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Abstract 

The WK-recursive networks, which were originally 
proposed by Vecchia and Sanges, have suffered from the 
rigorous restriction on the number of nodes. Like the other 
incomplete network, the incomplete WK-recursive networks 
is proposed to relieve this restriction. In this paper, it is first 
shown that the structures of the incomplete WK-recursive 
networks are conveniently represented with multistage 
graphs. This representation can provide a unifbm look ut the 
incomplete WK-recursive networks. By its aid, we ( I )  
compute the connectivities of the incomplete WK-recursive 
networks, ( 2 )  show that they are hamiltohian if their 
connectivities are greater than one, and (3) propa 
suficient and necessary condition for a hamiltonian path in an 
incompkte WK-recursive network with connectivity I .  

1 Introduction 
~ t, 

, : .i, 

In the recent decade, a number of networks ha$t.&en 
proposed in the literature 11. 5 ,  15, 17, 18, 191. For these 
networks, many nice topological properties have been.derived 
and many efficient algorithms have been developed. 
However, a major defect of these networks is that they are not 
truly expansible. A network is expansible if no changes with 
respect to node configuration and link connections are 
necessary when it is expanded. 

We have emphasized two topological advantages, i.e., 
expansibility and equal degree, with the consideration of easy 
implementation and low cost. Recently, the WK-recursive 
networks 1221 owning these two properties have been 
proposed. ll-icy offcr high degree of regularity, scalability and 
symmetry which very well conform to a modular design and 
implementation of distributed systems involving a large 
number of computing eleme.nts. A VLSI implementation of a 
16-node WK-recursive network had been realized at the 
Hybrid Computing Research Center [22]. Later this prototype 
network had been further extended to 64 nodes [231. Some 
variants of the WK-recursive networks have been proposed 
recently [7,81. 

Although the WK-recursive networks own many nice 
properties (see [4, 6, 9-11, 22, 231). there is a rigorous 

restriction on the number of their nodes. As we will see in the 
next section, the number of nodes contained in a WK- 
recursive network is restricted to d, where d is the degree and 
t I S  the level. Thus, as d=4,  espa 3.47=49152 qgdas are 
requiredqo expand from 7-level WK-recursive network to a 
&level WK-recursive network. Almost all of the networks 
mentioned earlier in this section suffered from the same 
problem. Therefore, some incomplete structures [12, 13, 14, 
161 have been proposed as a soluhon to this problem. 

In this paper, we define the incomplete WK-recursive 
networks that require the number of nodes to be a multiple of 
d, where d is the size of the basic building block. Since each 
basic building block of the WK-recursive networks contains d 
nodes, the incomplete WK-recursive networks can be 
expanded or contracted in arbitrary units of basic building 
blocks. We then compute the connectivities and hamiltonicity 
of the incomplete WK-recursive networks. 

In the next section, the WK-recursive networks are 
reviewed and the incomplete WK-recursive networks are 
formally defined. The connectivities and hamiltonicity are 
discussed, respectivity, in Sections 3 and 4. Finally, this 
paper IS concluded with some remarks in Secuon 5. 

2 WK-Recursive Networks and Incomplete 
WK=Recursive Networks 

The WK-recursive networks can be constructed 
recursively by grouping basic building blocks. Any complete 
graph can serve as a hasic building block. For convenience, 
we use K(d, t )  to denote a WK-recursive network of level r 
whose basic building blocks are each a d-node complete 
graph, where d>l and f > l .  K(d, 1). which is the basic 
building block, is a d-node complete graph, and K(d, t )  for 
t22 is composed of d K(d, t-1)’s which are connected as a 
complete graph. Each node of K(d, t )  has degree d and can be 
uniquely identified by a sequence of I digits. We define K(d, 
t )  formally as follows. 

Definition 2.1. The node set of K(d, t )  is denoted by 
(al-lar+..alaO I a , €  (0,  1, ..., d - 1 )  for O G s t - l } .  Node 
adjacency is defined as follows: ar-lar-2 ... ala0 is adjacent to 
(1) a,-lat.2...nlb, where OSbld-1 and b;ea0, and (2) uz.lul-2 
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. . . u ; + ~ a ~ . l ( u ~ ) ~  ifa;;tai.l and aL.1=a;.2= ... =ul=u~,  where (u t ) ;  
represents i consecutive ud's. The links of ( 1) are named 
substiruling links and assigned label 0. The links of (2) are 
named ]Zipping links and assigned label i. The flipping links 
wiih label i are referred to as i-flipping links. Besides, there 
arc open links whose one end node is at, where Wu5.d-I, and 
h e  other end node is unspecified. The open links are labeled 
t .  

Since each node is incident with d-1 substituting links and 
one flipping link (or open link), K(d, t )  has degree d.  The 
structures of K(4, 1) and K(4, 3) are illustrated in Figure 1. 
Intuitively, the substituting links are those within basic 
huilding blocks, the i-flipping links each connect two 
embedded K(d, i ) ' s ,  and the open links are left for future 
expansion. For example, let us consider the incident links of 
node 31 1 in Figure I .  The one to node 133 is a 2-flipping 
link, and the others are substituting links. 

