
Time-Varying Shortest Path Problems
with Constraints

X. Cai,1 T. Kloks,2 C. K. Wong3,*
1 Department of Systems Engineering and Engineering Management, The Chinese University of
Hong Kong, Shatin, Hong Kong

2 Department of Mathematics and Computing Science, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

3 Department of Computer Science and Engineering, The Chinese University of Hong Kong,
Shatin, Hong Kong

Received 28 November 1995; accepted 20 November 1996

Abstract: We study a new version of the shortest path problem. Let G Å (V, E) be a directed graph.
Each arc e √ E has two numbers attached to it: a transit time b (e , u) and a cost c (e , u) , which are
functions of the departure time u at the beginning vertex of the arc. Moreover, postponement of departure
(i.e., waiting) at a vertex may be allowed. The problem is to find the shortest path, i.e., the path with the
least possible cost, subject to the constraint that the total traverse time is at most some number T . Three
variants of the problem are examined. In the first one, we assume arbitrary waiting times, where waiting
at a vertex without any restriction is allowed. In the second variant, we assume zero waiting times,
namely, waiting at any vertex is strictly prohibited. Finally, we consider the general case where there is
a vertex-dependent upper bound on the waiting time at each vertex. Several algorithms with pseudopoly-
nomial time complexity are proposed to optimally solve the problems. First, we assume that all transit
times b (e , u) are positive integers. In the last section, we show how to include zero transit times.
q 1997 John Wiley & Sons, Inc. Networks 29: 141–149, 1997

1. INTRODUCTION lem where one would like to find the shortest path subject
to some constraint, such as the total time required toOne of the most studied problems in graph algorithms is
traverse the path being at most some number T . This kindthe shortest path problem. A natural extension is the prob-
of problem is also often studied (see, e.g., [2, 6–9]) and
is known to be NP-complete [1, 5] .Correspondence to: C. K. Wong

In this article, we study yet a new extension of the* On leave from IBM T. J. Watson Research Center, P.O. Box 218,
Yorktown Heights, NY 10598. problem. We address the situations where the transit time

Contract grant sponsor: Research Grants Council of Hong Kong and the cost to traverse an arc are varying over time,
Contract grant number: CUHK 278/94E which depend upon the departure time at the beginningContract grant sponsor: Strategic Research Program at The Chinese

vertex of the arc. Moreover, waiting times at verticesUniversity of Hong Kong
Contract grant number: SRP 9505 are considered as decision variables. Our problem is to

q 1997 John Wiley & Sons, Inc. CCC 0028-3045/97/030141-09

141

755/ 8u0f$$0755 03-17-97 20:34:54 netwa W: Networks

142 CAI, KLOKS, AND WONG

determine an optimal path as well as the optimal waiting Section 6. Finally, some concluding remarks are given in
Section 7.times at the vertices along the path, subject to the con-

straint that the total traverse time of the path is at most
T . Applications of our model are varied. One example is
the data transmission problem. Suppose that a data packet 2. PROBLEM FORMULATION
has to be sent between two specified nodes in a network
as cheaply as possible within a time limit T . As the transit Let G Å (V, E) be a directed graph, without loops or
time and the cost needed to send the packet on an arc multiple arcs. Let b(e , u) be the transit time needed to
vary over different periods, there exists an optimal depar- traverse an arc e √ E and c(e , u) be the length, or cost,
ture time to traverse an arc. Thus, an optimal solution to to traverse the arc.† Both the transit time b(e , u) and the
the problem should not only provide the best path con- length c(e , u) are functions of the departure time u at the
necting the two nodes, but also specify the optimal dura- beginning vertex of e , where u is an integer in [0, T] and
tion for the data packet to stay at each node to wait for T ú 0 is a given integer, which is the maximum time
the best departure time. Another example is the freight that is allowed to traverse a whole path.‡ We assume
transport problem. Suppose that some freight is to be sent that b(e , u) are nonnegative integers and c(e , u) are
from a source to a sink in a network before a deadline T . nonnegative. Throughout the article, we let n Å ÉVÉ and
Between two neighboring cities, several types of freight m Å ÉEÉ. We also write c(x , y , u) and b(x , y , u) if e
services are available, which, however, have different Å (x , y) .
costs and transport times, depending upon the seasons.
An optimal solution should thus specify the route as well Definition 1. A waiting time w(x) at a vertex x is a
as the waiting times of the freight at each city so that the nonnegative integer, and Ux ¢ 0 is its upper bound.
overall cost is minimum while the freight arrives at the
destination no later than the deadline T . Definition 2. Let P Å (s Å x1 , . . . , xr Å x) be a path

