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Abstract:

In this paper, we present the implementation of a branch-and-cut algorithm for solving Steiner

tree problems in graphs. Our algorithm is based on an integer programming formulation for directed
graphs and comprises preprocessing, separation algorithms, and primal heuristics. We are able to solve
nearly all problem instances discussed in the literature to optimality, including one problem that—to our
knowledge—has not yet been solved. We also report on our computational experiences with some very
large Steiner tree problems arising from the design of electronic circuits. All test problems are gathered
in a newly introduced library called SteinLib that is accessible via the World Wide Web. © 1998 John

Wiley & Sons, Inc. Networks 32: 207-232, 1998
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1. INTRODUCTION

Given an undirected graph G = (V, E) and anode set T
c V, aSeiner tree for Tin G is a subset S c E of the
edges such that (V (S), S) contains a path from sto t for
dl s, t €T, whereV (S) denotesthe set of nodes incident
to an edge in S. In other words, a Steiner tree is an edge
set Sthat spans T. The Steiner tree problemis to find a
minimal Steiner tree with respect to some given edge costs
Ce, € € E. This problem is known to be \7-hard (Karp
[28]), even for grid graphs (Garey and Johnson [18]).
Nourished from the increasing demand in the design
of electronic circuits, the solution of Steiner tree problems
has received considerable and strongly growing attention
inthelast 20 years. Among the proposed solution methods
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are exact algorithms, heuristic procedures, approximation
algorithms, polynomial algorithms for special instances,
polyhedral approaches, preprocessing techniques, and
more. Excellent surveys were given in Winter [40], Mac-
ulan [ 32], Hwang and Richards [ 25], and Hwang et al.
[26]. To solve the Steiner tree problem to optimality,
Angja[ 1] proposed a row-generation algorithm based on
an undirected formulation, Dreyfus and Wagner [ 11] and
Lawler [29] used dynamic programming techniques,
Beasley [4, 5] presented a Lagrangean relaxation ap-
proach, Wong [43] described a dual-ascent method, Lu-
cena[ 31] combined Lagrangean and polyhedral methods,
and Chopra et a. [8] developed a branch-and-cut algo-
rithm. In particular, polyhedral methods have turned out
to be quite powerful in finding optimal solutions for vari-
ous Steiner tree problems. Reasons for that are the better
understanding of the associated polyhedra, the availability
of fast and robust LP solvers, and the experience gained
to turn the theory into an algorithmic tool.

This paper moves within this framework and presents
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a branch-and-cut algorithm. It is strongly related to the
algorithm described in Chopra et a. [8]; we solve the
same integer programming formulation, again by means
of the separation of cutting planes. However, the new
agorithm differs considerably, not only in several aspects
of implementation but also due to some extensions. The
main extensions are a more effective preprocessing phase
by incorporating three preprocessing tests, an extension
of theinitia integer program with so-called flow-balance
constraints, and a more careful and more efficient separa-
tion of active cut constraints resulting in leaner LPs. In
Section 2, we review two different integer programming
formulations. The second, on which the branch-and-cut
algorithm is based, is a bidirected version of the first. In
Section 3, we discuss preprocessing and exploit ideas
known from theliterature. In particular, our presolve ago-
rithm includes three strong reduction techniques of Duin
and Volgenant [ 13, 14]. Our computational results dem-
onstrate how important preprocessing is: Without this
toal, it would not have been possible to solve any of the
large instances. Details of the cutting plane phase of our
branch-and-cut algorithms are discussed in Section 4. It
includes refined separation strategies (resulting in leaner
LPs) and improved primal heuristics such that at an ear-
lier stage the lower- and upper-bound values meet. Exten-
sive tests are given in Section 5. We solve amost all test
instances from the literature including one problem that—
to our knowledge—has not yet been solved and find the
optimal solution for many very large instances arising
from real-world problems in the design of electronic cir-
cuits. We introduce a library for Steiner tree problems
called SeinLib (including most of the models from the
literature and al new VLSl-instances discussed in this
paper). This library is available via anonymous ftp or
from WWW at URL: ftp://ftp.zib.de/pub/Packages/mp-
testdata/steinlib/.

2. INTEGER PROGRAMMING
FORMULATION

In this section, we present the integer programming for-
mulation that we are going to solve with our branch-and-
cut algorithm. Let an undirected graph G = (V, E) with
edgecostsc, = 0, e € E, be given. We assume throughout
the paper that the edge costs are nonnegative and integer.
In addition, there is anode set T c V, called the set of
terminals. We will denote an instance of the Steiner tree
problem by the triple ST(G, T, c).

A canonical way to formulate the Steiner tree problem
as an integer program is to introduce, for each edge e
€ E, avariable %, indicating whether e is in the Steiner
tree (X, = 1) or not (X, = 0). Consider theinteger program

min c"x
(i) x(6W)) =1, foral WcCV,
WNT= g,
(uSP) VW) N T = &,
(iil) 0=x=1, for dl e € E,

(iii)  x integer,

where §(X) denotes the cut induced by X c V, that is,
the set of edges with one end node in X and one in its
complement, and X(F) 1= Zecr X, for F c E. It is easy
to see that there is a one-to-one correspondence between
Steiner trees in G and 0/1 vectors satisfying (uSP) (i).
Hence, the Steiner tree problem can be solved via (uSP).

Another way to model the Steiner tree problem is to
consider the problem in adirected graph. Wereplace each
edge [u, v] € E by two antiparallel arcs (u, v) and (v,
u). Let A denote this set of arcs and D = (V, A), the
resulting digraph. We choose sometermina r € T, which
will be called the root. A Seiner arborescence (r ooted
atr) isaset of arcs Sc A such that (V (S), S) contains
adirected path fromr tot foral t € T\{r}. Obviously,
there is a one-to-one correspondence between (undi-
rected) Steiner treesin G and Steiner arborescencesin D
which contain at most one of two antiparallel arcs. Thus,
if we choose arc costs €,y 1= Ty = Cuu, fOr [U, v]
€ E, the Steiner tree problem can be solved by finding
aminimal Steiner arborescence with respect to ¢. Note
that there is always an optimal Steiner arborescence which
does not contain an arc and its antiparallel counterpart,
since ¢ = 0. Introducing variables y, for a € A with the
interpretation that y, := 1, if arc aisin the Steiner arbores-
cence, and y, := 0, otherwise, we obtain the integer pro-
gram

min ¢'y
(i) y(6*(W)) =1 foralwcy,
rew,
(dSP) VA\W) N T = ¢,
(i) O0=y,=1, for dl a € A,

(iii) vy integer,

where 6§ (X) := {(u,v) € Alu € X, v € V\X} for X
C V, that is, the set of arcs with tail in X and head in its
complement. Again, it is easy to see that each 0/1 vector
satisfying (dSP) (i) corresponds to a Steiner arbores
cence, and, conversely, the incidence vector of each
Steiner arborescence satisfies (dSP) (i) —(iii). How are
the models (uSP) and (dSP) related?

Polyhedral aspects of both models are intensively dis-
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Fig. 1. Original problem.

cussed in the literature. The undirected model was studied
in Grotschel and Monma [ 23], Goemans [ 19], Goemans
and Myung [20], and Chopra and Rao [9, 10], whereas
the directed version, in Ball et a. [3], Fischetti [17],
Goemans and Myung [ 20], and Chopraand Rao [ 9, 10].
Chopra and Rao [9] and Goemans and Myung [ 20] re-
lated both formulations. Chopra and Rao [ 9] showed that
the optimal value of the LP relaxation of the directed
model z; := min{¢"y|y satisfies (dSP) (i) and (ii)} is
greater or equal to the corresponding value of the undi-
rected formulation z, := min{ c"x| x satisfies (uSP) (i)
and (ii)} . Even, if the undirected formulation istightened
by the so-called Steiner partition inequalities (see
Grotschel and Monma [23]; Chopra and Rao [9]) and
odd hole inequalities (see Chopra and Rao [9]), this
relation holds. In addition, Goemans and Myung [20]
showed that z, is independent of the choice of theroot r.
These results suggest the directed model and we followed
this suggestion. Nevertheless, one disadvantage of the
directed model is that the number of variablesis doubled.
But it will turn out that this is not realy a bottleneck,
since we are minimizing anonnegative objective function,
and thus the variable of one of two antiparallel arcs will
usually be at its lower bound.

It should be mentioned that further models to solve
the Steiner tree problem can be found in the literature;
for example, models based on flow formulations (Wong
[43]; Maculan [ 32]) or models extending the undirected
formulation by introducing node variables (Lucena[31];
Goemans and Myung [20]). Relations between relax-
ations of these and the above-discussed models can be
found in Wong [43], Maculan [32], Duin [12], and
Goemans and Myung [20] .

3. PREPROCESSING

Preprocessing isavery important algorithmic tool in solv-
ing combinatorial and integer programming problems of

large scale. The idea, in genera, is to detect unnecessary
information in the problem description and to reduce the
size of the problem by logical implications. For the
Steiner tree problem, many reduction methods are dis-
cussed in the literature and have been shown to be very
effective for solving large instances; see, for example,
Balakrishnan and Patel [2], Beasley [4], Chopra et al.
[8], Duin[12], Duin and Volgenant [ 14], Lucena[31],
Winter [41], and Winter and Smith [42] . These methods
focus on detecting specia configurations that allow one
to neglect certain edges and/or nodes for the optimization
or they show that some edges and/or nodes are contained
in some optimal solution. In this section, we sketch the
main concepts from the literature and show how they are
incorporated in our code.

How successful preprocessing methods might be in
reducing the size of some problem is demonstrated in
Figures 1 and 2. Figure 1 shows the original graph of
problem br (complete graph on 58 nodes; for a descrip-
tion of the problem, see Section 5), and Figure 2, the
graph that we obtain after applying our preprocessing
agorithm.

3.1. Degree-Test |

The following tests summarized under the name degree-
test | (see[4]) are easy to check:

(i) A nonterminal node of degree one can be removed.

(ii) If anonterminal nodev is of degree two, node v and
the two incident edges [u, v] and [v, W], U = w,
can be replaced by an edge connecting u and w of
cost Cuw = Cup] + Cromg-

(iii) An edge incident to a terminal node of degree one
is aways in an optimal solution.

(iv) If an edge e is of minimal cost among the edges
incident to a terminal node, and the other end node
isalso aterminal, then eis choosable in any optimal
solution.

3.2. Special-Distance-Test

This test (introduced in Duin and Volgenant [ 13]) com-
putes for each pair of nodes a number (called the special
distance) which can be exploited to remove some edges.

Fig. 2. Reduced problem.
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Definition 3.1 (Special Distance). Let two nodes u, v
€ V with u = v be given, and consider some path P c E
connecting u and v. Set T, = V(P) N T U {u, v} and
let

b(P) = max{ c(F)|F < P is a path connecting
two nodes from Tp such that
ITe N V(F)| = 2}.

The number
s(u, v) = min{b(P)| P is a path connecting u and v}

is called the special distance (between u and v).

To give an idea what s(u, v) means, consider each
terminal as a petrol station and suppose you want to drive
from location u to v. Then, s(u, v) denotes the distance
you must be able to drive without refilling if you choose
among all possible routes. Note that the following rela
tions

s(u, v) = d(u, v) = Cuy

hold, where d(u, v) denotes the length of a shortest
path between u and v. The special distance can be com-
puted by a modified shortest path algorithm (cf. Hwang
etal.[26]).

Given the values s(u, v) for dl u, v € V, thereis an
easy and very effective test for deleting edges. An optimal
solution S* of a Steiner tree problem ST (G, T, ¢) cannot
contain any edge [u, v] € E with s(u, v) < G-

The special-distance-test is a generalization of many
other tests known in the literature; this was comprehen-
sively treated in Duin and Volgenant [ 13]. Concerning
implementation, it should be noted that certain specia
cases of this test can be implemented more efficiently.
However, one can also resort to a well-performing ap-
proximation of the specia-distance-test that runs in
O(|V] log V] + |E| + |T|? (cf. Duin [12]).

3.3. Bottleneck Degree m Test

The bottleneck degree mtest introduced in Duin and Vol-
genant [ 14] is the following: Consider some nodev € N
with |6(v)| = m. Let (W, F) be the complete graph on
nodeset W:= V (6(v))\ {v} with edge costs §,,,; = s(u,
v) for [u, v] € F. If, for al subsats U €« Wwith |U| = 3,

§(B*) = z C[v,u]1

ueu

where B* is the edge set of a minima spanning tree in
(W, F), holds, node v can be deleted, and for all u, w
€ W, u =+ w, edge [u, w] with cost Cuw; = Crup; + Crow

has to be introduced. (In case of parallel edges, only one
edge will be retained.) Of course, this might create many
new edges, but, in general, most of these can be elimi-
nated by the special-distance-test.

The running time for this test is O(2™-y), where v
denotes the time for computing a minimal spanning tree.
Due to the exponential behavior, we perform this test
only for m = 3. In fact, the bottleneck degree m test
generalizes the onesin Section 3.1 (i), wherem = 1, and
Section 3.1 (ii), wherem = 2.

3.4. Terminal-Distance-Test

In this test, we consider a connected subgraph H = (W,
F) of GwithT N W= ¢ and T\W = . Let e
= argMmineg csw)Cer aNd f = argming cswy\ (e} Cr be a
shortest and a second shortest edge of the cut induced by W.

