
Hartmann, Sönke; Drexl, Andreas

Working Paper — Digitized Version

Project scheduling with multiple modes: A
comparison of exact algorithms

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 430

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Hartmann, Sönke; Drexl, Andreas (1997) : Project scheduling with
multiple modes: A comparison of exact algorithms, Manuskripte aus den Instituten
für Betriebswirtschaftslehre der Universität Kiel, No. 430, Universität Kiel, Institut für
Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/149052

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/149052
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 430

Project Scheduling with Multiple Modes:
A Comparison of Exact Algorithms

Sönke Hartmann. Andreas Drexl

January 1997

Sönke Hartmann*, Andreas Drexl#
Institut für Betriebswirtschaftslehre
Christian-Albrechts-Universität zu Kiel
Olshausenstraße 40
24118 Kiel, Germanv

e-mail: hartmann@bwl.uni-Mel.de. drexl@bwl.uni-kiel.de
FTP: ftp://www.wiso.uni-kiel.de/pub/operations-research

"supported by the Studienstiftung des deutschen Volkes
^supported by the Deutsche Forschungsgemeinschaft

mailto:hartmann@bwl.uni-Mel.de

Abstract

This paper is devoted to a comparison of all available branch-and-bound algo-
rithms that can be applied to solve resource-constrained project scheduling problems
with multiple execution modes for each activity. After summarizing the two exact
algorithms that have been suggested in the literature. we propose an alternative ex­
act approach based on the concepts of mode and extension alternatives to solve this
problem. Subsequently, we compare it to the two procedures available in the litera­
ture. Therefore, the three algorithms as well as all available bounding criteria and
dominance rules are summarized in a unified framework. In addition to a theoretical
comparison of the procedures, we present the results of our computational studies in
order to determine.the most efficient algorithm.

Keywords: Project Management and Scheduling, Multiple Modes, Branch-and-
Bound, Bounding Rules. Computational Results.

1 Introduction

Within the classical resource-constrained project scheduling problem (RCPSP), the activi-
ties of a project have to be scheduled such that the makespan of the project is minimized.
Thereby, technological precedence constraints have to be observed as well as limitations
of the renewable resources required to accomplish the activities. Once started, an activity
may not be interrupted.

This problem has been extended to a more realistic model, the multi-mode resource-
constrained project scheduling problem (MRCPSP). Here. each activity can be performed
in one out of several modes. Each mode of an activity represents an alternative way of
combining different levels of resource requirements with a related duration. Following Slo-
winski [13], renewable, nonrenewable and doubly constrained resources are dinstinguished.
While renewable resources have a limited per-period availability such as manpower and
machines, nonrenewable resources are limited for the entire project, allowing to model
e. g. a budget for the project. Doubly constrained resources are limited both for each
period and for the whole project. However, since they can simply be incorporated by
enlarging the sets of the renewable and nonrenewable resources, we do not consider them
explicitly. The objective is to find a mode and a Start time for each activity such that the
schedule is makespan minimal and feasible with respect to the precedence and resource
constraints.

A broad variety of branch-and-bound procedures has been proposed for optimally sol-
ving the single-mode RCPSP. The approaches of Stinson et al. [22], Talbot and Patterson
[24]. Christofides et al. [3], Demeulemeester and Herroelen [4], Mingozzi et al. [10], and
Sprecher [16] enumerate partial schedules in different ways. Approaches based on graph
representations have been suggested by Radermacher [12], Bartusch et al. [1], and Brucker
et al. [2]. For the multi-mode case, all procedures developed up to now utilize the concept
of partial schedules, cf. the approaches of Patterson et al. [11], Sprecher and Drexl [17],
Speranza and Vercellis [14], and Sprecher et al. [20]. However, Hartmann and Sprecher [7]
have shown that the procedure proposed in [14] is not correct, that is. in some cases. it
finds only suboptimal solutions or even fails to determine an existing feasible Solution.

This paper deals with exact Solution methodologies for the MRCPSP. We introduce an
alternative branch-and-bound procedure and, moreover, provide a thorough comparison
of the algorithms proposed in the literature and the new approach. The procedures are

1

described in a unified way and are compated both theoTetically and numeiically. In order
to provide a fair comparison, we have employed each available acceleration method into
each enumeration algorithm. The three procedures have been implemented and compared
on a Standard set of project instances that has been generated using the problem generator
ProGen developed by Kolisch et aL [8]. This enables us to determine the most efficient
procedure currently available to solve the MRCPSP.

The remainder is organized as follows: Section 2 pro vi des the description of the pro­
blem. Section 3 summarizes the enumeration algorithms known from the Literature and
introduces the new one. Section 4 contains the available dominance rules as well as a new
concept. Section 5 is devoted to a theoretical comparison of the enumeration schemes.
Section 6 provides the results of our computational comparison of the three procedures.
FinaLly, Section 7 states some conclusions.

2 Problem Description

We consider a project which consists of J activities (Jobs) labeled j = 1Due to
technological requirements the activities are partially ordered, that is. there are prece-
dence relations between some of the Jobs. These precedence relations are given by sets of
immediate predecessors P3 indicating that an activity j may not be started before all of its
predecessors are completed. The precedence relations can be represented by an activity-
on-node network which is assumed to be acyclic. We consider additional activities j = 0
representing the only source and j = J <f 1 representing the unique sink activity of the
network.

With the exception of the (dummy) source and (dummy) sink activity, each activity
requires certain amounts of resources to be performed. The set of renewable resources
is referred to as R. For each renewable resource r € R the per-period-availability is
constant and given by K?. The set of nonrenewable resources is denoted as N. For each
nonrenewable resource r E A7 the overall availability for the entire project is given by K"-

Each activity can be performed in oneof several different modes of accomplishment. A
mode represents a combinination of different resources and/or levels of resource requests
with a related duration. Once an activity is started in one of its modes, it is not allowed
to be interrupted. and its mode may not be changed. Activity j may be executed in M3

modes labeled m = 1...., Mj. The duration of job j being performed in mode m is given
by djm. We assume the modes to be labeled with respect to non-decreasing duration, that
is, djm < djm+1 for all activities j = 1..... J and modes m ~ 1. Mj — 1. Furthermore,
activity j executed in mode m uses kpJ7nr units of renewable resource r each period it is in
process, where we assume w. 1. o. g. k?mr < Kf for each renewable resource r e R. Note,
otherwise activity j could not be performed in mode m. Moreover. it consumes k^mr units
of nonrenewable resource r € N. W. 1. o. g., we assume that the dummy source and the
dummy sink activity have only one mode each with a duration of zero periods and no
request for anv resource.

The objective is to minimize the makespan of the project. We assume the parameters
to be nonnegative and integer valued. A mathematical programming formulation of this
problem has been given by Talbot [23].

2

3 Enumeration Sehernes

This section is devoted to enumeration procedures for the MRCPSP. In the first two
subsections, we summarize the two algorithms that have been proposed in the literature
for this problem. Then we present a new algorithm in Subsection 3.3 using a description
which points out the similarities and differences to the former procedures.

3.1 The Precedence Tree

Patterson et al. [11] proposed an algorithm guided by the so-called precedence tree. Re-
strueturing this approach. Sprecher [15] and Sprecher and Drexl [17] developed a new
procedure based on the precedence tree and improved it by including new bounding cri-
teria (cf. Section 4).