We address three variants of the problem: The first from s to x. Let w(xi) (i Å 1, . . . , r) be waiting times
one assumes no constraints on the waiting times, namely, at vertices x1 , . . . , xr . Let T(x1) Å w(x1) and define
waiting at any vertex arbitrarily is allowed. The second recursively T(xi) Å w(xi) / T(xi01) / b(xi01 , xi ,
variant assumes zero waiting time, where waiting at any T(xi01)) for i Å 2 , . . . , r. The departure time of a vertex
vertex is strictly prohibited. Finally, we consider the situa- xi on P, 1 ° i õ r, is defined as T(xi) .
tion where each vertex has a waiting time limit. Several
algorithms are derived to compute optimal solutions. We

Definition 3. Let P Å (s Å x1 , . . . , xr Å x) be a pathfirst examine algorithms under the assumption that transit
from s to x. The time of P, given the waiting times, istimes on all arcs are strictly positive. Three algorithms
defined as T(xr) . A path has time at most t, if there areare proposed to optimally solve the three variants of the
waiting times for the vertices on the path such that theproblem under this assumption, with time complexity of
time of the path with these waiting times is at most t.O(T(m / n)) , O(T(m / n)) , and O(T(m / n log T)) ,

respectively, where m and n are, respectively, the numbers
Definition 4. Let P Å (s Å x1 , . . . , xr Å x) be a pathof arcs and vertices. We then generalize the algorithms
from s to x. Let T(xi) be the departure time at xi for 1to cases with nonnegative transit times. We show that the
° i õ r, given the waiting times of the vertices on thethree variants of the problem can be optimally solved by
path. Let L (x1) Å 0 and define recursively L (xi)algorithms with running time O(T(m / n log n)) ,
Å L(xi01) / c(xi01 , xi , T(xi01)) for i Å 2 , . . . , r. TheO(T(m / n log n)) , and O(T(m / n log n / n log T)) ,
length of P, with the given waiting times, is definedrespectively. Note that the various versions of the problem
as L(xr) .that we consider are NP-complete, since a simpler version

of the problem (where transit times and costs are con-
We are interested in the problem of finding a path P*stant) has been known to be NP-complete [1, 5] . Never-

from a given vertex s to another vertex y , y √ V " {s}theless, the pseudopolynomial time complexity of the al-
and determining the optimal values of the waiting timesgorithms that we propose indicates that they are NP-com-
at the vertices on the path, so that the length of the pathplete in the ordinary sense only.
is minimal subject to the following constraints:The remainder of the article is organized as follows:

In Section 2, we introduce the notations and the basic
model. Then, Sections 3, 4, and 5 are devoted to problems

† For consistency, we shall use the term length in the rest of the
with arbitrary waiting times, zero waiting times, and article.
bounded waiting times, respectively, all under the as- ‡ The case with T Å 0 reduces to the ordinary shortest path problem
sumption of strictly positive transit times. The results are without time-varying constraints (see, e.g., [1]) and is not the concern

of this article.generalized to cases with nonnegative transit times in

755/ 8u0f$$0755 03-17-97 20:34:54 netwa W: Networks

TIME-VARYING SHORTEST PATH PROBLEMS 143

C1. The time of P* is at most T . If dA(y , t) Å ` , there is nothing to prove. So, assume
that dA(y , t) is finite. If dA(y , t) Å dA(y , t 0 1), then,C2. The waiting time at each vertex x along P* is at

most Ux . by induction, there is a path from s to y of length dA(y ,
t) . The time of the path is at most t 0 1 and, of course,
at most t .For completeness, we adopt the following convention:

Assume that dA(y , t) Å dA(x , u) / c(x , y , u) for
some x such that (x , y) √ E and some u such that uDefinition 5. For a vertex x √ V " {s} and a given num-
/ b(x , y , u) Å t . Since b(x , y , u) ú 0, we have u õ tber t ° T, the length of a shortest path from s to x with
and, therefore, by induction, we know there must exist atime t is said to be ` if (i) there does not exist any path
path P * Å (s Å x1 , . . . , xr Å x) from s to x of time atfrom s to x or (ii) all paths from s to x either have times
most u and length dA(x , u) . Hence, there are waitinggreater than t or violate the constraint C2 above.
times w(xi) at xi such that the time of the path P* with
these waiting times is u* ° u . Add u 0 u * to the waiting
time w(xr) . We extend the path to vertex y , obtaining a3. ARBITRARY WAITING TIMES
path P with the given waiting times and with waiting
time zero at y . The time of P , with these waiting times,We examine, in this section, the problem when there is
is at most t , since u / b(x , y , u) Å t . The length of Pno constraint imposed on the waiting times. We refer to
with these waiting times is dA(x , u) / c(x , y , u * / (uthis problem as the Time-Varying Constrained Shortest
0 u *)) Å dA(x , u) / c(x , y , u) Å dA(y , t) . This provesPath with Arbitrary Waiting Times problem (TCSP-AWT
the claim.problem). In this section, we assume that all b(x , y , u)

