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Ž .ABSTRACT: VRI Variable Resolution Invariants is a new approach to
quantitative structure]activity relations that makes use of three-dimensional
features of molecules at different levels of spatial resolution as well as levels of
resolution in atomic properties. These descriptors are independent of any
numbering of the atoms of a molecule. They are also independent of rigid
translation and rotation of a given conformer, which avoids problems with
aligning different molecules or docking them with a receptor site model. Steric
effects, stereospecificity, substituent effects, lipophilicity, and conformational
flexibility are all dealt with in a single, natural formalism. Simple datasets can
be fitted using a small number of descriptors corresponding to low-resolution
descriptions of the molecules. More complicated data can require additional
descriptors that recognize finer details of three-dimensional structure and
physico-chemical properties. Overfitting due to the large number of descriptors
is handled by partial least-squares analysis with crossvalidation. Performance in
fitting and predicting is demonstrated on some simple illustrative cases, and on
three standard sets of real data: steroids binding to human corticosteroid
binding globulin and testosterone binding globulin, and inhibitors of
dihydrofolate reductase. Q 1999 John Wiley & Sons, Inc. J Comput Chem 20:
1577]1585, 1999
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Introduction

uantitative structure]activity relationsQ Ž .QSAR studies have a long and diverse
history, driven by the need to rationalize the ob-
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served biological activity of a training set of com-
pounds in hopes of predicting the activity of a test
set of compounds. In structure-based drug design,
activity is known to involve binding to a particular
site on a protein of known three-dimensional
structure, so molecular modeling and specialized
techniques can be used to dock small drug
molecules to the site or suggest novel chemical
structures having enhanced binding. Here, we fo-
cus on the more frequently occurring classical
problem of correlating molecular structure to ex-
perimental binding data or even activity in cell
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and whole-animal assays, where even if the mech-
anism of action is known, the structure of the
receptor is not. Although the underlying picture is
still that of different small ligands interacting with
some receptor pocket on a protein, few workers
have tried to develop explicit site models,1 ] 5 and
most have expressed their approaches in terms of
the superposition of different molecules onto one
particularly active one or onto the chemical struc-
ture common throughout the dataset.6 Whether
docking to a site model or superimposing
molecules, there is an implied global search prob-
lem for the optimum positioning of each ligand
that is surprisingly difficult, especially for confor-
mationally flexible molecules.

A second disturbing trend is that the molecular
features that are correlated with the observed ac-
tivity tend to be rather specific, such as ‘‘a car-
boxyl substituent at the 2-position,’’ ‘‘two hy-
drophobic groups separated by three rotatable
bonds,’’ or ‘‘a pharmacophore consisting of a hy-

˚drogen bond donor 5.5 A from a carbonyl group.’’
It is difficult to go between precise and vague
specifications of geometric and physico-chemical
features in a smooth way. This leads in the first
example to QSARs that are valid only for homolo-
gous series of compounds due to the implied but
arbitrary superposition of a common ring structure
such that common notational labels coincide in
space for each molecule. In the other examples, the
QSAR may be focussing on certain fine structural
details that may explain the activity of a diverse
training set but have limited predictive power
because some other set of structural features is the
real explanation.

Here, we present a set of molecular descriptors
that range in a natural way from vague to precise,
both in molecular geometry and in physico-chem-
ical properties. Furthermore, these descriptors are

Žindependent of rigid translation and rotation as
.topological descriptors are, for example , so that

the issue of superposition or docking is avoided
altogether. The descriptors also are independent of
any ordering or labeling of the atoms or groups of
atoms.

Methods

MOLECULAR REPRESENTATION

Each molecule is represented as a set of one or
more conformation that are within 8 kcalrmol of
the apparent global minimum, while each differs

˚from the others by at least 1 A in root-mean-square
deviation of the nonhydrogen atoms after optimal
superposition. Conformational searches were car-
ried out with the random incremental pulse search
implemented in the molecular modeling software,
MOE,7 employing the MMFF force field and its
associated atomic partial charges. Each conformer
treats the atoms as points having particular Carte-
sian coordinates, an atomic contribution to logP
Ž . 8octanolrwater partition coefficient, ALOGP ,
atomic contribution to the molar refractivity,8 and
empirical partial charge. Throughout this work we
have consistently used these three properties, de-

Ž .noted by h, r, q , respectively, but any other prop-
erties and any number of them could equally well
have been used. The atomic properties are as-
sumed to be independent of conformation but de-
pendent on chemical structure and bonding.

