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CONFORMATIONAL SPACE ANNEALING

Introduction

btaining global minimum-energy conforma-O tions of polypeptides is a very hard opti-
mization problem. The difficulty generally arises
from the following two factors: the conformational
space of a reasonable size polypeptide is very
large, and there are many local minima that are
hard to sample efficiently. The energy landscape in
the conformational space is very rugged, and there
are many large barriers between local minima.

Among many optimization methods aimed at
solving this hard optimization problem, we will
discuss three methods as a prelude to a new one
developed here: the buildup procedure, the ge-
netic algorithm, and the Monte Carlo minimization
Ž .MCM method.

BUILDUP PROCEDURE

In this method one starts with the low-energy
structures of single residues and uses these to
build up low-energy structures of dipeptides,
tripeptides, and so on, carrying out energy mini-
mization at each level.1, 2 The general idea is to
break down the original peptide into several levels
of component peptides whose low-energy confor-
mations can be identified by exhaustive enumera-
tion. First, at the single-residue level, all local-
minimum conformations are obtained by a grid
search of the dihedral angles of each residue of the
original peptide and are subsequently stored. At
the dipeptide level the stored local-minimum con-
formations of two single residues are combined
and their energies are minimized to obtain local-
minimum conformations of dipeptides, which are
again stored in order to generate larger oligopep-
tides, and so on. The problem with this approach
is that the number of local minima increases expo-
nentially with the size of the original peptide. To
alleviate this difficulty, various strategies, includ-
ing elimination of high-energy conformations of
the component peptides, were used to reduce the
number enumerated. In addition, overlapping of
peptides was used to reduce redundancy; for ex-
ample, the tetrapeptide sequence A-B-C-D was
built from the tripeptides A-B-C and B-C-D by
eliminating all conformations in the tripeptide en-
sembles A-B-C and B-C-D in which residues B-C
of both ensembles were not in the same conforma-
tional space.1

GENETIC ALGORITHM

The genetic algorithm3, 4 is based on the evolu-
tion of species and selection by the principle of
survival of the fittest. This method generally deals
with a population of conformations. Conforma-
tions of the next generation are generated by mix-
ing and matching conformations of the current
generation. Mutations are also allowed. As the
evolution proceeds, those conformations with bet-

Ž .ter fitness low-energy survive over those less fit
Ž .high-energy conformations . At the end of the
algorithm all conformations generally converge

Žinto one low-energy conformation not necessarily
.the lowest energy conformation . The problem with

this approach is that the size of the population
must be rather large to avoid the possibility that
all conformations converge into a low, but not the
lowest energy, local-minimum conformation. Vari-
ous modifications3 have been proposed to solve
this problem and they have some advantages and
disadvantages.

MCM AND ELECTROSTATICALLY DRIVEN
MONTE CARLO

The MCM5 ,6 procedure uses the Metropolis MC
criterion7 to search the conformational space of
local minima, rather than the whole conforma-
tional space. The electrostatically driven MC
Ž .8, 9EDMC method differs from the MCM proce-
dure in the way that new conformations are gener-
ated. It analyzes an accepted conformation based
on the orientations of the dipole moments of the
protein with respect to the local electric field to
generate additional new conformations. This kind
of approach is so far the most efficient one for
small peptides such as Met-enkephalin, a pen-
tapeptide with the sequence H N-Tyr-Gly-Gly-2
Phe-Met-COOH, with 24 dihedral angles as vari-
ables, shown schematically in Figure 1. Most
stochastic methods tend to be trapped in a deep
local minimum; it takes a considerably long time
to escape from that local minimum in order to
sample other regions of conformational space.
When this happens in the EDMC method the tem-
perature of the polypeptide under investigation is
raised temporarily to a very high degree to allevi-
ate the problem, which is equivalent to trying
several random starts.