We present a simplified formulation of the precedence tree algorithm. The procedure
begins with starting the dummy source activity at time 0. M each level g of the branch-
and-bound tree, we determine the set SJg of the currently scheduled activities and the
set EJg of the eligible activities, that is, those activities the predecessors of which are
already scheduled. Then we select an eligible activity jg and, subsequently, a mode m3g

of this activity. Now we compute the earliest precedence and resource feasible Start time
Sj that is not less than the start time assigned on the previous level of the search tree.
Then we branch to the next level. If the dummy sink activity is eligible, we have found a
complete schedule. In this case, backtrackirvg to the previous level occurs. Here, we select
the next untested mode. If none exists, we select the next untested eligible activity. If we
have tested all eligible activities in all available modes, we track another step back. More
formallv, we have:

Algorithm 1 (Precedence tree)

Step 1: (Initialization)
g := 0; j0 : = 0; mJO : = 1; $j0 0; SJ0 •'= 0:

Step 2: (Compute eligible activities)
9 :== 9 1; SJg := SJg — 1 U {jg — l},
EJg '= {j € {1* . . . , J}\SJg | Pj C SJg}',
if J + 1 6 EJg then störe current Solution and go to Step 5;

Step 3: (Select next activity)
if no untested eligible activity is left in EJg then goto Step 5,
eise select untested activity jg € EJg;

Step 4: (Select next mode and compute start time)
if no untested mode is left in {1...., Mjg} then goto Step 3,
eise select untested rrijg € {1...., Mjg}:
if a conflict w.r.t. a nonrenewable resource occurs then go to Step 4;
compute earliest precedence and resource feasible start time s3g

with :
goto Step 2;

Step 5; (Backtracking)
g := g — 1; if g = 0 then STOP, eise goto Step 4.

3

Note that each combination of an eligible activity and a related mode corresponds to
a descendant of the current node in the branch-and-bound tree or, as it is called here,
precedence tree. Each branch from the root to a leaf of the precedence tree corresponds
to a permutation of the set of activities ji,... .jj which is precedence feasible in the sense
that each predecessor of a job jg has a smaller index in the sequence than jg.

3.2 Mode and Delay Alternatives

In this subsection we summarize the branch-and-bound approach proposed by Sprecher et
al. [19], [20]. Introducing the notion of a mode alternative, it extends the concept of delay
alternatives used by Christofides et al. [3] and Demeulemeester and Herroelen [4] for the
(single-mode) RCPSP.

In contrast to Algorithm 1. here each level g of the branch-and-bound tree is associated
with a fixed time instant tg (decision point) at which activities may be started. Conse-
quently, we use a different definition of eligible activities in this algorithm: A currently
unscheduled activity j is called eligible at time tg if all of its predecessors i 6 P3 are
scheduled with a finish time fi < tg. Furthermore, an activity j scheduled in mode m3

with Start time Sj is said to be in process at time tg if we have s3 < tg < s3 + djm.
The proceeding at the current level g of the branch-and-bound tree is as follows: We

determine the new decision point tg as the earliest finish time of the activities currentlv in
process. Note that. due to the constant availability levels of the renewable resources. only
finish times of scheduled activities need to be considered for starting unscheduled ones.
Using the set FJg of the activities that are finished at or before the decision point, we
compute the set EJg of the eligible activities. Then we (temporarily) start those eligible
activities at the decision point that have already been assigned a mode at a previous level
of the search tree. If there are eligible Jobs that have not yet been assigned a mode. that
is. if EJg\EJg-1 is not empty, then we compute the set SÖMAg of mode alternatives: A
mode alternative is a mapping MAg which assigns each activity j € EJg\EJg-i a mode
MAg(j) = m3 £ M,-}. Selecting a mode alternative, we can (temporarily) start
the remaining eligible activities at the decision point as well. Having started all eligible
activities by adding them to the set JIPg of the activities in process. we may have caused
a resource confüct. Thus, we compute the set SÖVAg of the minimal delay alternatives
according to the following definition: A delay alternative VAg is a subset of JIPg such
that for each renewable resource r € R it is

E < AT
3<=JIPg\VAg

A delay alternative VAg is called minimal if no proper subset of VAg is a delay alternative.
We select a minimal delay alternative and remove the activities to be delayed from the
current partial schedule. Note, if no resource conflict occurs. the only minimal delay
alternative is the empty set. We störe the start times of an activity j to be delayed in
sglf because we have to restore the Information during backtracking. Then we branch to
the next level and compute the next decision point. If we have completed a schedule, we
perform a backtracking step and test the next minimal delay alternative or, if all have been
tested, the next mode alternative. Formally, the algorithm can be described as follows:

4

Algorithm 2 (Mode and delay alternatives)

Step 1: (Initialization)
g 0; to 0; JIPo := {0}; FJQ 0; rri-o := 1; 50 := 0; EJ0 := 0; VAo •= 0:

Step 2: (Compute new decision point and eligible activities)
g := g + 1: tg := min{^ + djm} | j e JIPg-1};
FJg := U {j € JIPg-1 | Sj + rfjmj = tg}\
EJg := {; € {1,u J/P,_i) | P, C FJg};
JIPg := JIPg-l\FJg U EJg]
if J + 1 € EJg then störe current Solution and go to Step 7;
for each j € VAg-\ update Sj := tg;

Step 3: (Compute mode alternatives)
if EJg\EJg-1 = 0 then SOMAg := 0 and go to Step 5,
eise SOMAg := ^eZÜ/Mode^/fernati-yes^J^PJ^-i);

Step 4: (Select next mode alternative)
if no untested mode alternative is left in SOMAg then go to Step 7.
eise select untested MAg 6 SOMAg\
for each j € EJg\EJg-\ update rrij := MAg{j) and s3 tg:
if a conflict w.r.t. a nonrenewable resource occurs then go to Step 4;

Step 5: (Compute delay alternatives)
SOVAg := SetO f Minimal Delay Alternative$(J IPg)\

Step 6: (Select next delay alternative)
if no untested minimal delay alternative is left in SÖVAg then go to Step 4,
eise select untested T>Ag 6 SOVAg] JIPg := JIPg\VAg\
for each j E VAg störe s°lf := s3; go to Step 2;

Step 7: (Backtracking)
g := g — 1; if g = 0 then STOP.
eise for each j 6 VAg restore sj := s°gl^\ JIPg := JIPg U VAg\ go to Step 6.

Observe that each combination of a mode alternative and a related minimal delay
alternative corresponds to a descendant of the current node in the branch-and-bound tree.
Clearly, this procedure is different from Algorithm 1 in that sets of activities instead of
(single) activities are started at each level of the branch-and-bound tree. Moreover, here
the time instant at which activities may be started is determined before the activities
themselves are selected. Finally, in contrast to Algorithm 1, this approach allows to
withdraw scheduling decisions at the current level that have been made at a lower level.

3.3 Mode and Extension Alternatives

This subsection is devoted to a new branch-and-bound approach for solving the MRCPSP.
Using again the concept of mode alternatives developed by Sprecher et al. [20]. we intro-
duce extension alternatives to construct partial schedules. A similar way to extend partial
schedules has been proposed by Stinson et al. [22] for the single-mode case.

As in Algorithm 2, each level g of the branch-and-bound tree is associated with a
decision point tg, a set JIPg of the activities in process. a set FJg of the finished activities.
and a set EJg of the eligible activities. Again, we use a mode alternative to fix the modes
of those eligible activities that have not yet been assigned a mode. Then we extend

5

the current partial schedule by starting a subset of the eligible activities at the decision
point without violating the renewable resource constraints. More precisely. an extension
alternative EAg is a subset of the eligible set for which we have

for each renewable resource r € R and. moreover. EAg ^ 0 if JJPg — 0- Note, in order to
secure that the algorithm terminates. we may only have nonempty extension alternatives
if no activities are in process. However. if there are currently activities in process. the
empty set is always an extension alternative which must be tested in order to guarantee
optimality.

