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Abstract 

This paper is devoted to a comparison of all available branch-and-bound algo-
rithms that can be applied to solve resource-constrained project scheduling problems 
with multiple execution modes for each activity. After summarizing the two exact 
algorithms that have been suggested in the literature. we propose an alternative ex­
act approach based on the concepts of mode and extension alternatives to solve this 
problem. Subsequently, we compare it to the two procedures available in the litera­
ture. Therefore, the three algorithms as well as all available bounding criteria and 
dominance rules are summarized in a unified framework. In addition to a theoretical 
comparison of the procedures, we present the results of our computational studies in 
order to determine.the most efficient algorithm. 

Keywords: Project Management and Scheduling, Multiple Modes, Branch-and-
Bound, Bounding Rules. Computational Results. 

1 Introduction 

Within the classical resource-constrained project scheduling problem (RCPSP), the activi-
ties of a project have to be scheduled such that the makespan of the project is minimized. 
Thereby, technological precedence constraints have to be observed as well as limitations 
of the renewable resources required to accomplish the activities. Once started, an activity 
may not be interrupted. 

This problem has been extended to a more realistic model, the multi-mode resource-
constrained project scheduling problem (MRCPSP). Here. each activity can be performed 
in one out of several modes. Each mode of an activity represents an alternative way of 
combining different levels of resource requirements with a related duration. Following Slo-
winski [13], renewable, nonrenewable and doubly constrained resources are dinstinguished. 
While renewable resources have a limited per-period availability such as manpower and 
machines, nonrenewable resources are limited for the entire project, allowing to model 
e. g. a budget for the project. Doubly constrained resources are limited both for each 
period and for the whole project. However, since they can simply be incorporated by 
enlarging the sets of the renewable and nonrenewable resources, we do not consider them 
explicitly. The objective is to find a mode and a Start time for each activity such that the 
schedule is makespan minimal and feasible with respect to the precedence and resource 
constraints. 

A broad variety of branch-and-bound procedures has been proposed for optimally sol-
ving the single-mode RCPSP. The approaches of Stinson et al. [22], Talbot and Patterson 
[24]. Christofides et al. [3], Demeulemeester and Herroelen [4], Mingozzi et al. [10], and 
Sprecher [16] enumerate partial schedules in different ways. Approaches based on graph 
representations have been suggested by Radermacher [12], Bartusch et al. [1], and Brucker 
et al. [2]. For the multi-mode case, all procedures developed up to now utilize the concept 
of partial schedules, cf. the approaches of Patterson et al. [11], Sprecher and Drexl [17], 
Speranza and Vercellis [14], and Sprecher et al. [20]. However, Hartmann and Sprecher [7] 
have shown that the procedure proposed in [14] is not correct, that is. in some cases. it 
finds only suboptimal solutions or even fails to determine an existing feasible Solution. 

This paper deals with exact Solution methodologies for the MRCPSP. We introduce an 
alternative branch-and-bound procedure and, moreover, provide a thorough comparison 
of the algorithms proposed in the literature and the new approach. The procedures are 
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described in a unified way and are compated both theoTetically and numeiically. In order 
to provide a fair comparison, we have employed each available acceleration method into 
each enumeration algorithm. The three procedures have been implemented and compared 
on a Standard set of project instances that has been generated using the problem generator 
ProGen developed by Kolisch et aL [8]. This enables us to determine the most efficient 
procedure currently available to solve the MRCPSP. 

The remainder is organized as follows: Section 2 pro vi des the description of the pro­
blem. Section 3 summarizes the enumeration algorithms known from the Literature and 
introduces the new one. Section 4 contains the available dominance rules as well as a new 
concept. Section 5 is devoted to a theoretical comparison of the enumeration schemes. 
Section 6 provides the results of our computational comparison of the three procedures. 
FinaLly, Section 7 states some conclusions. 

2 Problem Description 

We consider a project which consists of J activities (Jobs) labeled j = 1Due to 
technological requirements the activities are partially ordered, that is. there are prece-
dence relations between some of the Jobs. These precedence relations are given by sets of 
immediate predecessors P3 indicating that an activity j may not be started before all of its 
predecessors are completed. The precedence relations can be represented by an activity-
on-node network which is assumed to be acyclic. We consider additional activities j = 0 
representing the only source and j = J <f 1 representing the unique sink activity of the 
network. 

With the exception of the (dummy) source and (dummy) sink activity, each activity 
requires certain amounts of resources to be performed. The set of renewable resources 
is referred to as R. For each renewable resource r € R the per-period-availability is 
constant and given by K?. The set of nonrenewable resources is denoted as N. For each 
nonrenewable resource r E A7 the overall availability for the entire project is given by K"-

Each activity can be performed in oneof several different modes of accomplishment. A 
mode represents a combinination of different resources and/or levels of resource requests 
with a related duration. Once an activity is started in one of its modes, it is not allowed 
to be interrupted. and its mode may not be changed. Activity j may be executed in M3 

modes labeled m = 1...., Mj. The duration of job j being performed in mode m is given 
by djm. We assume the modes to be labeled with respect to non-decreasing duration, that 
is, djm < djm+1 for all activities j = 1..... J and modes m ~ 1. Mj — 1. Furthermore, 
activity j executed in mode m uses kpJ7nr units of renewable resource r each period it is in 
process, where we assume w. 1. o. g. k?mr < Kf for each renewable resource r e R. Note, 
otherwise activity j could not be performed in mode m. Moreover. it consumes k^mr units 
of nonrenewable resource r € N. W. 1. o. g., we assume that the dummy source and the 
dummy sink activity have only one mode each with a duration of zero periods and no 
request for anv resource. 

The objective is to minimize the makespan of the project. We assume the parameters 
to be nonnegative and integer valued. A mathematical programming formulation of this 
problem has been given by Talbot [23]. 
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3 Enumeration Sehernes 

This section is devoted to enumeration procedures for the MRCPSP. In the first two 
subsections, we summarize the two algorithms that have been proposed in the literature 
for this problem. Then we present a new algorithm in Subsection 3.3 using a description 
which points out the similarities and differences to the former procedures. 

3.1 The Precedence Tree 

Patterson et al. [11] proposed an algorithm guided by the so-called precedence tree. Re-
strueturing this approach. Sprecher [15] and Sprecher and Drexl [17] developed a new 
procedure based on the precedence tree and improved it by including new bounding cri-
teria (cf. Section 4). 