Figure 1. The structures of K(4, 1) and ~ ( 4 , 3 ) .  

Definition 2.2. Define ct-1ct-2 ... c,.K(d, r )  to be the 
induced subgraph of K(d, t )  by (cl.lcf.2 ... cp,l ... ala0 I ai E 
(0, 1, ..., d-1) for O%iSr-l}, ,where 1 9 3 - 1  and ct.l, Cr.2, 

.... cr  are all integers from {O,  1, ..., d-1) .  

In Figure 1 ,  for example, 2O.K(4, 1) is the subgraph 
induced by (200, 201,202, 203). 

Definition 2.3. Node ul .~af -2  ... ulao is a k-frontier, 
where Ilkst, if uk.1~ ... =ul=ug. 

Note that by Definition 2.3 a k-frontier is automatically an 
l-frontier, where 1 4 < k .  Both end nodes of a k-flipping link 
are k-frontiers. An embedded K(d, r )  contains one (r+l)-  
frontier and d-1 r-ffontiers. 

Now, we begin to introduce the incomplete WK-recursive 
networks. The incomplete WK-recursive networks are 
subgraphs of the WK-recursive networks. For convenience, 
we use IK(d, t )  to denote an incomplete WK-recursive 
network with N nodes, where d f - ' d < d t  is a multiple of d. 
The: restriction to N is because K ( d ,  1 )  remains the basic 

huilding block tor IK(d, t ) .  The structure of IK(d, 2 )  with N 
nodes can he uniquely determined by the associated 
coefficient vector, as defined below 

Definition 2.4. The coefjicient vector associated with 
an N-node IK(d ,  I )  is a (t-l)-tuple (br-1, bt-2, ..., b l )  
satisfying N=b,.idf-'+6t-2df-*+ ... +bid, where l<_b,.l<d- I 
and OGiSd- I for I <&I-2. 

Let V(b,.l, b1.2. ..., b l )  denote the node set of IK(d, f )  
with coefficient vector (b(-l, 61-2, .... 61) and V(i.K(d, 2 - 1 1 )  
denote the node set of i .K(d ,  f-l), where OGG-1. The set 
V(bf.l, br.2, ..., bl) can be defined recursively as follows. 

V(bt.1, br-2, ..., bl) = V(0-K(d, t- 1 ))+V( 1 .K(d, t -  1))+ ... 
+V((bl-l- 1 ).K(d, t- 1 ))+V(br-i.(bt.z, br-3. ..., bl)) ,  

where + denotes a union operation and br-1.(bt-2, bt-3, ..., b ~ )  
represents an Irf(d, t-1) with Coefficient vector (bf.2, br-3, ..., 
bl) that is contained in bf-l.K(d, t-1) provided b,2#0. If br-2= 
bl.3 = ... =b+O and b,-l?tO, where l<rSt-2, then bt-1.(bb.2, 
b,-3, ..., bl )  represents an IK(d, r )  with coefficient vector ( 

For example, the coefficient vector of  IK(5, 6) with 8225 
nodes is (2, 3, 0, 4, 0) and its node set can be expressed as 
follows. 

b,.2, ..., 61) that is contained in b,.lOt+'.K(d, r).  

V(2, 3, 0, 4, 0)  
= V(O.K(5, 5))+V(l.K(5, 5))+V(2.(3, 0, 4, 0)) 
= V(O.K(5, 5))+V(l.K(5, 5))+V(20.K(5, 4))+V(21.K(5, 

4)) +V(22.K(5, 4))+V(23.(0, 4, 0)) 
= V(O.K(5, 5))+V( l.K(5, 5))+V(20.K(5, 4))+V(21.K(5, 

4))+V(22.K(5, 4))+V(230.(4, 0)) 
= V(O.K(5, 5))+V( 1 K(5, 5))+V(20.K(5, 4))+V(21.K(5, 

4))+V(22.K(5,4))+V(2300.K(5, 2))+V(2301.K(5, 
2))+V(2302.K(5, 2))+V(2303.K(5, 2)) 

The structure of IK(d, 2) with coefficient vector (b,.l, bt.2, 
..., 61) is defined as follows. 

Definition 2.5. IK(d, t )  with coefficient vector (bl.l, 

b,.~, ..., 61) is the induced subgraph o f  K(d, t )  by V(b,.], 
61-2, ..., bl ) .  

See Figure 2 where the structure of IK(4, 3) with 
coefficient vector (3,2) is shown. 

3 Connectivity 

The connectivity of a connected network is defined as the 
minimum number of nodes whose removal can result in the 
network disconnected. Connectivity IS usually adopted as a 
measure for fault tolerance in networks because Menger's 
theorem [3] states that the number of node-disjoint paths 
between two nodes of a network is at least its connectivity, 
Since 1K(d, I )  is a subgraph of K(d, t ) ,  the connectivity of the 
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former is not greater than the connectivity of the latter. The 
connectivity of K(d, t )  is known to he d-l 14). In this section, 
the connectivity of IK(d, t )  is  computed. First, some 
necessary detinitions and lemmas are introduced. 