LEGENDRE POLYNOMIALS

A convenient series expansion of a function
defined over a finite interval is in terms of Legen-

Ž .dre polynomials, P x , for y1 F x F 1 and n sn
Ž .0, 1, . . . see Table I . Most chemists have encoun-

tered them in the context of the radial part of the
hydrogen atom wave function, but they are more
generally used in all kinds of series approxima-
tions over finite intervals, much as Fourier series
are used for describing periodic phenomena. Leg-
endre polynomials are orthonormal in sense that

1
P P dx s d ,H n m n , m

y1

where the Kronecker d s 0 for integers n / m.n, m
Thus, an arbitrary function over the same interval
can be approximated by

1Ž . Ž . Ž . Ž .f x f f y P y dy P x ,Ý H i iž /y1i

TABLE I.
Normalized Legendre Polynomials.

( )n P xn

y 1/ 20 2
1/2( )1 3/2 x

1/2 2( ) ( )2 5/8 3 x y 1
1/2 3( ) ( )3 7/8 5 x y 3 x

4 2'( )( )4 3 2 /16 35 x y 30 x + 3
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where the approximation improves as more terms
Ž .are added to the sum. Suppose f x s 0 every-

where except for n points x , . . . , x . Then the1 n
coefficients in the expansion become sums

l n

Ž . Ž . Ž . Ž . Ž .f x f f x P x P x 1Ý Ý j i j iž /
is0 js1

Ž .and f x is approximated up to level l. For exam-
ple, suppose we want to approximate the distribu-
tion of atomic partial charges for a molecule hav-
ing n s 3 atoms with q s y0.8, q0.2, q0.5. Herej

Ž .we are identifying the variable x in eq. 1 withj
Ž .the partial charges q , and setting f x s 1 forj j

each of the three values because there is only one
atom having the specified charge. Then the i s 0

Ž .term in eq. 1 is simply proportional to the num-
ber of atoms independent of their charges because
Ž .P q is a constant, independent of q. The next0

Ž .term represents the total net charge because P q1
is a linear function of q. The next begins to show
the differences between the negative and positive
charges, and so on. As shown in Figure 1, the
series approximation eventually approaches the
given discontinuous distribution while keeping
the total integral over the interval at 3 s the num-
ber of atoms. The central idea in VRI is that de-
scriptors are related to distributions of certain
atomic properties so that the effects of some arbi-
trary atom numbering or chemical nomenclature
are removed. Then low-resolution descriptors are
derived from the first coefficients of Legendre ex-
pansions of the distributions, and they amount to

FIGURE 1. Legendre polynomial approximations to a
charge distribution due to three atoms having q = y0.8,
+0.2, and +0.5. The horizontal line is for level 0, the
dotted line is level 2, and the complicated curve is
level 9.

viewing a smoothed version of the original distri-
bution. If greater detail is warranted, the coeffi-
cients from higher order terms can be included.

To describe a particular conformation of a given
molecule, we use a distribution in four dimen-
sions: the distance d between each pair of atomsi j
i and j, the total atomic hydrophobicity of that
pair s h q h , the summed atomic contributionsi j
to molar refractivity s r q r , and the summedi j
partial charges s q q q . Because Legendre poly-i j
nomials work in the range y1 F x F 1, a linear
scaling transformation is applied to each h , r , andi i
q so that the extreme values for any atom in anyi
molecule are mapped to y1 and 1. Atomic hy-
drophobicities range over all atom types in our
scheme8 from y3.1 to q1.6, so the sealed values
are

Ž .2 h q 3.1iX Ž .h s y 1 2i 1.6 q 3.1

Similarly, the empirical atomic contributions to
molar refractivity assigned to atoms range from 0.8
to 13.8, resulting in scaling according to