We present a simplified formulation of the precedence tree algorithm. The procedure 
begins with starting the dummy source activity at time 0. M each level g of the branch-
and-bound tree, we determine the set SJg of the currently scheduled activities and the 
set EJg of the eligible activities, that is, those activities the predecessors of which are 
already scheduled. Then we select an eligible activity jg and, subsequently, a mode m3g 

of this activity. Now we compute the earliest precedence and resource feasible Start time 
Sj that is not less than the start time assigned on the previous level of the search tree. 
Then we branch to the next level. If the dummy sink activity is eligible, we have found a 
complete schedule. In this case, backtrackirvg to the previous level occurs. Here, we select 
the next untested mode. If none exists, we select the next untested eligible activity. If we 
have tested all eligible activities in all available modes, we track another step back. More 
formallv, we have: 

Algorithm 1 (Precedence tree) 

Step 1: (Initialization) 
g := 0; j0 : = 0; mJO : = 1; $j0 0; SJ0 •'= 0: 

Step 2: (Compute eligible activities) 
9 :== 9 1; SJg := SJg — 1 U {jg — l}, 
EJg '= {j € {1* . . . , J}\SJg | Pj C SJg}', 
if J + 1 6 EJg then störe current Solution and go to Step 5; 

Step 3: (Select next activity) 
if no untested eligible activity is left in EJg then goto Step 5, 
eise select untested activity jg € EJg; 

Step 4: (Select next mode and compute start time) 
if no untested mode is left in {1...., Mjg} then goto Step 3, 
eise select untested rrijg € {1...., Mjg}: 
if a conflict w.r.t. a nonrenewable resource occurs then go to Step 4; 
compute earliest precedence and resource feasible start time s3g 

with : 
goto Step 2; 

Step 5; (Backtracking) 
g := g — 1; if g = 0 then STOP, eise goto Step 4. 
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Note that each combination of an eligible activity and a related mode corresponds to 
a descendant of the current node in the branch-and-bound tree or, as it is called here, 
precedence tree. Each branch from the root to a leaf of the precedence tree corresponds 
to a permutation of the set of activities ji,... .jj which is precedence feasible in the sense 
that each predecessor of a job jg has a smaller index in the sequence than jg. 

3.2 Mode and Delay Alternatives 

In this subsection we summarize the branch-and-bound approach proposed by Sprecher et 
al. [19], [20]. Introducing the notion of a mode alternative, it extends the concept of delay 
alternatives used by Christofides et al. [3] and Demeulemeester and Herroelen [4] for the 
(single-mode) RCPSP. 

In contrast to Algorithm 1. here each level g of the branch-and-bound tree is associated 
with a fixed time instant tg (decision point) at which activities may be started. Conse-
quently, we use a different definition of eligible activities in this algorithm: A currently 
unscheduled activity j is called eligible at time tg if all of its predecessors i 6 P3 are 
scheduled with a finish time fi < tg. Furthermore, an activity j scheduled in mode m3 

with Start time Sj is said to be in process at time tg if we have s3 < tg < s3 + djm. 
The proceeding at the current level g of the branch-and-bound tree is as follows: We 

determine the new decision point tg as the earliest finish time of the activities currentlv in 
process. Note that. due to the constant availability levels of the renewable resources. only 
finish times of scheduled activities need to be considered for starting unscheduled ones. 
Using the set FJg of the activities that are finished at or before the decision point, we 
compute the set EJg of the eligible activities. Then we (temporarily) start those eligible 
activities at the decision point that have already been assigned a mode at a previous level 
of the search tree. If there are eligible Jobs that have not yet been assigned a mode. that 
is. if EJg\EJg-1 is not empty, then we compute the set SÖMAg of mode alternatives: A 
mode alternative is a mapping MAg which assigns each activity j € EJg\EJg-i a mode 
MAg(j) = m3 £ M,-}. Selecting a mode alternative, we can (temporarily) start 
the remaining eligible activities at the decision point as well. Having started all eligible 
activities by adding them to the set JIPg of the activities in process. we may have caused 
a resource confüct. Thus, we compute the set SÖVAg of the minimal delay alternatives 
according to the following definition: A delay alternative VAg is a subset of JIPg such 
that for each renewable resource r € R it is 

E < AT 
3<=JIPg\VAg 

A delay alternative VAg is called minimal if no proper subset of VAg is a delay alternative. 
We select a minimal delay alternative and remove the activities to be delayed from the 
current partial schedule. Note, if no resource conflict occurs. the only minimal delay 
alternative is the empty set. We störe the start times of an activity j to be delayed in 
sglf because we have to restore the Information during backtracking. Then we branch to 
the next level and compute the next decision point. If we have completed a schedule, we 
perform a backtracking step and test the next minimal delay alternative or, if all have been 
tested, the next mode alternative. Formally, the algorithm can be described as follows: 
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Algorithm 2 (Mode and delay alternatives) 

Step 1: (Initialization) 
g 0; to 0; JIPo := {0}; FJQ 0; rri-o := 1; 50 := 0; EJ0 := 0; VAo •= 0: 

Step 2: (Compute new decision point and eligible activities) 
g := g + 1: tg := min{^ + djm} | j e JIPg-1}; 
FJg := U {j € JIPg-1 | Sj + rfjmj = tg}\ 
EJg := {; € {1,u J/P,_i) | P, C FJg}; 
JIPg := JIPg-l\FJg U EJg] 
if J + 1 € EJg then störe current Solution and go to Step 7; 
for each j € VAg-\ update Sj := tg; 

Step 3: (Compute mode alternatives) 
if EJg\EJg-1 = 0 then SOMAg := 0 and go to Step 5, 
eise SOMAg := ^eZÜ/Mode^/fernati-yes^J^PJ^-i); 

Step 4: (Select next mode alternative) 
if no untested mode alternative is left in SOMAg then go to Step 7. 
eise select untested MAg 6 SOMAg\ 
for each j € EJg\EJg-\ update rrij := MAg{j) and s3 tg: 
if a conflict w.r.t. a nonrenewable resource occurs then go to Step 4; 

Step 5: (Compute delay alternatives) 
SOVAg := SetO f Minimal Delay Alternative$(J IPg)\ 

Step 6: (Select next delay alternative) 
if no untested minimal delay alternative is left in SÖVAg then go to Step 4, 
eise select untested T>Ag 6 SOVAg] JIPg := JIPg\VAg\ 
for each j E VAg störe s°lf := s3; go to Step 2; 

Step 7: (Backtracking) 
g := g — 1; if g = 0 then STOP. 
eise for each j 6 VAg restore sj := s°gl^\ JIPg := JIPg U VAg\ go to Step 6. 

Observe that each combination of a mode alternative and a related minimal delay 
alternative corresponds to a descendant of the current node in the branch-and-bound tree. 
Clearly, this procedure is different from Algorithm 1 in that sets of activities instead of 
(single) activities are started at each level of the branch-and-bound tree. Moreover, here 
the time instant at which activities may be started is determined before the activities 
themselves are selected. Finally, in contrast to Algorithm 1, this approach allows to 
withdraw scheduling decisions at the current level that have been made at a lower level. 