I 

Figure 2. The structures of IK(4.3) with 
coefficient vector (3,2). 

According to Definition 2.5, IK(d, t )  with coefficient 
vector (bl-l, br-2, ..., bl) contains b,.l embedded K(d, t-l)k, 
br-2 embedded K(d, t-2)'s. ..., and bl embedded K(d, 1)'s. 
For 1SiSt-1, the b; embedded K(d. i ) 's  are b,.lbr-z ... 
b,+lO.K(d, i), bplbr-2..,.bi+i l .K(d ,  i ) ,  ..., and br-1bt-2 ... 
b;+l(bi-l).K(d, i ) .  Let G, represent the induced subgraph of 
IK(d, t )  with coefficient vector (bt.l, b,2, ..., bl)  by V(b,-l 

br-2 ... bi+l(bi-l ).K(d, i ) ) ,  and RY, where l<n<m<t-1, the 
connectivity o f  G,+G,-l+ ... +C,. Then, R;' is the 
connectivity of IK(d, t )  with coefficient vector (br-l, bt-2, ..., 
bl). In Figure 2, for example, we have R:=2, R:=l, and the 
connectivity of theIK(4,3) is R:=2. 

For easy reference, we refer to bt.lbr-z ... b;+lr.K(d, i )  as 
the (r+l)th K(d, i )  within G, in the subsequent discussion, 
where OSrSbi-1. Besides, a coefficient vector (b f - l ,  br-2, ..., 
b l )  is written as @*.I, bl.2. ..., bi, *), provided bl=b2= ... 
=bi-l=O and bi+O. For example, (2 ,  3, 0, 4, 0) is written as 
(2, 3, 0 ,4 ,  *), and (2, 3 ,4)  is written as (2, 3 ,4 ,  *). 

br-2.. bi+l O*K(d, i))+ V(br.1 bt-2. .. bi+ll .K(d, i ) )+ . .. +V(bt. 1 

Lemma 3.1. For IK(d, I )  with coefficient vector (br-l, 
m bf.2, ..., bi, *), R,=b,-1 ifb,>2, where 1SiimV-1. 

Proof. C, can be regarded as a &-node complete graph 
with each node being a K(d, m).  The connectivity of K(d, m) 
is known to be d-1. Since at least b,-1 ( 4 1 )  nodes have to 
be removed in order to disconnect a bm-node complete graph, 
the connectivity of C, is bm-l.  Hence, q = b m - l .  Q.E.D. 

Lemma 3.2. For IK(d. I )  with coefficient vector (bt-l, 
br-2, .... bi, *), R;-,=min(b,-l, b,) if bm-121 and b,&l, 
where 1 l i<mSt- 1. 

Proof: We first assume h,<b,,.l. For O<jSb,-l. there is 
an m-flipping link between bf.Ibr-z... b,+j.K(d, m )  and h,. 
~b,.? ... b,J.K(d, n-1). There are several possihilities (and 
their combinations) to disconnect G,n+Gm-,. To isolate one or 
more nodes from a K(d. m- 1) or a K(d, m) requires removing 
at least d-1 nodes. To isolate one or more K(d. m)'s from G, 
requires removing at least b, nodes. To isolate one or more 
K(d, m-l)'s from Gm-l requires removing at least f~ , , .~-  1 
nodes. To separate Gm.1 from G, requires removing at least 
bm nodes. Hence, the connectivity of G,+Gm.l is b,. 

With similar arguments, the connectivity of Gm+C,-l can 
be proved 'to be b, if bm=bm-l, and b,.l if b,>b,.l. This 
completes the proof. Q.E.D. 

Lemma 3.3, For IK(d, I )  with coefficient vector ( & I ,  

br-2, ..., bi, *), R m - t  -b,+1 if bm+l>bm and b,<b,-l, and 
min(bm+l, b,, b,,.l) else, where bm+121, b,>O, bm.121, 
and 1 S i 4 n a - 2 .  

Proof. There are five cases: ( 1 )  bm+lSbmSbm-l; (2 )  

m + l -  

bm+lZbmSbm-l; (3)  bm+~<bm and bm>bm-l; (4) bm+l>bmr 
bm<bm-l, and b,+O: ( 5 )  b,=O, to be considered. 

Case 1. bm+lSbmSbm-l. 
Note that for i<j<r-l. there are mintb), bj-1) j-flipping 

links corinecting C, and Gj-1. By Lemma 3.2, RZ+'=b,+l 

and Rt-,=bm. Since no link exists between Gm+l and G,., 
(see Figure 3(a) where the links among each Gj are omitted), 
the connectivity of Gm+l+Gm+Cm-I is bm+1. 

Case 2. bm+12b,2bm.1. 
and R m-l=bm-l. The 

connectivity of Gm+l+Gm+Gm-l is b,.1 with the arguments 
similar to Case 1. 

Case 3. bm+l<bm and bm>b,-l, 
By Lemma 3.2, R"+'=b,,z and R",I=b,-l. The 

connectivity of Cm+l+Gm+Gm-l is mintb,+l, bm.1) with the 
arguments similar to Case 1. 