( )CONFORMATIONAL SPACE ANNEALING CSA

In this article we propose a method that takes
advantage of the buildup procedure and the ge-
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FIGURE 1. Schematic diagram of the pentapeptide
Met-enkephalin. Backbone dihedral angles f,c ,v and
side-chain dihedral angles x i are shown as groups of
numbers 1]8. The numbers 1]8 refer to the groups of
dihedral angles in the corresponding rectangles in the
lower part of the figure. To create trial conformations in
the third part of the second step of the algorithm, we
substitute dihedral angles of a randomly selected group
of the seed conformation with the corresponding dihedral
angles of a randomly selected conformation in the bank.

netic algorithm by introducing the concept of CSA.
As in the genetic algorithm, we start with a ran-
dom population of conformations whose energies
are then minimized. These local minima are called
the ‘‘bank.’’ At the beginning, conformations in the

Žbank are distributed randomly i.e., minimized
.from random conformations in the conformational

space of local minima. Conformations in the bank
are refined under the condition that they should
repel each other in order to cover a large region of
conformational space. Schematically, each confor-
mation in the bank is considered as a representa-
tive of a group of local minima within a certain
distance of each other in the conformational space.
Arbitrarily retaining 50 such groups, the following
two operations are considered: the first is that each
group may improve its representative by replacing
the current one with a lower energy conformation
within the group. The second is when a new group
is found in addition to the existing 50, the group
with the highest energy representative among the
51 groups is removed, thereby retaining 50 groups.
Therefore, when a new conformation is obtained, it
is necessary to determine whether it belongs to
one of the 50 existing groups of local minima or
not. This is achieved by defining a distance Di j
between two conformations i and j in the confor-
mational space and a cutoff value D that roughlycut
sets the size of each group of local minima in the
conformational space by determining whether a
new conformation belongs to one of the 50 existing
groups or not.

Consider a situation in which improving the
conformations in the bank with an additional con-
formation a is desired. The generation of confor-
mation a is described in detail in the second step
of the algorithm below. One first finds the confor-
mation A in the bank that is the closest to the
conformation a at a distance D . If D - D ,a A a A cut
the conformation a is considered as one of the
local minima belonging to the same group as con-
formation A. If conformation a has a lower en-
ergy than conformation A, then a becomes the
representative of the group and A is removed
from the group without affecting the other groups.
However, if D ) D , the conformation aa A cut
makes up a group itself and the group with the
highest energy representative, including the group
consisting of conformation a, is removed, thereby

Ž .leaving the number of groups unchanged as 50 .
CSA is accomplished by setting the value of

D large enough at the beginning of the algo-cut
rithm and slowly reducing it to a smaller value.
With a large enough value of D , a small numbercut
Ž .e.g., 50 of independent groups of local minima
covers the whole conformational space. Therefore,
the possibility of discarding a group of local min-
ima with a high-energy representative conforma-
tion is eliminated at the beginning of the algorithm
because such an initially high-energy conformation
may eventually lead to the global minimum-en-
ergy conformation. It should also be noted that the
lowest energy conformation in the early stages of
the optimization does not necessarily lead to the
global minimum-energy conformation. The CSA
algorithm covers the whole conformational space
of local minima at the beginning and slowly re-
places groups of high-energy local minima with
groups of low-energy local minima as the number
of groups of local minima to cover the whole
conformational space increases as D is graduallycut
reduced. However, only a predetermined subset of

Ž .such groups e.g., 50 is retained. The value of Dcut
Žis reduced to a small value to 908 in 5000 mini-

.mizations for the case of Met-enkephalin , and
those groups of local minima that fail to obtain
representatives with low enough energies relative
to other groups are eliminated; that is, only 50
lowest energy groups are retained.

Because the whole conformational space of local
minima is effectively divided into many subdivi-
sions by D , small variations of the conformationcut
in the bank should be sufficient to search for a new
representative conformation of the corresponding
group. That part of the algorithm in which confor-
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mation i is being improved by varying it is closely
related to the buildup procedure in that conforma-
tion i is modified in several stages in which frag-
ments of conformation i are replaced by corre-
sponding randomly chosen conformations in the
rest of the bank:

1. a few random individual dihedral angles of
conformation i are replaced by correspond-

Žing ones in the bank for this, use is made of
those dihedral angles of the conformations
minimized from random starts; see the algo-

.rithm in the second section ;
Ž .2. a randomly chosen group of correlated di-

hedral angles; and
Ž3. a randomly chosen connected group compris-
.ing three groups for Met-enkephalin of dihe-

dral angles of conformation i are replaced by
corresponding dihedral angles in the bank.
ŽFor the definition of the group and the con-
nected group of dihedral angles see the algo-

.rithm in the second section.