Ž .2 r y 0.8iX Ž .r s y 1 3i 13.8 y 0.8

Although partial charges for organic com-
w xpounds are unlikely to exceed the range y1, 1 ,

any value outside that range is converted to the
limit

X w w x x Ž .q s min 1, max y1, q 4i i

For d , one must choose some upper bound M )i j d
d for all molecules in the training set and likelyi j
test sets. Because this cannot be automatically de-
termined just from the molecules in the current
study, it remains the user’s decision. Choosing Md
too large loses resolution by making most dX fi j
y1, while too small a value biases most of the
scaled distances to q1, and may force assignment
of yet larger distances to that limit.

X Ž w x . Ž .d s 2 min M , d y M rM 5i j d i j d d

Then in terms of the scaled quantities, the entire
four-variable distribution is represented by the
quadruple summation

ll l l qd h r

Ž .f d9, h9, r 9 , q9 f cÝ Ý Ý Ý k , k , k , kd h r q
k s0 k s0 k s0 k s0d h r q

= Ž . Ž . Ž . Ž .P d9 P h9 P r 9 P q9k k k kd h m q

Ž .6
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where the coefficient c for a particulark , k , k , kd h r q

combination of levels of detail k , k , k , k in dis-d h r q
tance, hydrophobicity, molar refractivity, and par-
tial charge is calculated as a sum over all pairs of
atoms i and j:

Ž X . Ž X . Ž X .c s P d P h q P hŽ .Ýk , k , k , k k i j k i k jd h r q d h h
iFj

= Ž X . Ž X . Ž X . Ž X .P r qP r P q qP qŽ . ž /k i k j k i k jr r q q

Ž .7

Clearly, for an overall level of expansion L s
w x Ž .Ž .l , l , l , l , there will be l q 1 l q 1 =d h r q d h
Ž .Ž .l q 1 l q 1 terms, each with its correspondingr q
coefficient. These coefficients constitute the major-
ity of the molecular descriptors used for each con-
formation of each molecule. Note how all such
descriptors are independent of atom numbering
and any translation or rotation of the whole
molecule, but they may depend on conformation.

w xBecause even the 0, 0, 0, 0 descriptor is propor-
tional to n2 for a molecule having n atoms, we
need an initial trivial descriptor having the con-

Ž .stant value 1 for any molecule. Finally, eq. 7 is
not only invariant under translation and rotation
but also mirror reflection, so additional terms are
needed to handle stereospecificity. Here we use a

Ž .quantitative measure of chirality, x p that de-
pends on some atomic property p and the atomic
coordinates of a given conformer.9 This function
always gives values of equal magnitude but oppo-
site sign for the mirror image of a particular con-
former. If mirror images cannot be distinguished
because of symmetry, then x s 0; if mirror images
are barely distinguishable due to similar but not
identical atomic property values having nearly

< <symmetrically related coordinates, then x is
small. Consequently, x is meaningful in the pre-
sent context as long as atomic position are distin-

Ž .guishable l ) 0 and some atomic property p isd
Ž .distinguishable l , l , or l ) 0 . Thus, if l s 0,h r q d

we append no further descriptors. Otherwise, we
Ž . Ž . Ž .append x h , x r , and x q when the corre-

sponding levels are high enough. For example,
w x 4for L s 1, 1, 1, 1 , there are 1 q 2 q 3 s 20 de-

scriptors.

DATA FITTING

In traditional QSAR we start with a matrix of
descriptors C and a vector of observed activities
y, so that the mth row c of C is the set ofm

descriptors for molecule m, and y is its observedm
activity. Then we seek a model vector v such that
Cv approximates y in a least-squares sense, i.e.,