Case 4. bm+l>bm, b,<b,-l, and b,&. 
By Lemma 3.2, R:+'=bm and R:-,=b,. There.are b, 

(m+l )-flipping links, i.e., (br-l&f-~... bm+20(bm+l)m+l, b,.l 

m By Lemma 3.2, R::,+'=b, 

br.2 ...bm+zbm+lOm+l), (br-1 br-2.. .bm+2 l ( b m + ~ ) ~ + ' .  br.1 br.2 ... 
bm+zbm+l lm+')v ...) and (b,-lbt-z...bm+2(bm-l )(bm+l)m+l, br-1 
br.2...bm+2b,+l(b,-I)m+1), between G,+l and G ,  (see 
Figure 3(b)). Besides, there is exactly one (m+l)-flipping link 
between Gm+l and Gm-l as explained as follows. There is an 
(m+ 1 )-flipping link, i.e., (bt.1 bt.2.. .bm+zbm(bm+l P + l l  br- 1 

br-2...bm+zbm+l (bmIm+1), connecting br-lbt-2 ... bm+2b,.K(d, 
m + l )  and br.lbr-2 ... b,+2b,+lb,b,.K(d, m-1) which belong 
to C m + l  and Cm-l, respectively. For j>bm, the link (br-lbr-2 
... bm+d(bm+l)m+l. br-lbr .2... bm+2 bm+dm+1) does not exist 
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because br.lbt.2 ... bm+2bnt+ljm+l is nnt a node i n  the IK(d, t ) .  
Hencc. the connectivity O~G',+~+G~+G,.I  is b,+l. 

Case S. o,,=o. 

3(c)). The connectivity of G',,+I+G,+G,.J is 1 .  
This case IS a degenerated case o f  Case 4 (see Figure 

Q.E.D. 

.. . , , , i 

Figure 3. The pmofof Lemma 3.3. (a) Case 1 .  (b) Case 4. 
(c) Case 5. 

Lemma 3.4. For IK(d, t )  with coefficieni vector (b, .~.  
..., b,,, r ,  ..., r .  b,, ..., b , ,  * I  (i.e., b,.l =bm.2= ... 
=bn+l=r), where l l i i n < m i r -  1. m>n+2. b,>r, b,,>r. and 
OIr5d-2, R:=r+I. Moreover. there exists exactly one rn- 
flipping link between Gm and G,, and no  other link exists 
between G, and Gv, where m<nSl-1 and i<v<n. 

proof BY Lemma 3.2, q-l=~z::= ... =R,, -r. It is not 
difficult to see that for n+lSckSm-2 and n+25IIm-l, no link 
exists between G, and C k  and between Gn and GI. With the 
arguments similar to Case 4 in the proof of Lemma 3.3, there 
is exactly one m-flipping link, i.e., (br-lbt-2 ... bm+lr ( b m I m ,  
b,-1b?-2...b,+~b,r,), between G, and G,. Hence, the 
connectivity of Gm+Gm.l+ ... +G, is r + l .  

Then we proceed to show that nd other link exists 
between G, and G,. W e  first assume n t m  and y;en, If a (x- 
flipping) link exists between G, and G,, its two end nodes 
should be br-lbt.z ... bX+la(b,)* andb,lb,.z ... b 
some a i r .  However, since x>m and a>r, bt.lbt-2 ... 
b,+lb,(aF is not a node in the IK(d, t). Similar1 
proved that no link exists between G, and Cy 
i S y a  or m a - 1  and y=n. 

n + l -  

Q.E.D. 

Theorem 3.1. For IK(d, t )  with coefficient vector 
b,.z, ..., bj, *), lIi<f-1,  its connectivity, i.e., R;-' can be 
determined as follows. 
(1) Ifi=t-l,  then ~; '=b , l - l .  

(2) Otherwise, letting k=min{bf.l, b1..2, ..., bi) ,  Rf'=k i f  

b,.l=k or bi=k, and k+l else. 

Proof. We prove this theorem by induction on i. 
Induction basis. Lemmas 3.1, 3.2, and 3.3 show the validity 
of the theorem for i=t-1, t-2, and t -3 ,  respectively. 
Induction hypothesis. Assume the theorem is valid for 
i=m+l, where 11mIt-4. Let k'=min ( bl-l, bt.2, .._, bm+l ). 
Induction step. We now discuss the.case of i=m. Three cases 
are considered according to the value ofk'. 

Case 1. k'=bf-l. 
In this case RL:l=bt.l. Since bl.1Sbf-2, no link emits from 

GI-1 to G,, where mSjSt-3. Consequently, removing b,.I 
nodes will seperate Gt-t from G14+Gt-3+ ... +G,. We first 
assume bm+l<bm. By Lemma 3.2 we have C'=b,+l. There 
are three possibilities (or their combinations) to disconnect 
Gt-t+G1-2+ ... +Gm. One is io disconnect G, which requires 
removing at least bm+l nodes. Another is to seperate G, from 
Gt.l+Gt-2+ ... +G,+l which requires removing at least bm+, 
nodes. The other is to disconnect GI.1+G1.2+ ... +Gm+l 
which requires removing at least bt.1 nodes. Hence, 
R ,  =min{b,.t, b ,+~f=b~- l .  Note that bt-l=min(bt.l, bf.2, ..., 

On the other hand, i f  b,+lsb,, $+l=bm by Lemma 3.2, 

and no link emits from G ,  to GI, where m+2<l<t- 1 .  