Ž .Approximately 3 times as many correlated di-
hedral angles are moved in step 2 as in step 1.
Likewise, the ratio of varied dihedral angles in
step 3 compared to step 2 is also roughly 3. For
peptides larger than Met-enkephalin, additional
steps with more dihedral angles moved than in
step 3 would be necessary. Steps 2 and 3 are
somewhat analogous to setting up two stages of
component peptides in the buildup procedure. It
should be noted that in the buildup procedure,
only a limited number of low-energy conforma-
tions of component peptides are stored for use in
the next stage. In this new approach, the conforma-
tions in the bank are constantly changing. There-
fore, although the number of conformations in the
bank is limited, any combination of dihedral an-
gles of a group or a connected group is possible in
principle.

The proposed method was tested on Met-
enkephalin, a model frequently used for evaluat-
ing search methods, and the results were com-
pared with those from MCM5,6 and EDMC.9 The
residue geometry and the interatomic interaction
energies used were those in the revised version,10

ECEPPr3, of the Empirical Conformational Energy
Program for Peptides. In ECEPPr3 each conforma-
tion of a polypeptide is represented by a set of

� 4dihedral angles u , . . . , u , where n is the total1 n
number of dihedral angles. A simple form of the
distance D between two conformations i and j ini j

the conformational space is defined as the sum of
the difference of each dihedral angle as follows:

n
i jŽ . Ž .D s min mod u y u , sym k ,� 4Ýi j k k

ks1

i jŽ . Ž . Ž . Ž .sym k y mod u y u , sym k 1� 4� 4k k

Ž .where mod A, B is the least positive value of x
satisfying A s mB q x with an integer m, and

Ž .sym k is 3608, 1808, and 1208 for the dihedral
angle k with no symmetry, twofold symmetry,
and threefold symmetry, respectively. Thus, dis-
tance is defined in terms of dihedral angles. Other
forms of distance such as the Euclidean distance of
dihedral angles can also be considered.

Algorithm

A schematic summary of the algorithm is shown
in Figure 2 and is described below.

PREPARATION

We first describe some preparatory procedures
before the main algorithm begins.

FIGURE 2. Schematic diagram of the algorithm
described in the second section. The first four steps are
shown schematically in this diagram. The fifth and sixth
steps, which are not shown in the figure, are necessary

(at the end of the round i.e., when the iteration cannot
)find a new seed conformation . In such a case, if the

(number of the round is not more than nine an arbitrary
)cutoff the fifth step is followed, otherwise the sixth step.
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ŽGenerate nbank random conformations setting
.all values of v to 1808 , and minimize their

ECEPPr3 energies using Gay’s secant uncon-
strained minimization solver, SUMSL11; nbank s 50
is used for Met-enkephalin with each conformation

Ž .indexed as I where I runs from 1 to 50 . Through-
out the article the term minimization is used to
refer to the application of a local minimizer
Ž .SUMSL, in particular to a given conformation.
Store the set of minimized conformations as the
‘‘first bank.’’ Consider all pairs of distances in this
first bank and find D , the average distanceave
between two conformations. Conformations in the
first bank, which serves as a reference bank, re-
main unchanged throughout the rest of the algo-
rithm and provide candidates for local changes of

Ž .dihedral angles described in a later section , which
are uncorrelated random changes of a few dihedral

Ž .angles one to four for Met-enkephalin .
Copy the first bank and save it as the bank. Set

the initial value of D as D s D r2. Deter-cut cut ave
mine the annealing schedule for D as follows.cut
For Met-enkephalin, we have used D scut
Ž . nD r2 x where x is determined so that Dave cut
becomes 908 after n s 5000 minimizations. For n
) 5000, we used D s 908. Find the highest en-cut
ergy conformation with index I and energymax
E . This conformation is discarded and replacedmax
by a conformation obtained in a later section.

Select the ‘‘seed conformation’’ as the lowest
energy conformation in the first bank. It should be
noted that the subsequent seed conformation is
selected in a different manner from this and is
described later. The seed conformation will be
modified to obtain new conformations as de-
scribed in the following subsection.

OBTAIN TRIAL CONFORMATIONS

Here we describe the procedure to obtain trial
conformations by modifying the seed conforma-
tion. It should be noted that the energies of these
trial conformations will be minimized with
SUMSL11. Information stored in the first bank and
the bank will be exploited to modify the seed
conformation. We start by defining the dihedral
angles around an a-carbon that are sampled more
frequently than the others. These are defined as

1 Žthe dihedral angles f,c , and x if there are at
.least two side-chain dihedral angles . They are

involved in rotations around the a-carbon atom
and affect the relative positions of heavy atoms
attached to the a-carbon atom.