At the current level g of the branch-and-bound tree we proceed as follows: We de­
termine the new decision point and compute the set of the eligible activities. Then we
determine the set of mode alternatives SÖMAg for hxing the modes of the eligible acti­
vities that have not been eligible before, that is, those activities the modes of which have
not yet been fixed. After selecting a mode alternative MAg. we compute the set of exten­
sion alternatives SOEAg. Finally, we select an extension alternative EAg and start the
corresponding activities before branching to the next level. The backtracking mechanism
equals the one of Algorithm 2. Formally, we can describe the algorithm as follows:

Algorithm 3 (Mode and extension alternatives)

Step 1: (Initialization)
g := 0; t0 := 0; JIPo : = {0}; FJo := 0; m0 1; s0 : = 0; EJ0 0;

Step 2: (Compute new decision point and eligible activities)
g := g + 1; tg := min{s3 + d3rrij | j € JIPg-1};
F Jg .= FJg-l U {j £ JI Pg — l | Sj -f- djmj — tg j- .
EJg := {j € {1 J}\(FJg U JIPg.x)\P3C FJg}:
JIPg := j IPg-\\F Jg\
if J + 1 6 EJg then störe current Solution and go to Step 7;

Step 3: (Compute mode alternatives)
if EJg\EJg-1 = 0 then SOMAg := 0 and go to Step 5,
eise SÖM.Ag := SetOfModeAlternatives(EJg\EJg--l):

Step 4: (Select next mode alternative)
if no untested mode alternative is left in SÖMAg then go to Step 7.
eise select untested MAg € SÖMAg;
for each j 6 EJg\EJg-1 update m3 \= MAg(j)\
if a conflict w.r.t. a nonrenewable resource occurs then go to Step 4;

Step 5: (Compute extension alternatives)
SÖCAg := SetOfExtensionAlternatives(EJg,JIPg);

Step 6: (Select next extension alternative)
if no untested extension alternative is left in SÖEAg then go to Step 4,
eise select untested EAg € SOEAg\ JIPg := JIPg U EAg\
for each j £ EAg update Sj := ig\ go to Step 2:

Step 7: (Backtracking)
g := g — 1: if g — 0 then STOP, eise JIPg := JIPg\EAg: go to Step 6.

jE«/ I PgUS^Ag

6

Each combination of a mode alternative and a related extension alternative corresponds
to a descendant of the current node in the branch-and-bound tree. Note that this procedure
is different from Algorithm 2: Whereas the latter includes the possibility to delay activities
that have been started on a lower than the current level, the new approach does not allow
to withdraw a scheduling decision of a lower level. As a consequence, we may not restrict
the search to "maximal" extension alternatives while we do not loose optimality when
considering only minimal delay alternatives.

4 Bounding Rules

This section summarizes bounding criteria which speed up the enumeration procedures
of the previous section. While most of the rules are known from the literature, we also
present a new one and transfer some weil-known ones to those enumeration schemes they
have not yet been defined for. For the sake of shortness, we have omitted the proofs of
those rules that are known from the literature.

4.1 Time Window Based Rules

The first bounding criteria make use of time windows as determined by MPM. Sprecher
[15] and Sprecher et al. [20] have emploved this rule in their algorithms for solving the
MRCPSP. Given the precedence relations and an upper bound on the makespan of the
project (which is e.g. given by the sum of the maximal durations of the activities), we use
the modes of shortest duration and derive the latest finish time LFj for each activity j by
traditional backward recursion. If a procedure has found the first or an improved schedule
with a makespan X, the latest finish times are recalculated by LFj := LFj — (LFj - T + 1)
for j = 1,..., J. From the definition of the latest finish times we can derive the following
bounding rule:

Bounding Rule 1 (Basic Time Window Rule) If there is a scheduled activity the assi-
gned finish time of which exceeds the latest finish time, then the current partial schedule
cannot be completed with a makespan less then the best currently known.

Using the definition of the time window and explicitly considering multiple modes,
Sprecher [15] has developed the following rule for the precedence tree algorithm:

Bounding Rule 2 (Non-Delayability Rule for Algorithm 1) If an eligible activity cannot
be feasibly scheduled in any mode in the current partial schedule without exceeding its latest
finish time, then no other eligible activity needs to be examined on this level

Taking into account the differences between the precedence tree procedure on one hand
and the algorithms based on mode alternatives on the other. we can adapt Bounding Rule
2 as foilows:

Remark 1 (Non-Delayability Rule for Algorithms 2 and 3) If an eligible activity the mode
of which has not yet been fixed cannot be started in the mode with the shortest duration at
the current decision point without exceeding its latest finish time. then no mode alternative
needs to be examined at the current level

7

4.2 Preprocessing

This subsection is devoted to two bounding rules which can be implemented by prepro­
cessing. The first one has originally been proposed by Sprecher et al. [19], [20]. It uses
the following definitions: A mode is called non-executable if its execution would violate
the renewable or nonrenewable resource constraints in any schedule. A mode is called
inefficient if its duration is not shorter and its resource requests are not less than those of
another mode of the same activity. A nonrenewable resource is called redundant if the sum
of the maximal requests of the activities for this resource does not exceed its availability.
Clearlv, non-executable and inefficient modes as well as redundant nonrenewable resources
may be excluded from the project data without loosing optimality. Sprecher et al. [19].
[20] describe several interaction effects appearing when modes or nonrenewable resources
are removed. e.g. eliminating a redundant nonrenewable resource may cause inefficiency
of a mode. Hence, thev propose the following way to prepare the input data:

Bounding Rule 3 (Data Reduction) The project data can be adapted as follows:
Step 1: Remove all non-executable modes from the project data.
Step 2: Delete the redundant nonrenewable resources.
Step 3: Eliminate all inefficient modes.
Step 4: If any mode has been erased within Step 3, go to Step 2.

The next bounding rule has especially been designed for instances with nonrenewable
resources. It has been proposed by Drexl [5] for a less general framework.

Bounding Rule 4 (Nonrenewable Resource Rule) If scheduling each currently unschedu-
led activity in the mode with the lowest request for a nonrenewable resource would exceed
the capacity of this nonrenewable resource. then the current partial schedule cannot be
feasibly completed.

Sprecher [15] adapted the rule to the MRCPSP and improved the effect by reformula-
ting it as a static rule. Before an algorithm is executed, the project data is adjusted as
follows: Defining kl/-Jntr" as the minimal request of activity j for nonrenewable resource r,
we update kujmr := k^mT - fc£min for j = 1,..., J. m = 1,.... Mj. and r e N, and

J
AT := AT - for r € A".

J = i

4.3 Dominating Sets of Schedules

The following three bounding rules make use of a Classification of the set of schedules.
The notions of semi-active and active schedules as formally defined by Sprecher et al. [21]
for the single-mode case can be straightforwardly extended to the multi-mode case: A
left shift of an activity within a given schedule is a reduction of its finish time without
changing its mode and without changing the modes or finish times of the other activities,
such that the resulting schedule is both precedence and resource feasible. A local left shift
is a left shift which is obtainable by one or more successively applied left shifts of one
period. A schedule is called semi-active if none of the activities can be locallv left shifted.
Following French [6], we can State that if there is an optimal schedule for a given instance,

8

then there is an optimal semi-active schedule. This result is exploited by the following
rule which has been employed by Sprecher [15] and Sprecher et al. [19] for the multi-mode
case.

