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ABSTRACT: The concept of orbital- and eigenvalue-dependent exchange-
Ž .correlation xc energy functionals is reviewed. We show how such functionals

can be derived in a systematic fashion via a perturbation expansion, utilizing the
Kohn]Sham system as a noninteracting reference system. We demonstrate that
the second-order contribution to this expansion of the xc-energy functional
includes the leading term of the van der Waals interaction. The optimized-

Ž .potential method OPM , which allows the calculation of the multiplicative
xc-potential corresponding to an orbital- and eigenvalue-dependent xc-energy
functional via an integral equation, is discussed in detail. We examine an
approximate analytical solution of the OPM integral equation, pointing out that,
for eigenvalue-dependent functionals, the three paths used in the literature for
the derivation of this approximation yield different results. Finally, a number of
illustrative results, both for the exchange-only limit and for the combination of
the exact exchange with various correlation functionals, are given. Q 1999 John
Wiley & Sons, Inc. J Comput Chem 20: 31]50, 1999

Keywords: density functional theory; exchange-correlation potential; optimized
potential method; van-der-Waals forces; atomic correlation energies

Introduction

he major task preceding the application of theT Ž .Kohn]Sham KS method of density func-
Ž .1 ] 3tional theory DFT is the construction of a
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suitable approximation for the exchange-correla-
Ž . w xtion xc energy functional, E n , and the corre-x c

Žw x .sponding multiplicative xc-potential v n ; r . Thex c
xc-energy arises in the context of the mapping of
the many-body problem onto a corresponding sin-
gle-particle problem. Its definition is:

Ž .E s T y T q W y E 1x c s H

ŽE includes the difference between the full inter-x c
.acting kinetic energy, T , and the kinetic energy,
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Ž .T , of the auxiliary KS particles " s 1 :s

1
3 † 2Ž . Ž . Ž .T s y d r f r = f r 2Ý Hs k k2m e Fek F

and the difference between the full electron]elec-
tron interaction energy, W, and the Hartree en-
ergy:

2 Ž . Ž X .e n r n r
X3 3 Ž .E s d r d r 3H H XH < <2 r y r

Ž . † Ž . Ž . Ž .n r s f r f r 4Ý k k
e Fek F

In the course of the development of DFT three
distinct levels of approximations for E can bex c
distinguished:

) Ž .41 In the local density approximation LDA
one uses the density dependence of the xc-
energy density of a homogeneous electron
gas and replaces the constant gas density by

Ž .the actual, locally varying density n r . Ini-
tially, the input of the homogeneous system
was derived by analysis and, to the extent
possible, resummation of diagrammatic con-
tributions to the ground-state energy.5, 6 At a
later stage, more accurate Green’s function
Monte-Carlo results7, 8 were parameter-
ized.8 ] 11

At first sight, the LDA seems to be too crude
to deliver results of appropriate quality. It

3, 12, 13 Žhas, however, been found and ana-
6, 14, 15.lyzed in some detail that, due to a

cancelation of errors between exchange and
correlation contributions and the compliance
with an important sum rule for the xc-hole,
the performance of the LDA is much better
than could be expected, thus it is still a
mainstay of the DFT-Ks applications. None-
theless, the LDA involves definite errors,
most notably the incomplete cancelation of
the self-interaction energy in E and theH
corresponding incorrect asymptotic behavior
of the exchange potential for finite systems,
which does not allow a correct description of
atomic negative ions.16 A number of correc-
tive measures, such as self-interaction correc-
tion,10, 17, 18 were devised to cope with these
problems.

)2 A natural extension of the LDA is the
straightforward gradient expansion approxi-

Ž .mation GEA , in which the lowest order

deviations from homogeneity are taken into
account on the basis of long-wavelength ex-
pansion of the linear response corrections to
the homogeneous electron gas xc-energy.
However, the rather extensive evaluation of
the corresponding contributions19 ] 26 did not
lead to functionals which were successful in
applications. The benefits of error cancelation
between both exchange and correlation and
between different regions in space, which
save the LDA, are lost. In addition, the GEA
no longer satisfies the sum rule for the xc-
hole. For these reasons the positive features
of the direct GEA were combined with
semiempirical input27 ] 29 or with corrective
features incorporating properties of the pair
correlation function30 ] 34 to generate func-
tionals that have been termed generalized gra-

Ž .dient approximations GGAs . With GGAs one
is able to correct a number of the deficiencies
of the LDA, such as, for instance, its predic-
tion of a paramagnetic ground state for
metallic iron.35 Moreover, these functionals
have yielded excellent results for the struc-
ture and energetics of molecules.36 ] 38 How-
ever, GGAs do not consistently improve the

Žagreement with experiment compared with
. 39 ] 44the LDA , in particular for solids. For

instance, the failure of the LDA to give the
correct ground states for some transition

40 Žmetal oxides remains unresolved although
there might be some room left for improve-
ment,43 if more emphasis is placed on the
quality of the xc-potential rather than the

45.xc-energy . In addition, the GGA neither
really improves the description of negative
ions nor is able to deal with van der Waals
bonds.

)3 The third level in the search for improved
ground-state energy functionals is the use
of orbital-dependent representations. These
constitute implicit functionals of the density,
in the sense that the xc-functional is ex-

Žpressed in terms of KS orbitals and KS
.eigenvalues, in general , rather than directly

in terms of the density:

w xE s E f , ex c x c

Ž � 4 � 4 . Ž .with f s f , . . . , e s e , . . . 51 1

As the orbitals and eigenvalues themselves
Ž .are in general unknown functionals of the

w x w xdensity, f s f n , e s e n , on arrives atk k k k
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the original statement of the Hohenberg-
Ž .Kohn HK theorem:

w w x w x x w x Ž .E s E f n , e n s E n 6x c x c x c

The natural definition for the exchange part
of E :x c

Ž .E s E q E 7x c x c

is the Fock term, expressed, however, in
terms of KS orbitals46, 47:

e2
X3 3E s y d r d rH Hx 2

† Ž . Ž . † Ž X . Ž X .f r f r f r f rk l l k Ž .= 8Ý X< <r y re , e Fek l F

This constitutes an implicit density func-
tional that guarantees, in connection with the

Ž .Hartree term, eq. 3 , perfect cancelation of
self-interaction effects. On the other hand,

Ž .two questions immediately arise: i How
can one generate: a multiplicative exchange

Ž .potential, starting from eq. 8 , rather than a
Ž .nonlocal Hartree]Fock HF -type potential;

Ž .and ii How can one generate a reasonable
approximation for the correlation contribu-
tion, E , and the corresponding correlationc
potential v ?c
The first question and the last part of the
second question are resolved by the opti-

Ž . 48, 49mized-potential-method OPM , in which
the multiplicative potential corresponding to

w xany functional E f, e can be determined
via an integral equation. As the OPM self-
consistency procedure is much more in-
volved than the direct KS scheme, this ap-
proach was initially applied only sparingly.
In the meantime, however, an accurate ap-
proximation method for the solution of the
crucial OPM integral equation has become
available.50 The answer to the first part of the
second question is still not fully available.
The OPM has, for instance, been
suggested51 ] 54 for use with the self-interac-

Ž . 10tion-corrected SIC LDA for exchange and
correlation as a semiempirical orbital-depen-
dent xc-functional. It is, however, not clear
whether the SIC-LDA for correlation can
serve as an adequate counterpart of the exact
exchange. An additional semiempirical or-
bital-dependent ansatz for E , the functionalc

Ž . 55due to Colle and Salvetti CS , has also
been put forward.56 The most promising ap-

proach to E is perturbation theory on thec
57, 58 Žbasis of the KS Hamiltonian akin to

Møller]Plesset perturbation theory on the
.basis of the HF Hamiltonian . A correspond-

ing functional had initially been suggested
by Gorling and Levy.59¨

In what follows, we outline the basic formalism of
Žthe OPM, in the second section an extension of the

OPM to time-dependent systems is also available60

—we here, however, restrict ourselves to time-in-
.dependent problems . This basic discussion is then

complemented by an exposition of the salient fea-
tures of the perturbative approach to the correla-

Ž .tion problem third section . In the fourth section,
the method for the approximate solution due to

Ž .50Krieger, Li, and Iafrate KLI is described, com-
paring three variants for the treatment of eigen-
value-dependent functionals. Finally, we present
some illustrative results for atoms45, 49, 61 ] 64 as well
as a brief overview of results for more complex
systems.65 ] 67

Before we proceed, we remark that the OPM
can be extended to the relativistic domain,68 ] 71

including the inverse electron]electron interaction
and, at least in principle, all effects resulting from
the creation of virtual electron]positron pairs. In
this case, the basic DFT variable is the ground-state
four current, the KS equations are of Dirac-type,
and a set of four OPM integral equations deter-
mines the xc-four potential. Both the KLI ap-
proximation70, 71 and the perturbation expansion in
terms of the relativistic KS Hamiltonian,71 for
which quantum electrodynamics provides the ap-
propriate framework, are also available in the rela-
tivistic situation. As in the nonrelativistic case,59

the perturbation approach allows the systematic
derivation of an orbital-dependent correlation
functional.71 However, a detailed discussion of the
relativistic OPM and the various additional as-
pects involved, as the question of gauge invariance
or the no-pair approximation, is beyond the scope
of this study. For further details the interested
reader is referred to ref. 71.