Because of steric hindrance, all possible ranges
of dihedral angles do not occur uniformly in
polypeptides. Therefore, rather than using uni-
formly distributed random variables for random
changes of dihedral angles, we use only those
values of the corresponding dihedral angles in the
first bank. For example, for a random change of an
v, rather than using a value distributed randomly
between y1808 and 1808, we use only those values
stored in the first bank that are approximately

weither 1808 or 08. It should be noted that, although
the starting values of all v ’s are initially set to 1808
Ž . Žtrans conformation , some v ’s are close to 08 cis

.conformation after the minimization used to pre-
xpare the first bank. We also classify backbone

dihedral angles and side-chain dihedral angles into
eight groups, as shown schematically in Figure 1
for Met-enkephalin. In Table I we also show seven
possible connected groups of three sets of dihedral
angles for Met-enkephalin. Groups and connected

Ž .groups consisting of three groups of dihedral
angles are analogous to two stages of component
peptides in the buildup procedure. Conformations
of groups and connected groups are utilized to

Žgenerate trial conformations chosen here as 10 for
.Met-enkephalin by modifying the seed conforma-

tion as follows.
Three conformations are generated by changing

Ž .a few one to four for Met-enkephalin randomly
selected dihedral angles of the seed conformation.
If the randomly selected dihedral angle of the seed
conformation is u , we replace it with one of thei
corresponding u ’s in the first bank, which is se-i
lected randomly out of the nbank conformations.

TABLE I.
List of Connected Groups of Three Sets of Dihedral
Angles for Met-Enkephalin, Used for the Second

aStep of the Algorithm .

Connected Group Groups

1 1, 2, 3
2 1, 3, 4
3 3, 4, 5
4 4, 5, 6
5 4, 5, 7
6 5, 6, 7
7 5, 7, 8

a The specific numbering of each group is given in Figure 1.
For example, if the connected group 7 is selected by a
random number, the 10 dihedral angles of groups 5, 7, and
Ž 1 2 3 48 f, c , v of Phenylalanine, and f, c , v and x , x , x , x

)of Methionine of the ‘‘seed conformation’’ are replaced by
the corresponding dihedral angles of a randomly selected
conformation in the bank.
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Another three conformations are generated as
above but the dihedral angles are selected only
from f, c , and x 1, that is, the dihedral angles
around the a-carbon atom.

Two additional conformations are generated by
randomly replacing one of the eight groups of
dihedral angles of the seed conformation with a
corresponding group of dihedral angles of a ran-
domly selected conformation in the bank.

Two more conformations are generated as above
but using connected groups instead of groups. For
Met-enkephalin we used seven connected groups
comprising three groups of dihedral angles as
shown in Table I.

It should be noted that we use the first bank
Ž .not the bank for creating trial conformations in
the first two steps. The reason is that dihedral
angles in the first bank are used as substitutions
for random variables, whereas those in the bank
are biased toward specific low-energy conforma-
tions because the conformations in the bank are

Župdated in subsequent stages of the algorithm see
.the following subsection . Attention is paid to as-

sure that all 10 trial conformations are significantly
Ž .different by at least 308 in one dihedral angle

from the seed conformation. We minimize these 10
trial conformations with SUMSL.11

UPDATE BANK AND SELECT NEW SEED
CONFORMATION

With the newly obtained minimized conforma-
tions, we update the bank as follows. For each

Žnewly minimized conformation i 1 F i F 10 for
.Met-enkephalin , find the nearest conformation I

Ž . min1 F I F nbank in the bank with distance Di
from conformation i.

Dmin s D - D , ;J / I and 1 F J F nbank .i i I i J

Ž .2

If Dmin - D , the new conformation i is con-i cut
sidered to belong to the same group as conforma-
tion I in the bank. Therefore, if E - E , conforma-i I
tion i replaces conformation I; otherwise, the bank
remains unchanged.

If Dmin ) D , the conformation i represents ai cut
new group that is distinct from all the other con-
formations in the bank. We compare E with E ,i max
the energy of the highest energy conformation in
the bank. If E ) E , the bank remains un-i max
changed. If E - E , conformation i replacesi max
conformation I , and I and E are updatedmax max max

appropriately. It should be noted that the number
of conformations in the bank remains as nbank.