Bounding Rule 5 (Locol Left Shift Rule) If an activity that has been started, at the cur­
rent level of the branch-and-bound tree can be locally left shifted without changing its mode.
then the current partial schedule needs not be completed.

Additionally allowing a mode change of the activity to be shifted, Sprecher et al. [19]
defined the notion of a multi-mode left shift: Within a given schedule. a multi-mode left
shift is a reduction of an activity's finish time without changing the modes or finish times
of the other activities, such that the resulting schedule is feasible. A schedule is called
tight if no multi-mode left shift can be performed. The notion of tight schedules has been
introduced by Speranza and Vercellis [14].

Another Operation on a schedule of an MRCPSP instance has been introduced by
Sprecher et al. [19]: A mode reduction on an activity is a reduction of its mode number
without changing its finish time and without violating the constraints or changing the
modes and finish times of the other activities. A schedule is called mode-minimal if there
is no activity a mode reduction can be performed on.

Note that there are tight schedules which are not mode-minimal and vice versa. Ob-
viously, if there is an optimal schedule for a given instance. then there is an optimal
schedule which is both tight and mode-minimal. Consequently, the following rule propo­
sed by Sprecher et al. [19] induces backtracking when it is certain that no tight or mode
minimal schedule can be obtained from the current partial schedule.

Bounding Rule 6 (Multi-Mode Rule) Assume that no currently unscheduled activity will
be started before the finish time of a scheduled activity j when the current partial schedule
is completed. If a multi-mode left shift or a mode reduction of activity j with resulting
mode m/j. 1 < m'- < Mj, can be performed on the current partial schedule and, moreover,
if k^m,r < holds for each nonrenewable resource r € N, then the current partial
schedule needs not be completed.

Clearly, if no multi-mode left shift can be applied, then a local left shift cannot be
applied either. Nevertheless. it is useful to check for both types of left shift seperately
according to the previous two bounding rules. Observe that we check for a local left shift
when the corresponding activity has just been started. However, we can only check for
a multi-mode left shift if the corresponding activity has already finished. Otherwise, as
outlined by Hartmann and Sprecher [7], we would loose optimality. Consequently, the
Local Left Shift Rule is not superflous as the exclusion of a partial schedule due to a
feasible local left shift can be detected on a lower level of the branch-and-bound tree than
the same (mode-preserving) multi-mode left-shift.

The next operation and the related category of schedules are new: Denoting the finish
time of a scheduled activity j with fj = Sj + djmj, we consider two activities i and j with
i > j that are successively processed within a schedule, that is, fi = Sj. Novv an order
swap is defined as the interchange of these two activities by assigning new start and finish
times sfj := Si and f- := fj. respectively. Thereby, the precedence and resource constraints
may not be voilated, and the modes and start times of the other activities may not be

9

changed. A schedule in which no order swap can be performed is called order monotonous.
Clearly, it is sufficient to enumerate only order monotonous schedules. It should be noted
that there are schedules which are tight and mode-minimal but not order monotonous and
vice versa. We apply the following bounding criterion:

Bounding Rule 7 (Order Swap Rule) Consider a scheduled activity the finish time of
which is less than or equal to any start time that may be assigned when cornpleting the
current partial schedule. If an order swap on this activity together with any of those
activities that finish at its start time can be performed. then the current partial schedule
needs not be completed.

Proof. Obvious. •

In analogy to the extension of the left shift concept to the multi-mode case. the defini­
tion of the order swap can easily be generalized by allowing a mode change of the activities
to be swapped. However, preliminary computational results have shown that the addi-
tional effort that would be necessary to check the assumptions completely consumes the
acceleration effect.

4.4 The Cutset Rule

The following bounding method stores Information about already evaluated partial sche­
dules. Düring the search process, the rule compares the current partial schedule with the
stored data. If it can be proven that any Solution obtainable from the current partial
schedule cannot be better than a Solution obtainable from a previously evaluated partial
schedule the Information of which has been stored. then backtracking may be performed.

Bounding criteria based on stored Information of already evaluated partial schedules
have been employed by Stinson et al. [22] and Demeulemeester and Herroelen [4] for the
single-mode case. Defining a cutsei of a partial schedule PS as the set of the activities
scheduled in PS, Sprecher and Drexl [17] proposed the following rule for their algorithm
for the MRCPSP:

Bounding Rule 8 (Cutset Rule for Algorithm 1) Let PS denote a previously evaluated
partial schedule with cutset CS(PS), maximal finish time fmax{PS) and leftover capacities
I\'"(PS) of the nonrenewable resources r E AT. Let PS be the current partial schedule
considered to be extended by scheduling some activity j with start time sj. If we have
CS(PS) = CS(PS), > fmax(TS) and K?(PS) < K?(PS) for all r e A\ then PS
needs not be completed.

When all continuations of the current partial schedule have been examined, the cutset
Information related to the partial schedule that is required for Bounding Rule 8 is stored.

If the concept of mode alternatives is used, the rule has to be adapted. Clearly, each
scheduling decision made in the current partial schedule has to be refiected in the data
to be stored. Having selected an extension alternative in Algorithm 3, the modes of some
activities that are not contained in the current partial schedule may be fixed within each
of its continuations. Consequently, we must störe the set of those activities the modes of
which are fixed and the related modes in addition to the data that is stored according to
Bounding Rule 8 for the precedence tree procedure. The cutset rule proposed by Demeu­
lemeester and Herroelen [4] can be generalized to the multi-mode case in a similar wav and

10

can then be employed in Algorithm 2. Unfortunately, however, adapting the Cutset Rule
to Algorithms 2 and 3 does not speed up these procedures. Roughly speaking, this is due
to the fact that we have to störe much more data while each cutset Information unit is less
general when the concept of mode alternatives is used. That is, the effort of storing and
comparing the data increases while backtracking due to some stored Information becomes
less probable. Therefore, we do not give the detailed formal descriptions of the variants
of Bounding Rule 8 for the procedures based on mode alternatives.

4.5 Immediate Selection

The following bounding rule has been developed by Demeulemeester and Herroelen [4]
for the RCPSP and generaüzed by Sprecher et al. [19] to the multi-mode case. It states
assumptions under which we are allowed to consider only one branching alternative instead
of testing all. We first give a formulation that can be employed if the decision point and
mode alternative concepts are used.

Bounding Rule 9 (Immediate Selection for Algorithms 2 and 3) We assume the follo­
wing Situation: All activities that start before the current decision point tg finish at or
before tg. After selecting a mode alternative, there is an eligible activity j with fixed mode
mj which cannot be simultaneously processed with any other eligible activity i in its fixed
mode mx. Moreover, activity j in mode m3 cannot be simultaneously processed with any un-
scheduled activity h in any mode mh € {1, - -., Mh}- Then VAg = JIPg\{j} (= EJg\{j})
is the only minimal delay alternative that has to be examined, and EAg = {j} is the only
extension alternative that has to be examined.

This rule can be adapted to the precedence tree guided enumeration procedure in
several ways. We consider the following variant:

Remark 2 (Immediate Selection for Algorithm 1) Consider an eligible activity j no mode
of which is simultaneously performable with any currently unscheduled activity in any
mode. If the earliest feasible start time of each other eligible activity in any mode is
equal to the maximal finish time of the currently scheduled activities, then j is the only
eligible activity that needs to be selected for being scheduled on the current level of the
branch-and-bound tree.

