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Abstract

The WK-recursive networks, which were originally
proposed by Vecchia and Sanges, have suffered from the
rigorous restriction on the number of nodes. Like the other
incomplete networks, the incomplete WK-recursive networks
is proposed to relieve this restriction. In this paper, it is first
shown that the structures of the incomplete WK-recursive
networks are conveniently represented with multistage
graphs. This representation can provide a uniform look at the
incomplete WK-recursive nerworks. By its aid, we (1)
compute the connectivities of the incomplete WK-recursivé
networks, (2) show that they are hamiltonian if their
connectivities are greater than one, and (3) propoéé a
sufficient and necessary condition for a hamiltonian path in an
incomplete WK-recursive network with connectivity 1.
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1 Introduction

In the recent decade, a number of networks havé-béen
proposed in the literature {1, 5, 15, 17, 18, 19]. For these
networks, many nice topological properties have been‘derived
and many efficient algorithms have been developed.
However, a major defect of these networks is that they are not
truly expansible. A network is expansible if no changes with
respect to node configuration and link connections are
necessary when it is expanded.

We have emphasized two topological advantages, i.e.,
expansibility and equal degree, with the consideration of easy
implementation and low cost. Recently, the WK-recursive
networks [22] owning these iwo properties have been
proposed. They offer high degree of regularity, scalability and
symmetry which very well conform to a modular design and
implementation of distributed systems involving a large
number of computing elements. A VLSI implementation of a
16-node WK-recursive network had been realized at the
Hybrid Computing Research Center [22]. Later this prototype
network had been further extended to 64 nodes [23]. Some
variants of the WK.-recursive networks have been proposed
recently [7, 8].

Although the WK-recursive networks own many nice
properties (see {4, 6, 9-11, 22, 23]), there is a rigorous
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restriction on the number of their nodes. As we will see in the
next section, the number of nodes contained in a WK-
recursive network is restricted 1o @% where d is; the degree and
t is the level. Thus, as d=4, exira.3:47=49152 nodes are
required to.expand from a 7-level WK-recursive aetwork to a
8rlevel WK-recursive network. Almost all of the networks
mentioned earlier in this section suffered from the same
problem. Therefore, some incomplete structures {12, 13, 14,
16] have been proposed as a solution to this problem.

In this paper, we define the incomplete WK-recursive
networks that require the number of nodes to be a multiple of
d, where d is the size of the basic building block. Since each
basic building block of the WK-recursive networks contains d
nodes, the incomplete WK-recursive networks can be
expanded or contracted in arbitrary units of basic building
blocks. We then compute the connectivities and hamiltonicity
of the incomplete WK-recursive networks.

In the next section, the WK-recursive networks are
reviewed and the incomplete WK-recursive networks are
formally defined. The connectivities and hamiltonicity are
discussed, respectivity, in Sections 3 and 4. Finally, this
paper is concluded with some remarks in Section 5.

2 WK-Recursive Networks and Incomplete
WK-Recursive Networks

The WXK-recursive networks can be constructed
recursively by grouping basic building blocks. Any complete
graph can serve as a basic building block. For convenience,
we use K(d, 1) to denote a WK-recursive network of level ¢
whose basic building blocks are each a d-node complete
graph, where d>1 and r>1. K(d, 1), which is the basic
building block, is a d-node complete graph, and K(d, 1) for
22 is composed of d K(d, ¢-1)'s which are connected as a
complete graph. Each node of K(d, #) has degree d and can be
uniquely identified by a sequence of ¢ digits. We define K(d,
1) formally as follows.

Definition 2.1. The node set of K(d, f) is denoted by
{@.1a,7..a1a0 1 a;€ (0, 1, .., d-1} for 0%i<i-1}. Node
adjacenc‘j is defined as follows: a,.jay.o...a1a0 is adjécent to
(1) ar1a4.9...a1b, where 0Sb<d-1 and b#ay, and (2) a,.1a8r2

130



Qiepdio{antif agaiy and a;=a;0= ... =ay=do, where (g;)!
represents @ consecutive a;'s. The links of (1) are named
substituting links and assigned label 0. The links of (2) are
named flipping links and assigned label . The flipping links
with label i are referred to as i~flipping links. Besides, there
are open links whose one end node is ¢, where 0<a<d-1, and
the other end node is unspecified. The open links are labeled
1.