1- 1 

b m + l ,  b m f .  
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Similarly, R:' can he determined as min(br.l, b,). Note that 
sincc bI.I=min(br.,, b1-2, ..., bm+l) ,  min{b,.I, b,)=min( 
!),-I, h 1 . z .  ..., & + I .  bm) . 
C a e  2. k'=b,+l. 

hi this case Rkyl=bm+l .  If br-i=br-2= ... =&,+I, the 
discussion is the same as Case 1 because b,.l =k'. Otherwise, 
let j=min ( I  I m+Z<l<f- l  and bpb,+l ).  If bm+i<bm, by 
Lemma 3.4 there is aj-flipping link between G, and Gj. Also 
note that no link exists between G, and G, for s#j and 
s#m+l. If b,+lzb,, no link exists between G, and G, for 
s#m+l .  With the arguments similar to Case 1. it can be 
proved that $l=bm+l+1 and b,+l=minIbt-l, bt-2, .... bm+L7 

b,) if bm+l<bm, and Rk'=b, and b,=min(b,.l, br-2, ..., 
b,+l. &,I else. 

Case 3. k'#bf.1 and k'itb,+i. 
We assume k'=b,, where m + l < r < f - l .  In this case 

R;:,=b,+l. Letj=max{ E I m < k r  and bpb,]. By Lemma 3.4, 
no link exists between G, and Gi, wherej<slf-1. With the 
arguments similar to Case 1, it can be proved that (1) if 
bm+lSb,, Rt'=b,+l and b,=min(bf-l, bl-2, ..., b,, ..., b,+l, 

b,); (2) if bm+l>bm and b&r+l, R, =bm and b,=min(bt-l, 
bf.z, ..., b,, ..., bm+l, b, 1 ; (3) if bm+l> b, and b,>b,+l, 
R"'=b,+I m and bimin{b,.l,  bf-2, ..., b,, ..., b,+l, b,). 

Q.E.D. 

1-1 

We have the following corollary immediately. 

Corollary 3.1. For IK(d, t) with coefficient vector ( 
br-1, bf-2, ..., bi, *), letting k=min( b,, bm-l, ..., bn) ,  where 
lSi9wn51-1, b,&, and b,&, R,"=k if b,=k or b,=k, and 
k+l  else. 

For iSncmY-1, an m-flipping link between G, and G, is 
called a jumping m-flipping link if  m-n>l.  Note that by 
Lemma 3.4 the flipping links of an IK(d, t )  witEl coefficient 
vector (bf-l,  bI-2, ..., bi, *) can be determined from its 
coefficient vector. We take IK(6, IO) with coefficient vector 
(4, 3, 4, 2, 1, 1, 3, *) as an illustrative example. There are 
two jumping flipping links. One is between the 4th K(6, 9) 
within Gc, and the 4th K(6, 7) within G7, and the other is 
between the 2nd K(6, 6) within Gg and the 2nd K(6, 3) 
within G3. An easy way to determine jumping flipping links 
is that for any local minimal value, say b,, in the sequence 
bf.l, bf-2, ..., bi, there exists a jumping (m-flipping) link 
between G, and G,, where i<r<t-1 and m=min ( I  I r<llt- 1 
and bpb,) and n=max(l I i S k r  and bpb,), i f  m and n exist. 
This link connects the (b,+l)th K(d, m )  and the (b,+l)th K(d, 
n ) .  All non-jumping flipping links exist between G ,  and 
Gm-l, where icm5r-1. More specifically, min(b,, bm-l) m- 
flipping links connect thejth K(d, m )  within G, and thejth 
K(d, m-1) within G,.1 for all l<Fmin(bm, bm-1). 

4 Hamiltonicity 

A cycle (path) in a network IS called a hamiltonran cvcle 
(path) i f  i t  contans every node of the network exactly once A 
network is hamrlfonian i f  it contains a hamltonian cycle A 
hamiltonian network can embed a ring with unit expansion 
and unit dilation. In this section, we show that IK(d, I) with 
connectivity greater than one is hamiltonian. Moreover, we 
propose a sufficient and necessary condition for a hamltonian 
path in an IK(d, I )  with connectivity one. Chen and Duh [41 
have shown that K(2, t )  contains a hamiltonian path, and K(d, 
t) contains a hamltonian cycle for &3. Moreover, they have 
shown the following result. 

Lemma 4.1. [4] There is one hamiltonian path between 
any two r-frontiers in K(d, f). 

Since IK(2, t )  has a linear structure, it contains a 
hamiltonian path. In this section, we concentrate our attention 
on the hamiltonicity of IK(Q I) for d>3. First we adapt 
Lemma 4.1 to IK(d, I). 