We now prove that dA(y , t) is the length of a shortestare positive integers.
path from s to y with time at most t . Let P Å (s Å x1 ,
. . . , xr Å y) be a shortest path from s to y of time t *Definition 6. dA(y, t) is the length of a shortest path
° t , and let w(xi) be the waiting time at xi (i Å 1, . . . ,from s to y of time at most t, where waiting at any vertex
r) . Clearly, we may assume that w(xr) Å 0. Let x be theis not restricted.
predecessor of y on this path. Let u be the time of the
subpath P* (with the waiting times) from s to x , and letThe following lemma gives us a recursive relation to
L(x) be the length of P *. By definition, t* Å u / b(x ,compute dA(x , t) . Note that the optimal waiting times
y , u) / w(xr) Å u / b(x , y , u) ° t , implying that ucan be obtained implicitly by the recursive computations.
õ t since b(x , y , u) ú 0. Thus, by induction, L(x)This will be elaborated on later in Remark 1.
¢ dA(x , u) . By definition, the length of P is L(y) Å L(x)
/ c(x , y , u) ¢ dA(x , u) / c(x , y , u) . If u / b(x , y ,Lemma 1. dA(s, t) Å 0 for all t and dA(y, 0) Å ` for
u) Å t , then L(y) ¢ dA(x , u) / c(x , y , u) ¢ dA(y , t)all y x s. For t ú 0 and y x s, we have
due to the computation of the formula. Otherwise, if u
/ b(x , y , u) õ t , then there must exist a time t 9 Å udA(y , t) Å min{dA(y , t 0 1), / b(x , y , u) õ t . Again, according to the formula, we

min
{xÉ(x ,y)√E }

min
{uÉu/b (x ,y ,u)Åt }

{dA(x , u) / c(x , y , u)}}. have dA(y , t) ° dA(y , t 0 1) °rrr° dA(y , t 9) ° dA(x ,
u) / c(x , y , u) ° L(y) . In both cases, we must have
L(y) Å dA(y , t) , since P is a path of shortest length andProof. It is easy to see that dA(s , t) Å 0 for all 0

° t ° T and dA(y , 0) Å ` for all y x s , since all transit since there exists a path achieving dA(y , t) , as we showed
above. This completes the proof. jtimes are positive.

We now prove the formula by induction. Consider t
Definition 7. For every arc (x, y) √ E and for t Å 0 ,Å 1. The only vertices for which there can exist a path
. . . , T, letof time at most one are s and neighbors of s . For y Å s ,

the formula clearly holds. Assume that y x s . Consider
gA(x , y , t) Å min

{uÉu/b (x ,y ,u)Åt }
{dA(x , u) / c(x , y , u)}.first the case where (s , y) √ E and b(s , y , 0) Å 1. In

this case, the formula holds with dA(y , t) Å dA(x , u)
/ c(x , y , u) , where u Å 0 and x Å s . In any other cases, We adopt the convention that gA(x, y, t) Å ` whenever
the formula holds with dA(y , t) Å dA(y , t 0 1) Å ` as {uÉu / b(x, y, u) Å t} Å M.
there is no feasible solution for a path from s to y of time

The result below follows directly from Lemma 1:t Å 1.
Assume that the formula is correct for all t * õ t . Con-

Corollary 1.sider a vertex y . Again, if y Å s , there is nothing to prove.
So, assume that y x s . First, we prove the claim that

dA(y , t) Å min{dA(y , t 0 1), min
{xÉ(x ,y)√E }

gA(x , y , t)}.
there exists a path of time at most t and length dA(y , t) .

755/ 8u0f$$0755 03-17-97 20:34:54 netwa W: Networks

144 CAI, KLOKS, AND WONG

Fig. 1. Algorithm TCSP-AWT.

Corollary 1 indicates that when dA(y , t) is to be up- path is P* Å (s , g , h , i) , where the departure times at
the vertices s , g , and h are, respectively, 0, 10, and 11,dated we have to know gA(x , y , t) for all (x , y) √ E .

Given t and (x , y) , gA(x , y , t) could be evaluated by a while the arrival times at the vertices g , h , and i are,
respectively, 4, 11, and 12. There is a waiting time 6 atnaive approach of enumerating 0 ° u ° T to find those

satisfying u / b(x , y , u) Å t , according to Definition 7. the vertex g to achieve the shortest length 18.
This would, however, require a worst-case running time
of O(T) for every t . Clearly, we need some mechanism