Since each node is incident with d-1 substituting links and
one flipping link (or open link), K(d, ¢) has degree d. The
structures of K(4, 1) and K(4, 3) are illustrated in Figure 1.
Intuitively, the substituting links are those within basic
building blocks, the i-flipping links each connect two
embedded K(d, i)'s, and the open links are left for future
expansion. For example, let us consider the incident links of
node 311 in Figure 1. The one to node 133 is a 2-flipping
link, and the others are substituting links.

Figure 1. The structures of K(4, 1) and K(4, 3).

Definition 2.2. Define ¢, ¢ra...cK(d, r) to be the
induced subgraph of K(d, 1) by {cr.1¢r3...C21...1a00 1 a; €
(0, 1, .., d-1} for 0<i<r-1}, where 1<r<t-1 and ¢.1, 1.2,
... ¢y are all integers from {0,'1, ..., d-1}.

In Figure 1, for example, 20-K(4, 1) is the subgraph
induced by {200, 201, 202, 203},

Definition 2.3. Node a,.ia.,...a1a¢ is a k-frontier,
where 1<k, if qgy= ... =a1=day.

Note that by Definition 2.3 a k-frontier is automatically an
i-frontier, where 1</<k. Both end nodes of a k-flipping link
are k-frontiers. An embedded K(d, r) contains one (r+1)-
frontier and d-1 r-frontiers,

Now, we begin to introduce the incomplete WK-recursive
networks. The incomplete WK-recursive networks are
subgraphs of the WK-recursive networks. For convenience,
we use IK(d, 1) to denote an incomplete WK-recursive
network with N nodes, where d*1<N<d' is a multiple of d.
The restriction to NV is because K(d, 1) remains the basic
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building block for IK(d, ¢). The structure of IK(d, 1) with N
nodes can be uniquely determined by the associated
coetficient vector, as defined below.

Definition 2.4. The coefficient vector associated with
an N-node IK(d, 1) is a (¢-1)-tuple (bry, br.2, .., by)
satistying N=boyd-i+b2d"2+ .. +byd, where 1<bh, <d-!
and 0<h;<d-1 for 1<i<t-2,

Let V(b;.1, bia, ..., b1) denote the node set of IK(d, 1)
with coefficient vector (b1, br2, ... b1) and V{(i-K(d, t-1))
denote the node set of i-K(d, -1), where 0<i<d-1. The set
V(b1 b2, ..., b1) can be defined recursively as follows.

Vb1, b1, -
+V((bi1-1)-Kld, t-1))+V(br1-(bra, bra,

. by = V(O-K(d, t-1)+V(1.K(d, t-1)+ ...
s D1

where + denotes a union operation and by.; (b2, b3, ..., b1)
represents an IK(d, -1) with coefficient vector (byy, bra, ...,
by) that is contained in b.1-K(d, #-1) provided b.p#0. If b=
br3= .. =b=0 and b.;20, where 1<r<i-2, then bi1-(br.
b3, ..., by) represents an IK(d, r) with coefficient vector (
b1, bya, ..., by) that is contained in b, 0+-~1-K(d, r).

For example, the coefficient vector of IK(5, 6) with 8225
nodes is (2, 3, 0, 4, 0) and its node set can be expressed as
follows.

V(2,3,0,4,0)

V(O-K(5, SH+V(I-K(S, 5H+V(2-(3, 0, 4, O))

= V(O-K(5, )H+V(1-K(5, 5N+V0-K(S, 4)+V(21-K(5,
4)) +V(22.K(5, H)+V(23-(0, 4, 0))

V(O-K(5, SH+V(1-K(5, SH+V(20-K(S, 4)+V(21-K(5,
AN+V(22-K(S, 4N+V(230-(4, O))

V(O-K(5, SHH+V(L-K(5, SH+V(20-K(S, 4)+V(21-K(5,
4Y+V(22.K(5,4)+V(2300-K(5, 2)+V(2301.K(5,
IN+V(2302-K(5, 2))+V(2303.K(5, 2))

#

It

. The structure of IK(d, ¢) with coefficient vector (b1, b3,
... b1) is defined as follows.

Definition 2.5. IK(d, #) with coefficient vector (b,.y,
bya, ..., by) is the induced subgraph of K(d, f) by V(b,,
bra, ... by).

See Figure 2 where the structure of IK(4, 3) with
coefficient vector (3, 2) is shown.

3 Connectivity

The connectivity of a connected network is defined as the
minimumn nurber of nodes whose removal can result in the
network disconnected. Connectivity is usually adopted as a
measure for fault tolerance in networks because Menger's
theorem [3] states that the number of node-disjoint paths
between two nodes of a network is at least its connectivity,
Since IK(d, 1) is a subgraph of K(d, 1), tae connectivity of the



former is not greater than the connectivity of the fatter. The
connectivity of K{d, #) is known to be d-1 {4}. In this section,
the connectivity of IK(d, 1) is computed. First, some
necessary definitions and lemmas are introduced.