As described by Demeulemeester and Herroelen [4] for the single-mode and Sprecher
et al. [19] for the multi-mode case, a similar immediate selection strategy for scheduling
two activities and delaying all other eligible activities can be stated. Preliminary compu­
tational results. however. revealed that this rule does not speed up the algorithm when
the other rules are employed. Consequently. we do not consider it here.

4.6 A Precedence Tree Specific Rule

Due to the construction of the precedence tree, Algorithm 1 may enumerate one schedule
severa] times. This is the case in the following Situation: Consider some partial schedule
PS which is extended by scheduling some activity i in mode m% on level £-1 and activity
j in mode m3 on level g with identical start times = s3. If we return to PS later in
the search process, and if scheduling activity j in mode mj on level g — 1 and activity i in

11

mode rrii on level g results in the same start times, then we will obtain a schedule that has
previously been enumerated. To avoid duphcate consideration of a schedule, Sprecher [15]
has proposed the so-called Single Enumeration Rule which uses a three-dimensional array
to check the assumptions mentioned above. We present an alternative rule to exclude
duplicate enumeration. Clearly, it can only be used within Algorithm 1 since in the other
two procedures a schedule can only be considered once.

Bounding Rule 10 (Precedence Tree Rule for Algorithm 1) Consider two activities i
and j scheduled on the previous and on the current level of the branch-and-bound tree.
respectively. If we have S{ = Sj and i > j then the current partial schedule needs not be
completed.

Proof Let PS be a partial schedule extended by scheduling activities i and j on levels
g — 1 and g, respectively, with i > j and S{ = sj. We assume that extending PS by
scheduling j before i, both in the same modes as before, results in start times s'- and s\.
Clearly, we have s\ = S{ and s'- < Sj. Thus. extending PS by scheduling i before j cannot
lead to a schedule with a shorter makespan than by scheduling j before i. It should be
observed that the extension of PS obtained from scheduling j before i cannot be excluded
by Bounding Rule 10. •

The new rule is not only simpler, but also more general than the original Single-
Enumeration Rule in that it additionally contains a portion of the Local Left Shift Rule.
This can be seen in the proof given above: If we have s'- < Sj, then the Local Left Shift Rule
would also induce backtracking. Nevertheless, the Local Left Shift Rule is still necessary
as the Precedence Tree Rule does not exclude partial schedules that are not semi-active if
we have i < j.

5 Theoretical Comparison of Enumerated Schedules

5.1 Complete Enumeration

In this subsection we compare the sets of schedules enumerated by the algorithms described
in Section 3 without considering any of the bounding rules of Section 4. For notational
convenience, we will refer to the sets of schedules enumerated by Algorithms 1, 2, and 3
with S\. S2, arid £3, repectively.

We start our investigation comparing Algorithms 1 and 2. The first theorem states
that for some instances schedules that are enumerated by the precedence tree algorithm
are not enumerated by the algorithm based on mode and delay alternatives and vice versa.

Theorem 1 There are instances for which we have «Sj 2 $2 and £2 2 •

Proof. We consider the project instance given in Figure 1 as a counterexample. Note
that it is a single-mode instance (thus, the mode index and the set of the nonrenewable
resources have been omitted). Consequently, the results obtained hold for the single-
mode RCPSP as well. It can be easily verified that the schedule shown in Figure 2 (a)
is enumerated by Algorithm 1 but not by Algorithm 2. Schedule (b) is enumerated by
Algorithm 2 but not by Algorithm 1. •

12

R = {!}: Ä'f = 3

ra
d»/t",

2/2

Figure 1: Project Instance

K[

4

i

2 4

i

CO

i i •
1

i i i i

4

i

CO

i i • -i i i i i i i i -
123456789 10 11 *

K[

-

CO
 4

i
2

i

CO
 4

i
1

i i i i » 1 1 1 1 1 1 [1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 1

Figure 2: Schedules of the Project Instance

13

Next, we comp are Algorithms 1 and 3. For each instance, any schedule enumerated by
the precedence tree algorithm is also found by the algorithm based on mode and extension
alternatives. The reverse, however, does not hold in general.

Theorem 2 There are instances with 63 g S\. hui for all instances it is Si C 63.

Proof. Again, we use the instance displayed in Figure 1 as a counterexample: Schedule
(b) of Figure 2 is enumerated by Algorithm 3 but not by Algorithm 1, proving the first
part of the theorem.

We consider a partial schedule PS 1 enumerated by Algorithm 1 which is subsequentlv
extended toP^ = PS\ ü{(j, mj, Sj)}- Assuming that Algorithm 3 finds a partial schedule
PS3 equal to PSi, we have to show that it also enumerates a partial schedule PS3 equal to
PS 1. Let t be the last decision point in PS3 at which a nonempty extension alternative ZA
has been scheduled. We have t < s3 (otherwise Sj would not be a start time considered by
Algorithm 1). If we have t = Sj. we define PS3 as the result of scheduling ZA := ZA U {j}
at time t instead of SA. Note that ZA is a feasible extension alternative. Otherwise. we
extend PS3 by scheduling the empty extension alternative at all decision points t' with
t < t' < Sj (if any). Then we obtain PS3 by scheduling extension alternative {j} at time
Sj which is a decision point (i.e., a finish time of an activity scheduled in PS$). In both
cases, mode rrij can be chosen using a mode alternative, and we have PS3 = PS 1. •

Finally, we compare Algorithm 2 to Algorithm 3. Given an arbitrary instance of the
MRCPSP, any schedule enumerated using mode and delay alternatives is also found by
using mode and extension alternatives. The Inversion does not hold for some instances.

Theorem 3 There are instances with £3 g S2, but for all instances it is S2 C <S3.

Proof. Considering again the instance shown in Figure 1, schedule (a) of Figure 2 proves
the first part of the theorem as it is enumerated by Algorithm 3 but not by Algorithm 2.

As both algorithms emplov the concept of mode alternatives, we may restrict the proof
of the second part of the theorem to the Single mode case. We consider an arbitrary project
instance and a partial schedule enumerated by both algorithms, that is, PS2 = PS3. Let
tg+1 be the next decision point and EJ the set of the eligible activities in both partial
schedules (note that the definitions of a decision point and eligible activities are equal
in both algorithms). Algorithm 2 schedules the eligible jobs at time and delays
the activities of some minimal delay alternative VA, resulting in partial schedule PS2.
We have to show that Algorithm 3 finds VS2, too. We assume that PS3 is constructed
by a sequence tQ, ZAo,... ,tg. ZAg of decision points and extension alternatives. As the
decision points in PS2 and PS3 are equal. we can define A{ := {j 6 VA | Sj = in
PS2} for i = 0,...,£+ 1 and have VA = U^=QAZ. Now we define ZAg+\ := EJ\Ag+i
and ZAi := ZA1\At for i = 0,...,g. Observe that the sequence of decision points is not
affected as all delayed activities have a finish time greater than tg+\. Moreover, each ZA\
with 0<z<(7+lisa feasible extension alternative. Hence the extension algorithm
enumerates a sequence to, ZAo, - - -, is+i, which corresponds to a partial schedule
PS3. With PS3 = PS2 by construction we complete the proof. •

The results of this subsection can be summarized as follows: None of the complete
enumeration schemes currently available for the MRCPSP is dominanant in a sense that
the set of the schedules enumerated by one algorithm is less than or equal to the sets
enumerated by the other two procedures.