Remark 1. In general, the algorithm TCSP-AWT com-to make the evaluation of gA(x , y , t) efficiently. Our idea
putes the length dA(x , T) of the shortest path from thein the algorithm below is to first sort the values of u
source s to a vertex x with time at most T . Let the shortest/ b(x , y , u) for all u Å 1, 2, . . . , T and all arcs (x , y)
path be P* Å (s Å x*1 , . . . , x*i , x*j , . . . , x*r Å x) . Note√ E , before the recursive relation as given in Lemma 1
that this path and the optimal departure time at each ver-is applied to compute dA(y , t) for all y √ V and t Å 1,
tex x*i on the path can be identified by a standard back-2, . . . , T .
tracking procedure of dynamic programming. Then, theWe describe the algorithm in Figure 1, followed by an
waiting times at the vertices on P* can be obtained usingillustrative example. Then, we show its worst-case run-
the departure times. For example, if T(x*i) and T(x*j)ning time in Lemma 2. Some implementation details
are the optimal departure times at the two vertices x*i andwhich guarantee its worst-case running time are also dis-
x*j of an arc (x*i , x*j) on P*, then the optimal waitingcussed in the proof of Lemma 2.
time at the vertex x*j is w(x*j) Å T(x*j) 0 T(x*i)We now consider a simple example. Assume that there
0 b(x*i , x*j , T(x*i)) .is a network as shown in Figure 2, where the two elements

in the square brackets along each arc (x , y) represent the
transit time b(x , y , u) and the length c(x , y , u) of the Lemma 2. The algorithm TCSP-AWT can be imple-
arc, respectively. The problem is to find a shortest path mented such that it runs in O(T(n / m)) time.
connecting the source node s and the sink node i such
that the time of the path is at most T Å 12.

Applying Algorithm TCSP-AWT, one may obtain the TABLE I. The length of shortest path from s to y:
results in Table I. Thus, when T Å 12, the length of the dA(y, t)
shortest path connecting s and i is dA(i , 12) Å 18. By a

t dA(s, t) dA(f, t) dA(g, t) dA(h, t) dA(i, t)backtracking procedure, it is easy to find that the shortest

0 0 ` ` ` `
1 0 12 ` ` `
2 0 11 ` ` `
3 0 10 14 ` `
4 0 9 8 20 `
5 0 8 8 20 26
6 0 7 8 20 26
7 0 6 8 20 26
8 0 5 8 18 26
9 0 4 8 16 24

10 0 3 8 14 22
11 0 2 8 12 20
12 0 1 8 10 18

Fig. 2. An example.

755/ 8u0f$$0755 03-17-97 20:34:54 netwa W: Networks

TIME-VARYING SHORTEST PATH PROBLEMS 145

Proof. It is easy to check that the initialization can be dZ(y , t)
done in O(Tn) time. Å min

{xÉ(x ,y)√E }
min

{uÉu/b (x ,y ,u)Åt }
{dZ(x , u) / c(x , y , u)}.For the sorting in step 2, we can use bucketsort, with

T buckets. Since there are Tm values to be sorted, this
step can then be performed in O(Tm) time. Let us now further introduce the following definition:

Since the values u / b(x , y , u) are now sorted, the
overall time needed to update the values gA(x , y , t) can Definition 9. For each arc (x, y) and each 1 ° t ° T,
be done in O(Tm) time. define

Finally, the overall time to update the values dA(y , t)
in the last line is proportional to T times the number of gZ(x , y , t) Å min

{uÉu/b (x ,y ,u)Åt }
{dZ(x , u) / c(x , y , u)}

arcs, i.e., O(Tm) .
It follows that the running time of the algorithm is

and adopt the convention that gZ(x, y, t) Å ` wheneverbounded by O(T(n / m)) . j
the set {uÉu / b(x, y, u) Å t} is empty.

From Lemma 1 and Corollary 1, one can easily see The result below follows directly from Lemma 3:
that, after the termination of the algorithm TCSP-AWT,
each computed value dA(x , t) is the length of a shortest Corollary 2. For 1 ° t ° T, and for each vertex y,
path from s to x of time at most t . This, together with
Lemma 2, gives us

dZ(y , t) Å min
{xÉ(x ,y)√E }

gZ(x , y , t) .

Theorem 1. The TCSP-AWT problem with positive tran-
We describe our algorithm for solving the TCSP-ZWTsit times can be optimally solved in O(T(n / m)) time.

problem in Figure 3. Note that we have to evaluate gZ(x ,
y , t) for all (x , y) √ E when dZ(y , t) is to be updated.
Again, to compute gZ(x , y , t) as efficiently as possible,
our idea in the algorithm TCSP-ZWT is to use sorting.4. ZERO WAITING TIMES
We sort in advance the values of u / b(x , y , u) Å t for
all u Å 1, 2, . . . , T and all arcs (x , y) √ E .

In this section, we consider the case in which no waiting The following lemma gives the worst-case running
times are allowed at any vertices. We refer to this problem time of the algorithm TCSP-ZWT. The proof of the
as the Time-Varying Constrained Shortest Path with Zero lemma is similar to that for Lemma 2 and is omitted here.
Waiting Times problem (TCSP-ZWT problem). We also
assume, in this section, that all times b(x , y , u) are posi- Lemma 4. The algorithm TCSP-ZWT can be imple-
tive integers. mented such that it runs in O(T(n / m)) time.