‘ ) Figure 2. The structures of IK(4, 3) with
'cocfﬁcient vector (3, 2).

According to Definition 2.5, IK(d, f) with coefficient
vector (b1, bra, ..., by) contains by embedded K(d, t-1)'s,
by, embedded K(d, -2)'s, ..., and b; embedded K(d, 1)'s.
For 1<i<t-1, the b; embedded K(d, i)'s are by.1b,.;...
bi10-K(d, i), bpibea. b1 V-K(d, §), ..., and by ybeg...
bis1(bi-1)-K(d, D). Let G; represent the induced subgraph of
IK(d, t) with coefficient vector (b, b,;g, bl) by V(b,.,
b12..bin O-K{d, iN+V(Br1bra...bi1 L K(d, D)+ ... +V(byy
bra-..bin1(bi-1)-K(d, ), and R, where 1<n<ms<i-1, the
connectivity of Gu+Gp i+ ... +G,. Then, R'{‘ is the
connectivity of IK(d, £) with-coefficient vector (b, by.2, ...,
by). In Figure 2, for example, we have R§=2, R}:l, and the
connectivity of the IK(4, 3) is Rf=2.’ ‘

For easy reference, we refer to b,.1bez... b,—+1f-K(d, i) as
the (r+1)th K(d, i) within G; in the subsequent discussion,
where 0<r<b;-1. Besides, a coefficient vector (b.y , big, ...,
by) is written as (b1, bra, ..., b, *), provided b=by= ...
=h;1=0 and b;#0. For example, (2, 3, 0, 4, 0) is written as
(2,3,0,4, %), and (2, 3, 4) is written as (2, 3, 4, *).

Lemma 3.1. For IK(d, 1) with coefficient vector (b,.y,
br2, s biy %), Ry=bp-1if by>2, where 1<i<m<t-1.

Proof. G, can be regarded as a by-node complete graph
with each node being a K(d, m). The connectivity of K(d, m)
is known to be d-1. Since at least b,,-1 (<d-1) nodes have to
be removed in order to disconnect a bp,-node complete graph,

the connectivity of Gy, is b,,-1. Hence, R, =by-1. Q.ED.

Lemma 3.2. For IK(d, t) with coefficient vector (b,
bi2, o biy *), R =min{bp.y, bp) if byy2t and bp>1,
where 1<i<m<t-1.

Proof. We first assume 9,,<b,.1. For 0<j<hy,-1. there is
an m-tlipping link between b;.1b,.2... by4j-K(d, m) and b,.
1bra..bwj-K(d, m-1). There are several possibilities (and
their combinations) to disconnect Gyt G-y To isolate one or
more nodes trom a K(d, m-1) or a K(d, m) requires removing
at least d-1 nodes. To isolate one or more K(d, m)'s from G,
requires removing at least &, nodes. To isolate one or more
K(d, m-1Ys from G,y requires removing at least b, ;-1
nodes. To separate Gn.1 from G, requires removing at least
b, nodes. Hence, the connectivity of Gp+Gy.1 i8 by

With similar arguments, the connectivity of Gp+Gp.1 can
be proved to be by, if b,,=bp1, and b,y if by>by. 1. This
completes the proof. o QED.

Lemma 3.3, For 1K(d, 1) with coefficient vector (b1,
Br2s s biy %), R =Byt 1 if bps1>Dm a0 by<bipn.1, and
min{bmst, O b1} €lse, Where bpy121, b0, b1,
and 1<i<m=s-2,

Proof. There are five cases: (1) 8,4 150m<bim-1; (2)
bms128m=b 15 (3) bms1<bm and bp>bm.1; (4) bua1>bo,
bp<bpm.y, and b, #0; (5) by=0, to be considered.

Case 1. by 3150, <bp.1. L

Note that for i<j<i-1, there are min{by, bj.1} j-flipping
links connecting G and Gj.;. By Lemma 3.2, R':,“:bm”
and R? | =b,,. Since no link exists between Gpq and Gp.g

(see Figure 3(a) where the links among each G; are omitted),
the connectivity of Gy +Gm+Gpy 1S bt

Case 2. byp120m2bp.1. ,
1
By Lemma 3.2, R" " '=b, and R, ;=bm1. The
connectivity of G41+Gm+Gpm-1 is by with the arguments
similar to Case 1. -

Case 3. b1<by and b, >bp .