Edge e = [u, v] withu € Wand v € V\W s part of
some optimal solution of ST(G, T, ¢) and can thus be
contracted, if

¢G=d, +c +d,

with d, = min{d(t, u)|t € TN W} and d, = min{ d(t,
v)|t € T\W}.

Duin and Volgenant [ 14] introduced this test and gave
an implementation in O(|V |®) steps. In Duin [12], it is
shown that the detection of all edges satisfying the condi-
tion of the terminal-distance-test needs only O(|V|]?)
steps. Note that the last two tests in Section 3.1 (iii) and
(iv) are special cases of the terminal-distance-test. Two
other special cases are the R-R aggregation method of
Balakrishnan and Patel [ 2] and the nearest vertex test of
Beasley [4].

3.5. Results

When it comes to implement these reduction methods,
severa questions arise: Which of these tests should be
implemented? For each single test, should al cases be
checked (complete test) which might result in high run-
ning times or should one restrict the search to certain
promising special cases which might result in an incom-
plete test? In which order should the methods be called?
How often should they be called? Some reduction of one
test might give rise to further reductions by some other
(aready performed) test. These questions were already
addressed in Duin and Volgenant [14]. With respect to
our agorithm, we should also answer the questions: How
much effort and computation time should one spent in
the preprocessing phase? At what point isit usually better
to switch over to the branch-and-cut phase? We tried to
find answersin the following way: First, we implemented
al the tests and each test in the complete version. We
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called al these tests consecutively and iterated this pro-
cess until no more reductions could be found. Of course,
this might be very time consuming but for large difficult
problems it might be worth to reduce as much as possible
(see Section 5). For small and medium-sized problems,
the situation is different. Often it did not pay to perform
a complete test, but rather to switch to the branch-and-
cut phase which usually solved the (reduced) problem
very fast. We performed many test runs to find a balance
between the total running times and the success of the
reduction methods. Algorithm 3.2 shows our default se-
lection:

Algorithm 3.2 (Default Presolve)

(1) DegreeTest |

(2) Specid-Distance-Test
(3) DegreeTest |

(4) Termina-Distance-Test
(5) Specia-Distance-Test
(6) Degree-Test |

(7) Specid-Distance-Test
(8) DegreeTest |

(9) Return

Note that the bottleneck degree m test is not included
in our default strategy. For some difficult instances, how-
ever, it paysto use the bottleneck degree mtest and iterate
all four tests as along as there is some reduction possible.
The success of our presolve strategy isillustrated in Sec-
tion 5.

4. IMPLEMENTATION DETAILS

In this section, we describe the implementation of our
branch-and-cut algorithm for solving the Steiner tree
problem. We assume that the reader is familiar with the
general outline of a branch-and-cut agorithm (see Ca
praraand Fischetti [ 7] for asurvey). Algorithm 4.1 pres-
ents the main steps of such an agorithm:

Algorithm 4.1 (Branch-and-Cut Algorithm)

(1) Initidization

(2) repeat

(3) select aleaf from the tree and consider the associ-
ated LP

(4) repeat (iterate)

(5) solve the LP

(6) call prima heuristics

(7 separate violated inequalities and add them to

the LP

(8) until there are no violated inequalities

(9) branch if necessary, otherwise remove the leaf
from the tree

(10) until branch-and-bound tree is empty

(11) print the optimal solution

(12) STOP.

In the Initialization phase, we set up the first LP and
initialize the branch-and-bound tree with the root node
representing the whole problem. In our case, the starting
LP is essentidly empty, consisting only of the trivia
inequalities (dSP) (ii). We experimented with initial cuts
for the first LP by doing a breadth-first search from the
root to every other terminal and adding the cuts between
nodes of different depth. Although these cuts have digjoint
support for each root-termina pair, only the smaller in-
stances profited from this idea. While the number of cut-
ting plane iterations [i.e., the number of runs through
Steps (4) —(8)] needed to solve the problems was always
smaller, the effect from initially having a lot of dense
inequalities (i.e., inequalities with many nonzero entries)
in the LP considerably slows down the whole process.

For solving the linear programs, we used CPLEX*,
Versions 4.0.9 and 5.0, a very fast and robust linear pro-
gramming solver, which features both a prima and dual
simplex solver and a primal-dual barrier solver. We used
the dual simplex algorithm, since the LPs from one itera-
tion to the next stay dual feasible, when cutting planes
are added or variables are fixed to one of their bounds.
It turned out that the best pricing strategy was steepest-
edge pricing, that is, to select a variable entering the basis
that has largest (obtuse) angle with the gradient of the
objective function. However, for some instances (in par-
ticular, for large grid problems), the arising LPs are
highly primal and dual-degenerated.

We tried to avoid degeneracy by perturbing the
objective function. We used € = ¢ — be,, where
b = min( 1071, ;> ,and g, € [0, 1) is

2(IAl +1)
some uniformly distributed random number for each a
€ A. Since we assumed that ¢ is an integer, our choice
of € ensuresthat an optimal solution with € isalso optimal
for ¢. Therunning times for solving the LPs were always
better with the perturbed objective function than with the
original. Nevertheless, some of the larger problems con-
tinued to show signs of degeneracy. We tried two further
ways to remedy degeneracy: First, we perturbed the objec-
tivefunction with b = 0.1. This, however, requires reopti-
mization with the original objective function after the
problem has been solved for the perturbed objective func-
tion. Sometimes, this reoptimization step needed severa
thousand simplex iterations and we obtained a significant
speed up only in very few cases. Second, we tried the

* CPLEX is aregistered trademark of ILOG.
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primal-dual barrier solver of the CPLEX package. The
barrier code does not suffer from degeneracy, but has to
solve each LP from scratch so that, on average, it could
not outperform the dual simplex method with our initia
perturbation. Thus, our default choice to solve the LPsis
to use the perturbed objective function € and apply the
dual simplex algorithm with steepest-edge pricing.

4.1. Branching and Selecting Leafs

In Step (9), if it is necessary to branch, we use strong
branching (Bixby [6]), that is, we determine a set of
variableswhose LP valueiscloseto 0.5, perform for each
variable of this set a certain number of simplex iterations
for the linear program where the variable is set to one or
zero, and, finaly, select the variable in the set as
branching variable that obtained the best increase in the
LP vaue.

We run through the branching tree in a depth-first-
search fashion. The reasons are that the memory require-
ments for the whole tree stay small and that we try to
find a good primal solution as soon as possible. It almost
never happened that our branching tree grew to much.
Branching was a rather rare event in our computations
anyway (within thetime limit and with the default param-
eter setting branching was necessary only in 37 of 414
cases; see Section 5).

4.2. Primal Heuristic

The primal heuristic that we use is basically the oneintro-
duced by Takahashi and Matsuyama [38]. The idea of
this heuristic is to start from one terminal and connect a
terminal by a shortest path that is closest to the starting
terminal. The next terminal is chosen among the re-
maining terminals in such a way that it is closest to the
aready existing path or subtree in general. This process
is continued until all terminas are connected. As edge
costs for this heuristic we use (1 — x.)- ¢, for e € E, if
x is the optimal solution of the current LP, that is, we try
to prefer those edges that are already chosen in the LP
solution. (A dlightly different objective function was sug-
gested in Lucena [31] who used as edge costs O, if X,
=1, and c., otherwise; Chopraet al. [ 8] used the original
edge costs, but considered only edges e with positive LP
value x, > 0.) As suggested in Rayward-Smith and Clare
[36], we also try to improve the heuristic solution by
computing a minimal spanning tree among the chosen
nodes and prune nonterminal leaves as long as possible.

A parameter to be specified for this heuristic is the
starting terminal. Since running the algorithm for all ter-
minals is usually too time-consuming, we made the fol-
lowing selection: We always try the terminal which gave
the best solution so far and try in addition up to 10 ran-
domly selected terminals. The frequency in which the

heuristicis called in our code is specified by some param-
eter (default is every five cutting plane iterations).

In 138 out of 414 test examples, the first call to the
heuristic found the optimal solution, and in 90% of the
cases, the gap [ (heuristic solution — lower bound)/lower
bound] was below 5%.

We also experimented with the Rayward-Smith [ 35]
heuristic. The results are quite promising; however, a
main bottleneck is the running time, especialy for big
problems. The reason is that the heuristic requires all-to-
al node distances, and due to memory limitations, we
must compute these on the fly, so most of the time is
spent for calculating shortest paths.

4.3. Separating Inequalities

In this section, we start with the description of our separa-
tion routines for the cut inequalities (dSP) (i). We first
discuss how the generic cut separation works and give an
efficient implementation. In the following three subsec-
tions, we discuss three improvements on the generic cuts:
back cuts, nested cuts, and creep-flow cuts. All these cuts
aim at selecting violated cuts that give the most progress
in terms of an increase in the lower bound with respect
to the running time. We finally present a further class of
inequalities, the so-called flow-balance inequalities, that
may strengthen the L P relaxation further. All four sugges-
tions can be combined with each other, resulting in 16
possible ways to separate inequalities. Based on some
computational tests in the last subsection, we present our
final separation strategy.

4.3.1. Generic Cuts

It is well known that the separation problem for the cut
inequalities (dSP) (i) can be solved by any max-flow
algorithm and can thus be solved in polynomial time. We
regard the LP solution as capacities in the graph and
check, for eacht € T\ {r}, whether the minimal (r, t)-
cut is less than one. If so, a violated cut inequdlity is
found; otherwise, there is none. We add inequalities only
if they are violated by at least some epsilon (default is
107%). To determine a minimal (r, t)-cut, for all t
e T\{r}, wemust cal, in principle, (|T| — 1) timesa
max-flow algorithm. However, Hao and Orlin [24]
showed that by a careful implementation of a preflow-
push agorithm the time to determine minimal cuts from
the root node r to al other nodes is comparable with the
timeto find asingle (r, t)-cut. If we use the highest |abel
preflow-push algorithm of Goldberg and Tarjan [21] the
overall running time of the Hao—Orlin algorithm to deter-
mine a minima (r, t)-cut, for al t € T\{r}, is
O(IVI*[E["®).
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4.3.2. Back Cuts

Chopraet a. [ 8] described a method to increase the num-
ber of separated inequalities by swapping the flow on
each arc and checking in addition all (t, r)-cuts, for t
€ T\{r}. A drawback here is that we cannot use the
speed-up feature mentioned above, since for each (t, r)-
cut computation, the source node changes and thus the
agorithm has to start from scratch again. However, as
we will see in Section 4.3.6, this idea significantly im-
provesthe overall running time compared with the generic
cut generation.

4.3.3. Nested Cuts

Another way to increase the number of violated inequali-
tiesisto nest the cuts. After finding aminimal cut between
r and someterminal t, we temporary fix all corresponding
variables in the actual LP solution to one and try again
to find a cut between r and t. We repeat this procedure
until the flow between r and t is at least one. This idea
can be combined with back cuts so that we are trying to
find nested inequalities in both directions. The results of
this procedure are usually an increase in the time spent
for separation and reoptimization the linear programs per
iteration, while the total number of cutting planeiterations
drastically decreases, resulting in atotal running time of
about one magnitude faster than without nested and back
cuts.

4.3.4. Creep-Flow

We obtained another major speedup in the performance
of our algorithm when we implemented the following
idea: Instead of trying to increase the number of separated
inequalities, wetried to raisethe * quality’’ of theinequal-
ities. Since most of the variables in our LP solution are
zero, the optimal solution of the min-cut agorithm is not
necessarily arc minimal. So, we add a tiny capacity of
some ¢ (in the code we use ¢ = 107°) to al arcs to get
among all weight minimal cuts one that is also arc mini-
mal. While this increased the running time for computing
aminimal cut, since much more arcs have to be consid-

ered, the time needed for reoptimization the linear pro-
grams decreased by a factor of 10. Moreover, the reduc-
tion in the number of cutting plane iterations by using
these ideas over just adding pure (r, t)-cuts is between
two and three orders of magnitude.

4.3.5. Flow-Balance Inequalities

In our cutting plane phase we take another class of ine-
gualitiesinto consideration. An (optimal ) Steiner arbores-
cence can be viewed as a set of flows sending one unit
from the root r to each terminal in T\ {r}. This means
that for all nonterminal nodesthat are not branching nodes
in the Steiner arborescence the flow-balance equality
y(67(v)) =y(6"(v)) must hold, and for the other nonter-
minal nodes, y(6~(v)) = y(6*(v)). Thisis expressed in
the following set of inequalities:

=0, ifv=r;
y(6~(v)) =1, ifve T\{r};
=1, if v eN;
Y6 () =y(6' (), forveN; 1)
y(6 (v)) =YV, for al e € 6% (v),
v € N.

Note that this system of inequalities is not valid for al
Steiner arborescences (e.g., cycles are cut off), but there
is aways an optimal solution that satisfies these condi-
tions, since the objective function is nonnegative. Note
that the addition of inequalities (1) to (dSP) has aready
been considered in Duin [ 12] . He gives an example where
these inequalities strengthen the LP relaxation.