Repeat the first three steps above for all newly
Žminimized conformations 1 F i F 10 for Met-

.enkephalin completing the update of the bank.
After the bank is updated, a new seed conforma-

Ž .tion is selected see next paragraph and we no
longer use the old seed conformation until all bank
conformations are used as a seed conformation.

A new seed conformation is selected from the
bank as the lowest energy conformation among
those satisfying the following two conditions: it
has not yet been used as a seed conformation and
it lies in the conformational space sufficiently far

Ž .away at least by d from the previous seedave
conformation, where d is the average distanceave
between the previous seed conformation and all
the other conformations satisfying the first condi-
tion. The selection of a new seed conformation
helps to increase the diversity of conformations in
the bank; that is, the new seed conformation is
selected significantly far away in the conforma-
tional space from the previous one.

REPEAT SECOND AND THIRD STEPS WITH
NEW SEED CONFORMATION

Reduce the value of D according to thecut
schedule in the first step of the algorithm, and
repeat the second and third steps until all bank
conformations are used as seed conformations. This
completes one round of iterations.

REPEAT SECOND, THIRD, AND FOURTH
STEPS

At the end of each round, all conformations in
the bank are designated as unused and a new seed
conformation is selected as the lowest energy con-
formation in the bank. Repeat the second, third,
and fourth steps for a preset number of rounds.
We set the number of rounds arbitrarily as nine for
Met-enkephalin.

ADD CONFORMATIONS IF NECESSARY

After iterations of the nine preset rounds, we
increase the size of the first bank and the bank by

Žadding n more conformations for Met-add
.enkephalin we used n s 50 . These n confor-add add

mations are generated as described in the first step
of the algorithm. The value of D is set to thecut
original value that was used in the first step of the
algorithm and the second to the fifth steps are
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repeated. Special care is needed to prevent the old
conformations in the bank from being selected as
the seed conformation during the first round after
increasing the bank size. This is to minimize the
influence of the old conformations with low ener-
gies on the evolution of the newly added confor-
mations, the latter having relatively high initial
energies because they have not yet been cycled
through the optimization procedure.

During the first round of iterations, the number
of randomly selected dihedral angles in the first
two parts of the second step is set to 2, 3, and 4.
After the first round of iterations, it is set to 1.

Results

We applied the CSA method to Met-enkephalin;
we tested the algorithm on 100 independent runs
and found the same accepted global minimum-
energy conformation10 for all 100 runs. Details of
these runs are as follows. The optimization proce-
dure stopped when it found a conformation with

ŽE - y11.6 kcalrmol at this stage the energy was

always y11.707 kcalrmol, which is the accepted
10 . *value of the ground-state energy . The initial

value of nbank was 50, and the number of rounds
wwas set to nine with n s 50. When necessary,add

i.e., if the global minimum is not found after nine
rounds, then n s 50 additional conformationsadd
were added to increase nbank to 100, which hap-

Ž . xpened only once the 100th run . The initial value
of D was set to one-half of D , and the valuecut ave
of D was about 7108. We reduced D alge-cut cut
braically to 908 in 5000 minimizations as described
in the first step of the algorithm. Ten trial confor-
mations were generated as described in the second
step of the algorithm.

In Figure 3 we show a scatter plot of the num-
ber of minimizations to obtain the global mini-
mum-energy conformation for 100 independent
runs. For these 100 independent runs, we used one
initial value for the random number generator to

* The accepted value reported here differs from the one in
ref. 10 because of a redefinition of some of the parameters in
the potential function. With the present version of ECEPPr3,
we regard y11.707 kcalrmol as the global minimum energy of
Met-enkephalin.

FIGURE 3. Scatter plot of the number of minimizations to obtain the accepted global minimum-energy conformation
with energy E = y11.707 kcal / mol for 100 independent runs. For the 100 independent runs, we used one value forg
the random number generator to create 100 sets of random first bank conformations of size nbank = 50. The global
minimum-energy conformation was successfully obtained for all 100 independent runs with about 2600 minimizations
on average. It should be noted that the last one was the only one in which the solution was not found within the first
nine rounds after 6020 minimizations. The algorithm then added n = 50 new conformations before finding theadd
solution within a total of 9482 minimizations.
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create 100 sets of random first bank conformations
of size nbank s 50. It should be noted that the
100th run was the only one in which the solution
was not found within the first nine rounds after
6020 minimizations, for which the algorithm added
n s 50 new conformations before finding theadd
solution within a total of 9482 minimizations. In
the 100th run, the group of local minima contain-
ing the global minimum-energy conformation was
removed from the bank because it failed in the
competition between other groups. That is, the
bank conformations that were near the global min-
imum in conformational space failed to improve
their energies after a given number of minimiza-
tions and were eventually replaced by other con-
formations located far from the global minimum
as D was reduced from a large to a small value.cut
Figure 4 shows the histogram of the number of
minimizations required to obtain the global mini-
mum-energy conformation. On average, it took