By Lemma 3.2, R7' '2b sy and R” ,=bm.1. The
connectivity of Gu1+Gp+Gp.1 is min{bp,,q, bp.y} with the
arguments similar to Case 1.

Case 4. by 1>bpm, bm<bm.1, and b, #0.

By Lemma 3.2, R '=b,, and R ,=b,.. There are b,,
(m+1)-flipping links, i.e., (br10p2... Opi0(B e VY, by y
D12 oo BmiaD 10, (b 1bra.. b2 1B )L, brabis...
bra2bmer 1Y), L, and (br1beg. Bpa2(Bm-1) (1)1, bry
br2..0mi2bmei(Bp-1)m+1), between G,y and G, (sce
Figure 3(b)). Besides, there is exactly one (m+1)-flipping link
between Gyp and Gy as explained as follows. There is an
(m+1)-flipping link, i.e., (be1bs2.. Bima2bm(Bra1 YL, bey
bt Bmsabmey (b YY), connecting b,.1b.2...0me2bnmKid,
m+1) and br1bes... b2 me1 Ombm-K(d, m-1) which belong
t0 Gpy1 and G,y.1, respectively. For j>b,, the link (b1,
wDme2f(Bme1)*Y, by 1bia.. By Bmsry™rY) does not exist
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because br1brer. Dpiabme ™t is not a node in the IK(d, 1).
Hence, the connectivity of Gpej+GptGm.1 1S bpet 1.

Case §. b=0.
This case is a degenerated case of Case 4 (see Figure
3(c)). The connectivity Of G +Gp+ Gy 18 1. Q.E.D.

Gm+ 1 Gm Gm~ 1

by, m-flipping finks
- Detween G and Gp .

Gy G G-t

by (m+1)-flipping links b,, m-flipping links

between G, and G,

one (m+1)-flipping links
between G, ,, and Gy ¢

(b)
Gm+1 Gm—i
one (m+1)-flipping links 3 st
between G,y and Gy g 7 Kdopn-1)
§ K. my1)
5, (d me1)

()

Figure 3. The proof of Lemma 3.3. (a) Case 1. (b) Casc 4.
(c) Case 5.

Lemma 3.4. For IK(d, t) with coefficient vector (b,.y.

’ bmy r, ... r, bny vies br', *) (i'e's bm~1 =bm_’_7=
=bpe1=r), where 1<iSn<m<i-1. m2zn+2, b,>r, b,>r. and
0<r<d-2, R)'=r+1. Moreover. there exists exactly one m-

flipping link between G, and G,, and no other link exists
between G, and G, where m<x<(-1 and i<y<n.

Proof. By Lemma 3.2, Ry | =R7 3= ... =R""'=r. It is not
difficult to see that for n+1<k<m-2 and a+2</<m-1, no link
exists between G, and G, and between G, and G;. With the
arguments similar to Case 4 in the proof of Lemma 3.3, there
is exactly one m-flipping link, i.e., (b 102,017 (D)™,
bibsa.. bbby rm), between G, .and G,. Hence, the
connectivity of Gu+Gp1+ ... +G, is r+1.

Then we proceed to show that no other link exists
between G, and Gy. We first assume x#m and'y=n. If a (x-
flipping) link exists between G and Gy, its two end nodes
should be b.1bea... br10{b)* and by1bsg...beiib{a)* for
some oa>r. However, since x>m and a>r, b, thia..

bye1b (0 is not a node in the IK(d, 1). Sxmllarly, 1t can be
proved that no link exists between G, and G, 1fx-m and
i<y<n or m<x<s-1 and y=n. . Q.ED.

Theorem 3.1. For IK(d, ¢} with coefficient vector (b1,
beg, o by ), 1<i<t-1, its connectivity, i.e., Rffl can be
determined as follows.

(1) Ifi=t-1, then R '=by -1,
(2) Otherwise, letting k=min{b.1, bra, ..., bi}, R =k if
by 1=k or b=k, and k+1 else.

Proof. We prove this theorem by induction on i
Induction basis. Lemmas 3.1, 3.2, and 3.3 show the validity
of the theorem for i=t-1, £-2, and #-3, respectively.

Induction hypothesis. Assume the theorem is valid for
i=m+1, where 1<m<t-4. Let k'=min{br1, bra, ... bpe1)..
Induction step. We now discuss the case of i=m. Three cases
are considered according to the value of k.

Case 1. k'=by1.