5 5 2minimize Cv y y with respect to v. Here, the
situation is different in two respects. First, each
molecule is represented by at least one conforma-
tion, so for a flexible molecule m there are multi-
ple rows of descriptors c with conformersm s
Ž .structures s s 1, . . . , 10 typically. Secondly, in or-
der to model both precise and imprecise observed
activity, instead of a single value y we use am
range g - g F 0, where, for example,l, m u , m
‘‘nanomolar to micromolar binding’’ might be rep-
resented as g s y9 and g s y6; no ob-l, m u, m
served binding would correspond to g s gl, m u, m
s 0. If activity is enzyme inhibition, then the range
w xg , g corresponds to log K " error orl, m u, m i
DG " error, so y9 means stronger binding thanbind
y6, for example. Then the calculated binding or
activity of a conformer g s c v is calledcalc, m s m s
superoptimal if g - g , suboptimal ifcalc, m s l, m
g ) g , and otherwise in-range. Then v iscalc, m s u, m
adjusted by minimizing the penalty function

2¡ Ž .c v y g ,Ý m s l , m
super s

any superoptimal
2nm~ ,Ž . Ž .F v s 8Ý 2nm

m y1Ž .c v y gÝ m s u , mž /
ss1

all suboptimal¢
0, otherwise

where clearly F G 0. In the case where all nm
conformers of molecule m are suboptimal, F ª 0
as any one or more c v ª g .m s u, m

Given how rapidly the number of descriptors
rises with increasing levels of detail L, overfitting
is a serious problem. As Wold et al.10 have ex-
plained, a viable remedy is partial least squares
Ž . nbPLS , where v s Ý a b . The n PLS vectorsks1 k k b
b , . . . are chosen to be few in number compared1
to the total number of descriptors, and they are
chosen so as to capture as much as possible of the
variance among each descriptor and their covari-

Ž .ance with the observed values. Then eq. 8 is
viewed as a function of the small number of ad-
justable parameters a . Of course, it is possiblek
that an unfortunate choice of PLS vectors will
exclude reaching F s 0, even though it might be
possible using all the many components of v di-
rectly as independent variables.
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ADAPTATION OF PLS

The original problem was the adjustment of
some variable vector v, given a descriptor matrix
C and observed values y, so that Cv approxi-
mated y in a least-squares sense. In standard
QSAR, each row of C corresponds to a different
molecule, and the columns correspond to the dif-
ferent descriptors, which depend on the chemical
structure of the molecules, but not on the confor-
mation. In this variant on PLS, each conformer of
each molecule is viewed as a separate pseudo-
molecule, and the descriptors generally depend on

Žconformation. For each row i we take y s g qi l, m
.g r2, the mean observed activity of thatu, m

molecule independent of conformation. This has
the effect of saying there are possibly several pseu-
domolecules having the same observed activity, in
spite of some variation in descriptors, so the analy-
sis tends to emphasize common features of all
conformers of each molecule, just as a conven-
tional QSAR analysis tends to pick out common
features of two different molecules that happen to
have similar observed activity.

PLS works best on self-scaled data, so y and
each column of C are independently rescaled to
zero mean and unit variance. Denoting the mean
and variance of y by m and s , and similarly they y
mean and variance of each column j of C by m j
and s , then the scaled activities and descriptorsj
are given by

X Ž .y s y y m rsi i y y Ž .9
X Ž .c s c y m rsi j i j j j

Those columns of C that have no variance, such
as the first descriptor being always 1, are deleted.
The rows are divided into four groups that all
span a full sampling of y values. Thus, if the rowsi
are sorted by y values, the first group would bei
rows 1, 5, 9, . . . ; the second would be 2, 6, 10, . . . ;
the third would be 3, 7, 11, . . . ; and the fourth
would be 4, 8, 12, . . . , etc. Then, as described in
ref. 10, successive PLS vectors are added until a

Žminimal prediction error is reached PRESS s
Ž .2Ý Cv y y s prediction error summed over all

four groups when for each group, the other three
.are used to determine v . In a standard QSARrPLS

analysis this is simply a stopping heuristic to indi-
cate that generating more PLS vectors is unlikely
to enhance the predictive power of the model.
Here it serves a similar function, but the connec-
tion to real predictive power is more remote for
two reasons. First, for conformationally flexible

molecules, any one of the four groups may contain
more than one conformer of a given molecule,
whereas a real crossvalidation of the entire model
would involve removing all conformers of some
molecules from the training set. Second, a stan-
dard QSAR predicts a single activity for each
molecule, namely the components of the vector
Cv, whereas here each conformer s of molecule m
has the predicted activity c v, and the penaltym s

Ž .function F in eq. 8 is satisfied if no conformers
are superoptimal and not all are suboptimal,
although some could be suboptimal by a wide
margin.