4.3.6. A Comparison

We performed several tests to evaluate the performance
of these four separation routines and all its combinations.
Figures 3 and 4 show the results of all 16 possible separa-
tion strategies for examples alue7229 and tag0631 (for

1000 T — T
Total time [s] ——

\ Sep timefiter [0.01s] -
Total cuts [1000] -
100 Non-zeros per row - N
.- i
. . S
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_______________________________ RN P
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Total time ——
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|
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Fig. 5. gr.

a description of these problems, see Section 5). F means
that flow-balance inequalities are applied; C, B, and N,
indicates that creep-flow cuts, back cuts, and nested cuts
are added, respectively; and **----"" indicates that just the
generic cut separation is applied. The x-axis shows the
16 possibilities sorted according to their total running
time in decreasing order from left to right. The curves
depict the total running time (in seconds), the separation
time per iteration (in hundredth of seconds), the total
number of added cuts (in thousands), and the average
number of nonzeros per row. We observe that the differ-
ences in the running times are up to two orders of magni-
tude (note that the y axis is logarithmically scaled). We
also see that the strategy ‘*-B--"" that was used in Chopra
et a. [8] gives a significant speed up compared with
just adding generic cuts, although the separation time per
iteration increases. This was already observed by Chopra
et a. However, their strategy is not the overall best. For
amost al combinations, it is better to apply flow-balance
inequalities. The same holds for creep-flows; the strategy
with creep-flows is always better than the one without.
The reason is mainly a significant reduction in the number
of generated cuts. In both figures, the eight combinations
using creep-flows together with *‘-BNF’’ are always the
best. We evaluated these nine strategies on some larger
instances. Figures 5 and 6 show the results for problem
gr and msm1234 (note that the curves are not uniformly
and the y-axis is not logarithmically scaled any more to
better illustrate the differences of the strategies).

The ‘*-BNF-"’ strategy shows a big increase in the
number of cuts and nonzeros resulting in high LP times
(LP times are not shown in the diagram). The increase
inthe LPtime per iteration is not completely compensated
by the decrease in the total number of iterations, resulting
in running times that are not among the best. For larger
instances, this effect becomes even clearer. Again, we
recognize the positive impact of the flow inequalities. For
example, in problem gr, the*C--F’’ strategy has the best
nonzero per row index. In fact, this strategy isvery robust:
It is always among the four best, while the performance
of the other strategies does not seem to be predictable. It
isremarkable that the connection of C with B and N (with
or without F) does not outperform *‘ C--F.”” Therefore, we

have chosen the **C--F’’ option as the final separation
strategy in our branch-and-cut algorithm.

4.4. Removing Inequalities

Sometimes in the iteration process inequalities become
nonbinding, that is, the slack of the inequalities are posi-
tive. In these cases the inequality can be removed from
the LP without changing its optimal value. Although the
inequality can be violated again, it is, in general, a good
idea to remove these inequalities in order to keep the LP
small. To minimize the occurrences of these reviolated
inequalities, we added a*‘life’’ counter to each inequality
currently in the LP. If the slack of an inequality is non-
zero, the counter is decreased; if the dlack is zero, it is
reset to an initial value (in our implementation 5). If the
counter reaches zero, the inequality is removed. Thisway
we are delaying the removal of inequalities to a point
where it is more likely that it will never be used again.

4.5. Reduced Costs and Reduced Set
of Variables

Every time the primal heuristic finds a better solution, we
try to fix variables by the reduced-cost criterium. For a
discussion on reduced-cost fixing, see for instance Pad-
berg and Rinaldi [34]. With the exception of the class
of so-called incidence problems (see Section 5), thisidea
has little effect on the performance of our algorithm. Due
to the high degeneracy of the LPs, the reduced costs tend
to be very small and, thus, the reduced-cost criterium
(and possibly also other reduction methods that are based
on reduced costs, see Duin [12]) are likely to fail.
Another commonly known idea is to work only on a
reduced set of variables by fixing variables temporally to
one of its bounds. After the problem has been solved on
the reduced set, we check the reduced costs of the tempo-
rally fixed variables, add them if necessary to the current
set of variables, and reoptimize. Instead of really remov-
ing the variables that are fixed from the problem as it is
usually done in such a type of column-generation algo-
rithm, we only fix these variables to their bounds and
keep them in the LP. CPLEX (the LP solver that we use)

Total time ——
A Sep timefiter ----x---
Y Total cuts -—-=--
Non-zeros per row =

I e P — el ;
C--- C-N- CB-- CBN- -BNF CBNF CB-F C-NF C--F

Fig. 6. msm1234.
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manages fixed variables very efficiently so that we could
not detect amajor loss of performance (under the assump-
tion that limits of memory are not reached). The advan-
tageisthat we do not have to take care of the management
of inequalities for which some of the variables are in the
current set of variables and some are not. For the limited
test runs that we performed for this column-generation
idea, we could not obtain a speedup on average.

5. COMPUTATIONAL RESULTS

In this section, we report on computational experiences
with our branch-and-cut algorithm. Our code is imple-
mented in C and all runs (with the exception of the inci-
dence problems, see the relevant page in the sequel) are
performed on a Sun SPARC 20 Model 71. The test exam-
ples include public available benchmarks discussed in the
literature, some instances that authors of other Steiner
tree codes made us available, and some redlistic problems
arising in the design of electronic circuits. All instances
are gathered in the library SeinLib that is available via
anonymous ftp or the World Wide Web."

The format of our tablesis asfollows: The first column
gives the problem name and columns 2—4 and 5-7 give
the number of nodes, edges, and terminals of the original
problem and the reduced problem, respectively. Compar-
ing these two sets of columns reflects the success of our
preprocessing algorithm. The next three columns give
statistics about the branch-and-cut algorithm. Nod con-
tains the number of branch-and-bound nodes (1 means
that no branching was necessary), Iter gives the number
of cutting plane iterations, and Cuts gives the number of
violated cuts added to the LP. The following three col-
umns provide information of the root LP, which is the
final linear program if no branching was necessary and,
otherwise, the last linear program before branching. Frac
denotes the number of fractional variablesin the root LP,
and Rows and NZ, the number of rows and nonzeros.
Then, time statistics follow: Pre stands for presolve time;
Heu, for the heuristic time; and LP, for the time spent
to solve the LPs; the separation time is shown in column
Sep, and, finaly, Tot gives the whole running time to
solve the problem. The times are in CPU seconds. The
time limit for all runs (with the exceptions of €18,
diw0234, and some incidence problems) was 10,000 sec-
onds. The last three columns show the solution values.
Heu(1) isthe value of the solution found by the first call
to the primal heuristic, that is, when no linear program-
ming solution is a hand (x = 0). Comparing this value
to the lower bound depicted in column LB providesinfor-
mation about the quality of the primal heuristic. If the

T URL: ftp://ftp.zib.de/ pub/Packages/mp-testdata/ steinlib.

difference between the lower and upper bound is lessthan
1, the upper bound in the last column is shown in bold
face to indicate that the optimal solution was found. If
there is still a gap greater than 1 between LB and UB,
we have not found the optimal solution within the time
limit.

Tables | and Il show our results for the test series
introduced by Beasley [5]. Test set C is easy: We solve
all instances with one exception within aminute. Interest-
ing to note is that already the first call to the heuristic
(without any dual information) gives in 11 out of 20
examples the optimal solution. Series D with 1000 nodes
is a bit more difficult: The running times increase up to
6 minutes. However, the optimal solution is obtained in
the root node in al but one case (d19), that is, branching
was not necessary. To solve test series E (with the excep-
tion of €18), we need up to 2 hours per instance, although
still no branching is necessary. The number of cuts needed
to solve these examples increases to about 66,000. We
could not detect a correlation between the number of
violated inequalities and the number of variables or termi-
nals. The number of inequalities in the final LP is rather
high compared with the number of cuts separated. This
means that the inequalities mostly stay in the LP when-
ever they are added and elimination does not happen too
often. The exception of test series E is €18. To the best
of our knowledge, nobody solved this problem up to now
to optimality. We are able to solve it within haf a day
of CPU time, where Algorithm 3.2 was replaced by a
complete reduction test. €18 and d19 are the only exam-
ples of Beasley’s test set where branching was necessary
with the default parameter setting.”

Figure 7 depicts a diagram of the run for €16. The
x-axis shows the number of cutting plane iterations (i.e.,
the number of LPs that have been solved). There were
267 iterations for example €16 (see Table Il). The curves
in the diagram illustrate trends of certain numbersin the
course of the algorithm. The top curve Integer gives the
number of variables that are integer in the actual LP solu-
tion. In the first LP, all variables are integer, since we
start just with the trivial inequalities (see above). Thus,
the straight line indicates that almost all variables are
integer during the whole run of the algorithm (we will
see different patterns for other problems in a moment).
The next two curves show the upper and lower bounds.
The horizontal line for the upper bound means that the
first call to the heuristic already found an optimal solution.
The lowest curve gives the number of rowsin the LP. Its
steady increase demonstrates the effect just mentioned
that elimination of inequalities from the LP does not fre-
quently happen. This property is common to many test

* Infact, branching was only necessary to obtain an optimal solution;
the objective function value of the root LP rounded up already yields
the optimal solution value.
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Fig. 7. el6.

examples (see also Figs. 8—10). The bottom bars depict
the number of simplex iterations to solve the LPs; the
higher the bars, the more difficult were the LPs to solve.
We see that the number of simplex iterations is high if
there is an increase in the lower bound, and the numbers
are low when there is no progressin the lower bound. We
have observed this behavior on many Beasley instances.

Table Il contains some instances made us available
by Margot [33] and some problems on complete graphs.
br was introduced in Ferreira [ 16], whereas berlin and
gr are taken from the TSP library, where some nodes are
defined as terminals. It turns out that the winning proce-
dure for complete instances is presolve. Algorithm 3.2
reduces up to 98% of the edges (variables) and provides
the bases for solving even the big gr example with over
200,000 variables within 6 minutes.

The diagram of example gr in Figure 8 shows some
different sign patterns from the one of €16. We observe
that the number of fractionals (see the curve reflecting
the number of Integers) islow at the beginning, increases
continuously until the middle of the run, and decreases
again toward the end. This u-shape behavior is typical
for complete instances. We aso see that the difficulty of
the LPsis correlated to the number of fractional variables,
which is also true for the examples depicted in Figures 9
and 10.

Integer

Upper bound ---------

Lower bound -
Rows -

Simplex Iterations ------

Fig. 8. gr.
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Fig. 9. gap3700.

Table IV contains a collection of examples described
in Chopra et a. [8]. E. Gorres made these instances
available to us. We solved al these instances within sec-
onds.® Interesting to note is that almost always the root
LP is integer (see Column Frac).

The next series, denoted by R, is taken from Soukup
and Chow [37] (see Table V). We solve dl of them in
about 1 minute. Worthwhile to note are that in 24 of 38
examples the first call to the heuristic already found the
optimal solution and that the L P time dominates all other
times. The latter fact seems to be typical for grid exam-
ples, which the test set R consists of entirely. This phe-
nomenon will become clearer in some of the next tests.

Tables VI and VII show results for the so-called inci-
dence problems obtained from C. Duin. These problems,
described in Duin [12] and Duin and Vol3 [15], are ran-
domly generated and have the following sizes: There are
four sizes of the node set v := |V| = 80, 160, 320, and
640; for each of them, 20 variants are generated combin-
ing four sizes of the terminal set |T| = log v, Vo, 2V,
and v/4 with five different densities | E| = (3v)/2, v In
v, [v(v — 1)]/2, 2v, and [v(v — 1)]/10, al values are
rounded down to the next integer. Every variant was
drawn five times. The problem names have the pattern
v.tei, wherev = 80, 160, 320, and 640 gives the number
of nodes of the problem, t = 0O, 1, 2, 3 indicates which
of the four alternatives (in the above sequence) of the
sizes for the terminal sets have been chosen, e = 0, 1, 2,
3, 4 stands for the five densities, and i = 1, 2, 3,4, 5
distinguishes the five instances drawn for each variant.
To give an example, problem 160.141 is the first out of
five instances with 160 nodes, [v(v — 1)]/10 = (160-
159)/10 = 2544 edges, and GvO= 0/1600= 12 termi-
nals. For each variant, our algorithm behaves very simi-
larly for the five instances; thus, we show only the first
in Tables VI and VII. The computations for these prob-

$ The optimal values sometimes differ from the one described in
Chopraet a. [ 8], because they did not add the values of variables fixed
by presolve.



SOLVING STEINER TREE PROBLEMS IN GRAPHS TO OPTIMALITY

Integer

Upper bound ---------

Lower bound -+
Rows

Simplex Iterations ------

0 50 100 150 200 250

Fig. 10. es40o.

lems were performed on a Sun Enterprise 3000 at a later
date, using CPLEX Version 5.0 (instead of Version 4.0.9
as for the other computations).