In this case R +1'b1 1. Since b.1<byy, no link emits from
Gy 10 G, where m<j<r-3. Consequently, removing &,
nodes will seperate G from Gp.+Grs+ ... +G,,. We first
assume Hp,41<b,,. By Lemma 3.2 we have R,’,';”:bmﬂ. There
are three possibilities (or their combinations) to disconnect
Gr1+Gra+ ... +Gp. One'is o disconnect G, which requires
removing at least &,,4; nodes. Another is to seperate G,, from
Gr1+Grat+ ... +Gpyy which requires removing at feast b4
nodes. The other is to disconrect G.1+Gro+ ... +G iy
which requires removing at least b,.; nodes. Hence,
RS 1—mm{b, 1> bms1}=b,1. Note that by =min{b.y, b.o, ...,

m+lv m}

On the other hand, if b, 1>b,,, R',::sz,,, by Lemma 3.2,

and no link emits from G, to G;, where m+2<I<r-1.
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Similarly, R,:l can be determined as min{b,_, b,,}. Note that

sinee by=min{b.y, br2, ..., ey}, min{b,., by }=min{
b, l),_z, o Dy bm}-

Case 2. k'=bpey. -
In this case R;Ll=bm+1. If bry=b2= ... =bp.y, the
discussion is the same as Case | because b, =k'. Otherwise,
let j=min{f{ I m+2<i<t-1 and bp>bpyr ). If bpii<bm, by
Lemma 3.4 there is a j-flipping link between G, and G;. Also
note that no link exists between G, and G, for s#j and
s#Em+1. If b 12b,, 10 link exists between G,, and G; for
s#m+1, With the arguments similar to Case 1, it can be
proved matRff:b,,,HH and bp=min{byy, br2, ..o Omats
D) if bye1<by, and RS =b,, and by=min{b.1, br.z, ...

bmsts b} else.

Case 3. k'#by) and k'#bpy.

We assume k'=b,, where m+1<r<t-1. In this case
R =b41. Let j=max{l | m<i<r and b;>b,}. By Lemma 3.4,
no link exists between G,,,_and Gy, where j<s<t-1. With the
arguments similar to Case 1, it can be proved that (1) if
s 1S, RS20+ 1 and b=min{be1, bez, . bry oo Bats
bm); (2)if byyy1>byy and by<b,+1, R:;‘:b,,, and b,,=min{b,,
beay o Byy ooy Dmat, b} 3 (3) if Bypa1> by, and b, 20,+1,
RU'=by+1 and by=min{by.1, br.2, . by, . Brust, b}

QE.D.

We have the following corollary immediately.

Corollary 3.1. For IK(d, ¢) with coefficient vector (
biy, bea, ., by, ¥), letting k=min{by, bm-1, ..., by}, where
L<ign<mst-1, bp#0, and b,#0, R =k if b=k or b,=k, and
k+1 else.

For i<n<m<t-1, an m-flipping link between G,, and G,, is
called a jumping m-flipping link if m-a>1. Note that by
Lemma 3.4 the flipping links of an IK(d, ) with coefficient
vector (by, br a2, ..\, b;, *) can be determined from its
coefficient vector. We take IK(6, 10) with coefficient vector
(4,3,4,2, 1, 1, 3, *¥) as an illustrative example. There are
two jumping flipping links. One is between the 4th K(6, 9)
within Gg¢ and the 4th K(6, 7) within G4, and the other is
between the 2nd K(6, 6) within G and the 2nd K(6, 3)
within G3. An easy way to determine jumping flipping links
is that for any local minimal value, say b,, in the sequence
by, bra, ..., by, there exists a jumping (m-flipping) link
between G, and G, where i<r<t-1 and m=min{! | r<i<t-1
and b>b,} and n=max{/ ! i<i<r and bp>b,}, if m and n exist.
This link connects the (b,+1)th K(d, m) and the (b,+1)th K(d,
n). All non-jumping flipping links exist between G, and
Goe-1, Where i<m<t-1. More specifically, min{by, b,,.1} m-
flipping links connect the jth K(d, m) within G, and the jth
K(d, m-1) within G,y for all 1</<min {by, b1}

4 Hamiltonicity

A cycle (path) in a network is called a hamiltonian cycle
(path) if it contains every node of the network exactly once. A
network is hamiltonian if it contains a hamiltonian cycle. A
hamiltonian network can embed a ring with unit expansion
and unit dilation. In this section, we show that IK(d, 1) with
connectivity greater than one is hamiltonian. Moreover, we
propose a sufficient and necessary condition for a hamiltonian
path in an IK(d, ) with connectivity one. Chen.and Duh [4]
have shown that K(2, ¢) contains a hamiltonian path, and K(d,
#) contains a hamiltonian cycle for d23. Moreover, they have
shown the following result. o

Lemma 4.1. {4} There is one hamiltonian path between
any two ¢-frontiers in K(d, ).