In any event, once some number of PLS vectors
are constructed, they are reconverted to corre-
spond to the original unscaled C and y. The k th
scaled PLS vector is a linear combination of the
scaled descriptors that is used to approximate
the scaled activities y9

nb
X X X Ž .a b c f y 10Ý Ýk k j i j i

ks1 j

so that the corresponding unscaled PLS vector
components b s bX s rs approximate the un-k j k j y j
scaled activities

Ž .a m y b m q b c f y 11Ý Ý Ýk y k j j k j i j iž /ž /
k j j

which reintroduces the constant first descriptor

s m y b m .Ýy k j j
j

For any other deleted column j of C, the corre-
sponding PLS vector component b s 0.k j

TRAINING PROCEDURE

In summary, one selects a training set of com-
pounds, performs a conformational search on each,
determines a full set of descriptors for each con-
former given a chosen detail level L, finds a mini-
mal set of PLS vectors by pseudomolecule cross-
validation, and adjusts the a coefficients so ask

Ž .to minimize F in eq. 8 . If this is unsuccessful
Ž .F ) 0 , the recommended procedure is to system-
atically raise the levels in L in order of increasing
numbers of descriptors until the data can be fit.
The final model consists of M , L, and v. Givend
that we are fitting to observed ranges of binding,
rather than a least-squares fit to single values, v is
not uniquely determined. We carry out a simple
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random search for any perturbation vectors w such
Ž .that F v q w s 0, and include as many as 10 of

these solutions as long as they differ sufficiently
among themselves. Note that unlike least-squares
fitting of a training set, each model either is in full
agreement with the given binding intervals, or the
model is rejected altogether.

PREDICTION

For subsequent prediction, the test molecules
are prepared in the same way, and

Ž . Ž .g s min c v 12calc, m s m s

for each model. This is an unambiguous prediction
in that a particular model v applied to molecule m
represented by a set of conformers s s 1, . . . , nm
produces a certain number, g . However, it iscalc, m
possible for different models to produce similar
satisfactory predicted activities for molecule m on
the basis of different optimal conformers s, while
for some other molecule, it might always be the
same optimal conformer.

For either determining the models or predicting,
the rate-limiting step is the conformational search
for nonrigid molecules. Otherwise, CPU times are
on the order of a few minutes on a Silicon Graph-
ics workstation.

The many different statistics that have been
used to express accuracy of fit to the training set
and accuracy of prediction on the test set are not
very well suited to multiple models fitting activity
intervals. Here, we will simply use

K
y1Ž� 4 . w Ž .E v s K max 0, g y g v ,Ý Ýk l , m calc, m k

m ks1

Ž . x Ž .g v y g . 13calc, m k u , m

Thus, if all molecules are predicted to be in-range
by all K models, the error E s 0. Otherwise, the
error is the mean over models of the total absolute
value of deviations outside the observed activity
range.

For all but the simplest examples, it is difficult
to interpret a model in terms familiar to other
QSAR methods. The calculated binding comes from
a linear combination of many different geometric
and physicochemical features, each of which is
some sort of sum over the whole molecule. One
cannot easily extract an explanation of activity
from such a model in terms of substituent effects
or pharmacophores. This is analogous to asking an
X-ray crystallographer which atom in the unit cell

is responsible for a particular diffraction spot. We
hope to improve interpretation in future work. As
it currently stands, the set of models derived from
a training set of compounds can be used as a black
box to predict the activity of any test compounds
whatever, but inspection of the models themselves
gives little direct guidance toward synthesizing
new compounds.

Results

ARTIFICIAL EXAMPLES

Before considering standard test datasets of real
experimental data, it helps to explain the method’s
performance in differentiating between simple
pairs of molecules that differ in various ways.
Suppose, for example, that CH binds more weakly4
to some receptor than Cl does. The simplest ex-2

w xplanation is found at L s 0, 0, 0, 0 , where each
wmolecule is described merely as 1, number of

xatoms pairs . The coefficient of the constant term
is negative, and that of the atom pair term is
positive, so that methane is penalized relative to
chlorine.