3.3 Mode and Extension Alternatives 

This subsection is devoted to a new branch-and-bound approach for solving the MRCPSP. 
Using again the concept of mode alternatives developed by Sprecher et al. [20]. we intro-
duce extension alternatives to construct partial schedules. A similar way to extend partial 
schedules has been proposed by Stinson et al. [22] for the single-mode case. 

As in Algorithm 2, each level g of the branch-and-bound tree is associated with a 
decision point tg, a set JIPg of the activities in process. a set FJg of the finished activities. 
and a set EJg of the eligible activities. Again, we use a mode alternative to fix the modes 
of those eligible activities that have not yet been assigned a mode. Then we extend 

5 



the current partial schedule by starting a subset of the eligible activities at the decision 
point without violating the renewable resource constraints. More precisely. an extension 
alternative EAg is a subset of the eligible set for which we have 

for each renewable resource r € R and. moreover. EAg ^ 0 if JJPg — 0- Note, in order to 
secure that the algorithm terminates. we may only have nonempty extension alternatives 
if no activities are in process. However. if there are currently activities in process. the 
empty set is always an extension alternative which must be tested in order to guarantee 
optimality. 

At the current level g of the branch-and-bound tree we proceed as follows: We de­
termine the new decision point and compute the set of the eligible activities. Then we 
determine the set of mode alternatives SÖMAg for hxing the modes of the eligible acti­
vities that have not been eligible before, that is, those activities the modes of which have 
not yet been fixed. After selecting a mode alternative MAg. we compute the set of exten­
sion alternatives SOEAg. Finally, we select an extension alternative EAg and start the 
corresponding activities before branching to the next level. The backtracking mechanism 
equals the one of Algorithm 2. Formally, we can describe the algorithm as follows: 

Algorithm 3 (Mode and extension alternatives) 

Step 1: (Initialization) 
g := 0; t0 := 0; JIPo : = {0}; FJo := 0; m0 1; s0 : = 0; EJ0 0; 

Step 2: (Compute new decision point and eligible activities) 
g := g + 1; tg := min{s3 + d3rrij | j € JIPg-1}; 
F Jg .= FJg-l U {j £ JI Pg — l | Sj -f- djmj — tg j- . 
EJg := {j € {1 J}\(FJg U JIPg.x )\P3C FJg}: 
JIPg := j IPg-\\F Jg\ 
if J + 1 6 EJg then störe current Solution and go to Step 7; 

Step 3: (Compute mode alternatives) 
if EJg\EJg-1 = 0 then SOMAg := 0 and go to Step 5, 
eise SÖM.Ag := SetOfModeAlternatives(EJg\EJg--l): 

Step 4: (Select next mode alternative) 
if no untested mode alternative is left in SÖMAg then go to Step 7. 
eise select untested MAg € SÖMAg; 
for each j 6 EJg\EJg-1 update m3 \= MAg(j)\ 
if a conflict w.r.t. a nonrenewable resource occurs then go to Step 4; 

Step 5: (Compute extension alternatives) 
SÖCAg := SetOfExtensionAlternatives(EJg,JIPg); 

Step 6: (Select next extension alternative) 
if no untested extension alternative is left in SÖEAg then go to Step 4, 
eise select untested EAg € SOEAg\ JIPg := JIPg U EAg\ 
for each j £ EAg update Sj := ig\ go to Step 2: 

Step 7: (Backtracking) 
g := g — 1: if g — 0 then STOP, eise JIPg := JIPg\EAg: go to Step 6. 

jE«/ I PgUS^Ag 
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Each combination of a mode alternative and a related extension alternative corresponds 
to a descendant of the current node in the branch-and-bound tree. Note that this procedure 
is different from Algorithm 2: Whereas the latter includes the possibility to delay activities 
that have been started on a lower than the current level, the new approach does not allow 
to withdraw a scheduling decision of a lower level. As a consequence, we may not restrict 
the search to "maximal" extension alternatives while we do not loose optimality when 
considering only minimal delay alternatives. 

4 Bounding Rules 

This section summarizes bounding criteria which speed up the enumeration procedures 
of the previous section. While most of the rules are known from the literature, we also 
present a new one and transfer some weil-known ones to those enumeration schemes they 
have not yet been defined for. For the sake of shortness, we have omitted the proofs of 
those rules that are known from the literature. 

4.1 Time Window Based Rules 

The first bounding criteria make use of time windows as determined by MPM. Sprecher 
[15] and Sprecher et al. [20] have emploved this rule in their algorithms for solving the 
MRCPSP. Given the precedence relations and an upper bound on the makespan of the 
project (which is e.g. given by the sum of the maximal durations of the activities), we use 
the modes of shortest duration and derive the latest finish time LFj for each activity j by 
traditional backward recursion. If a procedure has found the first or an improved schedule 
with a makespan X, the latest finish times are recalculated by LFj := LFj — (LFj - T + 1) 
for j = 1,..., J. From the definition of the latest finish times we can derive the following 
bounding rule: 

Bounding Rule 1 (Basic Time Window Rule) If there is a scheduled activity the assi-
gned finish time of which exceeds the latest finish time, then the current partial schedule 
cannot be completed with a makespan less then the best currently known. 

Using the definition of the time window and explicitly considering multiple modes, 
Sprecher [15] has developed the following rule for the precedence tree algorithm: 

Bounding Rule 2 (Non-Delayability Rule for Algorithm 1) If an eligible activity cannot 
be feasibly scheduled in any mode in the current partial schedule without exceeding its latest 
finish time, then no other eligible activity needs to be examined on this level 

Taking into account the differences between the precedence tree procedure on one hand 
and the algorithms based on mode alternatives on the other. we can adapt Bounding Rule 
2 as foilows: 

Remark 1 (Non-Delayability Rule for Algorithms 2 and 3) If an eligible activity the mode 
of which has not yet been fixed cannot be started in the mode with the shortest duration at 
the current decision point without exceeding its latest finish time. then no mode alternative 
needs to be examined at the current level 
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4.2 Preprocessing 

This subsection is devoted to two bounding rules which can be implemented by prepro­
cessing. The first one has originally been proposed by Sprecher et al. [19], [20]. It uses 
the following definitions: A mode is called non-executable if its execution would violate 
the renewable or nonrenewable resource constraints in any schedule. A mode is called 
inefficient if its duration is not shorter and its resource requests are not less than those of 
another mode of the same activity. A nonrenewable resource is called redundant if the sum 
of the maximal requests of the activities for this resource does not exceed its availability. 
Clearlv, non-executable and inefficient modes as well as redundant nonrenewable resources 
may be excluded from the project data without loosing optimality. Sprecher et al. [19]. 
[20] describe several interaction effects appearing when modes or nonrenewable resources 
are removed. e.g. eliminating a redundant nonrenewable resource may cause inefficiency 
of a mode. Hence, thev propose the following way to prepare the input data: 

Bounding Rule 3 (Data Reduction) The project data can be adapted as follows: 
Step 1: Remove all non-executable modes from the project data. 
Step 2: Delete the redundant nonrenewable resources. 
Step 3: Eliminate all inefficient modes. 
Step 4: If any mode has been erased within Step 3, go to Step 2. 