Lemma 4.2. There are two hamiltonian paths, one 
between 0' and 1' and the other between O(b,-l)f-l and 
l(l~[-l)~-l ,  in IK(d, 1 )  with coefficient vector *), where 
bt.122. 

Proof: A hamiltonian path between 0' and 1' can be 
constructed as follows: 

0' -+(H,1-1) O(bt-l-l)f-l -+ (bf-I-l)Of-' j ( H . f - 1 )  

(b,-i-l)(bf-1-2)~-' -+ (bf.1-2)(bt-i-l)f-1 +[H,f-l) (br-1-2) 
(bf-i-3)'-' 3 (b,-1-3)(b1-1-2)'-' -+(M,f-l) "' +(H, f - i )  

21'-' 12l-l +(H+J-~) It, 

where -+ indicates a flipping link and + ( ~ . ~ - l )  indicates a 
hamiltonian path in a K(d, f-1). A hamltonian path between 
O(bf-l)f-i and l(bf-l)f-i can be obtained by substituting O( 
bf.l)f-l and l ( b , - ~ ) ~ - l ,  respectively, for 0' and 1' in  the 
construction above. The correctness is assured by Lemma 
4.1. Q.E.D. 

Lemma 4.3. There are two node-disjoint paths, one 
between O(bf-l)f-l and 0' and the other between l(b[-~) '-~ and 
I f ,  in IK(d, f )  with coefficient vector (&I, *), where br.1>2, 
such that they contam every node of the K(d ,  2 )  exactly once. 

Proof. There are b,-l K(d, t-lys, i.e., O.K(d, f - I ) ,  l.K(d, 
f - l ) ,  2.K(d, f-l), ..., and (br-l-l) K(d, f - l ) ,  contained In the 
IK(d, I ) .  Clearly, O(bf-l)f-l, Of, l(bt-l)f-l, and 1' are all (1-1)- 
frontiers, We consmct two node-disjoint paths according to 
the following two cases. 

Case 1. bf4=2. 
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By Lemma 4.1, there is one hamiltonian path between 
O(hr- , )r- l  and 0' in O.K(d, 2 - 1 ) .  Likewise, there is one 
hamiltonian path hetween l(hl.l)f-l and 1' in l.K(d, 1-1). 
These two paths are node-disjoint, and they contain every 
node of the IK(d, 2 )  exactly once. 

Case 2. b,1>2. 
Note that O.K(d, t - 1 )  is composed of OO,K(d, t-2),  

Ol.K(d, t-2), 02.K(d, t-2), ..., and O(d-1). K(d, t-2), and 
I,K(d, t - 1 )  is composed of lO.K(d, t-2), lI .K(d, t-2), 
12.K(d, t-2), ..., and l(d-l) ,K(d, t-2). A path between O( 
br.1 )r-i and 0' is constructed as follows: 

-+(HJ.~) 0&f.l(bf.1+1)'-2 -+ O(b&l+1)(b&1)'-2 
- + [ H , f - 2 )  0(b,l+1)(bt.1+2)'-2 -+ 0(bf.1+2)(bt.1+1)'-2 
+(HJ-~) ". +[H&2) o(d-1)@-2 -+ 00(d-1)f-2 -+(H,f-2) o', 
where -+ indicates a flipping link and +(H,tJ) indicates a 
hamiltonian path in a K(d, f-2). The hamiltonicity is assured 
by Lemma 4.1. Actually this path contains every node of 0 

O(d-l).K(d, t-2),'and OO.K(d, t-2) exactly once. 

consmcted as the concatenation of the following four paths: 

b,.l.K(d, t-2), O(bt.l+l).K(d, t-2), O(b,1+2).K(d, t-2), ,.., 

On the other hand, a path between l(bt-l)r-l and l C  is 

(1) 'l(bi.l)f-i ~ ( H J - 2 )  lbf-l(br-1+1)f-2 3 1(bt.l+1)(bt.l)f-2 
+(H,f.2) 1(bf-1+1)(b&1+2)'-2 -+ 1(b,-]+2)(b&1+1 
j (H. f -2)  '" "(H.1-2) l(d-1)0f-2 -+ 10(d-1)f-2 
"[H,r.2) I @ *  0Ir-'; 

( 2 )  01'-l +- (H, t -2 )  012L-2 + 021r-2 - + ( H , f - 2 )  023f-2 
-+ 032'-2 + ( H , t - 2 )  "" j ( H , 1 . 2 )  O(bt-1-2)(br-l-l ) r -2  

* O(bt.l-1)(bt-1-2)f'2 *(H,&2) O(6f-1-l)f-1 -$ (bf-1- 
1 )Of-'; 

(3) (bt-1-1 )or-' j ( H . t . 1 )  (b(.1-1)(bt-1-2)'-' -+ (b(-1-2)(bt-1- 
I)'-' +(H,i-l) (b~i-2)(bf-i-3)~-' -+(H,f-l) ..' *(H,f-l) 

32'-' + 23'-' -+(H,t-l) 21'-'+ 12"'; 