Consider the hypothetical case where 1,2-di-
chloronaphthalene and 1,2-dichloroanthracene both

Ž .are active large negative binding intervals , but
the meta isomers of both bind poorly. Even though
anthracene involves more atoms than naphthalene,
and the ortho derivatives of both bind better than
the meta derivatives, there is enough difference in
the distribution of interatomic distances that at

w xlevel 1, 0, 0, 0 the active compounds can be distin-
guished from the inactives. Only two PLS vectors
were required for the four compounds, and the
first distance-dependent descriptor is essential.
Note that this model does not distinguish between
atom types, because the h, r, and q levels are all
zero.

To distinguish between the R and S isomers of
w xCHFClBr, level 1, 0, 1, 0 triggers the calculation of

x for each, which gives nonzero values of opposite
sign, because the four substituents are readily dif-
ferentiable with respect to their atomic contribu-
tion to the molar refractivity. There are altogether
1 q 22 q 1 s 6 descriptors, but because five of
them are identical for the two molecules, the scal-
ing procedure described in the Methods section
automatically produces a model with nonzero
terms only for the constant and x descriptors.

w xLevel 1, 0, 1, 0 also discriminates between cis
and trans-1,2-dichloroethene, but for quite differ-
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ent reasons. Because both molecules are planar,
x s 0. The distance-dependent but type-indepen-
dent descriptors are identical, as are the distance-
independent but type-dependent ones. The final
model involves only the constant descriptor and
the one distance- and type-sensitive descriptor.

Finally, consider the R vs. S isomers of glycer-
aldehyde, which are so conformationally flexible
they were represented by 20 substantially different
low-energy conformers apiece. Of course, the dis-
tance-independent descriptors are the same for
both compounds and were therefore not used. The

w xsimplest model required L s 3, 0, 0, 2 , which is a
four-term expansion of the interatomic distance
distribution coupled with a three-term expansion
of the atomic partial charge distribution. Conse-
quently, there is also one chirality descriptor that
distinguishes atoms on the basis of their charges.
The linear combinations of the 11 out of the 14
total descriptors used in the models were adjusted
in terms of two PLS vectors. After the first model
was determined, it was possible to find 10 varia-
tions on it, where sometimes individual terms vary
in magnitude by 50% among the 11 solutions.

BINDING TO CBG

A standard test case for many QSAR methods
has been the binding of 31 different steroids to

Ž .human corticosteroid binding globulin CBG , de-
noted here as 1]31. For the structures of these
compounds, see Figure 5 of ref. 5. As in that study,
we use for an observed binding interval the exper-
imental values of the dissociation constant used in
other tests of QSAR methods4,11,12 transformed to
ylog K " 1.0. The assumed error limits are thediss
same as in our previous work,5 but do not neces-
sarily correspond to the real experimental errors.
An adequate training set, but not one with unique

� 4properties, is 1, 19, 23 . These three compounds
w xare easily fit with level 0, 0, 0, 0 , thus represent-

ing nothing more than the number of atoms in
each molecule. Only one PLS vector is required,
and four different models were found Of the 28
remaining compounds, 16 had predicted binding
intervals extending no more than 0.1 outside the
corresponding observed intervals; another seven
extended less than 0.6 outside. Figure 2 shows the
general agreement and the five compounds that
were clearly incorrectly predicted by all four mod-
els, as indicated by five line segments that do not
cross the dotted line. These five compounds are
the only ones that contribute to a total prediction

FIGURE 2. Observed vs. predicted binding of 28 CBG
ligands by four site models. Each compound is
represented by a solid line running from minimal
observed and maximal calculated to the maximal
observed and minimal calculated values. Any that cross
the dotted line representing predicted = observed are at
least not incorrect predictions.

w Ž .xerror eq. 13 of 5.78, i.e., 0.2 per compound on
average over all 28 test compounds. By way of
comparison, the Compass method of Jain et al.12

used 1]21 as their training set, produced a single
model that gives a single number for each test
compound, and their standard deviation in pre-
dicting the ylog K for the remaining 10 com-diss
pounds was 0.70.