The next bounding rule has especially been designed for instances with nonrenewable 
resources. It has been proposed by Drexl [5] for a less general framework. 

Bounding Rule 4 (Nonrenewable Resource Rule) If scheduling each currently unschedu-
led activity in the mode with the lowest request for a nonrenewable resource would exceed 
the capacity of this nonrenewable resource. then the current partial schedule cannot be 
feasibly completed. 

Sprecher [15] adapted the rule to the MRCPSP and improved the effect by reformula-
ting it as a static rule. Before an algorithm is executed, the project data is adjusted as 
follows: Defining kl/-Jntr" as the minimal request of activity j for nonrenewable resource r, 
we update kujmr := k^mT - fc£min for j = 1,..., J. m = 1,.... Mj. and r e N, and 

J 
AT := AT - for r € A". 

J = i 

4.3 Dominating Sets of Schedules 

The following three bounding rules make use of a Classification of the set of schedules. 
The notions of semi-active and active schedules as formally defined by Sprecher et al. [21] 
for the single-mode case can be straightforwardly extended to the multi-mode case: A 
left shift of an activity within a given schedule is a reduction of its finish time without 
changing its mode and without changing the modes or finish times of the other activities, 
such that the resulting schedule is both precedence and resource feasible. A local left shift 
is a left shift which is obtainable by one or more successively applied left shifts of one 
period. A schedule is called semi-active if none of the activities can be locallv left shifted. 
Following French [6], we can State that if there is an optimal schedule for a given instance, 
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then there is an optimal semi-active schedule. This result is exploited by the following 
rule which has been employed by Sprecher [15] and Sprecher et al. [19] for the multi-mode 
case. 

Bounding Rule 5 (Locol Left Shift Rule) If an activity that has been started, at the cur­
rent level of the branch-and-bound tree can be locally left shifted without changing its mode. 
then the current partial schedule needs not be completed. 

Additionally allowing a mode change of the activity to be shifted, Sprecher et al. [19] 
defined the notion of a multi-mode left shift: Within a given schedule. a multi-mode left 
shift is a reduction of an activity's finish time without changing the modes or finish times 
of the other activities, such that the resulting schedule is feasible. A schedule is called 
tight if no multi-mode left shift can be performed. The notion of tight schedules has been 
introduced by Speranza and Vercellis [14]. 

Another Operation on a schedule of an MRCPSP instance has been introduced by 
Sprecher et al. [19]: A mode reduction on an activity is a reduction of its mode number 
without changing its finish time and without violating the constraints or changing the 
modes and finish times of the other activities. A schedule is called mode-minimal if there 
is no activity a mode reduction can be performed on. 

Note that there are tight schedules which are not mode-minimal and vice versa. Ob-
viously, if there is an optimal schedule for a given instance. then there is an optimal 
schedule which is both tight and mode-minimal. Consequently, the following rule propo­
sed by Sprecher et al. [19] induces backtracking when it is certain that no tight or mode 
minimal schedule can be obtained from the current partial schedule. 

Bounding Rule 6 (Multi-Mode Rule) Assume that no currently unscheduled activity will 
be started before the finish time of a scheduled activity j when the current partial schedule 
is completed. If a multi-mode left shift or a mode reduction of activity j with resulting 
mode m/j. 1 < m'- < Mj, can be performed on the current partial schedule and, moreover, 
if k^m,r < holds for each nonrenewable resource r € N, then the current partial 
schedule needs not be completed. 

Clearly, if no multi-mode left shift can be applied, then a local left shift cannot be 
applied either. Nevertheless. it is useful to check for both types of left shift seperately 
according to the previous two bounding rules. Observe that we check for a local left shift 
when the corresponding activity has just been started. However, we can only check for 
a multi-mode left shift if the corresponding activity has already finished. Otherwise, as 
outlined by Hartmann and Sprecher [7], we would loose optimality. Consequently, the 
Local Left Shift Rule is not superflous as the exclusion of a partial schedule due to a 
feasible local left shift can be detected on a lower level of the branch-and-bound tree than 
the same (mode-preserving) multi-mode left-shift. 

The next operation and the related category of schedules are new: Denoting the finish 
time of a scheduled activity j with fj = Sj + djmj, we consider two activities i and j with 
i > j that are successively processed within a schedule, that is, fi = Sj. Novv an order 
swap is defined as the interchange of these two activities by assigning new start and finish 
times sfj := Si and f- := fj. respectively. Thereby, the precedence and resource constraints 
may not be voilated, and the modes and start times of the other activities may not be 
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changed. A schedule in which no order swap can be performed is called order monotonous. 
Clearly, it is sufficient to enumerate only order monotonous schedules. It should be noted 
that there are schedules which are tight and mode-minimal but not order monotonous and 
vice versa. We apply the following bounding criterion: 

Bounding Rule 7 (Order Swap Rule) Consider a scheduled activity the finish time of 
which is less than or equal to any start time that may be assigned when cornpleting the 
current partial schedule. If an order swap on this activity together with any of those 
activities that finish at its start time can be performed. then the current partial schedule 
needs not be completed. 

Proof. Obvious. • 

In analogy to the extension of the left shift concept to the multi-mode case. the defini­
tion of the order swap can easily be generalized by allowing a mode change of the activities 
to be swapped. However, preliminary computational results have shown that the addi-
tional effort that would be necessary to check the assumptions completely consumes the 
acceleration effect. 

4.4 The Cutset Rule 

The following bounding method stores Information about already evaluated partial sche­
dules. Düring the search process, the rule compares the current partial schedule with the 
stored data. If it can be proven that any Solution obtainable from the current partial 
schedule cannot be better than a Solution obtainable from a previously evaluated partial 
schedule the Information of which has been stored. then backtracking may be performed. 