Recall Definitions 2, 3, and 4 on departure times at
vertices, time of path, and length of path. Note that the Combining Lemma 3, Corollary 2, and Lemma 4, we
waiting times in these definitions should be set to zero have
for the TCSP-ZWT problem.

Theorem 2. The TCSP-ZWT problem with positive tran-
sit times can be optimally solved in O(T(n / m)) time.Definition 8. dZ(y, t) is the length of a shortest path

from s to y of time exactly t. If such a path does not exist,
then dZ(y, t) Å ` .

5. BOUNDED WAITING TIMES

Note that the definition of dZ(y , t) is different from
In this section, we consider the case where waiting at athat of dA(y , t) . This is because of the constraint that no
vertex is allowed, but there is an upper-bound Ux on thewaiting is allowed at any vertex in the present problem.
waiting time at a vertex x . We refer to this problem as

Note also that d*Z (y) Å min0°t°TdZ(y , t) is the length of
the Time-Varying Constrained Shortest Path with Con-

a shortest path from s to y of time at most T .
strained Waiting Times problem (TCSP-CWT problem).

Following similar arguments in the proof for Lemma
Again, we assume that all b(x , y , u) are positive integers.

1, one can show
Recall the definition of Ux (Definition 1). Clearly, we may
assume that Ux° T for all x√ V . Recall also Definitions 2,
3, 4, and 5 on departure times at vertices, time of path,Lemma 3. dZ(s, 0) Å 0 and dZ(y, 0) Å ` for all y

x s. For t ú 0 and y x s, we have and length of path.

755/ 8u0f$$0755 03-17-97 20:34:54 netwa W: Networks

146 CAI, KLOKS, AND WONG

Fig. 3. Algorithm TCSP-ZWT.

Definition 10. dC(x, t) is the length of a shortest feasible If dC(y , t) Å ` , there is nothing to prove. So, assume
that dC(y , t) is finite. Assume that dC(y , t) Å dC(x , uA)path from s to x of time exactly t and with waiting time

zero at x, subject to the constraint that the waiting time / c(x , y , uD) for some x such that (x , y) √ E and some
(uA , uD) √ F(x , y , t) .at any other vertex y on the path is not greater than Uy .

If such a feasible path does not exist, then dC(x, t) Å ` . By induction, we know that there is a feasible path P*
Å (s Å x1 , . . . , xr Å x) from s to x of time exactly uA ,
with length dC(x , uA) and with zero waiting time at x .Definition 11. d*C (x) is the length of a shortest feasible
We let uD 0 uA be the new waiting time at x . Since 0path from s to x of time at most T.
° uD 0 uA ° Ux , the new path is again feasible. We
extend the path with vertex y , obtaining a path P withLemma 5.
the given waiting times and with waiting time zero at y .
The time of P , with these waiting times, is exactly t ,d*C (x) Å min

0°t°T
dC(x , t) .

since uD / b(x , y , uD) Å t , which is the arrival time at
y . The length of P with these waiting times is dC(x , uA)Proof. Consider a shortest feasible path P of time at / c(x , y , uD) Å dC(y , t) . This proves the claim.most T . Let t ° T be the time of P , with waiting time

We now prove that dC(y , t) is the length of a shortestzero at x . Then, d*C (x) Å dC(x , t) . j
feasible path from s to y with time t and with waiting
time zero at y . Let P Å (s Å x1 , . . . , xr Å y) be a shortestLemma 6. dC(s, 0) Å 0 and dC(x, 0) Å ` for all x
feasible path from s to y of time t with waiting time zero

x s. For t ú 0 and y x s, we have
at y . Let w(xi) be the waiting time at xi (i Å 1, . . . , r) .
So, we have w(xr) Å 0. Let x be the predecessor of y on

dC(y , t)
this path. Let uD be the time of the subpath P* (with the
waiting times) from s to x , let uA Å uD 0 w(x) be theÅ min

{xÉ(x ,y)√E }
min

(uA,uD)√F (x ,y ,t)
{dC(x , uA) / c(x , y , uD)},

arrival time at x along P*, and let L(x) be the length of
P *. By definition, t Å uD / b(x , y , uD) . By induction,

where F(x, y, t) Å {(uA, uD)ÉuD / b(x, y, uD) Å t Ú 0 L(x) ¢ dC(x , uD) . By definition, the length of P is L(x)
° uD 0 uA ° Ux}. / c(x , y , uD) ¢ dC(x , uD) / c(x , y , uD) ¢ dC(y , t) ,

where the last inequality comes from the formula on theProof. It is easy to see that dC(s , 0) Å 0 and dC(y ,
computation of dC(y , t) . This length must be equal to0) Å ` for all y x s , since all transit times are positive.
dC(y , t) , since P is a path of the shortest possible lengthThus, in the following, we need only examine t ú 0 and
and since there exists a path that achieves dC(y , t) , asy x s .
we showed above. This completes the proof. jWe prove the formula by induction. Consider t Å 1.