14

5.2 Enumeration with Local Left Shift Rule

In this subsection, we examine the sets of schedules enumerated by the algorithms of
Section 3 including the Local Left Shift Rule (Bounding Rule 5). Similarly to the previous
subsection, we denote the sets of schedules enumerated by Algorithms 1, 2. and 3 with
the Local Left Shift Rule as S^s, and S^s. respectively. Finally. the set of the
semi-active schedules is referred to as

The following theorem states that the precedence tree algorithm in accordance with
the Local Left Shift Rule enumerates exactly the set of the semi-active schedules.

Theorem 4 For all instances. we have = SAS.

Proof. The Local Left Shift Rule is applied to activity j that is started at time sj
at the current node of the branch-and-bound tree. No scheduling decision at a successor
node of the search tree can free renewable resources before Sj, thus, if a local left shift is
not possible when starting an activity, it is not possible in any (enumerated) completion
of the partial schedule.

Let S 6 SAS be a semi-active schedule for an arbitrary instance. We can construct a
sequence (jQ, m0, s0),.... (jt-. (jj. mj, sj) with s,- < Si+i for 1 < i < J represen­
ting S. We show by induction that the sequence related to S corresponds to a branch in the
search tree built up by Algorithm 1. Let (j0. m0, s0),.... (jg. mg, sg) with 1 < g < J corre-
spond to a partial schedule PS^s found by Algorithm 1. We consider activity j5+1 which
is eligible in PS^s and can therefore be scheduled in mode mg+1. Let t denote the start
time assigned to activity jg+i by Algorithm 1 and let PS^S = PS^sö {(jg+i. mg+i, *)} be
the corresponding next partial schedule. We have i > sg+i. otherwise S could not be semi-
active. For the same reason, the left shift rule cannot be applied to activity jg+\. Moreover,
it is t < because the precedence tree algorithm assigns the earliest feasible start time
and it is sg < sg+1. Hence, we deduce t = s5+x, that is, (jo,m0, (jg+i, , s5+1)
corresponds to partial schedule PS^S. •

The next theorem shows that an analogous result cannot be obtained for the algorithm
based on mode and delay alternatives including the left shift rule: This one may enumerate
schedules which are not semi-active while on the other hand there may exist semi-active
schedules which are not enumerated.

Theorem 5 There are instances for which we have S2 and SAS % •

Proof. We consider the instance shown in Figure 1. Schedule (b) of Figure 2 is not
semi-active. but it is enumerated by Algorithm 2 with local left shift rule: At time 0,
activities 1. 2, and 3 are started. Since a resource conflict occurs, we may select {3} as
minimal delay alternative. At time 2. activities 3 and 4 are started. This resource conflict
may be solved by delaying activity 4 which is then rescheduled at time 4. The resulting
resource conflict can be solved delaying activity 1. According to the formulation of the
Local Left Shift Rule, only activity 4 is tested for a left shift. However. activity 3 may
now be locally left shifted to time 0 due to the delay of activity 1. This possible local left
shift is not detected by the Local Left Shift Rule. Consequently, activity 1 is started at
time 6 completing the (non semi-active) schedule.

15

Now we consider schedule (a) of Figure 2 which is semi-active. However, it is not
enumerated by Algorithm 2 (no matter whether the Local Left Shift Rule is included or
not): Starting activities 1, 2, and 3 at time 0, delaying activity 3, and starting activities 3
and 4 at time 2 causes a. resource conflict at time 2. It can be solved by the only minimal
delay alternatives {1.3} and {4}. None of them will result in schedule (b). •

Theorem 5 states that the Local Left Shift Rule considered here does not prevent the
algorithm based on mode and delay alternatives from enumerating schedules which are not
semi-active. Note that our formulation of the left shift rule is equivalent to the one used
by Demeulemeester and Herroelen [4] for the single-mode case. that is, this Observation
holds for their procedure as well. Clearly, a possible enumeration of schedules which are
not semi-active is due to the delay of activities which start before the previous decision
point. Freeing resources before the previous decision point may induce the possibility of
a left shift of an activity which starts at the previous (or an earlier) decision point. Such
a left shift cannot be detected by this Version of the Local Left Shift Rule. However. the
rule can be extended to exclude all schedules which are not semi-active:

Remark 3 (Extended Local Left Shift Rule for Algorithm 2) Let s denote the minimal
start time of those activities currently selected to be delayed, that is, s — min{sj | j 6
VAg}. If there is a scheduled activity with a start time greater than s which is not selected
to be delayed. and if this activity can be locally left shifted after delaying the currently
selected delay alternative, then the current partial schedule needs not be completed.

Now we turn to the algorithm based on mode and extension alternatives for which we
can obtain the same result as for the precedence tree procedure. When combined with
the Local Left Shift Rule, also Algorithm 3 enumerates exactly the set of the semi-active
schedules of a given instance.

Theorem 6 For all instances, we have S^s = SAS.

Proof. The Local Left Shift Rule is applied to the activities started at the current
decision point. As no renewable resources are freed before this decision point when the
corresponding partial schedule is completed, the application of the Local Left Shift Rule
excludes all schedules which are not semi-active, that is, we have S^s C <S.4tS.

Using Theorem 4, we have SAS = SiS. Clearly, it is S^s C 51# Furthermore we have
S\ C 53 by Theorem 2. Consequently it is C S3. Note that a feasible left shift of a
currently started activity is possible in any continuation of the current partial schedule.
That is, it cannot be prevented by further scheduling decisions as these do not afFect the
resource usages before the start time of that activity. Hence the Local Left Shift Rule
does not exclude schedules that are not semi-active, and we deduce SAS C S^s. •

Combining Theorems 4 and 6, we can State that the precedence tree algorithm and the
procedure based on mode and delay alternatives both enumerate the same set of schedules
when combined with the Local Left Shift Rule, that is, the set of the semi-active schedules.
Furthermore, it should be noted that these two theorems can also be used to prove the
correctness of Algorithms 1 and 3 since we can find an optimal semi-active schedule for
an instance if we can find an optimal one.

16

However, although the theoretical results derived in this section provide a deeper in-
sight into the different Solution methodologies. thev do not allow to predict the Solution
times required by the algorithms. This is due to the fact that the different Operations
the procedures consist of may result in different computation times even if the same set
of schedules is enumerated. Moreover, the effect of a bounding rule may depend on the
algorithmic structure, that is, one algorithm may be accelerated less than another one.
cf. the discussion of the different variants of the Cutset Rule. Consequently, the theoretical
comparison of this section is completed by the computational comparison provided in the
following section.

6 Computational Results

6.1 Experimental Design

In this section we present the results of the computational studies concerning the algo­
rithms discussed in the previous sections. The experiments have been performed on a
Pentium-based IBM-compatible personal Computer with 133 MHz clock-pulse and 16 MB
RAM. The procedures have been coded in ANSI C. compiled with the GNU C Compiler
and tested under Linux. In order to provide a fair comparison of the algorithms, we have
attempted to use identical data structures and related update Operations whenever pos­
sible. Moreover, we have used the same level of implementational know-how such as use
of pointer arithmetics for coding the algorithms. Finally, in contrast to the comparison of
Algorithms 1 and 2 provided by Sprecher et al. [19], [20], we have attemped to integrate
each bounding criterion of Section 4 into each enumeration procedure (with the exception
of the Precedence Tree Rule).