Bounding criteria based on stored Information of already evaluated partial schedules 
have been employed by Stinson et al. [22] and Demeulemeester and Herroelen [4] for the 
single-mode case. Defining a cutsei of a partial schedule PS as the set of the activities 
scheduled in PS, Sprecher and Drexl [17] proposed the following rule for their algorithm 
for the MRCPSP: 

Bounding Rule 8 (Cutset Rule for Algorithm 1) Let PS denote a previously evaluated 
partial schedule with cutset CS(PS), maximal finish time fmax{PS) and leftover capacities 
I\'"(PS) of the nonrenewable resources r E AT. Let PS be the current partial schedule 
considered to be extended by scheduling some activity j with start time sj. If we have 
CS(PS) = CS(PS), > fmax(TS) and K?(PS) < K?(PS) for all r e A\ then PS 
needs not be completed. 

When all continuations of the current partial schedule have been examined, the cutset 
Information related to the partial schedule that is required for Bounding Rule 8 is stored. 

If the concept of mode alternatives is used, the rule has to be adapted. Clearly, each 
scheduling decision made in the current partial schedule has to be refiected in the data 
to be stored. Having selected an extension alternative in Algorithm 3, the modes of some 
activities that are not contained in the current partial schedule may be fixed within each 
of its continuations. Consequently, we must störe the set of those activities the modes of 
which are fixed and the related modes in addition to the data that is stored according to 
Bounding Rule 8 for the precedence tree procedure. The cutset rule proposed by Demeu­
lemeester and Herroelen [4] can be generalized to the multi-mode case in a similar wav and 
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can then be employed in Algorithm 2. Unfortunately, however, adapting the Cutset Rule 
to Algorithms 2 and 3 does not speed up these procedures. Roughly speaking, this is due 
to the fact that we have to störe much more data while each cutset Information unit is less 
general when the concept of mode alternatives is used. That is, the effort of storing and 
comparing the data increases while backtracking due to some stored Information becomes 
less probable. Therefore, we do not give the detailed formal descriptions of the variants 
of Bounding Rule 8 for the procedures based on mode alternatives. 

4.5 Immediate Selection 

The following bounding rule has been developed by Demeulemeester and Herroelen [4] 
for the RCPSP and generaüzed by Sprecher et al. [19] to the multi-mode case. It states 
assumptions under which we are allowed to consider only one branching alternative instead 
of testing all. We first give a formulation that can be employed if the decision point and 
mode alternative concepts are used. 

Bounding Rule 9 (Immediate Selection for Algorithms 2 and 3) We assume the follo­
wing Situation: All activities that start before the current decision point tg finish at or 
before tg. After selecting a mode alternative, there is an eligible activity j with fixed mode 
mj which cannot be simultaneously processed with any other eligible activity i in its fixed 
mode mx. Moreover, activity j in mode m3 cannot be simultaneously processed with any un-
scheduled activity h in any mode mh € {1, - -., Mh}- Then VAg = JIPg\{j} (= EJg\{j}) 
is the only minimal delay alternative that has to be examined, and EAg = {j} is the only 
extension alternative that has to be examined. 

This rule can be adapted to the precedence tree guided enumeration procedure in 
several ways. We consider the following variant: 

Remark 2 (Immediate Selection for Algorithm 1) Consider an eligible activity j no mode 
of which is simultaneously performable with any currently unscheduled activity in any 
mode. If the earliest feasible start time of each other eligible activity in any mode is 
equal to the maximal finish time of the currently scheduled activities, then j is the only 
eligible activity that needs to be selected for being scheduled on the current level of the 
branch-and-bound tree. 

As described by Demeulemeester and Herroelen [4] for the single-mode and Sprecher 
et al. [19] for the multi-mode case, a similar immediate selection strategy for scheduling 
two activities and delaying all other eligible activities can be stated. Preliminary compu­
tational results. however. revealed that this rule does not speed up the algorithm when 
the other rules are employed. Consequently. we do not consider it here. 

4.6 A Precedence Tree Specific Rule 

Due to the construction of the precedence tree, Algorithm 1 may enumerate one schedule 
severa] times. This is the case in the following Situation: Consider some partial schedule 
PS which is extended by scheduling some activity i in mode m% on level £-1 and activity 
j in mode m3 on level g with identical start times = s3. If we return to PS later in 
the search process, and if scheduling activity j in mode mj on level g — 1 and activity i in 
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mode rrii on level g results in the same start times, then we will obtain a schedule that has 
previously been enumerated. To avoid duphcate consideration of a schedule, Sprecher [15] 
has proposed the so-called Single Enumeration Rule which uses a three-dimensional array 
to check the assumptions mentioned above. We present an alternative rule to exclude 
duplicate enumeration. Clearly, it can only be used within Algorithm 1 since in the other 
two procedures a schedule can only be considered once. 

Bounding Rule 10 (Precedence Tree Rule for Algorithm 1) Consider two activities i 
and j scheduled on the previous and on the current level of the branch-and-bound tree. 
respectively. If we have S{ = Sj and i > j then the current partial schedule needs not be 
completed. 

Proof Let PS be a partial schedule extended by scheduling activities i and j on levels 
g — 1 and g, respectively, with i > j and S{ = sj. We assume that extending PS by 
scheduling j before i, both in the same modes as before, results in start times s'- and s\. 
Clearly, we have s\ = S{ and s'- < Sj. Thus. extending PS by scheduling i before j cannot 
lead to a schedule with a shorter makespan than by scheduling j before i. It should be 
observed that the extension of PS obtained from scheduling j before i cannot be excluded 
by Bounding Rule 10. • 

The new rule is not only simpler, but also more general than the original Single-
Enumeration Rule in that it additionally contains a portion of the Local Left Shift Rule. 
This can be seen in the proof given above: If we have s'- < Sj, then the Local Left Shift Rule 
would also induce backtracking. Nevertheless, the Local Left Shift Rule is still necessary 
as the Precedence Tree Rule does not exclude partial schedules that are not semi-active if 
we have i < j. 

5 Theoretical Comparison of Enumerated Schedules 

5.1 Complete Enumeration 

In this subsection we compare the sets of schedules enumerated by the algorithms described 
in Section 3 without considering any of the bounding rules of Section 4. For notational 
convenience, we will refer to the sets of schedules enumerated by Algorithms 1, 2, and 3 
with S\. S2, arid £3, repectively. 

We start our investigation comparing Algorithms 1 and 2. The first theorem states 
that for some instances schedules that are enumerated by the precedence tree algorithm 
are not enumerated by the algorithm based on mode and delay alternatives and vice versa. 