Žabout 2600 minimizations corresponding to 1.7 =
105 energy evaluations, 1.3 = 105 gradient evalua-
tions, and 2700 s of CPU time on a Silicon Graph-

.ics Indigo2 workstation , which is an improvement
over an average of 3900 minimizations for 16 sepa-
rate runs from random starts by the EDMC9

Žmethod. In ref. 9 all dihedral angles v of the
.starting conformations were chosen randomly. In

addition, the number of energy evaluations per
minimization with the current method is only
about 64, which is an improvement over the re-
ported value of about 100 for the MCM5 method.
It seems that this is due to the fact that, in the CSA
method, trial conformations are modified only
slightly from the seed conformation by substitu-
tion of the already minimized portion of the other
conformations.

One of the attractive aspects of the proposed
method is that a population of distinct local min-
ima is obtained as a by-product, in addition to the
global minimum-energy conformation. We exam-
ined the final conformations in all 100 runs and
collected 1778 conformations with energies lower
than y9.0 kcalrmol. It was found that only 194

Žconformations were unique obviously, because we
found the global minimum in each run, there were
100 identical conformations with energy y11.707

.kcalrmol . In Figure 5 the histogram of these 194
conformations are shown. Table II shows the dihe-
dral angles of the 10 lowest energy conformations.
The eighth conformation with energy of y10.547
kcalrmol is the most distinctively different confor-

FIGURE 4. Histogram of the number of minimizations required to obtain the global minimum-energy conformation.
(Excluding the 100th, obtained after 9482 minimizations, the distribution is Gaussian-like with a skewness or third

)12 ( )12moment of 0.12 and a kurtosis or fourth moment of y0.49, indicating a slight tail to the right and flatness at the
center, respectively, of the distribution.
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mation from the global minimum-energy confor-
mation in the table with a distance of 12598.

Discussion

The novel aspect of the proposed CSA method
is to keep track of many ‘‘distinct’’ local minima
that are designed to be distributed as far apart as
possible in the conformational space. This is espe-
cially important in the early stages of the current
method. The landscape of local minima is viewed
as a collection of groups of local minima. The
physical boundaries between groups of local min-
ima in the conformational space are difficult to
define explicitly. In this article they are implicitly
defined through the function D when the bankcut
is updated. The CSA method maintains diversity
in the bank by setting the value of D largecut
enough at the beginning of the algorithm and
slowly reducing it, hence conformational space an-
nealing, and by selecting a new seed conformation
significantly far away in the conformational space
from the previous one.

The other important aspects of CSA, borrowed
from the genetic algorithm and the buildup proce-
dure, are described in the following subsections.

ASPECT OF GENETIC ALGORITHM

First, the CSA method deals with many confor-
mations. Second, in obtaining trial conformations,
information stored in other conformations is used,
which is also related to the buildup procedure.

ASPECT OF BUILDUP PROCEDURE

For the substitution of a dihedral angle, we use
those values from the first bank, the set of mini-
mized conformations from random starts. This is
based on the assumption that, if the number of
conformations in the first bank is large enough, the
global minimum-energy conformation can be ob-
tained by minimizing a conformation made from
an appropriate combination of dihedral angles from
the first bank. Finding the appropriate combina-
tion of dihedral angles is a very difficult optimiza-

FIGURE 5. Histogram of 194 low-lying distinct local minima with energies lower than y9.0 kcal / mol. There are 1778
conformations with energies lower than y9.0 kcal / mol from 100 independent runs. Among these 1778 conformations,
only 194 conformations are unique; for example, only one of the 194 conformations has an energy between y11.7 and
y11.8 kcal / mol, and three different conformations have energies in the range of y10.9 to y11.0 kcal / mol.
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TABLE II.
Dihedral Angles of 10 Lowest-Energy Conformations for Met-Enkephalina.