The incidence problems show completely different so-
lution characteristics. One main difference is that our pre-
solve agorithm (neither the default nor complete test)
could not find any significant reductions (note that the
problems were generated with the intention to have diffi-
cult problems for presolve, see Duin [12] and Duin and
Vol [15]). On the other hand, the examples do not show
the same sign of degeneracy and we could fix many vari-
ables in the course of the algorithm by the reduced cost
criterium (see Section 4.5). To tackle the incident prob-
lems, it turned out to be agood ideato restart our branch-
and-cut algorithm from scratch after a certain percentage
of the variables could be fixed. Column R in Tables VI
and V11 shows the number of restarts performed and Col-
umns 5-7 give, instead of the sizes of the presolved
problems (which are ailmost always identical to the origi-
nal sizes), the sizes of the problems after the last restart.
We see that with this idea of iterative restarts sometimes
a significant amount of variables can be fixed, especially
if the number of terminals is small (for instance, the
number of edges of 640.021 can be reduced by 97%).
We are able to solve all problems on 80 and 160 nodes.
However, we have difficulties to solve some of the larger
instances. There are problems like 320.311 or 640.141
that we even cannot solvewithin 1 day. Table V11 presents
the results, where we used a unique time limit of 10,000
seconds for the difficult instances. Within this time limit,
we can give a solution guarantee of at least 4.2% for al
incidence problems.

What one would like to have at this point is a compari-
son with other codes. However, thisis very difficult. Peo-
ple have different machines with different storage spaces,
use different packages for the solution of subproblems
like linear programs, and so on. We refrain from giving
a comparison here. The interested reader may refer to
Beasley [5], Chopra et al. [8], Duin [12], or Lucena
[31], who developed comparable codes for the Steiner
tree problem in graphs.

TABLE lll. Examples of Francois Margot and complete instances

Solutions

Time

Root LP

B&C

Presolved

Original

uB

LB

Heu(1)

Tot

LP

V| [E| | T| V] |E| |T| Nod Iter Cuts Frac Rows NZ Pre Heu

Name

10.9
739.5

2.0
774

12
143.8

6.7
513.3

0.2

2957
16,538
14,482

84,180

588
989
792
2193

832
5501
1806
2518
1065
1262

38
232

101

280
669
489

1204

193
149
120

213

760
11,175

400
150

120

mcll

11,689.0 11,689

11,722

oN
(o))

91.1

95

14

361
283
575

57
11

80
60
45
123
129

80

mcl3
mc2
mc3
mc7

mc8

—
~

71.0

137.2
674.1
1

975 27.7 105
209.0

450.0

0.6

60
72
21

7140

4656

N~
<

46.1
3417.0

13.2

0.4
0.2

11

97
277

248

45
170
188

97

3417

18 32 4.6 3486

27

8.7
14.8

6054
4190

883

780

0
79

455

760
760

1565.5 1566

1570

22.6

4.0

0.2

33

364

1044
13,655
122,467

1044.0

13,655.0
122,467.0

1048
13,666
123,076

0.4
0.4

0.1 0.1
329.9

0.0
0.0
321

1481 0.1

152

159

13
15
41

15
10
137

147
113
3114

48

16
25
174

1326
1653

221,445

52
58
666

berlin
br

0.1

0.1
86.3

0.1
161.9

902

58,769

88
1930

97

3143

39
599

46.4

0

ar
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TABLE IV. Continued

Solutions

Time

Root LP

B&C

Presolved

Original

UB

LB

Heu(1)

Tot

LP

Nz

V| |E| |T| V] E| | T| Nod Iter Cuts Frac Rows

Name
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QO O N n NN O
[ <)
GEESEIIBEINE
oW~

O N~ © AN N M D
BE8IIIETHR KIS
Q

[Te)
SSRRRBB8B82RLS

100 180
100 180
100 180
100 180
100 180
100 180
100 180
100 180
100 180
200 370
200 370
200 370
200 370

p621
p622
p623
p624
p625
p626
p627
p628
p629
p630
p631
p632
p633

Tables VIII-X give computational results on real-
world VLSI instances. One of the challenging problems
in the design of electronic circuitsis the routing problem,
which is, roughly speaking, the task to connect terminal
sets via wires on a predefined area. Depending on the
underlying technology and the design rules, subproblems
arise that can be formulated as the problem of packing
Steiner treesin certain graphs (see Lengauer [ 30] for an
excellent treatment of this subject). The problemsthat we
are going to consider result from seven different circuits
described in Junger et al. [27]. The underlying graphs
are grid graphs that contain holes. The holes result from
so-called cells that block certain areas of the grid. The
sets of terminals are located on the border of these holes.
For each of the seven circuits and for each termina set
T, (where index i runs from 1 to the number of terminal
sets of the circuit), we constructed an instance of the
Steiner tree problem. For the graph G, we have chosen the
underlying grid graph restricted to the minimal enclosing
rectangle of the terminal set. The distance of two neigh-
bored grid pointsin horizontal and vertical directions dif-
fer for these circuits. This results in different edge costs
for horizontal and vertical edgesin G.

Inthelibrary SeinLib, we put all instances with termi-
nal sets whose cardindity is at least 10 (in total 475).
The exampl es are distinguished by the name of the circuit
followed by the index of the terminal set. For example,
msm1234 means that the instance is defined by terminal
set 1234 of circuit msm. As test problems for our algo-
rithm, we chose for each circuit all instances whose two
leading nonzeros of the index of the terminal set differ
from the two leading nonzeros of al other indices. If
there are more than one index with the same two leading
nonzeros, we chose the instance with the smallest index
(for instance, among examples msm3727, msm3731,
msm3761, and msm3786, we chose msm3727). In addi-
tion, we added an instance with the smallest and largest
number of terminals for each circuit. This way we ob-
tained 116 different VLSI test instances.

The success of our branch-and-cut algorithm is shown
in Tables VII1-X. We solve 83 out of the 116 instancesto
optimality within 10,000 seconds and provide a solution
guarantee [ (upper bound — lower bound)/lower bound]
of less than 10% for 85% of the examples. The biggest
with respect to number of terminals that we solve within
the time limit are alue5067 and alue6735 with 68 termi-
nals each. The biggest in size of the number of edges is
msm3727 with over 8000 edges. However, there are also
smaller instances, for example, diw0795 with 10 termi-
nals or msm2601 with less than 5000 variables after pre-
solve, that we do not solve within the time limit. All
runs were performed with the default strategy (except for
diw0234 and alut2625); in particular, we applied Algo-
rithm 3.2 to reduce the problem and did not perform a
complete reduction test (see Section 3). If thereisno time



KOCH AND MARTIN

oce L'6T2 €ee ¥'€9 5% 0'8s 90 10 91Z8 989 STE 598T oL T 6T S8y 95g 6T 105 0/2 S
FASTA 6TSC 95z 98T 02 19T €0 TO 6.8v 19 v/ ¥9TT a5 T IT €L 9/T A ¥9€ 96T i
gse 0'ssz 85z YT ST veT 20 10 229y z8y 0 8.0T oy T 9T gee 6.T 9T 29 G6T vl
€sT £2sT ST 90 TO €0 00 00 g5zt 88T v 122 IT T ST 12T 69 ST i’ 18 tag]
vee zeze vee 12 S0 €T 10 00 vise 2le €0T vy ve T (04 6vC GeT (074 €9z T i
GST ST GsT S0 TO €0 00 00 LT0T 99T 6 812z 4 T ot 16 vs ot 2T ¥9 o!
99T 0991 99T S0 20 20 00 00 ISTT 68T 0 vTZ 8T T 4 0T oL vT 08T 00T 6l
99T §'S9T 99T 90 1O €0 00 00 88T 0z 9 0sz 8T T 4 orT 7] vT 08T 00T 8l
06 006 06 20 00 10 00 00 Z€s S6 0 00T ST T 8 19 ve 8 v8 6 L€l
16T 6'0ST 65T L'6T A4 8'9T 0 00 1¥0S 25 682 1211 0sS T 8T ey 8z 8T 6t orz gel
e 0Te /S2 8'69 a4 L9 90 TO0 v8v8 669 0 ¥T6T 29 T 6T z6v 652 6T 1S 2z vel
892 1292 892 6¢ 90 0z 10 00 A 1S€E 2T viv og T 8T e zeT 8T e zeT gl
€Te T2IE STE ST 8T €T €0 00 €0€S s v6e 690T 114 T 6T o€ z6T 6T T6E (0] x4 zel
652 ¥'852 192 6T 0 €T 10 00 S/€2 €z 11T STy 4 T vT (o] x4 9TT vT /€2 0T 1€
orT 00TT oTT TO 00 00 00 00 29z IS 0 69 ra T 4 og 6T ras Sy 8z og!
002 0002 002 10 00 00 00 00 L€ ot 0 ot v T € 8 9 € ztT 6 62!
vz otz vz 00 00 00 00 00 8 €T 0 €T S T v vT 6 v IT zT gzl
eeT 0'€eT €eT 10 00 00 00 00 9z 8 0 8 v T € 6 9 v ve 9T 12
0e 00e og 00 00 00 00 00 e 4 0 zT S T 14 zT 8 v vz 9T el
59 0's9 59 10 00 00 00 00 €z L 0 L € T € ot L v ve 9T gzl
€9 0€9 €9 00 00 00 00 00 Iz 8 0 8 v T € ot L 14 vz 9T zel
26T 0261 26T 00 00 00 00 00 v (04 0 (04 v T S 9T 1T S 4 ST rd]
88T €81 06T o€ 80 6T TO TO 909z e zsT 16t og T T €0€ z9T vT (0] 89T 6T!
vov 0oV 90V 12 S0 S0 90 00 2LTe vy 0 Ll 4 T s v9e 9sT 29 €€ z8T 8T
002 0002 002 z0 TO T0 00 00 s 10T 0 90T IT T otT 09 ve 0T z8 8y LTd
8yT €vT 0SsT 80 20 ¥0 10 00 19ST vez ve €12 (04 T vT 59T 68 vT 08T 00T ST
092 0092 092 00 00 00 00 00 Fi4 vT 0 vT r4 T 9 vT 0T zT 09 o vTd
0sT 0°0ST 0sT 20 10 10 00 00 SO 26 0 50T €T T 6 s z€ 6 17 ra €Tl
08T 0°08T 08T TO 00 T0 00 00 €12 a5 0 €L €T T 6 9 2 6 v 1z zu
T 0vrT T 10 00 00 00 00 orT € 0 € L T 9 se 14 9 6 (03 s
LT 0°2LT LT TO 00 T0 00 00 962 95 0 85 ra T 9 54 4 9 09 9 ot
) 09T voT 00 00 00 00 00 S IT 0 IT € T L vT ot L 44 ST 601
9ez 09€z 9ez TO 00 00 00 00 90T Ge 0 € S T 4 2 9T ra € vz 804
8ve 08z T4 10 00 00 00 00 g8T 8y 0 S ot T 4 62 6T ra 6 oe 104
T4 05z 85z 90 TO €0 00 00 F4 10} SvT 0 602 €z T 8 06 (4 8 2T ¥9 0!
oz 0'9€z /€2 10 00 00 00 00 orz 0s 0 09 r4 T L z€ 6T L % 8z €04
¥9T 09T ¥oT 00 00 00 00 00 8T 9 0 9 z T € S 14 9 IT zT 20!
/8T 0281 /8T 00 00 00 00 00 1L 6T 0 (04 L T S T 1T 5 44 ST 10!
an a1 (T)neH 0L dos dl reH ad ZN smoy Jeid sIND Rl poN [L] Ell Al [L] El Al aueN
suonnjos awil d7 1004 o®d PaA|0saId uibLo