Theorem 1 There are instances for which we have «Sj 2 $2 and £2 2 • 

Proof. We consider the project instance given in Figure 1 as a counterexample. Note 
that it is a single-mode instance (thus, the mode index and the set of the nonrenewable 
resources have been omitted). Consequently, the results obtained hold for the single-
mode RCPSP as well. It can be easily verified that the schedule shown in Figure 2 (a) 
is enumerated by Algorithm 1 but not by Algorithm 2. Schedule (b) is enumerated by 
Algorithm 2 but not by Algorithm 1. • 
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Next, we comp are Algorithms 1 and 3. For each instance, any schedule enumerated by 
the precedence tree algorithm is also found by the algorithm based on mode and extension 
alternatives. The reverse, however, does not hold in general. 

Theorem 2 There are instances with 63 g S\. hui for all instances it is Si C 63. 

Proof. Again, we use the instance displayed in Figure 1 as a counterexample: Schedule 
(b) of Figure 2 is enumerated by Algorithm 3 but not by Algorithm 1, proving the first 
part of the theorem. 

We consider a partial schedule PS 1 enumerated by Algorithm 1 which is subsequentlv 
extended toP^ = PS\ ü{(j, mj, Sj)}- Assuming that Algorithm 3 finds a partial schedule 
PS3 equal to PSi, we have to show that it also enumerates a partial schedule PS3 equal to 
PS 1. Let t be the last decision point in PS3 at which a nonempty extension alternative ZA 
has been scheduled. We have t < s3 (otherwise Sj would not be a start time considered by 
Algorithm 1). If we have t = Sj. we define PS3 as the result of scheduling ZA := ZA U {j} 
at time t instead of SA. Note that ZA is a feasible extension alternative. Otherwise. we 
extend PS3 by scheduling the empty extension alternative at all decision points t' with 
t < t' < Sj (if any). Then we obtain PS3 by scheduling extension alternative {j} at time 
Sj which is a decision point (i.e., a finish time of an activity scheduled in PS$). In both 
cases, mode rrij can be chosen using a mode alternative, and we have PS3 = PS 1. • 

Finally, we compare Algorithm 2 to Algorithm 3. Given an arbitrary instance of the 
MRCPSP, any schedule enumerated using mode and delay alternatives is also found by 
using mode and extension alternatives. The Inversion does not hold for some instances. 

Theorem 3 There are instances with £3 g S2, but for all instances it is S2 C <S3. 

Proof. Considering again the instance shown in Figure 1, schedule (a) of Figure 2 proves 
the first part of the theorem as it is enumerated by Algorithm 3 but not by Algorithm 2. 

As both algorithms emplov the concept of mode alternatives, we may restrict the proof 
of the second part of the theorem to the Single mode case. We consider an arbitrary project 
instance and a partial schedule enumerated by both algorithms, that is, PS2 = PS3. Let 
tg+1 be the next decision point and EJ the set of the eligible activities in both partial 
schedules (note that the definitions of a decision point and eligible activities are equal 
in both algorithms). Algorithm 2 schedules the eligible jobs at time and delays 
the activities of some minimal delay alternative VA, resulting in partial schedule PS2. 
We have to show that Algorithm 3 finds VS2, too. We assume that PS3 is constructed 
by a sequence tQ, ZAo,... ,tg. ZAg of decision points and extension alternatives. As the 
decision points in PS2 and PS3 are equal. we can define A{ := {j 6 VA | Sj = in 
PS2} for i = 0,...,£+ 1 and have VA = U^=QAZ. Now we define ZAg+\ := EJ\Ag+i 
and ZAi := ZA1\At for i = 0,...,g. Observe that the sequence of decision points is not 
affected as all delayed activities have a finish time greater than tg+\. Moreover, each ZA\ 
with 0<z<(7+lisa feasible extension alternative. Hence the extension algorithm 
enumerates a sequence to, ZAo, - - -, is+i, which corresponds to a partial schedule 
PS3. With PS3 = PS2 by construction we complete the proof. • 

The results of this subsection can be summarized as follows: None of the complete 
enumeration schemes currently available for the MRCPSP is dominanant in a sense that 
the set of the schedules enumerated by one algorithm is less than or equal to the sets 
enumerated by the other two procedures. 
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5.2 Enumeration with Local Left Shift Rule 

In this subsection, we examine the sets of schedules enumerated by the algorithms of 
Section 3 including the Local Left Shift Rule (Bounding Rule 5). Similarly to the previous 
subsection, we denote the sets of schedules enumerated by Algorithms 1, 2. and 3 with 
the Local Left Shift Rule as S^s, and S^s. respectively. Finally. the set of the 
semi-active schedules is referred to as 

The following theorem states that the precedence tree algorithm in accordance with 
the Local Left Shift Rule enumerates exactly the set of the semi-active schedules. 

Theorem 4 For all instances. we have = SAS. 

Proof. The Local Left Shift Rule is applied to activity j that is started at time sj 
at the current node of the branch-and-bound tree. No scheduling decision at a successor 
node of the search tree can free renewable resources before Sj, thus, if a local left shift is 
not possible when starting an activity, it is not possible in any (enumerated) completion 
of the partial schedule. 

Let S 6 SAS be a semi-active schedule for an arbitrary instance. We can construct a 
sequence (jQ, m0, s0),.... (jt-. .... (jj. mj, sj) with s,- < Si+i for 1 < i < J represen­
ting S. We show by induction that the sequence related to S corresponds to a branch in the 
search tree built up by Algorithm 1. Let (j0. m0, s0),.... (jg. mg, sg) with 1 < g < J corre-
spond to a partial schedule PS^s found by Algorithm 1. We consider activity j5+1 which 
is eligible in PS^s and can therefore be scheduled in mode mg+1. Let t denote the start 
time assigned to activity jg+i by Algorithm 1 and let PS^S = PS^sö {(jg+i. mg+i, *)} be 
the corresponding next partial schedule. We have i > sg+i. otherwise S could not be semi-
active. For the same reason, the left shift rule cannot be applied to activity jg+\. Moreover, 
it is t < because the precedence tree algorithm assigns the earliest feasible start time 
and it is sg < sg+1. Hence, we deduce t = s5+x, that is, (jo,m0, (jg+i, , s5+1) 
corresponds to partial schedule PS^S. • 

The next theorem shows that an analogous result cannot be obtained for the algorithm 
based on mode and delay alternatives including the left shift rule: This one may enumerate 
schedules which are not semi-active while on the other hand there may exist semi-active 
schedules which are not enumerated. 