Optimized-Potential Method

ŽThe HK theorem states that under suitable
.mathematical conditions the ground-state energy

of a many-fermion system is a universal functional
of the ground-state density.72 The guarantee of
variational access, which accompanies the basic
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theorem, is usually exploited in the KS scheme
where the density is represented in terms of sin-
gle-particle orbitals.4 Two features make the KS

Ž .approach a useful tool in many-body physics: 1
Ž .The fact that it represents in principle exact map-

ping of the interacting many-body problem onto
an auxiliary single-particle problem, so that one

Ž .can hope to go beyond the exchange-only limit. 2
The fact that the effective single particle potential,
which itself is a functional of the density, is multi-

Ž .plicative rather than an integral operator and
thus much easier to handle.

This efficiency is promoted by the fact that, in
the conventional KS approach, the xc-potential is
explicitly expressed in terms of only the density,

Ž .eq. 4 . On the other hand, in the OPM, the xc-en-
ergy is formulated as a functional of a set of KS
orbitals, f, and KS eigenvalues, e , which them-
selves are unique functionals of the density via
solution of an accompanying set of KS equations:

=2

Ž . Ž . Ž . Ž .y q v r f r s e f r 9s k k k½ 52m

Ž . Ž . Ž . Ž . Ž .v r s v r q v r q v r 10s e x t H x c

Ž X .n r
X2 3Žw x . Ž .v n ; r s e d r 11H XH < <r y r
w xdE nx cŽw x . Ž .v n ; r s 12x c Ž .d n r

For instance, the exchange part of E can then bex c
Ž .taken to have the standard Fock form of eq. 8 .

The major task that arises if one bases the discus-
Ž .sion on eq. 6 is the calculation of the multiplica-

Ž .tive xc-potential, eq. 12 , which is addressed by
the OPM.48, 49

Ž .Assume that an xc-functional of the form eq. 6
Ž . Žis given and that a set of solutions, f r withk

.eigenvalues e , of the corresponding KS problemk
Ž .both occupied and unoccupied levels is available.

Ž .The functional derivative, eq. 12 , can then be
evaluated with the chain rule for functional differ-
entiation as:

Ž X .d v rsX3Ž .v r s d rHx c Ž .d n r
Y† Ž .df r dEk x cY3= d r q c.c.Ý H X Y†½ Ž . Ž .d v r df rs kk

de  Ek x c Ž .q 13X 5Ž .d v r es k

The derivatives of the energy with respect to the
orbitals and eigenvalues can be calculated once an
explicit form for E is specified. In addition, onex c
recognizes the density]density response function:

Ž .d n r
XŽ . Ž .x r, r s 14Xs Ž .d v rs

or, rather, its inverse:

Ž .d v rsXy1Ž . Ž .x r, r s 15Xs Ž .d n r

with

3 Y y1Ž Y . Ž Y X . Ž3. Ž X . Ž .d r x r, r x r , r s d r y r 16H s s

To obtain explicit expressions for the remaining
factors in the integrand on the right-hand side of

Ž .eq. 13 , one considers the linear response of the
Ž .KS system to a small perturbation d v r :s

=2

Ž . Ž . � Ž .4 Ž .y q v r y e df r s de y d v r f rs k k k s k½ 52m
Ž .17

which immediately yields:

3 † Ž . Ž . Ž . Ž .de s d r f r f r d v r 18Hk k k s

Ž . 3 X Ž X . Ž X . Ž X . Ž .df r s y d r G r, r f r d v r 19Hk k k s

Ž . † Ž X .f r f rl lXŽ . Ž .G r, r s 20Ýk e y el kl/k

One can directly show that the Green’s function
w Ž .xeq. 20 satisfies the differential equation:

=2
XŽ . Ž .y q v r y e G r, rs k k½ 52m

Ž3. Ž X . Ž . † Ž X . Ž .s d r, r y f r f r 21k k

which will be used subsequently. One thus finds
the relations:

† Ž .df rk X X† Ž . Ž .s yf r G r , r ;X k kŽ .d v rs Ž .22
dek X X† Ž . Ž .s f r f rX k kŽ .d v rs
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w Ž .xMoreover, the response function eq. 14 can also
wbe expressed in terms of the Green’s function eq.

Ž .x20 :

Ž . Ž Y .d n r df rkX Y3Ž .x r, r s d rÝH Y Xs ½ Ž . Ž .df r d v rk sk

Ž . † Ž Y .d n r df rkq XY† 5Ž .Ž . d v rdf r sk

† Ž . Ž X . Ž X . Ž .s y f r G r, r f r q c.c. 23Ý k k k
e Fek F

Ž . Ž Z .If one multiplies eq. 13 by x r, r and integratess
over rZ one obtains the OPM integral equation:

3 X Ž X . Ž X . Ž . Ž .d r x r, r v r s L r 24H s x c x c

Ž .where the kernel is given by eq. 23 and the
right-hand side is:

dEx cX X3 †Ž . Ž . Ž .L r s y d r f r G r, r q c.c.ÝH Xx c k k † Ž .df rkk

 Ex c† Ž . Ž . Ž .q f r f r 25Ý k k ekk

All quantities involved are functionals of the KS
orbitals and eigenvalues.

A necessary condition for the existence of a
Ž .solution is obtained by integrating eq. 24 over r
Ž X.and using the projection property of G r, r :k

3 † Ž . Ž X . Ž .d r f r G r, r s 0 26H k k

which leads to:

 Ex c Ž .s 0 27Ý
ekk

Of course, this identity is satisfied by any first
wprinciples form of E it is trivially satisfied byx c

Ž .the exchange energy of eq. 8 , but also the correla-
tion functional derived in the next section com-

Ž .x Ž .plies with eq. 27 . On the other hand, eq. 27
provides a consistency criterion for any semiem-
pirical correlation functional.

The OPM integral equation also allows the veri-
fication of an important property of the exact ex-
change potential of finite systems49, 58, 73; that is,
the fact that, asymptotically, the self-interaction

potential of the outermost electron must be can-
celed by v :x

e26Ž . Ž .v r y 28x < <r ª` < <r

As a consequence, the exact exchange leads to a
Rydberg series of unoccupied excited states, which
is not present in the LDA or GGA. The OPM
Ž .using the exact E is thus well suited to dealx
with negative ions. The discussion of the OPM
integral equation in the asymptotic regime also
allows one to establish an identity 50 for the high-
est occupied KS level, f :h

dEx c3 † Ž . Ž . Ž .d r f r f r v r y q c.c.s 0H h h x c †½ 5Ž .df rh

Ž .29

Ž .Eq. 29 is particularly helpful for fixing the abso-
Ž .lute normalization of v , because, due to eq. 26 ,x c

the OPM integral equation determines v only upx c
to a global constant.

The technical problem one faces in the OPM
is the combined self-consistency problem of solv-
ing the KS equations and the OPM integral equa-
tion simultaneously. This can be done directly
with high numerical accuracy for spherical sys-
tems,25, 45, 49, 61 ] 64 which also allows for construc-
tion of OPM-based pseudopotentials.74 An algo-
rithm suitable for condensed matter systems
Žwithin certain limitations, like the atomic-sphere

. 65approximation has been suggested by Kotani.
Recently, the OPM has also been formulated for a
plane-wave basis,75 thus allowing plane-wave
pseudopotential calculations for solids.67 Another
candidate for an efficient algorithm is the KLI

Ž .approximation outlined in the fourth section .