222

moy)H pue dnynos jo 18s 1s9] ‘A 319VL



223

SOLVING STEINER TREE PROBLEMS IN GRAPHS TO OPTIMALITY

Tees 6.28 8548 /0055 5062 072T2'05 zee T/T'9vE S8vT 966 /€82 €T 0 ov ¥vsg 09T ov sz 09T e 09T
¥TY'0T 0¥Ir'oT 028'0T 8T 80 0 TO v126 999 0 9T T 0 ov oze 091 ov oze 091 TEE'09T
9/8/ v T.8L €06/ ¥'6562 6'6.TT 6'€T9T TS v6.'262'T 908g SZTT 09T 6 0 ov 0eL'eT 09T ov 0eL'eT 09T 12091
GET6 6'€806 0TS6 6289 ¥'Z8 0095 97 869'01 SS0T are 95e SC 0 ov 218 091 ov 218 091 TTE09T
9T8'TT 0918'TT 606'TT TT €0 €0 00 9/9¢ Sey 0 1T T 0 ov ore 09T ov ore 09T TOES'09T
9805 L¥€0G 9815 9'800'T2 029TT 9'9GT'6T 18 628'zee 69T 1€l 2081 12T 0 ¥z ¥vse 09T <4 sz 091 T2 09T
2999 02999 0789 €z L0 €T T0 1169 16V 0 ve T 0 vz oze 09T vz oze 09T TEZ'09T
62Ly 9'82.Y 62y 1688 z'see SYS z9 S0€E‘66Y 8697 8Tl 86L T S 74 08e2 09T <4 02L2T 09T 122'09T
€855 €075 SE.S SEYTT 9vL 8'Z€0T z1 802'Sty 98/ e ol¥ ST 0 74 218 091 74 z18 091 TTZ'09T
£269 06069 ITTL 6T 90 90 TO 098¢ z5e 0 vz S 0 vz ore 09T <4 ore 09T T0Z'09T
6752 0'6v52 6752 8y GGl v'se 0 8vZ'/2 v.9 0 T4 T 14 zT 985 GeET zr vse 09T YT 09T
95ee 0'95€€ 95ee €T S0 0 00 LTVT 09T 0 (54 T T zT v.T STT zT oze 09T TET'09T
€962 0€9e2 €962 0808 912 8185 8¢ £€9'08 ¥6ET 0 JAras T 9 4 26 091 zr 022t 091 T2T09T
6982 06982 650 S zT 60 00 9665 s62 0 €5 T T zT 8.2 8eT zT z18 09T TTT'09T
6582 0'658€ 658¢ 80 ¥0 z0 00 656 96T 0 z€ T T zT GeT S0T 4 ove 09T TOT09T
v6vT 06T ZrsT €62 ¥'ST 9zt 0 T.7'05 161 0 S6T T T L 0T8T 09T L sz 09T T0'09T
0.12 0012 0/12 S0 z0 z0 00 SPS 26 0 ve T T L 2zt 16 L oze 091 T€0°09T
Z5ET 028eT 256t ¥'€s 0TZ 562 z0 Si'9zT ¥EST 0 9T T T L 6707 09T L 02L'CT 09T T20°09T
119T 02291 PITA 97T 80 S0 00 zs5e 9T 0 99 T z L €61 0Tt L 218 091 TT0'09T
0672 006t 96172 90 Z0 Z0 00 9zL 74 0 8e T T L €T 16 L ore 09T T00°09T
ggzy T'seTy aTEY Te €T 97 00 008‘08 ¥99 56 0e T 0 (074 z€9 08 (014 z€9 08 08
9225 S02S T2ES LT z0 80 00 T09 T0E 0 ford S 0 (074 091 08 (074 09T 08 TEE'08
43 02e6E ze6¢ 862 LT 50T S0 Svz'le L€0T 0 vee T € (0r4 [3:7 08 (014 091€ 08 1208
14 0°€S5k 80LY 98 €T 0L 00 2S6'ST vey 10T 8e T 0 (074 0se 08 (074 0se 08 TT€°08
6TSS 06155 0€55 z0 10 00 00 850T ¥ST 0 6 T 0 (0r4 0et 08 (014 0zt 08 1008
8ege T/87E TSGE T'260T 8'85 0626 60 SE6'LY 6617 s0e €16 STT 0 9T 2€9 08 9T 2€9 08 208
vaey 0vSey 9SiY ¥0 Zo0 TO 00 9e92 v9z 0 8T T 0 9T 09T 08 ] 09T 08 1208
85TE 0'85TE 85Te T2 T2l 88 z0 9850 681T 0 10T T z aT STOT 08 9T 091€ 08 12208
Te9E 0TE9E 85/€ €z 90 ST 00 £66'€T 861 0 €e T 0 9T 0se 08 9T 0se 08 17208
0oLt 009.¥ 298y €0 T0 TO0 00 88ET 8.1 0 4 T 0 9T 0zt 08 9T 0zt 08 T02'08
88/T 0'88.T /78T se ST LT T0 v we 0 10T T z 8 e1x4 Sl 8 z€9 08 108
822 0822 ¥822 ¥0 Z0 TO 00 £99T 202 0 9e T 0 8 09T 08 8 09T 08 TET'08
ToST 0T9ST T9ST S/ ve r'e T0 0€.'68 188 0 S8 T T 8 685 08 8 09T€ 08 12108
1502 ¥'s202 1502 0¥ 80 €2z TO 1186 66€ 0 €9 € 0 8 0se 08 8 0se 08 TTT°08
8092 08092 8092 10 TO0 00 00 129 €01 0 ST T 0 8 0zt 08 8 0zt 08 TOT'08
9/21 09.2T 6/2T S 0T €T 00 1286 ¥9e 0 20T T T 9 20e 6. 9 z€9 08 7008
0/ST 0'0/ST 0/ST z0 TO0 00 00 228 00T 0 8T T 0 9 091 08 9 09T 08 T€0°08
S/TT 01T S/TT S'S 8z 14 00 1ST'9C 209 0 88 T T 9 8ty 08 9 09T€ 08 12008
6L¥T Z8LT F4: 141 80 €0 €0 00 STZE 16T 92 9g T T 9 S6T ) 9 0se 08 11008
/8.1 0287 /8.1 z0 00 TO 00 159 86 0 ST T 0 9 0zt 08 9 0zt 08 10008

an a7 (T)neH 101 des dl H ZN smoy Jeid 1 N S| [L] | [Al [L] E] A aweN

suonnjos awi] d1 1004 ow®d azs feuld ruIbLO

uing "D Jo 091 pue 08 19s 1S9l ‘IA 19Vl



KOCH AND MARTIN

224

€0E'ZE  9OV8'TE €087 CTEEOT  vL69C  L'69VL 065 T28'9/T'.  980°.T  ¥Se¢ €9 T 0 09T  968°0F 09 09T 9680V o9 Treov9
96L'Zy  LvSley  TILYY  6L18E 62.0T €122 z6L 061'8TT 6022 8/9 105 6§ 0 09T  08ZT o9 09T 0821 or9  TESOV
/S/'TE Ov6S'0E  /SLTE T'8S00T  S¥.T6  T'8SE TO/T  00T'Z..Y 8019 0 oc T 0 09T O08y¥OZz OY9 09T  08F'v0C OV  TZE0V9
296'9€  6'9S2'GE  90L.€  TBE00T  SLIFT  Gvees Sov 8TI'e6T 4 T V8T € 0 09T  SETY 09 09T  SEIY or9  TIEOV
S00'sy  0'G00'Sk  YOT'9v  €2ST €0z L'ST Ly 86075 1902 0 [ T 0 09T 0% o9 09T 09 or9  TOSOv9
8ee'0T  09ST0T  98€'0T  920T'0T  200SZ  ZivSl v'ee 866'769°C  88v'0T  800T  6€T T 0 0S 968°0% o9 05 968°0% or9  TrZov9
¥T0'ST  8v/6'YT  TOZ'ST  T'+08 9'€0T 1129 i/ 0LL'sy 10T 9Ty S8T €z 0 oS 08zT o9 05 08ZT or9  TEZTOV9
9/86 ¥'2vs6 9/86 96T20T  £9596  §2./¢ 088 152¢'1¥6'C  LTSE s 0s T 0 0S 08y'¥0z  OF9  0S 0sv'¥0z  Ov9  T2Z0v9
16221  8€6LTT  V¥ILZT  12000T 2069 21626 €L 128'162 9v/€ 6VIT Gt T 0 0S GETY o9 0§ GETY o9  TIZ0W9
6/0'9T  0'8/09T  /6L'9T  €1I€ TOT LTT L0 0T9'se 9TST 0 6c € 0 0S 096 o9 05 096 o9  TOZOV9
1¥2S 6TYTS 10€S 76S0°0T  €72erE  €£8/€9 162 9/0'9eS'T  TOV9 602 0€z € 0 968°0% o9 Gz 968'0% or9  TYT'OY9
1608 02608 6T€8 9'8Z ST 9€T ¥0 {2 9/G 0 9. T T sz LTS /8¢ S¢ 08zt o9 TETOV9
906Y iy 9061 9'8ST0T  80TL6  S60C 8t 802'zel'c  09€z 9e 65 T 0 08v'v0z  Or9 G2 0sv'v0z  Ov9  TZT'OV9
1919 76,09 ST¥9 G§//9'€T  9G89T  8LESTT 012 2/S'eeT voze 1.8 G6T € 0 S GETY o9 &2 SETY o9  TITOV9
¥9/8 098 506 XA z8 0T ¥0 8T¥8 or9 0 19 T T sz SIS 8 G2 096 or9  TOT'OY9
1681 £'968T SP6T 6122 €28/ T T2 59G°0T LEV 14 908 T L 6 ove T 6 968°0% or9  TYOOv9
8/2¢ 082¢ 8/2¢ 59 o€ 8T Z0 0€ET 102 0 96 T z 6 vse 60c 6 08zt or9  TEOOV9
6.1 0'6v.LT 67.T 600'TT  ¥'6989  §'8SEV S€z 991'€e9c  vEZ8 0 818 T € 6 GT2S o9 6 0sy'¥0z  Ov9  T200v9
2662 02652 26€2 88T €9 €2z Z0 €18 6TT 0 121 T € 6 16 St 6 SETY o9  TIOO0W9
{33014 0°'€E0r €8Ty A 0T 50 00 1.S 10T 0 15 T T 6 ¥S 33 6 096 or9  TOO'OV9
v/€'9T  €0ST'9T  €9v'9T  ST20'0T 6960  2'S8/8 €L G/T'029'T 6729 €96T 90T € 0 08 802°0T oce 08 802'0T 0z Tveoze
/16T L09¥'Te  1S€22 1992 6 T'6GT 02 5202 9021 0 2t € 0 08 0v9 o0ce 08 or9 0ze  TEL0ZE
T/L'ST  9609'GT  €98'ST  6'89€'0T  Z2L6Y  9°€ZES 568 262°TIE Y v66L 81T 8 T 0 08 Ov0'TS oce 08 0v0'TS 0ze  Teeoze
Sv6'.T  6vPL'.T  E¥8'ST  9'900°0T  9'88/T  OVSLL 192 89G'c8 8LLT €05 01T 16 0 08 SP8T oce 08 SP8T oz TIEO0ZE
6/2'cc  06/2'cc  699'€C €€l 6 TZ €0 /€0'6T /90T 0 6T T 0 08 01514 oce 08 08y 0z TOS0ZE
120L 5869 v1zL 12000T /8T ¥68€8 €8 ¥96'G98 9G.Y €00T  t¥E ST 0 & 802°0T oce e 802'0T (074 B R A4
2986 8'5586 820'0T  S6E €8 vee €0 S50'eC 26 zL 4 L 0 e 0v9 oce e or9 o0ze  TETOZE
6299 0999 1699 ¥6I00T  O0V09  L'9v8E 069 1€8'986'c  ¥IZ0T 192 29 T z e 92.'sT oce e 0v0'TS 0ce  Tezoze
6£08 8286/ 9/¥8 9v/28 v'2z6 laran 66 €62'LTT 6281 /TS vseT ey 0 vE SP8T oce e SP8T oce  TIZOZE
¥#0'0T  O¥¥0'0T  S/20T 0 62 €T z0 G6GL 80L 0 €e T 0 & 01514 o0ce e o8y 0z€  TOZ0ZE
909g 6'/95¢ T0/E 66ST0T 29T  9'8818 Tl 08e'2€9 £662 €8T €8 Sy 0 T 802°0T oce LT 802'0T 0z TYTOZE
§52S 09525 €565 VL g€ 9€ T0 00€'TT 0LL 0 St T 0 T 0v9 oce LT or9 0z TETOZE
Teee 0°TZEE Teee £'565¢2 0606T  97T29 LT G6E'8TZ 6792 0 STIT T 8 T avoz oce LT 0v0'TS 0ze  TeTOZE
elzy v'esey Sevy 5902 k44 8'6vT L0 W'y S/TT 9Tl 89T L 0 T SP8T oce LT SP8T oz TITOZE
8755 0°8vSS 875G LT 60 €0 00 /€0T 06T 0 9e T T T 06T 09T /T 08y 0z TOTOZE
10T 0°20.T 0S.T 9vEY 652 528t a4 oTov 652 0 S68 T 8 8 S/T 8L ] 802'0T 0ze  TvO'0ZE
€192 00992 60/2 S0t TE 8s T0 9/16 285 0 6 € 0 8 0v9 oce 8 or9 0z TE00ZE
£5GT 0°€SST ¥95T 020TT 1659 607 a4 V' T8G 8/Ge 0 €Sk T € 8 1222 oce 8 0v0'TS 0z T200ZE
€502 S'6v02 1502 S5z 00T 6€T €0 ¥8IY sz 0 2z € v 8 17 88 8 SP8T o0z TIO0ZE
2192 072,92 2192 €T L0 €0 T0 €16 €51 0 15 T T 8 v.T Wl 8 o8y 0z TO0'0ZE

an a1 (T)neH 101 des dl H ZN smoy Jeid 1 N S| [L1] Ell [Al [L] El N aweN

suonnjos awiy d1 1004 ow®d azs feuld feuBLo

uing "9 Jo 09 pue oge 19s 1sal IIA 319Vl



225

SOLVING STEINER TREE PROBLEMS IN GRAPHS TO OPTIMALITY

"USAIB Sem 11| SWN oU pue pasn sem 1591 Uononpal 939 |dwod ayy Teys 1deoxe Bumes sepwesed 1meep syl Yiim pawlopad sem uni siyJ .