Theorem 5 There are instances for which we have S2 and SAS % • 

Proof. We consider the instance shown in Figure 1. Schedule (b) of Figure 2 is not 
semi-active. but it is enumerated by Algorithm 2 with local left shift rule: At time 0, 
activities 1. 2, and 3 are started. Since a resource conflict occurs, we may select {3} as 
minimal delay alternative. At time 2. activities 3 and 4 are started. This resource conflict 
may be solved by delaying activity 4 which is then rescheduled at time 4. The resulting 
resource conflict can be solved delaying activity 1. According to the formulation of the 
Local Left Shift Rule, only activity 4 is tested for a left shift. However. activity 3 may 
now be locally left shifted to time 0 due to the delay of activity 1. This possible local left 
shift is not detected by the Local Left Shift Rule. Consequently, activity 1 is started at 
time 6 completing the (non semi-active) schedule. 
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Now we consider schedule (a) of Figure 2 which is semi-active. However, it is not 
enumerated by Algorithm 2 (no matter whether the Local Left Shift Rule is included or 
not): Starting activities 1, 2, and 3 at time 0, delaying activity 3, and starting activities 3 
and 4 at time 2 causes a. resource conflict at time 2. It can be solved by the only minimal 
delay alternatives {1.3} and {4}. None of them will result in schedule (b). • 

Theorem 5 states that the Local Left Shift Rule considered here does not prevent the 
algorithm based on mode and delay alternatives from enumerating schedules which are not 
semi-active. Note that our formulation of the left shift rule is equivalent to the one used 
by Demeulemeester and Herroelen [4] for the single-mode case. that is, this Observation 
holds for their procedure as well. Clearly, a possible enumeration of schedules which are 
not semi-active is due to the delay of activities which start before the previous decision 
point. Freeing resources before the previous decision point may induce the possibility of 
a left shift of an activity which starts at the previous (or an earlier) decision point. Such 
a left shift cannot be detected by this Version of the Local Left Shift Rule. However. the 
rule can be extended to exclude all schedules which are not semi-active: 

Remark 3 (Extended Local Left Shift Rule for Algorithm 2) Let s denote the minimal 
start time of those activities currently selected to be delayed, that is, s — min{sj | j 6 
VAg}. If there is a scheduled activity with a start time greater than s which is not selected 
to be delayed. and if this activity can be locally left shifted after delaying the currently 
selected delay alternative, then the current partial schedule needs not be completed. 

Now we turn to the algorithm based on mode and extension alternatives for which we 
can obtain the same result as for the precedence tree procedure. When combined with 
the Local Left Shift Rule, also Algorithm 3 enumerates exactly the set of the semi-active 
schedules of a given instance. 

Theorem 6 For all instances, we have S^s = SAS. 

Proof. The Local Left Shift Rule is applied to the activities started at the current 
decision point. As no renewable resources are freed before this decision point when the 
corresponding partial schedule is completed, the application of the Local Left Shift Rule 
excludes all schedules which are not semi-active, that is, we have S^s C <S.4tS. 

Using Theorem 4, we have SAS = SiS. Clearly, it is S^s C 51# Furthermore we have 
S\ C 53 by Theorem 2. Consequently it is C S3. Note that a feasible left shift of a 
currently started activity is possible in any continuation of the current partial schedule. 
That is, it cannot be prevented by further scheduling decisions as these do not afFect the 
resource usages before the start time of that activity. Hence the Local Left Shift Rule 
does not exclude schedules that are not semi-active, and we deduce SAS C S^s. • 

Combining Theorems 4 and 6, we can State that the precedence tree algorithm and the 
procedure based on mode and delay alternatives both enumerate the same set of schedules 
when combined with the Local Left Shift Rule, that is, the set of the semi-active schedules. 
Furthermore, it should be noted that these two theorems can also be used to prove the 
correctness of Algorithms 1 and 3 since we can find an optimal semi-active schedule for 
an instance if we can find an optimal one. 

16 



However, although the theoretical results derived in this section provide a deeper in-
sight into the different Solution methodologies. thev do not allow to predict the Solution 
times required by the algorithms. This is due to the fact that the different Operations 
the procedures consist of may result in different computation times even if the same set 
of schedules is enumerated. Moreover, the effect of a bounding rule may depend on the 
algorithmic structure, that is, one algorithm may be accelerated less than another one. 
cf. the discussion of the different variants of the Cutset Rule. Consequently, the theoretical 
comparison of this section is completed by the computational comparison provided in the 
following section. 

6 Computational Results 

6.1 Experimental Design 

In this section we present the results of the computational studies concerning the algo­
rithms discussed in the previous sections. The experiments have been performed on a 
Pentium-based IBM-compatible personal Computer with 133 MHz clock-pulse and 16 MB 
RAM. The procedures have been coded in ANSI C. compiled with the GNU C Compiler 
and tested under Linux. In order to provide a fair comparison of the algorithms, we have 
attempted to use identical data structures and related update Operations whenever pos­
sible. Moreover, we have used the same level of implementational know-how such as use 
of pointer arithmetics for coding the algorithms. Finally, in contrast to the comparison of 
Algorithms 1 and 2 provided by Sprecher et al. [19], [20], we have attemped to integrate 
each bounding criterion of Section 4 into each enumeration procedure (with the exception 
of the Precedence Tree Rule). 

We used a set of test problems constructed by the project generator ProGen which 
has been developed by Kolisch et al. [8]. The instances have been used to evaluate the 
precedence tree algorithm by Sprecher and Drexl [18] as well as the procedure based on 
mode and delay alternatives by Sprecher et al. [20]. They are available in the project 
scheduling problem library PSPLIB from the University of Kiel. For detailed Information 
the reader is referred to Kolisch and Sprecher [9]. 

In our study, we have used the multi-mode problem sets containing instances with 
10, 12, 14, and 16 non-dummy activities. Each of the non-dummy activities may be 
performed in one out of three modes. The duration of a mode varies between 1 and 10 
periods. We have two renewable and two nonrenewable resources. For each problem size, 
a set of instances was generated by systematically varying four parameters, that is, the 
resource factor and the resource strength of each resource category. The resource factor 
is a measure of the average portion of resources requested per job. The resource strength 
reflects the scarceness of the resources. Table 1 displays the variable parameter levels. The 
resource factors of the renewable and nonrenewable resources are referred to as RFR and 
RFfr, respectively. The resource strengths of the renewable and nonrenewable resources 
are denoted as RSR and RSN* respectively. For each problem size and each combination 
of the resource parameters, ten instances have been generated. Consequently. we have 
640 instances for each project size. Those instances for which no feasible Solution exists 
have not been considered. Hence, we have 536 instances with J = 10. 547 instances with 
J = 12, 551 instances with J = 14, and 550 instances with J — 16.1 

^ Due to the history of the project scheduling problem librarv. some of the parameter settings used 
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Parameter Levels 