The only vertices for which there exists a feasible path
Definition 12. For each arc (x, y) √ E and each 1 ° tof time one are neighbors of s . Assume that y is a neighbor
° T, defineof s . We must have b(s , y , 0) Å 1 and all waiting times

must be zero. In that case, the formula holds with uA

Å uD Å 0 and x Å s . gC(x , y , t) Å min
(uA,uD)√F (x ,y ,t)

{dC(x , uA) / c(x , y , uD)},
Assume that the formula is correct for all t * õ t . Con-

sider a vertex y . First, let us prove the claim that there
exists a feasible path of time t and length dC(y, t) , with and adopt the convention that gC(x, y, t) Å ` whenever

the set F(x, y, t) is empty.waiting time zero at vertex y.

755/ 8u0f$$0755 03-17-97 20:34:54 netwa W: Networks

TIME-VARYING SHORTEST PATH PROBLEMS 147

Fig. 4. Algorithm TCSP-CWT.

From Lemma 6, we have putes iteratively dC(y , t) for all y at t Å 0, 1, . . . , T . At
any time t , the algorithm keeps all dm

C (y , u) for all verti-
Corollary 3. For 1 ° t ° T, and for each vertex y, ces y and all u ° t 0 1. Nevertheless, for each vertex y ,

the algorithm maintains only one heap Heapy . After dC(y ,
dC(y , t) Å min

{xÉ(x ,y)√E }
gC(x , y , t) . t) is obtained, the new Heapy at time t is obtained by

deleting dC(y , t 0 Uy 0 1) from the heap (if t 0 Uy 0 1
¢ 0) and inserting dC(y , t) .In addition to the idea of sorting the values of u

The following lemma is needed to show the correctness/ b(x , y , u) as discussed previously, our key idea in the
of the algorithm:algorithm to be presented below is the use of a binary

heap. For every vertex x , we maintain a binary heap,
Lemma 7. After the termination of the algorithm TCSP-which contains the values of dC(x , uA) for all max{0, t
CWT, dC(y, t) is the length of a shortest feasible path0 Ux} ° uA ° t . Using this data structure, initialization
from s to y of time exactly t and with waiting time zeroand finding the minimum take constant time. Each inser-
at the vertex y.tion and each deletion take O(log Ux) Å O(log T) time

[3]. For convenience, we introduce the following nota-
Proof. We show that the formula given in Lemma 6tion:

is correctly computed. Clearly, it suffices to show that
dm

C (x , u) , for all 0 ° u ° t , computed by the algorithmDefinition 13. dm
C (x, t) is the minimum in the heap.

is the minimum value of dC(x , uA) , for u 0 Ux ° uA

° u . We use induction on t .We need dm
C (x , t) when evaluating gC(x , y , t) . We

The argument holds for t Å 0 because of the initializa-see from Definition 12 that we have to solve an optimiza-
tion. Now assume that the argument holds for any 0tion problem of minimizing {dC(x , uA) / c(x , y , uD)}
° u ° t 0 1, and we consider u Å t . Note that u subjectsubject to (uA , uD) √ F(x , y , t) to obtain gC(x , y , t) .
to u / b(x , y , u) Å t in line 7 of the algorithm mustClearly, given (x , y) and t , a value of uD that satisfies
satisfy u ° t 0 1 since b(x , y , u) is positive. Thus, lineuD / b(x , y , uD) Å t is known and, consequently, the
8 of the algorithm gives the correct value for gC(x , y , t)corresponding value of c(x , y , uD) is known. Thus, solv-
because of the assumption that dm

C (x , u) are correct foring the optimization problem reduces to solving a problem
all u° t0 1. In addition, when gC(x , y , t) is correct, thenof minimizing {dC(x , uA)} subject to max{0, uD 0 Ux}
dC(y , t) is correct according to Corollary 3. Consequently,° uA ° uD [recall the definition of F(x , y , t) in Lemma
lines 11 and 12 of the algorithm generate the correct6] . Therefore, if dm

C (x , uD) is known, we can obtain, for
Heapy at time t , and therefore dm

C (x , t) is correct. Thisevery (x , y) √ E and t , gC(x , y , t) , which is equal to
completes the proof. jthe minimum of dm

C (x , uD) / c(x , y , uD) over all uD

satisfying uD / b(x , y , uD) Å t .
We describe our algorithm for the TCSP-CWT prob- Lemma 8. The algorithm TCSP-CWT can be imple-

mented such that it runs in O(T(m / n log T)) time.lem in Figure 4. Note that Algorithm TCSP-CWT com-

755/ 8u0f$$0755 03-17-97 20:34:54 netwa W: Networks

148 CAI, KLOKS, AND WONG

Proof. It is easy to see that the initialization can be mon’’ shortest path algorithm (say, Dijkstra’s algorithm,
see [1, 4]) to G9 to find the shortest path from s to eachdone in O(Tn) time.