Perturbation Theory on
Kohn]Sham Basis

Although the exact E has been introduced inx
the first section in a more intuitive way, we now
present a systematic scheme for the derivation of
orbital- and eigenvalue-dependent xc-functionals,
taking up the basic idea of ref. 59. The approach
rests on a perturbation expansion, using the KS
system as a noninteracting reference system.57, 58

wAlthough, in practice, the total KS potential eq.
Ž .x10 has to be calculated self-consistently, it is
nevertheless legitimate to assume for the moment
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that v is known. One must later face the task ofs
disentangling the coupled evaluation of E andx c
v . This potential then allows one to define a non-s
interacting KS Hamiltonian:

=2
3 † 3ˆ ˆ ˆŽ . Ž . Ž . Ž .H s d x c x y c x q d x n x v xˆH Hs sž /2m

Ž .30

The KS problem is assumed to be solved; that is,
in particular, the noninteracting many-particle

< :ground state F and the eigenvalue E are known:s s

ˆ 3< : < : Ž . Ž . Ž .H F s E F ; E s T q d x n x v x 31Hs s s s s s s

To obtain a formula for the energy difference
between the exact ground-state energy, E:

ˆ < : < : Ž .H F s E F 32

and the noninteracting energy, E , and thus fors
E , we use a perturbation expansion in terms ofx c

ˆ ˆH y H . Low-order contributions of this expansions
could be obtained on the basis of the standard
Rayleigh]Schrodinger perturbation theory. How-¨
ever, for the sake of providing a more general
result for E we rely here on a coupling constantx c
integration technique. The interaction Hamiltonian
is thus augmented by a dimensionless coupling
strength parameter, g :

ˆ ˆ ˆŽ . Ž .H g s H q gH 33s 1

2 ˆ† ˆ† ˆ ˆŽ . Ž . Ž . Ž .e c x c y c y c x
3 3Ĥ s d x d yH H1 < <2 x y y

3 Ž . Ž . Ž .y d x v x n x 34ˆH H x c

Ž . Ž . Ž . Ž . Ž . Ž .v x ' v x y v x s v x q v x 35H x c s e x t H x c

Ž .The original Hamiltonian is obtained from eq. 33
for g s 1. The desired expression for the energy
shift induced by the interaction is obtained by first

Ž .differentiating the g-dependent ground state E g
ˆ² Ž . < Ž . < Ž .:s F g H g F g with respect to the coupling

parameter, and subsequently integrating over g :

Ž . Ž .E 1 y E 0 s E y E ' Es 1

1 ˆ² Ž . < < Ž .: Ž .s dg F g H F g 36H 1
0

To obtain a more explicit result for E one canx c
now utilize the concept of adiabatic switching76

ˆfor H . Assuming the interacting ground state,1
< Ž .:F g , emerges from the noninteracting ground

< :state, F , as one increases g from 0 to 1 and boths
states to be nondegenerate, the connection be-
tween them is established via the interaction-pic-

ˆture time-evolution operator U :I, e

ˆ Ž . < :U 0, . ` FI , e s
< : Ž .F s A lim 37ˆ² < Ž . < :eª0 F U 0, . ` Fs I , e s

1r2ˆ ˆ² < Ž . < :² < Ž . < :F U q`, 0 F F U 0,y` Fs I , e s s I , e s1 2As lim ˆ ˆ² < Ž . Ž . < :e , e ª0 F U q`, 0 U 0, y` F1 2 s I , e I , e s1 2

Ž .38

n
` Ž .yig

Xˆ Ž .U t , t s ÝI , e n!ns0

t t ye Ž < t <q ? ? ? q < t <.1 n= dt ??? dt eH H1 nX Xt t

ˆ ˆŽ . Ž . Ž .= T H t ??? H t 391, I 1 1, I n

ˆ ˆi H t yi H ts sˆ ˆŽ .H t s e H e1, I 1

e2
3 3s d x d yH H2

ˆ† ˆ† ˆ ˆŽ . Ž . Ž . Ž .c x, t c y, t c y, t c x, tI I I I
=

< <x y y Ž .40

3 Ž . Ž .y d x v x n x, tˆH H x c I

ˆ ˆi H t yi H ts sŽ . Ž .n x, t s e n x eˆ ˆI

ˆ ˆi H t yi H ts sˆ ˆŽ . Ž .c x, t s e c x eI

Žwhere A ensures the g-independent normaliza-
< Ž .:. Ž . Ž .tion of F g . Insertion of eq. 37 into eq. 36 ,

and use of the additivity of the time-evolution
operator, gives:

n
` Ž . `yig1

E s lim dg dt ???ÝH H1 1n!eª0 0 y`ns0

`
ye Ž < t <q ? ? ? q < t <.1 ndt eH n

y`

ˆ ˆ ˆ² < Ž . Ž . Ž . < :F TH 0 H t ??? H t Fs 1, I 1, I 1 1, I n s
= ˆ² < Ž . < :F U q`, y` Fs I , e s

Ž .41
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Ž .The denominator in eq. 41 exactly cancels those
contributions to a diagrammatic expansion of the
numerator which contain at least one subdiagram

ˆ Ž .not connected to the vertex defined by H 0 .1, I
Restricting the diagrammatic evaluation of the nu-
merator to connected diagrams, the coupling con-
stant integration can be performed. Extracting the

Ž . Ž . Ž . Ž .xc contribution from E via eqs. 1 , 3 , 33 , 34 ,1
Ž .and 36 the final result for E can be written as:x c

e2
3 3E s d x d yH Hx c 2

ˆ† ˆ† ˆ ˆ² < Ž . Ž . Ž . Ž . < : Ž . Ž .F c x c y c y c x F y n x n ys s
=

< <x y y
n

` Ž . ` `yi
q dt ??? dtÝ H H1 nŽ .n q 1 ! y` y`ns1

ˆ ˆ ˆ² < Ž . Ž . Ž . < := F TH 0 H t ??? H t F cs 1, I 1, I 1 1, I n s

Ž .42

where the index c indicates that only connected
77 Ž .diagrams have to be taken into account. Eq. 42

provides an exact representation of E in terms ofx c
the KS orbitals, the KS eigenvalues, and the xc-
potential; that is, the functional derivative of Ex c

Ž .with respect to n. Thus, eq. 42 is not directly
suitable for practical calculations, as a consequence
of the fact that we have used a noninteracting
reference Hamiltonian that is determined self-con-
sistently. However, this intricate coupling pattern
can be resolved by an expansion in powers of e2 :

` `
Ž i. Ž i.E s E q E ; v s v q v ;Ý Ýx c x c x c x c Ž .43is2 is2

2 Ž i. Ž i. 2 iE , v ; e ; E , v ; ex x c c

where the lowest order contribution, the exchange
energy, has been extracted explicitly. After inser-

Ž . Ž .tion of eq. 45 into eq. 42 , one obtains E in thex
Ž .form eq. 8 , as expected. The corresponding ex-

change potential can thus be evaluated using the
OPM as discussed previously:

3 X Ž X . Ž X . Ž . Ž .d r x r, r v r s L r 44H s x x

dExX X3 †Ž . Ž . Ž .L r s y d r f r G r, r q c.c.ÝH Xx k k † Ž .df rkk

Ž .45

For the lowest order correlation contribution one
finds:

e4 1
Ž2.E s Ýc 2 e q e y e y ei j k le , e Fe -e , ei j F k l

† Ž . Ž . † Ž . Ž .f r f r f r f ri 1 k 1 j 2 l 23 3= d r d rH H1 2 < <r y r1 2

† Ž . Ž . † Ž . Ž .f r f r f r f rk 3 i 3 l 4 j 43 3= d r d rH H3 4 ½ < <r y r3 4

† Ž . Ž . † Ž . Ž .f r f r f r f rk 3 j 3 l 4 i 4y 5< <r y r3 4

1
q Ý

e y ek le Fe -ek F l

3 † 2Ž . Ž . Ž .= d r f r f r v r q e ÝH 1 k 1 l 1 x 1
e Fej F

2† †Ž . Ž . Ž . Ž .f r f r f r f rk 1 j 1 j 2 l 23 3= d r d rH H1 2 < <r y r1 2

Ž .46

Due to the fact that v can be calculated via eqs.x
Ž . Ž . Ž44 and 45 i.e., v is itself a functional of the fx k