995 0995 995 ¥6T 98 €6 0T 10 60L1 89 0 86 7 T ot verT 029 ot 62T 111 8/60be)
(074 0012 (0] x4 FA) TO 00 00 00 TSP 6 0 66 ra 1 €T 50T ) /T 6T zeT 0z60ber
0.& 00.€ 0.& vz 0T 0T 10 00 9952 9/€ 0 62t 62 T ST Ly T4 IT v1s o1 oTe0be)
29TS  €0TSy 8025 9¥8y'0T  L09 8'5596 021z 69 8€T'99  28S. €65 ZT9'ET 29 T 0ST 1066 2595 OST  06V'0T  £9T9 £060be1
6TE S'81e 6TE SL 44 Sy ¥0 10 ISP €Ly 08T 29 z8 T ot 9.v 692 ot 095 %35 T6800R)
66 2’856 256 8915 viz T98Y €2 z0 €65'9T  2/9T €6. L9V 86 T 9T €991 St6 9T T6.T TS0T 1520081
8 ©'or8 598 9'90v 58T 9'G8¢g LT 10 L/8'€T  OTeT €l 98TE 60T T 9T STTT 9e9 9T L12T ziL Tv200e)
88 T/¥8 658 8092 902 ¥'80 60€ FA) L/2'€T  8TIET S5 0682 16 € 9T 29T €Ll 9T 8evT /€8 620081
185 5085 65 662 09 1€z ¥0 10 rasThg 29 TIE YITT 09 T ot z8L Sl ot 2€6 609 TE90bR)
168 1968 /€6 1'855 6'.€ T91S o€ €0 G/6'ST  ¥9ST 8L 1€9€ 6T T €T SvLT 566 €T S06T 82TT TEPObR!
G9S9  S0F9S 6599 €TZr'oT 2689 £Tov6 T9SZ L8 20S'v.  S606 Iy  9e6'ST 95 T 9T TOE'TT  E£19 9T GIZ'TT  9€89 L/€0be)
¥I6T  Z6IST  T/6T €€20'0T 9'€99 8'9626 T9S  t'e 6,0'vS  LT6V 9g0z  8S6'0T  0SE T 44 1899 0e8e 44 v20L 98Ty S9g0be)
129 0T29 €29 269 SL Z09 60 10 V6L 88 0 169T v6 1 1T €8 105 1T £96 2ls £zoobe)
S €889%  €ISS 29S0T VYTL 2'8/56 zoez 9L LTV'69 2628 029 96T'YT 89 T 82T €9S5'0T 6209 82T  9OYO'TT  99v9 ¥Toobe)
65cy 89982  T.iZv 06ET'0T EVELT  ¥'6918 620 082 608'€6  TLT'OT  20S¢ 9G.'ST  9ST T /€ €62'7c  ¥e9TT L€ v8E'TC  6WLTT  0Z8omIp
OSVE  8'8She L9vE 6/92'0T S92Vl 671898 0€eT S22 99, €26. gTez  169'CT  OFT T ze W6'6T  IWY'OT  2E 9900 £SG0T  6TSOMIP
/8ST  €825T  86ST 9'960'0T  8'%ZE 9'6896 z8l 67T 2.S'1S 165V GI8T 6166 69 T ot 00vS 1882 oT G185 €208 TOSOMIP
€66T  L'SSYT  v8ST 8v/00T O0€EE  SSI/6 6712 TC 165/ 02y 29/T €666 86z T ot 2615 T0TE ot 8E65 Tz S6.0MIP
99Sy  £'8STE  88SY TLT'OT 129/ TTIIL 0gsc €82 99€78  66Y6 6z  TvE'ST T T 0S 66€2C STLTT  0S 9162 TZ8TT  6L.0MIp
€/TZ  €008T 1612 L'SET'0T  6'920T  S'STO6 S6L 10T 7€9'69 5899 /98T 8z¥'2T 002 T vz 629'CT  SKTL ve IZLET €L 82/0MIp
0/ST  6°€/ET  8/ST 00/0'0T 9/€r  ¥'6856 98 8¢ /1SS0S v8vY T0ST  SYT'TT 22 1 8T £889 1298 sT £T0L 8ele 6550MIP
v.i€ 0v.E Vi€ A4 0T 60 TO 00 €561 vee 0 68€ i T ot ¥6E zez ot Sov 982 ovSOMIp
195 1095 195 1881 672 5'9GT €g €0 €8eyT €997 €9 veTZ 92 1 ot £V6T S20T oT STOZ 080T £250MIp
¥09 €€09 V19 v'62T 8'6T T°90T 12 z0 T9P'ZT  6SKT 19 YA ST T 0T T29T 198 ot 89T 816 £TSOMIP
919 §'ST9 929 L0y LE€T L'z €e z0 1908 29TT 60T ¥EST veT T ot £09T 68 oT S59T 856 S6vOMIP
veyT  Oveyl  ISVT Lv8L T'99T 8'895 gor 2T 800've  LTIE 0 G625 o T sz gezy v62z 574 98ey YT 18OMIP
860T T'/60T  LOTT 9'898T 62T £'859T vve 1T /SS'SE  T09E T0L 7885 ¢ 1 o4 9voY orTz =74 SETY €Tee £LYOMIP
SPE 0'Sve 8se ze 60 80 TO TO orve 96€ 0 {394 62 T €T €25 962 €T 6.5 6ee 09vOMIp
29T TT9ET  L9€T 9'8298 1'905 €108 020T LT 066'67 2205 gTET  69S'TT 065 T (o4 S£99 9TSe =74 6829 9g9e 65YOMIP
€9€T  €79€T  /8eT 91282 L'9€T 8992 L€z 10 €19'6 9262 090T 1659 6z T € ovee SP.LT €€ TI€E 08T SiOMIp
z0e 020 z0e o€ 60 9T T0 00 z8l2 g8e 0 091 o T 1T €se 6T T T8¢ ze £650MIP
168 1'96€ 16€ T9 Sz 62 0 T0 oeve 00S 17 679 05 T zT 25 x4 vT 228 891 £TEOMIP
89y 089y 89V TS 8T 12 10 T0 T68E 909 0 829 19 T 1T 56 8TS 4> 586 6€S 0920MIp
0se 0°0se 0se TS 8T L2 €0 TO 1888 S0S 0 ¥85 1S T 1T SKG 80€ T 809 £5e 0SZoMIp
966T T'S66T  T00Z 620072 €.TL TYSS'0T 699 €/59'2T  T6V'YS  ETIS szl 826'0T 968 T vz 992/ 958¢ <74 980°0T  6VES YEZOMIP
an a1 (TIneH oL dos dl reH ad ZN smoy  deld Blle) R [L] El Al [L] E]l Al auweN
suonnjos awiL d1 1004 o®d poA|osaId ruibLO

bey pue mp :sajdwexa |STA “lIIA 379VL



KOCH AND MARTIN

226

SeNUNUOd X1 3|deL

06GT  T'68ST ¥€9T L'TT0E Ge€eET  9T98C TV 0T 2.7 182 8evT 1699 S0T T 1€ 9eGe 9667 /€ 208 2€T2 ZsTewsw
65 S'€65 65 ZETIT 06T £06 62C 20 0866 Z8TT i ¥20e otz T 6 oSvT  ¥I8 ot 296T 968 000ZWsW
¥09 8'€09 ¥09 L'SL L'ST 896 ¥4 20  10/8 GeTT 19¢ 02T 88T T 8 T2Vl S6L ot 25T S8 TEBTWSW
88T 088T 16T Z0 T0 10 00 00 €29 eeT 0 erT ST T 0T S6 09 oT GeT 06 YreTWSW
¥95 095 795 6T 80 80 z0 00  S68T €ze 0 6ee Iy T 1T (0744 8ez 1T 8Ly 8.2 L0/TWsw
890T  §/90T 960T 0292 602 67E2 0S €0 JZv'vT  TEIT 25 89/2 98 T e ST6T  ¥.0T 1€ 8/0Z  66TT Ll pTWsw
0SS 6YS 0SS 602T 592 506 0€e 20  88/8 180T ¥6€ 1S8T 9/T T T 8rST G938 €T 2€9T €86 veZTWSW
414 ve6y Y05 6'€C €e 6'6T ¥0 TO0  S955 559 ¥0€ €60T 65 T T 679 19€ T 569 20r 800TWSW
908 0908 128 o 00T Tve ST TO  Ses8 YETT 0 6ELT €5 T 9z 2T €9 9z v9eT 28 0260WsW
¥88 088 88 r'ove 9'Ge 2902 €€ S0  09L€T  809T 0 €162 16 T 9T Tlez 082t 9T 10, ANS 4 4 60.0Wsw
€28 9728 €28 29z LSt 6012 €g ¥0  2Z6¥'ST 0T8T 16G 1€62 1€2 T otT €Tz €917 ot 0/22  062T YSo0WsW
197 0297 01514 8. 97 9s z0 00  989€ AKS) 0 80L I T 1T 651 €12 1T s 8ee 0850Wsw
G9ET  ZTY9ET fraqs 2652, G08T  0€90.  €TT TT 6882y  SCIE 8/ST 6988 16T T IT 068  8ITZ IT JETy  €e€Z  TOSTRXWP
08L L'6LL ¥8L €05 9'GT 6'82 4 €0  S200T  TSET 8€ET 669T 6.T T 8T ov9T €26 8T TELT  SOOT Tz, Texuwp
805 5205 TIS a4 1T 582 8T TO 099 68 162 9/€1 €zt T T Yozt 299 1T 692T 0z 9TGTeXWP
T1e 0TIE zre g€ ST 8T Z0 00  Zl6Z T 0 105 6€ T otT o7 592 otT €05 862 POETRXWP
0G2 967 29. ar 91T ¥ITT ST 20  628'TT  TeeT 90e £V02 69 T 12 r4 3 A YA 12 €8eT 0L 00ZTeXWp
14 05 14 TL 0z 9 €0 TO0  60SE €61 0 82L L€ T /T 205 962 /T 655 £ve 60TTeXWP
88yT  ZLOVT L6VT T6I00T 698, 0/0T6 68IT T€  8S2er  O6EY 0.8 0ze'0T 218 T ford /189  TelE €z 80T.  €86€  OTOTeXWP
085 Z'6.S 865 80T 6 06 0T TO0 0006 5.6 T LT6T 56 T otr 686 895 0T /80T  2€9 €060eXWP
65 065 009 1'Se 9 T62 S0 TO T2l 28 0 TVET €5 T 9T 68. 4 9T 198 6617 8r80RXWP
905 ¥'505 615 8'c6 0Tl 808 T T0 €08 26 8ze ¥EST TIT T 1T €0TT 129 1T ¥YSIT €99 YEL0BXWP
slz vz 112 92 90 LT TO 00 622 61¢ zeT (00,4 L€ T otT 6v7C 124" otr 08z 69T 8z90eXWp
¥16 9'€T6 796 1065 8L 005 56 10 6vT'ZZ €l 08L 89Ty S6T T 9T SoTE  LYIT 9T 98Z€  8¥8T  ¥Shoexwp
/TOT  T'9T0T T20T 0.2t €¥ET  G02IT  L'9T 60  ¥SZ've  S8lC 9T0T  SS6V X4 T 8T 8GGE  2vel 8T 9/9¢ 0G0  89g0eXWp
e Seve 67 S 80 €T 10 00  /TZ2 6vE sls sey ov T zr z€ee 26T zr 98¢ €ez 96Z0BXWP
an a1 (T)eH 101 des d1 neH ald ZN smoy Jeid4 Site] o poN [L] E] IAl [L] El IA aweN
suonnjos awiy d1 1004 ow®4 panjosad [=I]s]Ve)

wsw pue xwp :saidwexs |STA “XI I1gVL



227

SOLVING STEINER TREE PROBLEMS IN GRAPHS TO OPTIMALITY

0€9 ¥'629 or9 ¥'99T 8'sT v'8yT vT 20  002'TT  8eeT €St S.T2Z €6 T €T 90eT  ¥EL €T 8SET UL STSPWSW
80 907 80v A4 10 €T TO 00  606T 9ze 62T oz ze T 1T 59€ sz 1T 9y ITE PTypwsw
6Y0c  Z'¥89T S502 ¥6T0'0T  T6.9 €9826  V¥'Sv 0S  88'8S 895 6T 0LE'0T  T.E T ot ¥Yov8 008y ot €688 18IS ZIEPUWsw
TIE 80TE STE 9 90 8T TO 00 8102 €T vET LTy 8 T T 852 95T 1T 0 16T vezywsw
T8¢ L°08E T8¢ L8 TC 09 €0 T0  IShY 985 602 €9/ 6 T 9T 209 ore 9T 999 T6€ 06THWSW
€6¢ z'z6E €6€ 69 12 9€ €0 TO  v1I9¢ 0TS 62 ¥89 {34 T 9T 529 zse 9T 069 20v PTTYWSW
€se v'zae €se 6'c €T €e 20 00  295¢ 99 2T STS 65 T 1T €1 18T 1T 06€ l€2 SEOVLLSW
T/ST  9VBEl 2191 0001 2629  OV/E6 €09 S  6S0%Y vy vy ZT9TT  €€S T 4 1889  S68E zT sszL. T 628EUWSW
9/€T  09L€T 90vT 6'S99. L)T6  L'9¥99  8'€6 vy vov'sy  L08p 0 G9S'0T  8SP T 12 886,  T6EV 12 G528 Ovov Lz/ewsw
109 8'909 219 156 6'ST 99/ LT 20 0208 6£0T P43 ZvseT szt T otT J9T €08 0T ¥SST 156 9/9gUWsW
698 ¥'898 698 6719 L'TL 0'2es v'6 90  9zv'6T  861C 0se 18/€ 192 T 4 Z€8C  ¥9ST T 1662  YOLT L/Zewsw
IE  L'€0TE 80ze ¥'892'0T 0T0S  ¥'8996  6T6 7T  vel'ss  seev 1652  8seTT  TIT T 68 /€95 OvIE 68 €8/G  €92¢ 9p8ZUWSW
926 0926 96 v'szy 10L €IvE 18 90  920'/T  €vO2 0 299€ 1T T 8T v08Z  /9ST 8T €962 60T Z0szWsw
vIL 0¥TL 0L 8'0.& €€ 8'8z¢ S€ ¥0  08p'ST  289T 0 562 vIT T €T 1862 S62T €T 85bZ  6GET S0/ZWsW
orbT  9'EOVT vIVT SE0'0T  €TIE €906  TTC 8T 88Ty  2IlE 06ST 8286 v8e T 9T 628y  TT.C 9T 00TS 1962 TO9ZWSW
062T  T'682T €0€T 5'988T 966z G8T9T €82 0Z 9557  6S.E 06TT  S829 YO T 4 €S6v  08.2 zT 625 TE0E SZszuwsw
6SPT  2'82vT 09vT 0200'0T V5.  89/16  6%€9 ze  Tee'sy  9esy €/TT  O08STT 189 T 4 ST89  ZIsE zt v60L  SvOp Z6hzwsw
66€ 0'66¢ vov L9 92 g€ €0 TO  vee 625 0 119 se T vT 289 €8¢ vT €zl 8Ty 9zezWsW
an a1 (T)eH 101 des d1 neH ad ZN smoy Jeid Sie) Bl poN [L] Ell Al [L] Ell N aueN
suonnjos awiL d7 1004 owg peA|oseid rubLO