(4) 12'-' +(HJ-~) 1 2 3 ' ~ ~  132I-2 +(H,J -~)  134f-2 
143'-2 + ( H , f - 2 )  ... j ( H J - 2 )  1(bf-1-2)(bf-1-1)t-2 4 

l(bt.1-l)(br.1-2)'-~ +-(H,r.2) l(bt-l-l)l'-' + 1 l(bt-1- 
l)r-2 +(H,f-2) 1 ' 9  

where ihe hamiltonicity is assured by Lemma 4.1. Path (1) 
contains all nodes of lbf-l.K(d, t-2). I (  bf-l+l).K(d, t-21, 
-., l(d-l)-K(d, t-2), and lO.K(d, t-2). Path (2) contains ail 
nodes of OI.K(d, t-21, 02K(d, f-21, ..., and O(bz-l-I).K(d, t- 
2). Path (3) contains all nodes of (br-l-l).K(d, f-l), (bf-l-2 
).K(d, t-l), .... and 2,K(d, t - I ) .  Path (4) contains all nodes 
oJ 12.K(d, f-2). 13.K(d,t-2), ..., l(bt.l-l).K(d, t-21, and 
1 I.K(d, t-2). All nodes appear in these paths exactly once. It 
is not difficult to check that the two paths we have constructed 
between O(bc-l) '- l  and Of and between l(bc-l)f-i and 1' are 
node-disjoint, and they contain every node of the IK(d, t )  

exactly once. To illustrate the construction, Figure 4 shows 
two node-disjoint paths. one between 033 and 000 and the 
other between 133 and 1 1  1, i n  IK(4, 3) with coefficient 
vector (3. *). Q.E.D. 

Figure 4. Two nodedisjoint paths, one between 033 and 
000 and the other between 133 and 1 I 1  In IK(4.3) with 
coefficient vector (3.4 

A necessary condition €or a hamiltinian graph is that its 
connectivity must be greater than 1. In the following, we 
show that the latter is also a sufficient condition for a 
hamiltonian IK(d, t).  

Theorem 4.1. An IK(d, t). where &3, 1s hamiltonian if  
its connectivity is greater than 1. 

Proof. Suppose ( h - 1 ,  br-2, ..., b,, *) is the coefficient 
vector of the IK(d, f )  and R:-'>l. If i=t-1, by Theorem 3.1 
we have bf.1>3. The IK(d, 1 )  is composed of bf_l K(d, t - 1 ) ' s  
that are connected as a b,-l-node complete graph. By the ad 
of Lemma 4.1, it is not difficult to see that there exists a 
hamiltonian cycle in the M(d, t).  So, in the rest of the proof, 
we assume K i d - 1 .  By Theorem 3.1 we have &t-122 and 
b,22. By Lemma 4.2, there exists a path between O(b,.,)~-J 
and l(bt-#-i which contains every node of Gf-l exactly once, 
and there exists a path between bf-~bt-2...br+10~+i and 6t-l b, 
2... br+l lr+l which contains every node of G, exactly once. 
Since R:-'>l, we have b,>l for all i<m<Z-l. A hamltonian 
cycle in the IK(d, t )  is constructed according to the following 
two cases. 

Case 1. b&2 for all ianet- 1. 
Lemma 4.3 assures that for k m c t - I ,  there exist two 

node-disjoint paths i n  G,, one between Um,~=br-1bt.2 
b,+lO(b,)m and Vm,0=b1-~br-2 ... bm+iOmfl and the other 
between Um,l=br-lbr-2 ... bm+l l(b,), and Vm,l=bf-lbt-2 . 
bm+1lm+l, such that they contain every node of G, exactly 
once. A hamiltonian cycle in the IK(d, t )  is thus formed as 
shown in Figure 5(a), where 
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( O ( ~ , . I ) ' - ~ ,  Vr-2.0) and ( l ( h t . i F I ,  VI.2,1) define two ( t - I ) -  
nipping links; 
(Ui+l .o .  h , . l h t . ~ . . . b , + l c ) i + ~ )  and ( U i + l , l ,  br.~hr.? . . .  
/ ~ , + ~ l i + ~ )  dcfine two (i+l)-tlipping links; 
(U,,.o. V,.l,o) and (U,,,, Vn7.1,1) define two m-flipping 
links. where i+lcm<t-l. 

Case 2. bm=l for one or more m's between i and f - 1 .  
We assume b,,=l for exactly one m .  The extension to 

multiple m's is very straightforward. According to Lemma 
4.1, there exists a path between X=br.lbt-2 .. .bm+lOlm and 
Y=hr-lbr-2 ... bm+lOm+i which contains every node of G, 
exactly once. As shown in Figure 5(b), there is an (m+l)- 
flipping link between Um+l,O and Y ,  an m-flipping link 
between X and Vm-l,O, and a jumping (m+l)-flipping link 
between Um+l,l and Vm-l,l .  A hamiltonian cycle in the M(d, 
t )  can be constructed similar to Case 1. 

Q.E.D. 