. Ž2.and e , E is a well-defined functional. Thek c
corresponding potential, vŽ2., can again be evalu-c
ated by the OPM:

3 Ž . Ž2. Ž . Ž2. Ž . Ž .d r x r , r v r s L r 47H 2 s 1 2 c 2 c 1

taking into account the v -dependence of EŽ2.:x c

Ž2. 3 †Ž . Ž . Ž .L r s y d r f r G r , rÝHc 1 2 k 1 k 1 2
k

Ž2.dEc
= q c.c.† Ž .df rk 2

 EŽ2.
c† Ž . Ž .q f r f rÝ k 1 k 1 ekk

Ž . Ž2.d v r dEx 2 c3 Ž .q d r , 48H 2 Ž . Ž .d v r d v rs 1 x 2

where the last term has been simplified via:

Ž . Ž .d v r d v rx 2 x 23 Ž .d r x r , r sH 3 s 3 1 Ž . Ž .d n r d v r3 s 1
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The functional derivatives of E and EŽ2. withx c
respect to f , e , and v can be performed di-k k x

w Ž . Ž .xrectly, using their explicit forms eqs. 8 and 46 .
It remains to calculate d v rd v . Taking the func-x s
tional derivative of the x-only OPM equation, eq.
Ž .44 , with respect to v , one finds, after reordering:s

Ž . Ž .d v r dL rx 2 x 33 y1 Ž .s d r x r , rH 3 s 2 3 ½Ž . Ž .d v r d v rs 1 s 1

Ž .dx r , rs 3 43 Ž . Ž .y d r v r 49H 4 x 4 5Ž .d v rs 1

Ž .The first unknown ingredient of eq. 49 can be
evaluated using the standard OPM replacement of
derivatives with respect to v by derivatives withs
respect to the orbitals and eigenvalues:

Ž .dL rx 2 3s y d rÝH 3Ž .d v rs 1 k

Ž .dL rx 2† Ž . Ž .= f r G r , r q c.c.k 1 k 1 3 † Ž .df rk 3

Ž .L rx 2† Ž . Ž . Ž .q f r f r 50Ý k 1 k 1 ekk

Ž .The second contribution, eq. 49 , requires the
evaluation of the quadratic response function:

Ž . 2 Ž .dx r , r d n rs 1 2 1sŽ . Ž . Ž .d v r d v r d v rs 3 s 3 s 2

Ž .s H r , r , rÝ k 1 2 3
e Fek F

qall permutations of r l r l r ,1 2 3

Ž .51

with:

Ž . † Ž . Ž . Ž . Ž .H r , r , r s f r G r , r G r , r f rk 1 2 3 k 1 k 1 2 k 2 3 k 3

† Ž . Ž . † Ž . 3y f r f r f r d rHk 1 k 1 k 2 4

Ž . Ž . Ž . Ž .= G r , r G r , r f r 52k 2 4 k 4 3 k 3

Ž . Ž . Ž . Ž2.Eqs. 8 , 46 ] 52 completely determine v .c
The generalization of this procedure to higher

orders is now obvious. The correlation energy,
EŽn., of order e2 n depends only on the correlationc
potentials of lower order. EŽn. is thus completelyc
defined, once the lower order potentials have been

evaluated via the corresponding OPM integral
equations. Finally, using the OPM also for the
order e2 n allows one to calculate vŽn.. This estab-c

lishes a recursive definition of E in terms of thec
f Ž†. and e .k k

In practice, however, a rigorous application of
this iteratively defined E would require the eval-c

uation of response functions of arbitrary order.
Ž .Thus, while eq. 42 is exact in principle, some

approximate handling of the v -dependence in eq.x c
Ž .42 seems unavoidable, if one wants to go beyond
the lowest order scheme discussed here. It remains
to be investigated whether, for instance, an LDA
treatment for the crucial ingredient of the OPM
equation, the xc-kernel f s d v rd n, is sufficientx c x c
for this purpose.

w Ž .xIt is worthwhile to analyze the energy eq. 46
in slightly more detail. First, one recognizes that it
consists of two contributions, the first of which has
exactly the same structure as the standard second-

Ž .order Møller]Plesset MP2 correlation energy, re-
ˆsulting from use of the HF Hamiltonian, H , asHF

the noninteracting reference system. Correspond-
ingly, the second term represents the difference
between the x-only OPM and HF ground-state

ˆ ˆenergies, evaluated to lowest order in H y H .HF s

As is well known, this difference is rather small64

Ž .see later , suggesting that the MP2-like contribu-
tion to EŽ2. alone might be a useful approximationc

for the correlation energy functional.71

In view of the close analogy of EŽ2. with thec

MP2 correlation energy, it is not surprising that
Ž2. Ž .E includes long-range dispersive van der Waalsc

forces.71 This property is most easily verified for
two neutral atoms, A and B, whose centers are
separated by a large distance, R, so that the KS
orbitals are localized around the two atomic cen-
ters and the orbitals corresponding to atom A have

Žno overlap with those centered on atom B i.e., the
.overlap vanishes exponentially with R . Each sum

Ž .over the KS levels in eq. 46 can then be split into
two sums over orbitals belonging to the centers A
and B:

ª qÝ Ý Ý
e e ei i iA B

Ž .All spatial integrals in eq. 46 that combine or-
† Ž . Ž .bitals from both centers, f r f r , vanish expo-i kA B

nentially for large R. As a consequence, EŽ2. can bec

decomposed into the corresponding correlation en-
ergies of the two atoms and an interaction contri-
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bution:

Ž2. 6 Ž2. Ž2. Ž2. Ž .E E q E q E 53c c , A c , B c , intRª`

e4
Ž2.E s Ý Ýc , int e q e y e y ei j k le Fe -e e Fe -e A B A Bi F k i F lA A B B

3 3= d r d rH H1 2

2† †Ž . Ž . Ž . Ž .f r f r f r f ri 1 k 1 j 2 l 2A A B B Ž .= 54
< <r y r1 2

Whereas EŽ2. and EŽ2. have the same structure asc, A c, B
Ž . Ž2.eq. 46 , the interaction term, E , originates fromc, int

the direct contribution to the MP2-like term in eq.
Ž .46 . Introducing the time-ordered KS response
functions:

† Ž . Ž . † Ž . Ž .f r f r f r f rk 1 l 1 l 2 k 2Ž .x r , r , v s Ýs 1 2 ½ v q e y e q ihk le Fe -ek F l

† Ž . Ž . † Ž . Ž .f r f r f r f rl 1 k 1 k 2 l 2 Ž .y 555v y e q e y ihk l

Ž .of the individual atoms, one can rewrite eq. 54
as:

e4
Ž2. 3 3E s y d r ??? d rHc , int 1 42

Ž . Ž .dv x r , r , v x r , r , vs , A 1 3 s , B 4 2
=H < < < <2p i r y r r y r1 2 3 4

Ž .56

Ž . 78Eq. 56 does not yet have the familiar form of
the van der Waals interaction. However, using
time-reversal invariance, the time-ordered re-
sponse function can be replaced by the retarded
KS response function:

R Ž .x r , r , vs 1 2

† Ž . Ž . † Ž . Ž .f r f r f r f rk 1 l 1 l 2 k 2s Ý ½ v q e y e q ihk le Fe -ek F l

† Ž . Ž . † Ž . Ž .f r f r f r f rl 1 k 1 k 2 l 2 Ž .y 575v y e q e q ihk l

Ž .x r , r , v for v G 0s 1 2R Ž . Ž .x r , r , v s 58Us 1 2 ½ Ž .x r , r , v for v F 0s 1 2

Finally, choosing the center of atom A as origin for
the r and r integrations and the center of atom B1 3
as origin for the r and r integrations, one can2 4
easily expand the Coulomb interaction for this
choice of coordinates,

1 1
ª

< < < <r y r R q r y r1 2 1 2

Ž .1 r y r ? R1 2s 1 y 2½R R

2 2w Ž . x Ž .3 r y r ? R r y r1 2 1 2q y q ???4 2 52 R 2 R

The two leading terms resulting from insertion of
Ž .this expansion into eq. 56 do not contribute due

to particle number conservation, so that one ends
up with:

4
`

i je du R R
Ž2.E s y d y 3ÝHc , int i j6 2ž /2pR R0 ijkl

RkRl

Ž . Ž . Ž .= d y 3 a iu a iu 59k l A , i k B , jl2ž /R

where a is the atomic KS polarizability tensor:i k

Ž . 3 3 i k R Ž . Ž .a v s d r d r r r x r , r , v 60H Hi k 1 2 1 2 s 1 2

Although the KS polarizability is not identical to
the full atomic polarizability, EŽ2. nevertheless re-c
produces van der Waals interaction between two

Žatoms, at least qualitatively in contrast to the
.LDA and the GGA . Moreover, a first evaluation of

Ž . 79the polarizabilities, eq. 60 , shows that, for light
Ž .atoms, eq. 59 provides a reasonable approxima-

tion for the lowest order van der Walls coefficient,
C .6

Krieger]Li]Iafrate Approximation

The numerical solution of the integral equation
w Ž .xeq. 24 is computationally rather demanding, so
that an approximate analytical or at least semiana-
lytical solution substantially increases the range of
applicability of the OPM. Such a scheme has been

Ž . 50suggested by Krieger, Li, and Iafrate KLI . KLI
have pointed out two different routes for the
derivation of their approximation to the OPM inte-
gral equation: One can either rely on a closure

w Ž .x50approximation for the Green’s function eq. 28
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or rewrite the OPM integral equation in a form
that suggests the neglect of certain complicated
‘‘higher order’’ contributions.62 A third derivation,
although being in the spirit of the second scheme,
has been given in ref. 70. All three approaches
have originally been formulated for purely orbital-

wdependent E , like the exchange-only energy eq.x c
Ž .x8 . However, E may also depend on the KSx c

Žeigenvalues e an explicit example was givenk
.earlier . This situation, for which the three ap-

proaches to the KLI approximation lead to differ-
ent results for v K L I,71 was first analyzed in thex c
context of the relativistic exchange energy, which
also is eigenvalue-dependent, due to the trans-
verse electron]electron interaction.

The KLI approximation is most easily intro-
duced via the closure approach: Replacing the

Ž .denominator in eq. 20 by some average eigen-
value difference, De , one obtains:

Ž . † Ž X .f r f rl lXŽ .G r, r f Ýk Del/k

Ž3. Ž X . Ž . † Ž X .d r y r y f r f rk k Ž .s 61
De

Ž .Insertion into eq. 24 leads directly to the first
Ž .form a of the KLI approximation for v :x c

1
K L IaŽ .v r sx c Ž .2n r

dEx c† Ž . Ž .= f r y n r e q c.c.Ý k k k†½ Ž .df rkk

 Ex cŽ . Ž .q2 n r v y De n rÝ Ýk k k 5eke Fe kk F

Ž .62

with:

dEx c3 † Ž . Ž .e s d r f r 63Hk k † Ž .df rk

3 Ž . Ž . Ž .v s d rn r v r 64Hk k x c

Ž . † Ž . Ž . Ž .n r s f r f r . 65k k k

Ž .Eq. 62 is still an integral equation for the un-
known potential, v , due to the v -dependence ofx c x c
the right-hand side via v . The coefficients, v ,k k
however, can be determined by multiplication of

Ž . Ž .eq. 62 with n r and subsequent integration overl
r:

Ž .n rl3v s d rHl Ž .2n r

dEx c† Ž . Ž .= f r y n r e q c.c.Ý k k k†½ Ž .df rkk

 Ex cŽ . Ž . Ž .q2 n r v y De n r 66Ý Ýk k k 5eke Fe kk F

Ž .Eq. 66 represents a set of linear equations for the
unknown coefficients, v , which can be solved fork
given f , e , and De , but without prior knowl-k k

Ž .edge of v . This then reduces eq. 62 to a simplex c
analytical relation.

Ž .Eq. 62 explicitly illustrates the ambiguity of
the KLI approximation for eigenvalue-dependent
functions just mentioned: Whereas for the ex-

w Ž .xchange energy eq. 8 and the semiempirical
55Colle]Salvetti functional the De-dependent term

on the right-hand side vanishes, any eigenvalue-
dependent E requires an explicit specification ofx c
De . Because in this way a characteristic energy
scale of the system is introduced by hand, the KLI
approximation loses its universality.

One would hope that the alternative approaches
to the KLI approximation resolve this problem as

Ž .they do not rely on approximation like eq. 61 . In
these schemes, the discussion is based on an exact
reformulation of the OPM integral equation, which
can be written as:

X X† 3Ž . Ž .f r d r G r, rÝ Hk k
k

dEx cX XŽ . Ž .= f r v r y q c.c.Xk x c †ž /Ž .df rk

 Ex cŽ . Ž .q n r s 0. 67Ý k ekk

Ž .Now one can use eq. 21 :

=2
X X3Ž . Ž .y q v r y e d r G r, rHs k k½ 52m

dEx cX XŽ . Ž .= f r v r y Xk x c † Ž .df rk

dEx cŽ . Ž . w x Ž .s f r v r y y v y e f rk x c k k k† Ž .df rk

Ž .68
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Ž .and the conjugated equation to rewrite eq. 67
as70 :

X X† 3Ž . Ž . Ž .0 s v r f r d r G r, rÝ Hs k k½
k

dEx cX XŽ . Ž .= f r v r y q c.c.Xk x c †ž /Ž .df rk

 Ex cŽ .q n rÝ k 5ekk

2=
X X† 3Ž . Ž .s f r d r q e G r, rÝ Hk k k½ 2mk

dEx cX XŽ . Ž .= f r v r y Xk x c † Ž .df rk

dEx cŽ . Ž . w x Ž .qf r v r y y v y e f rk x c k k k† 5Ž .df rk

 Ex cŽ . Ž . Ž .q c.c.q v r n r 69Ýs k ekk

Ž .Reordering eq. 69 leads to an exact reformulation
Ž .of eq. 24 :

1 dEx c†Ž . Ž . Ž . w xv r s f r q n r v y eÝx c k k k k†½Ž . Ž .2n r df rkk

2=
X X† 3Ž . Ž .qc.c.y f r d r q e G r, rÝ Hk k k2mk

dEx cX XŽ . Ž .= f r v r y q c.c.Xk x c † Ž .df rk

 Ex cŽ . Ž . Ž .yv r n r 70Ýs k 5ekk

At first glance, this appears to be an even more
complicated version of the OPM integral equation

Ž . Ž .than eq. 24 . In fact, the right-hand side of eq. 70
depends on v , not only via v but also explicitly.x c k
However, the first term on the right-hand side of

Ž .eq. 70 reduces exactly to the Slater potential in
the exchange-only limit:

1 dExS †Ž . Ž . Ž .v r s f r q c.c. 71Ýx k †Ž . Ž .2n r df rkk

so that this term dominates over the remaining
contributions. This then immediately suggests that
one neglects the second line on the right-hand

Ž .side, leading to a second form b of the KLI

approximation:

1
K L I b Ž .v r sx c Ž .2n r

dEx c† Ž . Ž .= f r y n r e q c.c.Ý k k k†½ Ž .df rkk

 Ex cŽ . Ž . Ž .q2 n r v y v r n rÝ Ýk k s k 5eke Fe kk F

Ž .72

Yet another form of the OPM integral equation
Ž .is obtained from eq. 70 by adding zero in the

form:

21 =
X X† 3Ž . Ž . Ž .0 s q v r f r d r G r, rÝ Hs k k½Ž .2n r 2m k

dEx cX XŽ . Ž .= f r v r y q c.c.Xk x c † Ž .df rk

 Ex cŽ . Ž .q n r 73Ý k 5ekk

w Ž .xand subsequently using the KS equations eq. 9 :

1 dEx c†Ž . Ž . Ž . w xv r s f r q n r v y eÝx c k k k k†½Ž . Ž .2n r df rkk

=
X X3 †Ž Ž .. Ž .qc.c.q d r =f r G r, rÝH k kmk

dEx cX XŽ . Ž .= f r v r y q c.c.Xk x c † Ž .df rk

=2  Ex cŽ . Ž .q n r 74Ý k 52m ekk

Ž .Eq. 74 is the direct extension of the form of the
OPM integral equation given in ref. 62. Neglecting