1 2 3 4 5 6 7 8 9 10
Tyr f y83.5 y77.5 58.4 y78.9 y165.9 y78.7 y77.9 y163.2 y155.0 y78.7

c 155.8 122.1 154.4 143.0 118.8 141.2 139.4 y40.5 142.9 142.6
v y177.2 y171.1 y176.9 y167.8 y171.0 y168.6 y167.2 y177.7 y167.8 y167.6

1x y173.2 177.4 y173.9 y164.9 176.1 y168.2 y164.0 y172.2 y165.0 y164.7
2x 79.4 73.8 80.3 75.7 73.8 70.5 79.4 93.2 75.9 76.5
3x y166.4 y155.1 y166.4 y159.6 y154.0 177.6 y156.1 y177.2 y159.7 y158.7

Gly f y154.3 y104.2 y152.8 y90.1 y100.7 y90.1 y89.8 65.1 y90.0 y90.2
c 86.0 61.8 86.3 60.0 63.0 61.0 60.8 y89.7 60.0 60.0
v 168.5 167.5 168.4 178.5 167.5 174.5 179.0 174.1 178.4 178.7

Gly f 82.9 86.2 83.0 67.3 86.1 74.7 69.2 y152.6 67.3 67.6
c y75.1 y62.5 y75.1 y89.2 y62.8 y77.1 y86.5 34.4 y89.1 y89.0
v y170.0 y173.0 y169.9 175.4 y173.0 y173.7 175.0 y178.9 175.5 175.0

Phe f y136.9 y134.6 y137.0 y94.4 y134.8 y127.5 y100.1 y155.3 y94.5 y95.2
c 19.1 18.8 19.2 y31.4 18.8 13.7 y25.5 159.8 y31.4 y31.2
v y174.1 y174.1 y174.0 y171.4 y174.1 y175.5 y172.7 179.2 y171.4 y172.1

1x 58.9 58.5 58.8 179.5 58.5 60.4 72.4 52.1 179.5 y179.3
2x 94.6 94.2 94.6 78.7 94.2 92.3 86.3 82.8 78.7 81.9

Met f y163.5 y162.7 y163.5 y88.7 y162.7 y158.8 y83.3 y79.4 y88.7 y85.5
c 161.2 157.7 161.3 145.1 157.5 168.3 133.7 130.7 145.0 142.5
v y179.8 y179.5 y179.9 178.9 y179.6 y179.3 178.1 y178.7 179.0 178.8

1x 52.9 52.5 52.9 y63.8 52.4 53.2 y169.5 y66.7 y63.9 y65.3
2x 175.3 175.5 175.3 y178.3 175.4 173.7 176.2 179.8 y178.3 y71.8
3x y179.8 y180.0 y179.9 y179.4 y179.9 y179.4 y179.9 y179.9 y179.4 y179.0
4x y58.6 y58.6 y58.6 y59.9 y58.6 y58.6 60.0 y60.0 y60.0 y59.0

Energy y11.707 y11.229 y10.980 y10.964 y10.958 y10.857 y10.552 y10.547 y10.531 y10.491
D 0 175 147 639 258 201 546 1259 705 7491i

a Energies are in kcal / mol and the dihedral angles are in degrees. Dihedral angles of the lowest energy conformation with energy
( ) ( )y11.707 kcal / mol agree with those in reference 10 within 38 see text footnote . Almost all dihedral angles f, c of conformations

1 and 8 differ from each other by more than 308. The conformational distances D between conformation 1 and the remaining1i
( )conformations are calculated from Eq. 1 .

tion problem itself. If there are three representative
values for each dihedral angle, the number of
possible combinations for the 24 dihedral-angle
Met-enkephalin becomes 324 f 3 = 1011. At the
component-peptides level, we use corresponding
groups and connected groups of dihedral angles
from the bank to modify the seed conformation. In
the buildup procedure, the original problem is
built up from single residues to dipeptides, then to
oligopeptides, and so on. In the current method,

Ž .several levels i.e., a group and a connected group
of modifications of the seed conformation are es-
tablished simultaneously.

Preliminary results from the CSA method ap-
plied to larger polypeptides than Met-enkephalin,
such as a collagenlike triple helix,13 decaglycine,
and the 20-residue membrane-bound portion of

Ž .melittin not shown here , are very promising.
With a local minimizer, the method is quite gen-

eral and it may be applied to other interesting
difficult optimization problems.
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