For the sorting, we can use bucketsort, with T buckets. y √ V . In applying such an algorithm, we ignore the
transit times and the problem is thus a classical shortestSince there are Tm values to be sorted, this step can then

be implemented in O(Tm) time. path problem. For completeness, we describe the applica-
tion of Dijkstra’s algorithm below and refer to it as SP .Since the values u / b(x , y , u) are now sorted, the

overall time needed to update the values gC(x , y , t) is The algorithm maintains two sets S and S *. The set S
contains vertices for which the final shortest path lengthsO(Tm) .

The two steps of inserting dC(y , t) to Heapy and delet- have been determined, while the set S* contains vertices
for which upper bounds on the final shortest path lengthsing dC(y , t 0 Uy 0 1) (if t ú Uy) from Heapy take O(log

Uy) Å O(log T) time. Since the algorithm has to perform are known. Initially, S contains only the source s , and
the lengths of the vertices in S * are set to dA(y , t) . Repeat-these two steps for all t Å 1, 2, . . . , T and all vertex y

√ V, it takes in total O(Tn log T) time to maintain the edly, select the vertex x √/ S , for which the distance from
heaps. s is the shortest. Put x in S , and for all outgoing arcs e

Å (x , y) √ E9, update dA(y , t) :Å min{dA(y , t) , dA(x ,The step of finding dm
C (y , t) takes O(1) time. Finally,

the last step of computing d*(y) for all y √ V takes t) / c(e , t)}. The algorithm terminates if all vertices are
in S .O(Tn) time.

It follows that the overall running time of the algorithm We are going to show that our approach is correct in
terms of finding an optimal solution at each time t for theis bounded above by O(T(m / n log T)) . j

original problem TCSP-AWT. For any vertex y √ V and
time t ú 0, we can see that any path from s to y withCombining Lemma 7 with Lemma 8, we obtain
time at most t must be one of the paths of the following
type:Theorem 3. The TCSP-CWT problem with positive tran-

sit times can be optimally solved in O(T(m / n log T))
1. A path from s to y of time at most t 0 1,time.
2. A path from s to y of time exactly t , which must pass

an arc (x , y) √ E * with b(x , y , t) ú 0, or

6. TAKING CARE OF THE ZEROS 3. A path from s to y of time exactly t , which must pass
an arc (x , y) √ E 9 with b(x , y , t) Å 0.

In this section, we propose an approach to handle zero
transit times. The approach holds for all problems, TCSP- In fact, for each vertex y √ V, our approach first uses
AWT, TCSP-ZWT, and TCSP-CWT. In the following, the algorithm TCSP-AWT to determine the shortest path
we describe it in detail for the TCSP-AWT problem. The among those of types 1 and 2. After this is done, it creates
particulars of the approach for other problems can be an artificial arc e*y Å (s , y) to represent this shortest path.
similarly derived following the same idea. Then, it uses the procedure SP to further determine the

Consider a network G Å (V, E) . At the tth step of shortest length of all possible paths. The shortest path can
the algorithm TCSP-AWT, we first apply, as usual, the be one with only the artificial arc e*y (in this case the
algorithm to a subgraph G * Å (V, E*) . This subgraph G * algorithm TCSP-AWT had, in fact, found the optimum)
has the same vertex set V as G , but its edge set E * or a path of type 3 (in this case, the procedure SP has
Å {eÉe √ E Ú b(e , t) ú 0}. Then, after the values of found a shorter length than that obtained by the algorithm
dA(y , t) , namely, the lengths of the shortest paths from TCSP-AWT). Since any vertex y can only be reached by
s to each vertex y , y √ V, have been obtained by the one of the paths of the three types, the approach has
algorithm TCSP-AWT, we create, for each y √ V, an considered all possible paths and is thus optimal. For-
artificial arc from s to y . Call this arc e*y Å (s , y) . The mally, we have
length of e *y Å (s , y) is set to dA(y , t) , namely, c(e *y , t)
Å dA(y , t) , and the transit time on e *y Å (s , y) is assumed

Lemma 9. Consider the approach: At each t Å 0, 1, . . . ,to be t . Then, we construct a new subgraph G 9 Å (V,
T, apply the algorithm TCSP-AWT to G *, then apply theE 9) . The vertex set V of the subgraph G 9 is the same as
procedure SP to G9 to update dA(y, t) for all y √ V. Afterthat of G . The edge set E9 consists of those edges e for
the t th iteration, dA(y, t) is the length of a shortest path

which b(e , t) Å 0 and those edges e *y for all y √ V " {s}. from s to y of time at most t.
If there are double arcs from s to y , delete the arc from
E 9 which has the larger length (or break up a tie arbitrarily Proof. With induction on t , we now show that dA(x ,

t) is the length of a shortest path from s to x of time atif they have equal lengths) .
When the subgraph G9 is created, we apply a ‘‘com- most t .