Ž . Ž .the second line in eq. 74 leads to a third form c
of the KLI approximation:

1
K L Ic Ž .v r sx c Ž .2n r

dEx c† Ž . Ž . w x= f r q n r v y eÝ k k k k†½ Ž .df rkk

=2  Ex cŽ . Ž .qc.c.q n r 75Ý k 52m ekk

Ž .Note that the quality of the form of eq. 75 is
underlined by the fact that the spatial average of
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Ž . 62the second line in eq. 74 vanishes :

=
X X3 3 †Ž Ž .. Ž .d r d r =f r G r, rÝH H k kmk

dEx cX XŽ . Ž . Ž .= f r v r y q c.c.s 0 76Xk x c † Ž .df rk

Ž . Ž .Both eqs. 72 and 75 provide explicit density
functionals for the energy scale De . It is not clear
whether there exist further forms of KLI-type ap-

wproximations which differ nontrivially from eqs.
Ž . Ž . Ž .x62 , 72 , and 75 and which of these forms is
most appropriate. Moreover, the basic physical
concept behind the closure approximation and the
very fact that so many different versions of the KLI
concept can be found for eigenvalue-dependent
E suggest ignoring the  E re contributionx c x c k
completely.

This argument is supported by an analysis of
the asymptotic behavior of the KLI potential for
finite systems. Within the x-only limit, that is, for

Ž .the functional 8 , all three KLI forms coincide and
reproduce the exact asymptotic form of v , eq.x
Ž . 5028 . On the other hand, if E also depends onx c

wthe eigenvalues of unoccupied orbitals as the
Ž .xfunctional eq. 46 , the crucial contribution:

Ž .n r  Ek x cÝ Ž .n r ekk

is expected to diverge for large r, at least in the
general case. Consequently, the three versions of
the KLI potential discussed in this section will also
diverge for large r, in contrast to the exact OPM
potential. For the relativistic exchange, which de-
pends only on the eigenvalues of the occupied
levels, this term approaches a constant, so that
neither of the aforementioned forms of the KLI
approximation leads to the correct asymptotic be-
havior of the exchange potential of closed-subshell
atoms.71 For this latter potential, a complete ne-
glect of the  E re contribution yielded veryx c k

accurate results. It remains to be verified whether
an analogous statement applies to correlation func-

Ž .tionals like eq. 46 .

Illustrative Results

EXCHANGE-ONLY RESULTS

OPM results for atoms obtained within the x-
only limit have been discussed extensively in the
literature.25, 45, 50, 61 ] 64, 68, 71 We thus restrict our-
selves to providing an elementary comparison be-
tween orbital-dependent exchange and conven-

Žtional density functionals and to strictly nonrel-
.ativistic results . In Tables I and II, the total

ground-state energies of closed-subshell atoms are
wlisted, comparing exact OPM, KLI which is unique

TABLE I.
Self-consistent x-Only Ground-State Energies of Unpolarized Closed-Subshell Atoms.a

OPME y Etot totEtot

OPM KLI LDA GGA HF

He y2861.7 0.0 138.0 6.5 0.0
Be y14572.4 0.1 349.1 18.2 y0.6
Ne y128545.4 0.6 1054.7 y23.5 y1.7
Mg y199611.6 0.9 1362.8 y0.5 y3.1
Ar y526812.2 1.7 2294.8 41.2 y5.3
Ca y676751.9 2.2 2591.8 25.7 y6.3
Zn y1777834.4 3.7 3924.5 y252.6 y13.8
Kr y2752042.9 3.2 5176.8 y18.4 y12.0
Sr y3131533.4 3.6 5535.4 y8.8 y12.2
Pd y4937906.0 4.5 6896.0 y65.2 y15.0
Cd y5465114.4 6.0 7292.6 y31.9 y18.7
Xe y7232121.1 6.1 8463.8 54.9 y17.3
Ba y7883526.6 6.5 8792.5 15.7 y17.3
Yb y13391416.3 10.0 10505.6 y852.4 y39.9
Hg y18408960.5 9.1 13040.4 y221.5 y31.0
Rn y21866745.7 8.5 14424.3 8.3 y26.5

a 33 ( )OPM energies in comparison with KLI, LDA, and PW91-GGA as well as HF results all energies in millihartrees .
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TABLE II.
Self-Consistent x-Only Ground-State Energies of Spherical Spin-Polarized Atoms.a

OPME y Etot totEtot

OPM KLI LDA GGA HF

Li y7432.5 0.1 239.1 15.3 y0.3
N y54403.4 0.4 694.1 21.0 y1.2
Na y161856.6 0.7 1212.4 y4.7 y2.3
P y340715.0 1.3 1826.5 29.3 y4.3
K y599159.1 2.0 2447.6 39.7 y5.8
Cr y1043345.7 3.5 3072.5 y110.7 y11.0
Mn y1149860.0 3.1 3276.9 y76.1 y9.9
Cu y1638952.3 4.2 3713.1 y295.1 y12.0
As y2234228.1 3.0 4580.6 y100.9 y11.7
Rb y2938345.5 3.4 5362.0 y6.3 y12.1
Mo y3975537.1 5.1 6204.8 y30.7 y15.9
Tc y4204779.3 5.1 6406.9 y15.1 y15.7
Ag y5197681.5 5.7 7103.2 y38.1 y17.4
Sb y6313469.7 5.8 7903.9 37.9 y17.3
Cs y7553916.5 6.3 8633.7 42.0 y17.2
Eu y10423523.3 8.7 9698.3 y360.5 y27.2
Re y15784512.6 8.2 11850.2 y453.3 y31.6
Au y17865370.3 8.7 12810.2 y257.1 y30.3
Bi y20095560.7 8.4 13768.2 y70.7 y27.9

a 33 ( )OPM energies in comparison with KLI, LDA, and PW91-GGA as well as spin-unrestricted HF results all energies in millihartrees .

Ž .x 33for the exchange in eq. 8 , LDA, and PW91-GGA
xresults . The OPM numbers have been produced

on radial meshes of 1600 mesh points, so that the
error in the x-only virial relation,80 which is a
measure of the numerical accuracy, has been re-

Ž .duced to 0.14 mhartree mH even for the heaviest
Ž .atom, radon for details compare with ref 64 . The

OPM numbers may thus serve as reference values
Žan error on the 0.1-mH level in the code used for

.ref. 64 has been corrected .
Comparing the OPM with its KLI approxima-

tion it is obvious that the KLI scheme produces
highly accurate results throughout the periodic
table. The differences between OPM and KLI
ground-state energies are below the 10-mH level,
suggesting the KLI approximation to be an ade-
quate substitute for the much more involved full
OPM in the case of the exchange functional. The
KLI energies are always above the OPM results,
consistent with the fact that the OPM yields that
v value which minimizes the energy functional atx
hand. On the other hand, the x-only OPM ground-
state energies are always slightly above the corre-
sponding HF values, which demonstrates the re-
duced variational freedom in the former approach:
Whereas both procedures minimize the same en-
ergy expression, the OPM restricts v to be ax
multiplicative potential. The nonlocal HF exchange

potential thus produces a somewhat lower mini-
mum.81 From a physical point of view, however,
these differences are irrelevant, thus supporting
the concept of multiplicative effective potentials.
This conclusion is supported by Table III, in which

Ž .we compare the first ionization potentials IPs of
atoms with spherical density. For all atoms consid-
ered, the OPM, KLI, and HF values are essentially
identical.

The LDA total energies, on the other hand,
deviate substantially from the exact OPM num-
bers. At first glance, these errors seem completely
unacceptable for a method aiming at the descrip-
tion of chemical binding. One has to note, how-
ever, that these large errors originate mainly from
the chemically inactive core electrons. In fact, given
its errors for total energies, the LDA is remarkably
accurate for the physically more relevant energy
differences. This is illustrated in Table III, which
shows that the LDA underestimates the exact x-
only IPs for light atoms and overestimates them
for heavy atoms. Nevertheless, although in the IPs
the errors of the LDA are reduced to the order of 5
to 50 mH, this is still not sufficient to achieve
chemical accuracy.