We used a set of test problems constructed by the project generator ProGen which
has been developed by Kolisch et al. [8]. The instances have been used to evaluate the
precedence tree algorithm by Sprecher and Drexl [18] as well as the procedure based on
mode and delay alternatives by Sprecher et al. [20]. They are available in the project
scheduling problem library PSPLIB from the University of Kiel. For detailed Information
the reader is referred to Kolisch and Sprecher [9].

In our study, we have used the multi-mode problem sets containing instances with
10, 12, 14, and 16 non-dummy activities. Each of the non-dummy activities may be
performed in one out of three modes. The duration of a mode varies between 1 and 10
periods. We have two renewable and two nonrenewable resources. For each problem size,
a set of instances was generated by systematically varying four parameters, that is, the
resource factor and the resource strength of each resource category. The resource factor
is a measure of the average portion of resources requested per job. The resource strength
reflects the scarceness of the resources. Table 1 displays the variable parameter levels. The
resource factors of the renewable and nonrenewable resources are referred to as RFR and
RFfr, respectively. The resource strengths of the renewable and nonrenewable resources
are denoted as RSR and RSN* respectively. For each problem size and each combination
of the resource parameters, ten instances have been generated. Consequently. we have
640 instances for each project size. Those instances for which no feasible Solution exists
have not been considered. Hence, we have 536 instances with J = 10. 547 instances with
J = 12, 551 instances with J = 14, and 550 instances with J — 16.1

^ Due to the history of the project scheduling problem librarv. some of the parameter settings used

17

Parameter Levels

RFR
RSR
RFN
RSN

J 10 12 14 16
0.50 1.00
0.25 0.50 0.75 1.00
0.50 1.00
0.25 0.50 0.75 1.00

Table 1: Variable parameter levels under füll factorial design

6.2 Effects of the Bounding Rules

As the impact of most of the acceleration methods on the computation times has been
thoroughlv studied by Sprecher and Drexl [18] as well as Sprecher et al. [19], [20]. we only
summarize some new insights. The new Order Swap Rule (Bounding Rule 7) accelerates
the basic variant of Algorithm 2 (including only the Time Window Rule) by a factor of
approximately 1.9. This effect is not totally consumed when the other rules are also inclu-
ded. As already mentioned, none of the tested variants of the Cutset Rule for Algorithms 2
and 3 could accelerate these procedures when the other bounding schemes were emploved.
However, as reported by Sprecher and Drexl [18], the Cutset Rule can be efficiently used
within the precedence tree algorithm. The immediate selection strategy of Bounding Rule
9 accelerates the branching schemes when applied to small instances (J = 10), confirming
the results obtained by Sprecher et al. [20]. However, it may slow down the procedures if
instances with more activities are considered. This is due to the fact that it becomes less
probable that the assumptions can be fulfilled while the effort to check them increases with
an increasing number of activities. The new formulation of the precedence tree specific
rule (Bounding Rule 10) accelerates the basic variant of Algorithm 1 (including the Time
Window Rule) by a factor of 8.4 while Sprecher and Drexl [18] report a factor of 3.2 for
their formulation. This is mainly due to the fact that the new variant includes a portion
of the Local Left Shift Rule. Finally, the Extended Local Left Shift Rule for the algorithm
based on mode and delay alternatives (cf. Remark 3 in Section 5.2) is of rather theoretical
interest as it does not yield further acceleration of Algorithm 2.

For the comparison to be summarized in the next subsection we have used the fastest
variants of the algorithms. Considering the observations given above. all bounding sche­
mes except for the Cutset Rule, the Immediate Selection Rule, and the Precedence Tree
Rule have been included in Algorithms 2 and 3. Clearly, the Cutset Rule as well as the
Precedence Tree Rule have been emploved in Algorithm 1, omitting onlv the Immediate
Selection Rule. In order to seperate the effect of the Cutset Rule, we have also tested a
variant of Algorithm 1 in which the former is not included. The variants of the procedures
are summarized in Table 2 where ;-j-: indicates that the corresponding bounding rule is
included and means that it is not.

to generate the instances with 10 non-dummy activities slightly differ from those given above that have
been used to generate the other problems. For more details on the parameter settings cf. Kolisch and
Sprecher [9].

18

6.3 Comparison of the Algorithms

We start the summary of our numerical results with a comparison of the average compu-
tation times given in Table 3. Algorithm 1 with the Cutset Rule is the fastest procedure
on the average. It is '2.0 times faster than Algorithm 2 when 10 activities are considered
and 7.0 times for projects with 16 activities. that is, the comparison factor increases with
an increasing number of Jobs. Algorithm 2 is at most 1.4 times faster than Algorithm 3.
The precedence tree algorithm is faster than the other two procedures even if the Cutset
Rule is not included.

Table 4 shows that Algorithm 1 has the lowest maximal computation times, no matter
if the Cutset Rule is employed or not. For two project sizes, the maximal computation
times of Algorithm 2 are lower than those of Algorithm 3. In the other two cases, the
reverse holds.

Next, we have examined the impact of the resource factor and strength of the renewable
resources on the computation times for J = 16. The results, summarized in Table 5,
show that Algorithm 1 is the fastest procedure for the so-called hard instances with high
computation times, that is, if the resource factor is high or the resource strength is low.
However. on the easiest instances with a high resource strength Algorithm 2 performs
best. This indicates that none of the procedures is dominant in the sense that it is faster
than the other two on each instance.

Finally. the distributions of the computation times are listed in Table 6. Algorithm 1
solves 21.5 % of the instances with 16 activities in less then 0.01 seconds while Algorithm
2 solves 23.8 % within this time. On the other hand, Algorithm 2 cannot solve 0.5 % in
1000 seconds while Algorithm 3 fails to solve only 0.2 % within this time.

Summing up the observations above, the new approach based on mode and extension
alternatives is outperformed by the other two algorithms with respect to average compu­
tation times. This seems to be due to the fact that, as already outlined, branching may
not be restricted to "maximal" extension alternatives. This drawback cannot be fully
compensated by the Local Left Shift Rule. The procedure based on mode and delay alter­
natives is the fastest on the easy instances. However, it is outperformed by the precedence
tree guided algorithm on the hard instances. and even by the new approach on some hard
instances. This is due to the possibilitv of cancelling previous scheduling decisions by
delaying activities: On one branch of the search tree, one activity may be delayed and
rescheduled several times. Clearly, the lower the renewable resource strength, the more
activities have to be delayed due to the scarceness of the renewable resources, resulting in
a high computational effort for this problem class. The precedence tree approach is the
fastest with respect to average and maximal computation times. Its main disadvantage,
the duplicate enumeration of a schedule, is neutralized by the new efficient precedence
tree specific Bounding Rule 10. Moreover, it currently is the only procedure in which an
efficient variant of the powerful Cutset Rule can be employed.