755/ 8u0f$$0755 03-17-97 20:34:54 netwa W: Networks

TIME-VARYING SHORTEST PATH PROBLEMS 149

When t Å 0, the algorithm TCSP-AWT first initializes 7. CONCLUSIONS
dA(s , 0) Å 0 and dA(x , 0) Å ` for all x x s . Then, a
subgraph G9 is created, and the procedure SP is applied In this article, we considered a new extension of the ordi-
to this graph. Clearly, this procedure can correctly obtain, nary shortest path problem. Three variants were examined
for each x √ V, the length of a shortest path from s to x in detail. Algorithms with pseudopolynomial time com-
in the graph G9. Hence, the values for dA(x , t) are correct plexity were proposed, which can solve the problems opti-
for t Å 0. mally.

Now assume that the values of dA(x , t *) are correct Of course, there are many variations of the problems
for all x √ V and t* õ t . Under this assumption, it is discussed in this paper. For example, one could study the
easy to show that the values for dA(x , t) obtained by the problem where a speedup is also allowed. The transit time
algorithm TCSP-AWT are the lengths of shortest paths of an arc may be shortened, which, however, may incur
of types 1 and 2. Now consider the subgraph G 9 created an additional cost. In such a case, both the transit times
with artificial arcs e *y Å (s , y) associated with these on arcs and the waiting times at vertices become decision
lengths. As the procedure SP is, in fact, the algorithm of variables. One should determine not only an optimal path,
Dijkstra, it can find the length of a shortest path P from but also the optimal transit times on the arcs and the
s to y in the graph G9, for each y √ V . Moreover, the waiting times at the vertices along the path.
time of this path is at most t , since all arcs except those
artificial arcs in G 9 have zero transit times. The artificial The authors wish to express their gratitude to the referees
arcs in G9 have a transit time t , but all of them originate for their valuable comments, which improve the presentation
from s and thus any path from s to y in G 9 can contain of the paper significantly.
at most one such arc. By the notation of our approach,
dA(y , t) (updated by the procedure SP) is the length of
this shortest path P . REFERENCES

We now claim that dA(y , t) is also the length of the
shortest path from s to y of time at most t in the original [1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network
graph G . Suppose that this is not true, namely, there exists Flows: Theory, Algorithms, and Applications, Prentice
another path P̂ from s to y , which has a length LP̂ Hall, Englewood Cliffs, NJ (1993).
õ dA(y , t) . Clearly, this cannot be a path of type 1, 2, [2] Y. P. Aneja and K. P. K. Nair, The constrained shortest
or 3; otherwise, such a path would have implied that path problem. Naval Res. Logist. Qt. 25 (1978) 549–555.
the procedure SP, namely, Dijkstra’s algorithm, is not [3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Intro-
optimal. The only possibility is that P̂ is a path with time duction to Algorithms, MIT Press, Cambridge, MA
greater than t , which is, however, infeasible for the given (1990).
t . This proves the claim, and therefore the lemma. j [4] E. W. Dijkstra, A note on two problems in connection

with graphs. Numer. Math. 1 (1959) 269–271.

[5] G. Y. Handler and I. Zang, A dual algorithm for the
For each t Å 0, 1, 2, . . . , T , the subgraphs G* and G 9 constrained shortest path problem. Networks 10 (1980)

can be constructed in O(m / n) time, and the procedure 293–310.
SP can be implemented such that it runs in O(m / n log [6] M. M. D. Hassan, Network reduction for the acyclic con-
n) time (see [1]) . This is the additional running time strained shortest path problem. Eur. J. Oper. Res. 63
needed to update the solutions obtained by the algorithm (1992) 121–132.
TCSP-AWT, TCSP-ZWT, or TCSP-CWT. In summary, [7] H. C. Joksch, The shortest route problem with constraints.

J. Math. Anal. Appl. 14 (1966) 191–197.we have
[8] C. C. Skiscim and B. L. Golden, Solving k-shortest and

constrained shortest path problems efficiently. Ann. Oper.
Theorem 4. The problems TCSP-AWT, TCSP-ZWT, and Res. 20 (1989) 249–282.
TCSP-CWT with non-negative transit times can be opti- [9] C. Witzgall and A. J. Goldman, Most profitable routing
mally solved in times O(T(m / n log n)) , O(T(m / n before maintenance. Bull. Oper. Res. Soc. Am. (1965)

B82.log n)) , and O(T(m / n log T / n log n)) , respectively.

755/ 8u0f$$0755 03-17-97 20:34:54 netwa W: Networks