,... .. ., ,- I 

. . -,.,-,.C..bm+lOm+l 

(b) 

Figure 5. The proof of Theorem 4.1. (a) Case. 1. (b) Case 2 

Theorem 4.1 guarantees a hamiltonian cycle in IK(d, t )  
with d23 if its connectivity is greater than 1. For IK(d, t) with 
connectivity 1, there is no hamiltonian cycle, and there is not 
necessarily a hamiltonian path. For example, no hamiltonian 
path exists in IK(4,4) with coefficient vector (1, 2, 1, *). In 

what foliows, we identify the class of lK(d, f)'s with 
connectivity 1 which contain a hamiltonian path. 

For IK(d, t! with coefficient vector (h,.,, h,.?, ..,, h;. * I  
and R;'=l, we can partition it into hlocks. C;k is a b/oc.k 1 1  

bk#O and (RY '= l  or bk+l=O) and ( R i * , = l  or l ~ k . ~ = O ) .  

G m + G m - i +  ... +G,, where b,d,  b n d  and m x ,  is a block 
ifR:>I and (R:+'=1 or bm+1=0)  and (R:+l=l or b,+1=0). 
The partition can be easily done by examining the coefficient 
vector. As an illustrative example let us consider IK(6, 10) 
with coefficient vector (1, 2, 1, 2, 0, 1, *). By Lemma 3.4, 
there are two jumping flipping links. One is between the 2nd 
K(6, 8) within G8 and the 2nd K(6, 6) within G6, and the 
other is between the first K(6, 6) within G6 and the first K(6, 
4) within G4. Clearly G9 and G4 are two blocks because 

R ~ = I  and b5=0, respectively. ~ 8 + ~ 7 + ~ 6  is another block 

because R:=2, R:=l, and b5=O. Hence IK(6, 10) with 
coefficient vector (1. 2, 1, 2, 0 ,  1 ,  *) can be partitioned into 
{G9, Gs+G7+G6, G4}. Intuitively, if each G, (4SjS9) with 
b,& is regarded as a node, then the flipping links between G9 

and Gs and between G6 and G4 are two bridge6 I21, and each 
block is either a single node or a maximal biconnected 
component in the resulting graph. The following two lemmas 
have proven in [20]. 

Lemma 4.4.[20] An IK(d, t )  with connectivity 1 
contains a hamiltonian path if it consists of one or two blocks. 

Lemma 4.5.[20] Consider an IK(d, t) with coefficient 
vector (&,-I, b,-2, ..., bi, *) and Ri-'=l that contains three or 
more blocks. There is a hamiltonian path in the IK(d, t )  if and 
only if  for each block, say Gm+Gm-l+ ... +G,, in the IK(d, 
t ) ,  no b,+l, b,, b,.l, ..., b,, bS.1 exist such that br+l E { O ,  l ) ,  
bi.br.l= ... =b,=2, b,.l E { O ,  I ) ,  and r-s+l is odd, where 
mH- I ,  n#i, and nSsSrS m. 

Combining Lemmas 4.4 and 4.5, we have a necessary 
and sufficient condition for a hamiltonian path in an IK(d, t )  
with connectivity 1. 

Theorem 4.2. For IK(d, t) with coefficient vector (bl.i, 
bl.z, ..., b,, *) and Rf'=l, it contains a hamiltonian path if 
and only if either of the following two conditions holds: 
( I )  it contains one or two blocks; 
(2) for each block, say Gm+Gm.l+ ... +G,, in the IK(d, t), 

no b,l, &,, br- l ,  ..., b,, b,.l exist such that &,+I E (0, 
I}, b,=br-l= ... =b,=2, b , . lE  (0, l}, and r-s+l is odd, 
where m#t-1, n#i, and n S S r S  m. 

5 Concluding Remarks 
Deriving topological properties for incomplete networks is 

far more difficult than for complete networks. The reason is 
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that complete networks of  different sizes preserve great 
topological similarity, whereas incomplete networks may have 
a significant difference i n  their topologies. For example, K(d, 
I )  looks very similar to K(d, r - I ) ,  whereas two IK(d 0 's  with 
different coefficieiit vectors may look very unlike i n  their 
topologies. Many of topological properties of the incomplete 
star networks [13], 1161 are still unknown, although they 
have been well solved for the star networks [l]. Most of the 
results obtained for the incomplete star networks are restricted 
to a special case: N=c&!, where N is the number of nodes. 

In this paper, we have shown i t  very convenient to 
represent the structure of an incomplete WK-recursive 
networks by a "multistage-like" graph G,-l+Gt.2+ ... +G;. 
This representation provides a uniform look at the incomplete 
WK-recursive networks, and thus facilitates the derivation of 
many properties. By the aid of this representation, we have 
computed the connectivities and hamiltonicity. Moreover, we 
have suggested a tight upper bound on the diameters. The 
methods adopted in this paper are different from Chen and 
Duh's for the WK-recursive networks [4]. Readers who are 
interested in the incomplete WK-recursive networks are 
refered to [20] and I211 for more results. Precisely, using the 
prune-and-search technique a linear-time algorithm for 
computing the diameters can be found in  [20], and a 
distributed shortest-path routing algorithm can be found in 
1211. 
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