Since IK(2, 1) has a linear structure, it contains a
hamiltonian path. In this section, we concentrate our attention
on the hamiltonicity of IK(d, ¢) for d=3. First we adapt
Lemimna 4.1 to IK(d, ?).

Lemma 4.2. There are two hamiltonian paths, one
between ( and 1 and the other between 0(b,.1)*! and
1(b,.)*1, in IK(d, t) with coefficient vector (., *), where
by 122, ‘

Proof. A hamiltonian path between (¢ and 17 can be
constructed as follows: '

0 Sareny Kb-DFL - (b -0 e
(Br1-D(r1-2Y1 = (bey-2)biy- 1Y @y (br1-2)
(be1-3) = (br1-3)(brg-2)1 > (H,r-1)
2161 5 12¢1 —P(H.r1) 1f,

—?(H,t-1)

where — indicates a flipping link and — (g ,.1) indicates a
hamiltonian path in a K(d, r-1). A hamiltonian path between
0(by 1)1 and 1(b,.4)"! can be obtained by substituting 0(
b *t and 1(b. )", respectively, for O' and 1? in the
construction above. The correctness is assured by Lemma
4.1, QED.

Lemma 4.3. There are two:node-disjoint paths, one
between 0(b,.;)"-! and (¢ and the other between 1(b,q)"! and
14, in IK(d, £) with coefficient vector (by., *), where by ;>2,
such that they contain every node of the IK(d, ¢) exactly once.

Proof. There are b,y K(d, t-1)'s, i.e., 0-K(d, t-1), 1-K(d,
i-1), 2-.K(d, t-1), ..., and (br;-1)- K(d, £-1), contained in the
IK(d, 1). Clearly, O(b.1)"Y, Of, 1(b, )"}, and 1* are all (&-1)-
frontiers. We construct two node-disjoint paths according to
the following two cases,

Case 1. bpy=2.
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By Lemma 4.1, there is one hamiltonian path between
Q(b,.y)! and OF in O-K(d, 1-1). Likewise, there is one
hamiltonian path between 1(b,.()"! and 1/ in 1-K(d, t-1).
These two paths are node-disjoint, and they contain every
node of the IK(d, 1) exactly once.

Case 2. b >2.

Note that 0-K(d, ¢-1) is composed of 00-K(d, ¢-2),
01-K(d, t-2), 02-K(d, 1-2), ..., and 0(d-1)- K(d, ¢-2), and
1-K(d, t-1) is composed of 10-K(d, t-2), 11-Kd, t-2),
12-K(d, ¢-2), ..., and 1(d-1)-K(d, £-2). A path between 0(
1) and 0 is constructed as follows:

OBt —(H.t-2) 0bp1(br+1)F2 — O(by+1)(bpq )2
OB 1+ 1) (b +2)52 = O(by+2) (b +1)12
—(H,-2) O(d—l)()'~2 cd 00(d-1)"2 -—9(1.“_2) O’,

~(H.1-2)
HH&2)

where — indicates a flipping link and — .2 indicates a
hamiltonian path in a K(d, #-2). The hamiltonicity is assured
by Lemma 4.1, Actually this path contains every node of O
byKid, £-2), 0(be1+1)-K(d, 1-2), O(bp1+2)-K(d, £-2), ...,
0(d-1)-K(d, 1-2), and 00-K(d, 1-2) exactly once.

On the other hand, a path between 1(b,;)"! and 1*is
constructed as the concatenation of the following four paths:

(D 1oAY =iy 1b1(bri+1)72 = 1+ 1)(bry)?
—>(H,-2) 1(b¢.1+l)(b,41+2)"2 4 1(b;_1+2)(b,-1+1)t"2
= (H,r2) d-1)02 5 10(d-1)-2

HH,-2)

> (H,-2)
10°1 = 0141,

@) 011 e 01242 o 02182 55,5 02342
- 0322 =@y Y @en 0br-2)(beg-1)F2
= 0(br1-1Xbr1-2Y2 -2y Obrg-101 - (bey-
nHo+t, '

(3) (-0 =areny Be-D(0a-2)! - (0e-2X -
DR a1y Pre-2)(be-301 —men
32¢1 23"1 “‘)(H,t—l) 21"1—% 12"1;