7 Conclusions

We have analyzed the branch-and-bound concepts currently available for solving resource-
constrained project scheduling problems with multiple modes. The three algorithms, two
from the literature and one new approach, have been described in a unified framework
and accelerated with ten bounding criteria one of which is also new. Subsequentlv, the

19

Algorithm basic scheme 1 2 3 4 5 6 7 8 9 10
1 (a) precedence tree + + + + + + + + - +
1 (b) precedence tree + + + + + + + - - +
2 mode and delay alt. + + + + + + + - -
3 mode and extension alt. + + + + + + + - -

Table 2: Accelerated variants of the algorithms to be tested

Algorithm J = 10 J = 12 J = 14 II

1 (a) 0.04 0.12 0.75 3.26
1 (b) 0.05 0.20 1.66 10.60
2 0.08 0.33 4.55 22.81
3 0.11 0.45 4.86 28.08

Table 3: Average computation times (sec) — all instances

Algorithm J — 10 J — 12 J = 14 J — 16
1 (a) 0/77 2769 22.87 165.11
1 (b) 1.25 5.14 78.91 1601.81
2 2.96 17.29 709.37 4523.44
3 2.87 20.57 529.92 6043.12

Table 4: Maximal computation times (sec) — all instances

Algorithm RFR: 0.50 1.00 RSR: 0.25 0.50 0.75 1.00
1 (a) Ö83 5J58 8X34 Z9Ö L20 058
1 (b) 1.30 19.51 34.81 5.32 1.77 0.68
2 1.35 43.37 81.24 9.17 1.13 0.23
3 4.07 51.08 94.63 11.75 4.80 1.72

Table 5: Average computation times for resource classes (sec) — J = 16

Algorithm < 0.01 < 0.1 < 1 < 10 < 100 < 1000 < 10000
1 (a) 21.5 43.5 70.2 92.4 99.6 100.0 100.0
1 (b) 21.6 41.8 67.1 90.2 97.8 99.8 100.0
2 23.8 42.3 70.1 88.1 96.8 99.5 100.0
3 16.5 33.4 58.1 82.1 96.5 99.8 100.0

Table 6: Distribution of the computation times (%) — J == 16

20

procedures have been compared both theoretically and numerically. In our experiments
based on a Standard set of more than 2000 instances, the precedence tree approach by
Sprecher and Drexl [17] outperformed the other two algorithms with respect to the average
and maximal computation times. It seems to be well suited to solve hard instances. The
procedure based on mode and delay alternatives suggested by Sprecher et al. [20] was
shown to be the fastest when applied to easy instances. Furthermore, according to our
experience, the precedence tree algorithm seems to be easier to implement as at each node
of the branch-and-bound tree (single) activities are scheduled instead of sets of activities.
Hence, we conclude that the precedence tree guided enumeration scheme currently is the
algorithm of choice when solving larger project instances.

Acknowledgement: We are indebted to Arno Sprecher for helpful comments and
suggestions.

References

[1] BARTUSCH, M.: R.H. MÖHRING AND F.J. RADERMACHER (1988): Scheduling pro­
ject networks with resource constraints and time windows. Annais of Operations Re­
search, Vol. 16, pp. 201-240.

[2] BRUCKER, P.; S. KNUST. A. SCHOO AND O. THIELE (1996): A branch-and-bound
algorithm for the resource-constrained project scheduling problem. Osnabrücker
Schriften zur Mathematik. No. 178, Universitv of Osnabrück, Germ any.

[3] CHRISTOFIDES, N.; R. ALVAREZ-VALDES AND J.M. TAMARIT (1987): Project sche­
duling with resource constraints: A branch and bound approach. European Journal
of Operational Research, Vol. 29, pp. 262-273.

[4] DEMEULEMEESTER, E. AND W. HERROELEN (1992): A branch-and-bound proce­
dure for the multiple resource-constrained project scheduling problem. Management
Science, Vol. 38, pp. 1803-1818.

[5] DREXL. A. (1991): Scheduling of project networks by job assignment. Management
Science, Vol. 37, pp. 1590-1602.

[6] FRENCH, S. (1982): Sequencing and scheduling: An introduction to the mathernatics
of the job-shop. Wiley, New York.

[7] HARTMANN. S. AND A. SPRECHER (1996): A note on "Hierarchical models for multi-
project planning and scheduling'". European Journal of Operational Research, Vol. 94,
pp. 377-383.

[8] KOLISCH, R.; A. SPRECHERAND A. DREXL (1995): Characterization and generation
of a general class of resource-constrained project scheduling problems. Management
Science. Vol. 41, pp. 1693-1703.

[9] KOLISCH, R. AND A. SPRECHER (1996): PSPLIB - A project scheduling problem
librarv. European Journal of Operational Research. Vol. 96, pp. 205-216.

21

[10] MINGOZZI, A.; V. MANIEZZO; S. RICCIARDELLI AND L. BIANCO (1994): An exact
algorithm for project scheduling with resource constraints based on a new ma.the-
matical formulation. University of Bologna. Department of Mathernatics, Technical
Report No. 32, Bologna.

[11] PATTERSON, J.H.; R. SLOWINSKI; F.B. TALBOT AND J. WEGLARZ (1989): An algo­
rithm for a general class of precedence and resource constrained scheduling problems.
In: Slowinski, R. and J. Weglarz (Eds.): Advances in project scheduling. Elsevier,
Amsterdam, pp. 3-28.

[12] RADERMACHER, F.J. (1985/86): Scheduling of project networks. Annais of Operati­
ons Research, Vol. 4, pp. 227-252.

[13] SLOWINSKI. R. (1980): Two approaches to problems of resource allocation among
project activities: A comparative study. Journal of the Operational Research Society.
Vol. 31, pp. 711-723.

[14] SPERANZA. M.G. AND C. VERCELLIS (1993): Hierarchical models for multi-project
planning and scheduling. European Journal of Operational Research, Vol. 64, pp. 312-
325.

[15] SPRECHER. A. (1994): Resource-constrained project scheduling: Exact methods
for the multi-mode case. Lecture Notes in Economics and Mathematical Systems.
Vol. 409, Springer, Berlin et al.

[16] SPRECHER.. A. (1996): Solving the RCPSP efficiently at modest memorv require-
ments. Manuskripte aus den Instituten für Betriebswirtschaftslehre, No. 425, Univer­
sity of Kiel, Germany.

[17] SPRECHER, A. AND A. DREXL (1996): Solving multi-mode resource-constrained
project scheduling poblems by a simple, general and powerful sequencing algorithm.
Part I: Theory. Manuskripte aus den Instituten für Betriebswirtschaftslehre, No. 385.
University of Kiel, Germany.

[18] SPRECHER. A. AND A. DREXL (1996): Solving multi-mode resource-constrained
project scheduling poblems by a simple, general and powerful sequencing algorithm.
Part II: Computation. Manuskripte aus den Instituten für Betriebswirtschaftslehre,
No. 386, University of Kiel, Germany.

[19] SPRECHER, A.; S. HARTMANN AND A. DREXL (1994): Project scheduling with
discrete time-resource and resource-resourcetradeoffs. Manuskripte aus den Instituten
für Betriebswirtschaftslehre, No. 357. University of Kiel, Germany.

[20] SPRECHER, A.; S. HARTMANN AND A. DREXL (1996): An exact algorithm for
project scheduling with multiple modes. OR Spektrum (to appear).

[21] SPRECHER, A.; R. KOLISCH AND A. DREXL (1995): Semi-active, active and non-
delay schedules for the resource-constrained project scheduling problem. European
Journal of Operational Research, Vol. 80, pp. 94-102.

22

[22] STINSON. J.P.; E.W. DAVIS AND B.M. KHUMAWALA (1978): Multiple resource-
constrained scheduling using branch and bound. AIIE Transactions. Vol. 10. pp. 252-
259.

[23] TALBOT. F.B. (1982): Resource-constrained project scheduling with time-resource
tradeoffs: The nonpreemptive case. Management Science, Vol. 28. pp. 1197-1210.

[24] TALBOT, F.B. AND J.H. PATTERSON (1978): An efficient integer programming algo­
rithm with network cuts for solving resource-constrained project scheduling problems.
Management Science. Vol. 24, pp. 1163-1174.

23