Finally, focusing on the PW91-GGA, one notices
a clear improvement over the LDA for ground-state
energies. However, as the sign-indefiniteness of
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TABLE III.
First Ionization Potentials within x-Only Limit.a

Atom OPM KLI LDA GGA HF

He 862 862 811 866 862
Be 295 295 281 301 296
Mg 242 242 238 254 243
Ca 188 188 189 200 188
Sr 171 171 174 184 171
Ba 152 151 155 164

Cu 231 229 278 285 236
Ag 215 214 251 256 218
Au 216 214 254 258 218

Li 196 196 185 200 196
Na 181 181 179 191 182
K 147 147 149 157 147
Rb 137 137 141 149 138
Cs 123 123 128 134 123

Zn 276 276 310 320 281
Cd 252 251 282 289
Hg 248 248 281 287

a 33 ( )OPM energies in comparison with KLI, LDA, PW91-GGA, and HF results all energies in millihartrees .

the error of the GGA already indicates, this qual-
ity, to some extent, relies on a subtle error cancela-
tion. As a consequence, the same degree of im-
provement is not found for IPs: the PW91-GGA
consistently increases the IP, so that it improves
over the LDA for light atoms, but produces larger
errors than the LDA for the heavy systems. Nei-

Žther alternative forms of the GGA such as the
28 .Becke GGA nor other conventional density func-

Žtionals such as, e.g., the weighted density ap-
82, 83.proximation lead to consistently superior

results, so that the use of the exact exchange pres-
ently seems imperative for many purposes.

The exchange potentials of neon and zinc are
plotted in Figures 1 and 2. While the LDA and
GGA exchange potentials are rather smooth func-
tions of r, the exact exchange produces marked
‘‘bumps,’’ reflecting the shell structure of the
atoms. As a consequence, the OPM shells are
somewhat more localized than the LDArGGA re-
sults, as can be seen in Figures 3 and 4 for the l
shell of neon and the m shell of zinc. The KLI
approximation also generates shell effects in v ,x
but not as pronounced as the full OPM. The radial
density obtained with the KLI approximation, on
the other hand, is very close to the OPM result.
Figures 1 and 2 also demonstrate the asymptotic

Ž .behavior of v . As stated in eq. 28 , the exact vx x

falls off like ye2rr , and the KLI approximation
preserves this property. The LDA and GGA poten-
tials, on the other hand, decay exponentially due
to the fact that the self-interaction of the outermost
electron is not appropriately eliminated by these
functionals.

The exact x-only OPM has also been formulated
for plane-wave pseudopotential calculations.75 This
scheme has been applied to Si, C, GaN, and InN,67

using the results for a detailed comparison of the

FIGURE 1. X-Only exchange potential of neutral Ne.
Self-consistent OPM, KLI, LDA, and PW91-GGA results.
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FIGURE 2. Data same as Figure 1, for neutral Zn.

FIGURE 3. X-Only ground-state density of neutral Ne.
Self-consistent OPM, KLI, LDA, and PW91-GGA results.

FIGURE 4. Data same as Figure 3, for neutral Zn.

exact exchange with the LDA and various GGAs.
As in the case of atoms, one finds that the LDA
underestimates the spatial variations in v , where-x
as the GGA improves v in the bonding region, atx
the price of introducing artificial structures close
to the nuclei. Again, similar to the situation for
atoms,64 the LDA exchange energies deviate by
roughly 6% from the exact values.67 The GGAs
considered in ref. 67, on the other hand, consis-
tently produce errors of the order of 1%, demon-
strating why GGAs improve the cohesive proper-
ties of many solids over the LDA. Furthermore,
both the total and the exchange energy of the
x-only OPM calculation for Si are in close agree-
ment with the corresponding HF values, com-
pletely in line with the observations for atoms.

EXACT EXCHANGE WITH LDA/GGA
FOR CORRELATION

An all-electron OPM scheme for solids within
Ž .the atomic-sphere approximation ASA has been

put forward in ref. 65, combining the exact ex-
Žchange with the LDA for correlation using both

.the LMTO and the KKR framework . Applications
to MgO, CaO, MnO, Si, Ge, and C65 show that the
exact exchange leads to more localized valence
electrons than the LDA for solids also. The result-
ing band gaps are larger than the corresponding
LDA values and thus agree better with experi-
ment. This basic observation is confirmed by
plane-wave pseudopotential calculations combin-

67 Žing exact exchange and LDA correlation but not
.utilizing the ASA , in which the OPM band gaps

of Si, C, GaN, and InN have been found to be
roughly 1 eV larger than the LDA gaps. As in the

Ž .case of atomic IPs and electron affinities EAs , the
proper cancelation of electron self-interaction turns
out to be important for obtaining realistic band
structures. Although one would expect an equiva-
lent orbital-dependent treatment of E to reducec
the gaps,65 this nevertheless seems to indicate
progress.

The OPM has also been applied to solids within
the KLI approximation,66 again using the exact Ex
with the LDA for correlation and pseudopotentials
to represent the core electrons. Consistent with the
earlier calculations utilizing the full OPM, this
method predicts increased band gaps. The higher
efficiency of the KLI approximation, however, also
permits determination of the structure and ener-
getics of solids. It is found that lattice constants are
increased compared with LDA results, which im-
proves the agreement with experiment for Si and
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Ge, but slightly worsens the agreement for GaAs.
The cohesive energies, on the other hand, come
out much too small, so the investigators con-
cluded66 that the LDA is not well suited for use
with the exact exchange. The last problem can be
resolved partially by using a GGA for correlation,66

but at the price of a reducing the quality of indi-
rect gaps. In conclusion, it seems that these appli-
cations all indicate the need for an adequate or-
bital-dependent correlation functional to match the
exact E .x

ORBITAL-DEPENDENT CORRELATION
ENERGY

The most simple orbital-dependent correlation
functional available for use with the exact ex-
change is the CS expression.55 The CS functional
produces rather accurate correlation energies for
light atoms.56 However, the corresponding IPs are
not actually superior to those obtained with GGAs
Ž .for exchange and correlation and, whereas the CS
functional predicts most negative ions to be bound,
the calculated EAs are not very reliable.56 This is
underlined by Table IV in which a number of
atomic EAs obtained by combining the exact ex-
change with various correlation functionals are

Žgiven for open-shell systems the calculations have
been restricted to the spherical average; the corre-
lation energies have been evaluated perturba-

.tively, using the self-consistent x-only orbitals .
From Table IV it is obvious that the CS functional
does not generate EAs that are more accurate than
those found with conventional density function-

TABLE IV.
Electron Affinities of First- and Second-Row Atoms.a

LDA GGA CS Exp.

Li 27 16 15 23
B 14 6 y2 10
C 48 39 28 46
O 33 15 17 54
F 101 84 82 125
Na 25 15 15 20
Al 20 16 6 16
Si 58 53 40 51
P 29 13 22 27
S 80 68 65 76
Cl 140 128 122 133

a Exact exchange in combination with LDA, PW91-GGA, and
(CS correlation evaluated perturbatively with self-consistent

) (x-only orbitals in comparison with experimental data all
)energies in millihartrees .

als. In fact, for the EAs shown, the LDA correla-
tion seems to produce the most accurate results
Žthroughout this work the form of ref. 9 is used for

.the LDA correlation energy . This failure of the CS
functional is reflected by the fact that the CS corre-
lation potential has little in common with the exact
v in the few cases in which the latter is known.84

c
This is shown in Figure 5 where we compare the
exact v of neutral neon84 with the potentials ob-c
tained by insertion of self-consistent x-only orbitals
into the CS functional, the LDA, and the PW91-
GGA. Even the sign of the CS potential is in error

Žin most regions in particular, in the most relevant
.valence region . Figure 5 clearly demonstrates the

limitations of both semiempirical and electron-
gas-based representations of v .c

Although one would hope to overcome this
Ž .problem with the functional eq. 46 its self-con-

sistent application is complicated by the fact that
the rigorous solution of the corresponding OPM

w Ž .xequation eq. 47 requires knowledge of the
w Ž .xquadratic response function eq. 51 . To provide

some initial idea of the performance of this func-
Ž .tional we evaluated eq. 46 perturbatively, using

x-only OPM orbitals as input. Because the correla-
tion potential gives only a minor contribution to
the total v , the resulting correlation energiess
should be rather close to the corresponding self-
consistent values.