©PHLD

1241 —>(H,2-2) 12372 13242 ~(H,-2) 13402
14352 5y ez 1br1-2)(be- 12 —
Wba-1Xbe1-2¥? ey 1br-DIM2 - 11(heg-
Y2 e

C))

where the hamiltonicity is assured by Lemma 4.1, Path (1)
- contains all nodes of 1b.1-K(d, £-2), 1{ be1+1)-K(d, £-2),
o Hd-1)-K(d, t-2), and 10-K(d, ¢-2). Path (2) contains all
nodes of 01-K(d, £-2), 02-K(d, t-2), ..., and O(b,;-1)-K(d, t-
2). Path (3) contains all nodes of (b.1-1)-K(d, t-1), (be1-2
yK(d, t-1), ..., and 2-K(d, #-1). Path (4) contains all nodes
of 12-K(d, t-2), 13-Kd, 1-2), ..., 1{(bry-1)-K(d, t-2), and
11.K(d, t-2). All nodes appear in these paths exactly once. It
is not difficult to check that the two paths we have constructed
between 0(b.q)-1 and 0! and between 1(b,1)*! and 1’ are
node-disjoint, and they contain every node of the IK(d, ¢)

exactly once. To illustrate the construction, Figure 4 shows
two node-disjoint paths, one between 033 and 000 and the
other between 133 and 111, in IK(4, 3) with coefficient
vector (3. %), Q.E.D.

Figure 4. Two node-disjoint paths, one between 033 and
000 and the other between 133 and 111 in IK(4, 3) with»
coefficient vector (3,%). :

A necessary condition for a hamiltinian graph is that its

‘gonnectivity must be greater than 1. In the following, we
.show that the latter is also a sufficient condition for a

hamiltonian IK(d, #). :

Theorem 4.1. An IK(d, 1), where d>3, is hamiltonian if
its connectivity is greater than 1.

Proof. Suppose (bri, bra, ..., by, *) is the coefficient
vector of the IK(d, 1) and RS '>1. If i=-1, by Theorem 3.1
we have b,.123. The IK(d, #) is composed of by, K(d, t-1)'s
that are connected as a b,;-node complete graph. By the aid
of Lemma 4.1, it is not difficult to see that there exists a
hamiltonian cycle in the IK(d, £). So, in the rest of the proof,
we assume 1<i<t-1. By Theorem 3.1 wevhave’b,_IZZ and
bi22. By Lemma 4.2, there exists a path between 0(b,.1)-!
and 1(b;.1)! which contains every node of G, exactly once,
and there exists a path between by 1b.;...5,10%1 and b,y b,
2‘..’b,-+1 1#+1 which contains every node of G; exactly once.
Since R} '>1, we have b1 for all i<m<z-1. A hamiltonian
cycle in the IK(d, 1) is constructed according to the following
two cases.

Case 1. b,,22 for all i<m<i-1.
Lemma 4.3 assures that for i<m<f-1, there exist two

' node-disjoint paths in Gp, one between U,y o0=b1b.;...
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Bms10(bm)™ and Vi 0=b,1512...01m 0™+ and the other
between Up 1=br1bi2. . .Dpi1 (b)) and Vi 1=b,1b45...
bme11m1, such that they contain every node of G, exactly
once. A hamiltonian cycle in the IK(d, ¢) is thus formed as
shown in Figure 5(a), where '



(OCh1)Y, Viag) and (1(b.)Y, Vo) define two (2-1)-
flipping links;

(Uis1.0: braabra b0y and (Ui, bigbis. ..
bi Vit define two (i+1)-flipping links;

(Um0, Vim-10) and (Up, g, Vie11) define two m-flipping
links. where i+l<m«<i-1.

(a)
(b)

(«©)

Case 2. b,,=!1 for one or more m's between ¢ and ¢-1.

We assume b,=1 for exactly one m. The extension to
multiple m's is very straightforward. According to Lemma
4.1, there exists a path between X=b;.10,.7...bm+101" and
Y=bibpa... Buy107+1 which contains every node of G,
exactly once. As shown in Figure 5(b), there is an (m+1)-
flipping link between Uy, 0 and Y, an m-flipping link
between X and V,,.1,0, and a jumping (m+1)-flipping link
between Upyyg,1 and Vi,op 1. A hamiltonian cycle in the IK(d,
1) can be constructed similar to Case 1.

QE.D.

X b by bpy0lm
Y bybrs b Omt

(b)

Figure 5. The proof of Theorem 4.1. (a) Case 1. (b) Case 2.