panunuo) “X| 3719vL



KOCH AND MARTIN

228

‘padd s sem ('€ wiyroB|y Jo () dois) 1501

-B0UeISIP-feuIWLR) BY) pue (G S 1rejp) suoireell 05 Ae pa|jed sem oisuney fewid 8y ssbueyo Jewpwered BuIMO|0) Yl UM J0LT BPOIN T BN UNS e U0 pauwlioyed sem uni siyl 4
B1Aqebio T uey) alow ale sjuewslinbal Alowsw 8y} ‘SUOIRISHIOM INO JO AUe U0 8JUeISUI SIY) SA|CS 0} 3|ge Uaa( 10U 8/ey SN »

o9 S'6€9 159 59 82 61 €1 TO 6582 ovs ST 065 8. T € 6ES oze ve 929 188 voLZINEe
€9/'9€  O'SYS'6T  €9.'9¢  €6620T L1LT9 8162 Llvee  ve0y  692YTT  166'6T 0L orL'.. 0S5 T 6/8 925'/9 I€T'9€ 6.8 LTT'89  TIL'9E  JScozine
09.2T  6'S269 /6L'TT  00./'0T 09Tey T2zl 80922 O€SIT /86'90T 0SZ¥T GSITE 692.T 65 T Y0z 8079 L02'€E  v0Z  918'79  T06'EE oT9zINe
1218 10062 621E 90S€'0T  S689 96996 G'€8 Ly 1805 £VGS 8062 GEZTT  #OT T 19 978 65LY 89 G506 1205 995zIne
688€ 1'162€ €56€ €002'0T ¥EIOT  S0868 298T L'ST v8Y'EL 856. 868C L60€T 86 T 89 628'9T 288 89 G6G'9T  0.06 ggzzIne
zzee 0'812e £0ve L1'6900T GS69 08026  67ST 0L Z8€'r9 5089 ITIZ  02L'2T  #eT 1 89  ¥E9OT  11/S 89 TT0TT Y019 oToZIne
06€2 01922 29ve ¥0TZ0T  6/v2  OVie6 6€h 67T 02L'€S 2y G9TZ  OVS'0T 66 T 9 T/SG 6762 9 £695 Tr0E T8TTINE
856 v'156 6.6 6902 A1 68T i z0 98T'ZT 2.ET IS veoe 8 T ¥ 9egT 758 e 999T 996 S080I e
286 0286 186 78T L2 6'87T 59 €0 ZeeWT 65T 0 8vsz 0T T ve €202 SOTT ve 6802 09TT /8/0INE
¥28 028 ¥z8 128 50T v.T L€ 20 528 STIT 0 GGET YT T ve  veet 0€L e YLVT ov6 62z/one

— — — — — — — — — — — — — — — — — ¥YWEZ  ¥BY'SS  6LP'VE  L080/8NE
§lzz 629/T §82¢ €0S00T V1.6 9668 VL 69 892G 1295 6V/T  L06'0T 06 T ST 9056 9TsS 9T YSY'0T  SOv9 990/8n[e
/28'YC  ¥68S'TT  [28%C 6TW00T  viave 6822 8269 €920T  Z¥E'6S TSETT  T9ET  9svel 22 T vwS  8ve'eyr  €vZ'6C  wvS 8'%S  9v0'vE  S90/enfe
98€z 098€2 €812 ¥°009T 2061 9G/ET  €T€ v 122'92 08/2 0 0T8s s6 I 19  evse vize 19 6Ty 8182 TS699N[e
9692 09692 gelz 6vTy L'SsZ  S§6E8E  vTv 0€ 2€9'2€ 8207 0 €69L e T 89 1209 T0SE 89 9699 61Ty geL9eNe
290€ £'500€ ETTE €/600T 906  TEV 285 Sz vig'sy  8Svy 19T TOL'0T 0T T 89  €0VS €eze 89 /€19 2€6¢ /Shoen(e
st 0zshe €8re T'E€LSY 8682  ©'686E .88C 6T 9v.'62 08€Ee 19 029. 0zt S 99 205k 10L2 19 €125 zlee 6.T9eNE
¥66< 9'8Ive Zvov €T800T  V¥E€8FT 29268 66T vee 05695 £V 9e8T  ¥WSTT 6 T 89 €5G°9T P16 89 62v'8T  €YS'TT  TO6SeNE
€9ve 18528 60SE 09T20T ZSe€  ¥TII86 €9 ve ooy  TI9Y SovZz  TFZOT  €0T T 89 0009 685€ 89 8669 (A4 €29%enfe
09S¢ 9'8TeE €09€ 9%9Z0T T  ¥126 068 a4 l9/'6 661G €8Sz OW6'0T 92T T 89 202L (Vray 89 G918 6115 Shesene
9852 09852 2292 6'608E 6SYE  TYIvE VvSy 1%4 687 €55¢ 0 1161 0T T 89 618y 0582 89 0955 ¥2se /90Senfe
ovee 0'sTee 0822 0G80'0T €785  L'€0W6  L'/8 €Z 760'8€ 220y TETT 588 € T ¥9 €225 1¥0€ 79 6985 929e opTeaNfe
Ze0T 072€0T 6€0T 189 g€z ¥'8e LS €0 T60'0T 0621 0 ¥18T 8IT T ¥e  OTIST 116 e 8G8T 02zt SoTZene
60T 0'6v0T S90T ¥'28 96T 0€9 82 €0 €80T TLET 0 102 w T ¥€ 0991 296 e TL6T et /80zenfe
STEY £919€ 98ey TT200T 206/ 8S289 92/6 €02 SeV'YS 0065 €0GZ 689TT 02T T YOT  80€LT  TTL6 Y01 €r0'8T  €6£°0T gzreded
0v9 2659 9 6'8.T €61 £9GT €z z0 £80'CT TOST 6/  €9g2 8T T 1T €6ET z6L T 85GT 126 00Tedeb
1Sk €95 69 TSl 12 oA €0 TO0 28y 196 88z 716 & T €T Ges 80€ €T €85 are 9g0edeb
stz o'sve stz 97 S0 80 10 00 7891 112 0 9Te o I ot 192 95T o) €62 6.1 5/62deb
98e 098¢ /8¢ zel 62 96 ¥0 T0 €Ot €09 0 28 99 T zT 11G 8ze zT €59 98¢ 008zdeb
St Syl St 1°€29 06g 685 g €0 8/0'9T ¥29T 967  I¥SE 6vT T vT YE6T 080T vT ¥802 96TT 0Ov2zdeb
et 02T 692T T.18 €09 £8y. L9 90 Y12 6.€2 0 12y s8I 6C 2Lz /SST 62 6162 veLT 6TTedeb
YOTT ¥'€0TT (orans 00Tve 9'€9T Z8v0e  ¥'S6T 60 0s8're 18v2 09 S99 8z L T 69€E 68T T 8yae 6£02 /00zdeb
€9/ 929/ 8lL v'se T8 ¥'ST zT TO SS/L 880T €T G8eT S T T €8TT €19 12 9521 geL Y06Tded
z8v 0z8y 06Y 67 T2 44 €0 T0 €00€ 9Ly 0 009 ge T JA 09 ¥GE /T 20L 62t 0181deb
vse z€se vse 67T L0 L0 z0 00 ST gez Yis ¥82 69 T zT €62 99T T 753 (014 005Tdeb
ISt 0'/St ISt 99T (a4 1T 0 T0 9005 v.9 0 2¢6 9 1 ot S18 Sov o) 906 s ETyTded
675 TS ¥5G 8Y LT ¥4 z0 00 TovE LTS 8TT 929 e I T =14 €82 T 255 e L0€Tdeb

an a7 (T)neH 101 des d1 neH ald ZN SMoY  Jeid Site] Bl poN L] El N [L] E] N aweN

suonnjos awiL d1 1004 owd panjosad feuibuo

1nje pue ‘anje ‘deb :sajdwexa |STA "X J19VL



229

SOLVING STEINER TREE PROBLEMS IN GRAPHS TO OPTIMALITY

ov/'€0E'ZE  O0'9PL'€0E'ZE  60£'Z85ZE 002 92 89T €0 TO 6655 029 0 9szT v T 6T 6y e (04 T4 00zse
v/E€'2790'vE  OVIE'Z90'VE  ©IETIYE  96E 44 e 90 T0  zziL 1.9 0 69/T 19 T (074 09y 8z oz Yoy 2se uozse
€L9'8eV'vE  0'€L9'8EP'vE  €8T'2SSYE 9T 92 2T Y0 T0  2vS €99 0 IT 8 T 6T Wy Te (04 Sy ove wozse
/68 TSY'0E  0/6E'TSK'0E  6ST'TIE'0E  T'Th S 19 S0 TO  +199 259 0 999T 65 T (074 9y TS oz 0y  Ssz [0zse
806'cCT'/Z  0'806'€CT'/Z  660'/€£'72  6TY ZSs vse 20 20  ST99 1¥9 0 29T 08 T (04 96y 992 (04 00S 0.2 Yozse
OvL'v20'vE  O00PL'v20'vE  8802/8%E 612 12 ¥8T  ¥0 TO  TS6S 19 0 geeT 1S T (074 09y 8z oz Yoy 2se lozse
6€6'6€L'9E  0'6E6'6EL'9E  6E6'6EL'9E 62 r'e 9€z SO TO €89 569 0 A AN 4 T (04 828 I8¢ (04 7€ 982 1029
9vE'9T0'8E  O0'9PE'9TO'8E  6ZT6TL'8E  6°€S v g8E 0T TO  2vs9 609 ve SK8T €L € 6T Ger  Sez oz oy ove uyozse
v/8'vE6'vE  OV/8'vE6'vE  9S8'8TY'SE  S8Y 4 9y 90 T0 vl 769 0 T0sT 0L T (04 20s 69 (04 90s €2 Bozse
TZ'vI0'9e  OTPZ'YI0'9Ee  965ZTY'9E  T0Z 9€ ¥ST 90 TO 965 1.9 0 GoET  TL T 6T 66y 192 oz v0s 2z Jozse
€OT'EE0'VE  O'€9T'SE0'VE  9/0'TESYE  T'6S Ly vey ol TO 8589 vzl o 80/T 69 € (04 86y 192 (04 0S5 T2 80zse
Y6E'v29'/Z  OVeE'v29'/z  189'989'2Z  €£'90T [ 6v. 7t TO /€69 899 zL srz 0Tl S (074 ver S92 oz 867 692 pozse
LTV'Iv8'le  OLTV'iv8'lz /SL'8es'sz 91T T2 L8 0 20  999% 85 0 9TT v T (04 9oy TZe (04 o sz 2029
98r'6€9'2E  0'98K'6E9'ZE  £S8'STZ'EE 8TE S€ €82 S0 TO  +9.9 9T 0 ISST S 1 (04 81S L2 oz @S 182 qozse
988'c0/'EE  0'988'€0L'SE  [BL'EEL'EE  PEE 5% 6/ 90 TO 9269 L€l 0 959T €L T 0z 20s 69 (04 90s €2 ©0Ze
vZ6'Tr9'8T  OVZ6'TV9'ST  v26'Tv9'sT 20 00 10 00 00 /ITv g8 (04 16 4 T L 19 € ot oL % 00Ts®
821'958'TZ  0'82T'9S8'TZ  821'9S8'TZ 20 00 T0 00 00  sge 9. 0 z6 9T T L oy 62 0T s g upTSe
YI6'c8y'6T  OVI6'E8y'6T  VIE'ESY'6T €0 10 10 00 00  TES 11T 0 0cT ST T 6 59 or ot oL % WoTS?
8T€'929'6T  0'8TE'9Z9'6T  SIE'9Z96T €0 T0 00 00 00 TS 0Tt 0 6TT 9T T 6 18 8y ot 98 €5 [0Ts®
GeS'6EC'Z 0'SES'6EC'Z GES'6EC'ZZ S0 T0 €0 00 00  2€9 12T 0 SKT 9z T 0T 8. s ot z8 15 XoTse
G60'9E6'SZ  0'G60'9€6'SZ 8YZ'E0THZ €0 00 T0 00 00 /19 ¥etT 0 €eT €T T 6 7] St ot 08 0S lorse
G5E'290'22  0'SSE'290'2Z GSE'Z90'ZZ ©0 T0 10 00 00 ¥ SeT 0 09T 8T T 6 6. s ot 98 €5 10T
¥12'950'sz 0VT2'9s0'Se  +12'950'se S0 T0 z0 00 00 788 09T 0 66T 12 T ot 98 15 ot 06 ol yorse
2/0'G20'9Z  02/0'620'9Z  2.0'Se0'9 20 10 10 00 00 V5 60T 0 fora vT T 8 €9 8 ot 9. 8y BoTse
89/'0VS'9Z  0'89L'0¥S'9z  TSE'TES'9Z SO z0 €0 00 00 606 /ST 0 602 8z T 6 ) o ot z8 15 J0TS®
9T6'8T8'8T  0'9T6'ST8'ST  9I6'8I8'8T €0 10 10 00 00 88l 8eT 0 8yT 9T T ot 20T 65 ot 90T €9 a0Ts®
9IT'TOF'0z  O0'9TT'TOV'0Z  9TT'TOV'0Z €0 TO0 z0 00 00 689 8zt 0 8Kt r4 T ot 9. o ot 08 0S pOTS®
8/9'€00'9Z  0'8/9'€00'9Z  086'92T'9Z  +0 TO z0 00 00 8L vt 0 | 7A 12 T 0T 26 S oT 96 85 20TSe
YOT'VET'6T  OVOT'YET'6T  VOT'VET'6T 90 TO €0 00 00 €88 SST 0 8Tz Iz T ot €8 0S ot 26 95 goTs®
Sv/'026'22  0'SL'026'C2  L¥L'060'€Z 80 z0 S0 TO 00  060T z8tT 0 £ve 1€ T 0T 06 €5 ot v6 IS BOTS®