In Table V, we list the EŽ2. obtained for thec
helium isoelectronic series in comparison to con-

85 Ž .86ventional DFT, MP2, and variational i.e., exact
results. As is immediately obvious from the table,
EŽ2. is consistently closer to the true correlationc
energies than any of the conventional density func-

FIGURE 5. Correlation potential of neutral Ne. CS, LDA,
and PW91-GGA potentials in comparison with exact
result by C. J. Umrigar and collaborators.84
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TABLE V.
( ) aCorrelation Energies yE of He Isoelectronic Series.c

Ion LDA GGA CS OPM MP2 Exact

He 112.8 45.9 41.6 48.21 37.14 42.04
8+Ne 203.0 61.7 40.6 46.81 44.37 45.69
18+Ca 243.3 67.7 35.9 46.69 45.37 46.18
28+Zn 267.2 71.3 33.2 46.67 45.71 46.34

38+Zr 284.4 74.0 31.4 46.66 45.88 46.42
48+Sn 297.7 76.0 30.0 46.65 45.98 46.47
58+Nd 308.7 77.8 29.0 46.64 46.51
68+Yb 318.0 79.3 28.2 46.63 46.53
78+Hg 326.1 80.6 27.6 46.62 46.55
88+Th 333.2 81.7 27.0 46.62 46.56
98+Fm 339.6 82.8 26.0 46.62 46.57

a LDA,9 PW91-GGA,33 CS,55 conventional MP2,8 5 and exact variational energies8 6 in comparison with correlated OPM results,
[ ( )] ( )obtained by perturbative evaluation of the functional eq. 46 using x-only OPM orbitals all energies in millihartrees .

tionals. While it is well known that the LDA com-
pletely misrepresents atomic correlation energies,
PW91-GGA also overestimates the true E for highc
Z by almost a factor of 2. The CS functional, on the
other hand, is very close to the correct result for

Žhelium to which its parameters have been ad-
.justed , but dramatically underestimates E forc

high Z. The only DFT expression that shows the
Žcorrect scaling with Z i.e., approaches a constant

. Ž .of the correct size is the function, eq. 46 . In fact,
although EŽ2. is only moderately accurate for neu-c
tral helium, its error reduces to about 1 mH al-
ready for Ne8q. Finally, in the limit of large Z, it
only deviates by 0.05 mH from the 1rZ expansion
formula of Davidson and coworkers,86 which is
based on variational calculations.

EŽ2. is roughly 25% larger than the conventionalc
MP2 result for neutral helium, but approaches the
MP2 data rapidly with increasing Z. This behavior
mainly originates from the fact that OPM calcula-
tions lead to a Rydberg series of excited levels,
even for neutral atoms.81 This can be verified by
separating those correlation contributions that in-
volve virtual excitations into the Rydberg levels
from the correlation energy due to excitations into
the positive continuum states. For helium, the lat-
ter amounts to y39.8 mH, which compares rather
well with the MP2 value of y37.1 mH. With
increasing Z, on the other hand, the sum of the
nuclear and the Hartree potential more and more
dominates over the exchange potential. Conse-
quently the Rydberg states resulting from the HF
and the OPM potentials become more and more
similar, which explains why the corresponding Ec
approach each other for high Z. Compared with

the exact E of helium, EŽ2. is 14% too large,c c
whereas the MP2 value is 12% too small. It is not
clear at the moment to what extent these discrep-
ancies are transferred into energy differences like
IPs and EAs.

Results for the most simple negative ion, the
Hy, are given in Table VI. In this special case the
correlation energy directly enters the calculation of
the EA, without involving a correlation energy
difference. Several combinations of the exact ex-
change with approximate correlation functionals
are analyzed. As for the helium atom one finds

w Ž .xthat the functional eq. 46 overestimates the true
correlation energy obtained variationally 87: Its er-
ror increases to almost 15 mH. Consequently, its
absolute deviation from the exact EA is larger than

Ž .that found with the PW91-GGA for E 5 mH andc

TABLE VI.
Correlation Energy and Electron Affinity of Hy Ion.a

Method yE EAc

( )Exact ref. 87 39.8 27.8

LDA( )OPM E + E 75.7 62.6x c
GGA( )OPM E + E 35.5 22.8x c
CS( )OPM E + E 31.2 18.9x c
(2)( )OPM E + E 54.6 42.6x c

( )MP2 ref. 91 27.3 15.2
( )QCI ref. 91 38.6 26.5

a Exact exchange in combination with LDA,9 PW91-GGA,33

55 ( ) (CS, and eq. 46 evaluated perturbatively using x-only
)OPM orbitals for correlation in comparison with MP2, QCI,

( )and exact variational energies all energies in millihartrees .
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TABLE VII.
Spectroscopic Parameters of H .a2

r yE ve b e
y 1( ) ( ) ( )bohr eV cm

Exp. 1.40 4.75 4400

( )Exact ref. 92 1.41 4.75 4483

LDA 1.45 4.91 4185
( )GGA ref. 93 1.42 4.56 4332

LDA( )OPM E + E 1.37 5.02 4833x c
CS( )OPM E + E 1.38 4.66 4659x c
(2)( )OPM E + E 1.42 4.99 4317x c

HF 1.38 3.64 4622
( )MP2 ref. 89 1.39 4.52
( )MP4 ref. 89 1.40 4.70

( )QCISD ref. 38 1.41 4.22 4367

a E includes the zero point energy, E = yD y "v r2.b b e e
DFT and conventional ab initio results in comparison with

( )variational exact and experimental data.

Ž .the CS functional 9 mH . Only the LDA correla-
tion completely misrepresents the EA. For Hy, the
difference between EŽ2. and the MP2 correlationc
energy increases to roughly a factor of two, al-
though, in this case, Rydberg states are not present
in the OPM. Again, EŽ2. and E M P 2 bracket thec c
exact E , their absolute errors being very similar.c

A corresponding comparison for the hydrogen
dimer is reported in Table VII and Figure 6. EŽ2.

c

FIGURE 6. Energy surface of H . Self-consistent LDA2
and x-only OPM calculations in comparison with
correlated OPM data, obtained by perturbative evaluation

[ ( )]of the function eq. 46 using x-only OPM orbitals.

produces clearly more realistic data than the LDA
for the equilibrium bond length and the zero point
energy. In contrast to the PW91-GGA, which un-
derestimates the binding energy, EŽ2. slightly in-c
creases E compared with the LDA value, so thatb
it does not improve over the LDA in this respect.
The overall accuracy of EŽ2. is rather similar toc
that of the PW91-GGA. Although the effect of
basis set truncation88 cannot be ignored com-
pletely in the comparison with the conventional,

Žcorrelated ab initio methods in particular for the
. Ž2.QCISD-values of ref. 38 , E nevertheless againc

seems to give a larger correlation energy than the
89 Žconventional MP2 calculation 50 mH vs. 32 mH
.at the equilibrium bond length . In fact, the differ-

ence of 18 mH between the correlated OPM and
the MP2 energy is not too far from the 11-mH
deviation that one finds for neutral helium. As for
helium, EŽ2. overestimates the correlation energyc
of H as much as MP2 underestimates it. The2

Ž .fourth-order Møller]Plesset MP4 result could
thus indicate that a corresponding fourth-order
expansion in terms of the KS Hamiltonian is re-
quired to obtain very accurate spectroscopic con-
stants for H .2

In Table VII we also give results of self-con-
sistent calculations in which the exact exchange
has been combined with the LDA and the CS
functional for correlation. Both combinations do
not actually improve results over the standard
LDA calculation: In particular, the error of the

Žstandard LDA in the bond length which is less
sensitive to details of the xc-functional than the

.energy surface is by far overcorrected by both
orbital-dependent xc-functionals. Moreover, while
the correlation LDA even increases the dissociation
energy, the CS functional reduces it too much.
These data demonstrate that the exact E shouldx
not be used with the LDA for correlation, consis-
tent with the findings in ref. 66, and the same
statement seems to apply to the CS functional.
Whether a GGA for correlation can serve as an
adequate counterpart for the exact exchange in
molecular calculations is not yet clear. In view of
the limited quality of the GGA correlation poten-
tial,84 however, it seems that, ultimately, an or-

Ž .bital-dependent form for E like eq. 46 is re-c
quired, rather than a standard density functional.
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