designing and Building Parallel Programs. Addison-Wesley, 1995.

I. Foster and K. M. Chandy. FORTRAN M : a language for modular parallel programming. Journal of
Parallel and Distributed Computing, 26(1):24-35, April 1995.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation of the mpi
message passing interface standard. Parallel Computing, 22(6):789-828, September 1996.

J. Harris, S. Lazaratos, and R. Michelena. Tomographic string inversion. In 60th Annual International
Meeting, Society of Exploration and Geophysics, Extended Abstracts, pages 82-85, 1990.

P. Keleher, A. Cox, S. Dwarkadas, , and W. Zwaenepoel. TreadMarks: Distributed Shared Memory on
Standard Workstations and Operating Systems. In Proceedings of the 1994 Winter Useniz Conference,
January 1994.

E. Lusk, R. Overbeek, J. Boyle, R. Butler, T. Disz, B. Glickfield, J. Patterson, and R. Stevens. Portable
Programs for Parallel Processors. Holt, Rinehart and Winston, Inc., 1987.

J. Nieh and M. Levoy. Volume rendering on scalable shared-memory MIMD architectures. Technical Report
CSL-TR-92-537, Computer Systems Laboratory, Stanford University, August 1992.

M. Rinard. The Design, Implementation and Evaluation of Jade, a Portable, Implicitly Parallel Programming
Language. PhD thesis, Stanford, CA, 1994.

M. Rinard, D. Scales, and M. Lam. Heterogeneous Parallel Programming in Jade. In Proceedings of Super-
computing '92, pages 245-256, November 1992.

M. Rinard, D. Scales, and M. Lam. Jade: a high-level, machine-independent language for parallel program-
ming. Computer, 26(6):28-38, June 1993.

E. Rothberg. Ezploiting the memory hierarchy in sequential and parallel sparse Cholesky factorization. PhD
thesis, Stanford, CA, January 1993.

J. Singh, W. Weber, and A. Gupta. SPLASH: Stanford parallel applications for shared memory. Computer
Architecture News, 20(1):5-44, March 1992.

V. Sunderam. PVM: A framework for parallel distributed computing. Concurrency: Practice €& Experience,
2(4):315-339, December 1990.