BINDING TO TBG

A related standard test case is 21 of the same
steroids, namely 1]21, binding to testosterone

Ž .binding globulin TBG , which is usually thought
to be more challenging than the CBG data. The
observed dissociation constants are those used in
previous studies4,11,12 and are converted to bind-
ing intervals on a log scale as before. Small train-
ing sets can be fit with low levels of detail, but
produce very poor predictions. If we start with
only compound 1 and then successively add the
worst predicted compound to the training set,
eventually we reach a nine-compound training set,
� 41, 2, 6, 12, 15]18, 20 , that can be fit at levels no

w xsimpler than 1,0, 2, 0 . We were able to find only
one model, and seven PLS vectors were required
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to reach that solution. As shown in Figure 3, six of
the test compounds were completely correctly pre-
dicted. The total error E s 1.43 log units, i.e., a
mean prediction error of 0.12 per compound. In
comparison, other approaches12 have had to use
all 21 compounds in their training set, leaving
none for prediction.

DHFR INHIBITORS

Another of our standard test suit are 48 in-
Ž .hibitors of dihydrofolate reductase DHFR . These

are conformationally flexible and chemically di-
verse, consisting of 23 4,6-diamino-1,2-dihydro-

Ž . 132,2-dimethyl-1- substituted phenyl -S-triazines,
Ž .24 2, 4-diamino-5- substituted phenyl pyrimi-

dines,14 and methotrexate, which is a pteridine
derivative. See Tables 1 and 2 of ref. 5 for their
chemical structures and observed binding con-
stants. The experimental activity intervals we took
to be ylog K " 10%, except for methotrexate,
which binds so tightly we simply used ‘‘better

w xthan nanomolar,’’ i.e., y12, y9 . In attempting to
train models, it soon became clear that both tri-
azines and pyrimidines were needed in the train-
ing set, which was built up by successively adding
the worst predicted compound, retraining, etc. Fi-
nally, for a training set of nine compounds consist-
ing of triazines denoted as 1a, 3a, 4a, and 5a and

FIGURE 3. Observed vs. predicted binding of 12 TBG
ligands by one site model, represented as in Figure 2.
Because there is only one predicted value for each
compound, the line segments are horizontal.

pyrimidines 1b, 2b, 3b, 20b, and 24b according to
the labeling of ref. 5, we were able to find two
models in terms of eight PLS vectors at level
w x1, 1, 1, 1 that correctly predicted the binding of 11
compounds, namely 2a, 8a, 13a, 14a, 15a, 23a, 5b,
6b, 9b, 13b, and 15b. In all, E s 26.27 or 0.67 per
compound, and even methotrexate was underpre-

Ž .dicted by only 0.4 see Fig. 4 . In comparison, our
previous approach5 was much more CPU inten-
sive, required only six compounds in the training
set, correctly predicted the binding of 19 com-
pounds, had a lower value of E s 10.9, but
methotrexate was underpredicted by 1.9 log units.

Conclusions

We have presented a new set of molecular de-
scriptors that are independent of arbitrary transla-
tion and rotation of the molecule, as well as arbi-
trary atom labeling. Furthermore, these descriptors
can be used to specify molecular features very
vaguely or with gradually increasing detail. With
adaptation of standard statistical methodology, one
can fit a variety of artificial and real data sets
involving chemically diverse compounds, stereo-
isomerism, and conformational flexibility. Because
of differences in methodology, it is difficult to

FIGURE 4. Observed vs. predicted binding of 39 DHFR
inhibitors by two site models that differ only slightly in
their predictions. The line segment at the lower left
corresponds to methotrexate.
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quantitatively compare with other methods the
accuracy of fit to training compounds and the
accuracy and statistical significance of the subse-
quent predictions. At least qualitatively speaking,
the resulting models have predictive power that
compares favorably with other methods, particu-
larly because sometimes a smaller set of training
compounds can be used.
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