an a1 (T)reH 0L dos d1 reH ad ZN smoy Jei Bie) ol PON [L] E]l Al [L] Ell Al aueN

suonn|os awil d1 1004 o®d PoA|0Sa.d euibLo

0Zs® pue QLS S}9s 19} Jedulnody “IX 319V.L



KOCH AND MARTIN

230

/90'828'05  0'/90'828'0S  86C'OVE'TS  Z'/¥88 LTS 0TSs8  8%Z TIT 2oLy S/S2 O ULV 2ee T O /252 O0ST  Ov  ¥8S5¢  LOET  OOYse
ISZ'8vy'ey  T'8ve'vee'sy  892'/96'6k 262001  T96T ¢€6.6 9TZ 99T  SOT'Sy  [J//¢  9I9T  /2T'ZT  S6T T O 2vSz 60ST Oy  9vSe  €TIET uoyse
SYS'Y88'TS  O'SPS'Y88'TS  09S'W/ECS  £'899G ¥v/6T 0CE¥S L8T T8I STy 1882 O 906'0T 69T T O 8/92 LT Oy 289¢ TSET  Wopyse
8/E'EY8'EY  0'BLE'SY8'Ey  TGL'880'Sh  TLiVY L09T Z0Szy ¥8T T9T 9eT'/€ 292 O 2/86 8.T T O l€bZ 95¢T Oy  evve  T92T [ovse
vIZ'veL'oy  OVIZvEL'Oy  8€6'6TL'LY  E£'6788 828T TTE98 ¥6T SET  ¥e6Tr ¢€¥2 O 25621 102 T OF 6622 /8IT Oy  ¥0gC  T6TT Xorse
€0Z'VIV'/G  07T68'T9L'9S  298'06E'8S  2'9900T 96ET T+686 8ST TST  8¥g'er 8.9  88/T  V¥SO'TT  SYT T OF 92z TSCT Oy  OSve  SSeT lotse
68L'T9LTS  T/8S'/SS'TS  69£'658'2G  6T900T GT€Z 9686 vz TST  9IEcyr  [6G2  208T  [S9'YT 822 T OF 08€z 82T Oy  ¥8eC  zeel 10v/59
966'Sv.'8y  ©'999'6EL'8y  €9/'€S6'6  €6200T T89T SS286  £.T  6ST  [ZZOv 9092  €99T  S¥8'ZT 08T T 6 98z ¥SZT  Ov  whve 292l uorse
600'6E9'SY  0'600'6E9'SY  L09'TSS'OF  8'GLTE ¥OIT 62605 .20 62T 886%E 62 O 1816 orT T 6 ¥Sez VIIT Oy  ¥922  2LTT Bovse
€V0'G9L'6Y  9V9S'/EL'6Y  /SS'EE8'6F  €0S0'0T 999 29I96 O0€E 80T €202 e  WWIT  0ZI'ST  6LE T Or €Tz 60IT Oy 8viz VITT lovse
0ZT'9T0'2S  EYYE'Z6E'TS  2/2'90v'eS  66.00T  2L.T  €%986 ¢6T  ¥9T  /I2'8y /28  0S8T  6Er'ZT 661 T OF 80SZ 62T Oy 2ISZ 962  90¥se
v98'68zZ'st  0798'682'9F  TLT'ST9'SY  t'€0S oSyT .668y TST ¥IT 2v8've S8 O ZvO'TT ST T oF vz S2IT Oy 8.1  62TT povse
IST'VI6'6Y  O'/ST'v/6'6Y  98C'VTIY'IS  £9886 295z 92656 S 0TCT  6S8've  vSez O 88T'vT  S¥e T or Ovzz 8SIT Oy  ¥bee 29Tl 20159
OTE'TI8'9Y  OOTE'TI89Y  OvL'v0L'8y  9T6LE 9GeT 8829€ 9T 80T 8T¥'9e 2€€2 O /80°0T  OLT T 6c 18Tz 82IT Oy 98I €€IT  qovse
TS IY8'YY  0'CeS'TY8'Yy  2SP'629'sy  §LZES Z€el SIS €91 TET  vhe'ee  /8€Z O €Tl S8T T 6 Slzz S/IT Oy 2822  ISTT  eOvse
9/S'SE0'Sy  0'9/S'GE0'Sy  €00'WVEVY  6'GT/C 9v. S§Ze9e V'L €0 gev'ze T 0 ¥0.6 €ez T 62  66TT /29 0c Yozl 2E9 00Ese
G20'/68'2y  0'G20'/68'Zy  9ZE'6GT'Sy  Z'60L g'8e ¥'¥99 TS €0 S¥8'0z  809T 02 T/85 veT T 62 T2ET 889 0c  82€T  ¥69 upgse
99’90V /E  0'O9'90V'/E  9/¥'S89E  96TS g'se 8Ly 9v €0 0T99T SZ€T O €9/v 65T T 82  OETT 265 0c  9ETT 865 wogse
0Z.'9T¥'8E  0'02ZL'9TH'8E  928'0ZT'6E 966 6T 88 14 z0 eeT 0T 0 0S/2 1L T 0E  8S0T  8¥S 0  0S0T  SSS [0ese
€66'/V9'TY  0'€66'/V9'Ty  TYE'0S0'Cy  6'8SCT 98y 8'€0ZT TS Z0 8s¢'Te  625T O 6769 60T T 0 82T 699 0  982T €9 Yoese
019'989'zy  0'0T9'989'zy  /86'C€T'€y  8'+ES z6z 5005 (04 Z0 168'8T OLT O GL6Y 12t T 6  T02T 829 0€  902T  €£9 loess
8G'EET'/E  0'8S9'SET'/E  VS6'CT9.E  S//8 244 €928 ¥'S Z0 ary'6T  LIST O 2669 59T T 62 SbeT 059 0 2S¢l 959 10639
ITZ'T69'TY  0LTZ'T69'TYy  952'9/0CF  S'6SET €95 zs62T L9 Z0 /T'0c  8¥eT 0 06€L €12 T 6  60TT 285 0 VITT  /8S yoese
T6E'T9L'Sy  OT6E'TIL'Sy  68S'€TI'Sy  £09YT TS 8TOVT 09 20 9%8'Tc T6YT O T€0L 08T T 62  9/2T S99 0 Z8ZT  T.9 Boese
6ET'SS6'6E  0'6ET'SSE'6E  LIS'808'0F  £0.2T €65 ¥'e0eT 29 Z0 SI0TC ST O 9SG 88T T 0g  S8FIT 209 0€  2ZSTT 909 J0es9
8v.'6EL Ty O'8VL'6ELTY  92CTS6'Ty  SLEST €95 SEWT V9 20 ISE0Z 6T 0 08EL LT T 0c  9sZT 999 0 092T 099 80es0
856'0ST'zy  0'8S6'0ST'Zy  89Y'T96'Zy  TOLST 0'.S 090ST 8§ Z0 6/L'8T OWPT O vETL 19T T 0c  062T €9 0e  veeT 119 poese
Yr'0CT'er  OVWi'0ZT'Sy  822'9ST'r  2'S00V vSIT 6282 TOT 2O 2972 THWT 0 069'ZT 682 T 0g V52T S99 0c  8SeT 699 20gse
190'006'0y  0'T90'006'0v  G/L'66L'Ty  9'GIET 8YS €2l 9Se 2O €v'te S8l 1S 95TL 1T € 0c 822l Z¥9 0g  ZeeT 99 qoese
€66'269'0v  0'€66'Z69'0v  ¥B6'SYY'Ty  L'€E8 6'.€ T06L a4 A 68502 €8¢T O Sv09 ocT T 0g  v9eT 099 0c 89T ¥99 ©0E®

an a1 (T)eH 101 des dl mH  ad ZN smoy  delq s B poN  [L] El Al [L] E]l Al aueN

suonnjos awiL d11004 o®d PoA|0SaId ruibLO

0bS® pue ogsa s}os 19} Jeaulinoay X 31av.L



SOLVING STEINER TREE PROBLEMS IN GRAPHS TO OPTIMALITY 231

limit given, it usually paysto call all reduction methods to
reduce the problem as much as possible in size. For in-
stance, we solve example diw0234 with over 10,000 vari-
ables in about 24,000 seconds. The complete presolve
reduces the problem from 10,086 edges to 7266, whereas
Algorithm 3.2 reduces it just to 9991 edges. However,
over 12,000 seconds are spent in presolve when the com-
plete reduction test is performed and only 6 seconds when
Algorithm 3.2 is applied. (With the default parameter
setting, we obtain after 10,000 seconds an upper bound
of 1997 and a lower bound of 1967 providing a solution
guarantee of 1.5%.) The difficulty of the VLS| problems
seem not only depend on the number of terminals, but
aso on the shape of the grid graphs, how many holes are
there, and how big these holes are. Figure 9 shows a
typical diagram for these problems. The numbers of frac-
tional variables continuously increase (see the decrease
of curve Integer), and the L Ps get more and more difficult
during the runs (see the number of simplex iterations).

Although our code was originally designed for solving
Steiner tree problemsin graphs, it is, of course, also possi-
ble to solve rectilinear instances by modeling them as
graph problems. Tables X1 and XII show results on recti-
linear problems. Table XI contains the examples from
Beasley with 10 and 20 terminals. They are not very
difficult (up to 4 minutes), although branching is neces-
sary in three cases. However, the situation changes for
test sets es30 and es40. The running times rapidly in-
crease with the number of terminals and we are not able
to solve al instances with 40 terminals within 10,000
seconds. Our diagram, for example, es400 in Figure 10,
shows that the LPs become increasingly difficult during
the run of the program, a behavior that we have aready
detected to some extent for the VLS| examples. In fact,
the LPs are highly dual and prima degenerated, a phe-
nomenon that seems to be inherent for grid problems (see
aso Grotschel et al. [22]). Another drawback is that
our presolve procedures do not perform well. Reduction
methods (as proposed for instance by Winter [41]) that
exploit the structure of grid graphs would probably help
to solve these instances faster. Recently, Warme [39]
proposed an algorithm for rectilinear Steiner tree prob-
lems. By exploiting the typical structure of rectilinear
problems, he was able to solve much bigger instances in
less time.

6. CONCLUSIONS

We have presented an implementation of a branch-and-
cut algorithm for the Steiner tree problem in graphs. We
are able to solve amost all instances discussed in the
literature. Our agorithm especialy performs well on
complete and sparse graphs. Here, a good presolve seems
to pay. We have aso introduced new real-world VLSI

instances. We solve many of these instances and provide
reasonable solution guarantees (in general, below 15%)
for all examples except for thereally big oneswith several
hundred terminals and tens of thousands of edges. On
rectilinear Steiner tree problems, our code performs well
only for exampleswith asmall number of terminals. To be
competitive with state-of-the-art software for rectilinear
problems, our reduction methods have to be adapted to
rectilinear instances and more investigations are neces-
sary to avoid degenerated linear programs. All examples
discussed in this paper are gathered in a newly introduced
library called SeinLib that is accessible via anonymous
ftp or the World Wide Web.
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