Theorem 4.1 guarantees a hamiltonian cycle in IK(d, #)
with'd>3 if its connectivity is greater than 1. For IK(d, #) with
connectivity 1, there is no hamiltonian cycle, and there is not
necessarily a hamiltonian path. For example, no hamiltonian
path exists in IK(4, 4) with coefficient vector (1, 2, 1, *). In

what foliows, we identify the class of IK(d, f)'s with
connectivity 1 which contain a hamiltonian path.

For IK(d, 1) with coefficient vector(b,.q, bry, ..., bi, *)
and R{'1=I, we can partition it into blocks. Gy is a block if
by#0 and (R',i”:l or bpy1=0) and (RL:X or by 1=0).
G+ Gma+ ... +G,, where b,=0, b,#0 and m>n, is a block
if R7">1 and (Rn'"“zl OF Bmer=0) and (R, ;=1 of bps1=0).
The partition can be easily done by examining the coefficient
vector. As an illustrative example let us consider IK(6, 10)
with coefficient vector (1, 2, 1, 2, 0, 1, ). By Lemma 3.4,
there are two jumping flipping links. One is between the 2nd
K(6, 8) within Gg and the 2nd K(6, 6) within Gg, and the
other is between the first K(6, 6) within G4 and the first K(6,

4) within G,. Clearly Gy and G4 are two blocks because
R§=l and bs=0, respectively. Gg+G1+Gg is another block

because Ro=2, Ry=1, and bs=0. Hence IK(6, 10) with
coefficient vector (1, 2, 1, 2, 0, 1, *) can be partitioned into
{Gs, Gs+G1+Gg, G4}. Intuitively, if each Gy (45j<9) with
b#0 is regarded as a node, then the flipping links between Gy
and Gg and between Gg and G4 are two bridges:[2], and each
block is either a single node or a maximal biconnected
component in the resulting graph. The following two lemmas
have proven in [20}.

Lemma 4.4.[20] An IK(d, t) with connectivity 1
contains a hamiltonian path if it consists of one or two blocks.

Lemma 4.5.[20] Consider an IK(d, 1) with coefficient
vector (by.q, by, ..., b;, ¥) and R:‘1=l that contains three or
more blocks. There is a hamiltonian path in the IK(d, ¢) if and
only if for each block, say Gp+Gmp.1+ ... +G,, in the IK(d,
1), 80 bpyy, by, bry, ..., bs, by 1 exist such that b, € {0, 1},
b=bpy= ... =bs=2, b;.1 € {0, 1}, and r-s+1 is odd, where
m#t-1, n=i, and n<s<r< m.

Combining Lemmas 4.4 and 4.5, we have a necessary
and sufficient condition for a hamiltonian path in an IK(d, £)

* with connectivity 1.
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Theorem 4.2. For IK(d, f) with coefficient vector (b, y,
b2, ..., by, *) and R;'1=1, it contains a hamiltonian path if
and only if either of the following two conditions holds:

(1) it contains one or two blocks;

(2) for each block, say Gp+Gpy.1+ ... +G,, in the IK(d, 1),
no by, by, brq, .., by, by exist such that b,.1 € {0,
1}, b=b,q= ... =bs=2, b1 € {0, 1}, and r-s+1 is odd,
where m#t-1, n#i, and n<s<r< m.

5 Concluding Remarks

Deriving topological properties for incoraplete networks is
far more difficult than for complete networks. The reason is



that complete networks of different sizes preserve great
topological similarity, whereas incomplete networks may have
a signiticant difference in their topologies. For example, K(d.
1y looks very similar to K(d, 1-1), whereas two IK(d, )'s with
different coefficient vectors may look very unlike in their
topologies. Many of topological properties of the incompiete
star networks {13], [16] are still unknown, although they
have been well solved for the star networks {1]. Most of the
results obtained for the incomplete star networks are restricted
. 10 a special case: N=c-k!, where N is the number of nodes.

In this paper, we have shown it very convenient to
represent the structure of an incomplete WK-recursive
networks by a "multistage-like" graph G.1+Go ¥ ... +G;.
This representation provides a uniform look at the incomplete
WK-recursive networks, and thus facilitates the derivation of
many properties. By the aid of this representation, we have
computed the connectivities and hamiltonicity. Moreover, we
have suggested a tight upper bound on the diameters. The
methods adopted in this paper are different from Chen and
Duh's for the WK-recursive networks {4]. Readers who are
interested in the incomplete WK-recursive networks are
refered to [20] and {21} for more results. Precisely, using the
prune-and-search technique a linear-time algorithm for
computing the diameters can be found in {20], and a
distributed shortest-path routing algoritbm can be found in
[21].
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