RFR 
RSR 
RFN 
RSN 

J 10 12 14 16 
0.50 1.00 
0.25 0.50 0.75 1.00 
0.50 1.00 
0.25 0.50 0.75 1.00 

Table 1: Variable parameter levels under füll factorial design 

6.2 Effects of the Bounding Rules 

As the impact of most of the acceleration methods on the computation times has been 
thoroughlv studied by Sprecher and Drexl [18] as well as Sprecher et al. [19], [20]. we only 
summarize some new insights. The new Order Swap Rule (Bounding Rule 7) accelerates 
the basic variant of Algorithm 2 (including only the Time Window Rule) by a factor of 
approximately 1.9. This effect is not totally consumed when the other rules are also inclu-
ded. As already mentioned, none of the tested variants of the Cutset Rule for Algorithms 2 
and 3 could accelerate these procedures when the other bounding schemes were emploved. 
However, as reported by Sprecher and Drexl [18], the Cutset Rule can be efficiently used 
within the precedence tree algorithm. The immediate selection strategy of Bounding Rule 
9 accelerates the branching schemes when applied to small instances (J = 10), confirming 
the results obtained by Sprecher et al. [20]. However, it may slow down the procedures if 
instances with more activities are considered. This is due to the fact that it becomes less 
probable that the assumptions can be fulfilled while the effort to check them increases with 
an increasing number of activities. The new formulation of the precedence tree specific 
rule (Bounding Rule 10) accelerates the basic variant of Algorithm 1 (including the Time 
Window Rule) by a factor of 8.4 while Sprecher and Drexl [18] report a factor of 3.2 for 
their formulation. This is mainly due to the fact that the new variant includes a portion 
of the Local Left Shift Rule. Finally, the Extended Local Left Shift Rule for the algorithm 
based on mode and delay alternatives (cf. Remark 3 in Section 5.2) is of rather theoretical 
interest as it does not yield further acceleration of Algorithm 2. 

For the comparison to be summarized in the next subsection we have used the fastest 
variants of the algorithms. Considering the observations given above. all bounding sche­
mes except for the Cutset Rule, the Immediate Selection Rule, and the Precedence Tree 
Rule have been included in Algorithms 2 and 3. Clearly, the Cutset Rule as well as the 
Precedence Tree Rule have been emploved in Algorithm 1, omitting onlv the Immediate 
Selection Rule. In order to seperate the effect of the Cutset Rule, we have also tested a 
variant of Algorithm 1 in which the former is not included. The variants of the procedures 
are summarized in Table 2 where ;-j-: indicates that the corresponding bounding rule is 
included and means that it is not. 

to generate the instances with 10 non-dummy activities slightly differ from those given above that have 
been used to generate the other problems. For more details on the parameter settings cf. Kolisch and 
Sprecher [9]. 
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6.3 Comparison of the Algorithms 

We start the summary of our numerical results with a comparison of the average compu-
tation times given in Table 3. Algorithm 1 with the Cutset Rule is the fastest procedure 
on the average. It is '2.0 times faster than Algorithm 2 when 10 activities are considered 
and 7.0 times for projects with 16 activities. that is, the comparison factor increases with 
an increasing number of Jobs. Algorithm 2 is at most 1.4 times faster than Algorithm 3. 
The precedence tree algorithm is faster than the other two procedures even if the Cutset 
Rule is not included. 

Table 4 shows that Algorithm 1 has the lowest maximal computation times, no matter 
if the Cutset Rule is employed or not. For two project sizes, the maximal computation 
times of Algorithm 2 are lower than those of Algorithm 3. In the other two cases, the 
reverse holds. 

Next, we have examined the impact of the resource factor and strength of the renewable 
resources on the computation times for J = 16. The results, summarized in Table 5, 
show that Algorithm 1 is the fastest procedure for the so-called hard instances with high 
computation times, that is, if the resource factor is high or the resource strength is low. 
However. on the easiest instances with a high resource strength Algorithm 2 performs 
best. This indicates that none of the procedures is dominant in the sense that it is faster 
than the other two on each instance. 

Finally. the distributions of the computation times are listed in Table 6. Algorithm 1 
solves 21.5 % of the instances with 16 activities in less then 0.01 seconds while Algorithm 
2 solves 23.8 % within this time. On the other hand, Algorithm 2 cannot solve 0.5 % in 
1000 seconds while Algorithm 3 fails to solve only 0.2 % within this time. 

Summing up the observations above, the new approach based on mode and extension 
alternatives is outperformed by the other two algorithms with respect to average compu­
tation times. This seems to be due to the fact that, as already outlined, branching may 
not be restricted to "maximal" extension alternatives. This drawback cannot be fully 
compensated by the Local Left Shift Rule. The procedure based on mode and delay alter­
natives is the fastest on the easy instances. However, it is outperformed by the precedence 
tree guided algorithm on the hard instances. and even by the new approach on some hard 
instances. This is due to the possibilitv of cancelling previous scheduling decisions by 
delaying activities: On one branch of the search tree, one activity may be delayed and 
rescheduled several times. Clearly, the lower the renewable resource strength, the more 
activities have to be delayed due to the scarceness of the renewable resources, resulting in 
a high computational effort for this problem class. The precedence tree approach is the 
fastest with respect to average and maximal computation times. Its main disadvantage, 
the duplicate enumeration of a schedule, is neutralized by the new efficient precedence 
tree specific Bounding Rule 10. Moreover, it currently is the only procedure in which an 
efficient variant of the powerful Cutset Rule can be employed. 

7 Conclusions 

We have analyzed the branch-and-bound concepts currently available for solving resource-
constrained project scheduling problems with multiple modes. The three algorithms, two 
from the literature and one new approach, have been described in a unified framework 
and accelerated with ten bounding criteria one of which is also new. Subsequentlv, the 

19 



Algorithm basic scheme 1 2 3 4 5 6 7 8 9 10 
1 (a) precedence tree + + + + + + + + - + 
1 (b) precedence tree + + + + + + + - - + 
2 mode and delay alt. + + + + + + + - -
3 mode and extension alt. + + + + + + + - -

Table 2: Accelerated variants of the algorithms to be tested 

Algorithm J = 10 J = 12 J = 14 II 

1 (a) 0.04 0.12 0.75 3.26 
1 (b) 0.05 0.20 1.66 10.60 
2 0.08 0.33 4.55 22.81 
3 0.11 0.45 4.86 28.08 

Table 3: Average computation times (sec) — all instances 

Algorithm J — 10 J — 12 J = 14 J — 16 
1 (a) 0/77 2769 22.87 165.11 
1 (b) 1.25 5.14 78.91 1601.81 
2 2.96 17.29 709.37 4523.44 
3 2.87 20.57 529.92 6043.12 

Table 4: Maximal computation times (sec) — all instances 

Algorithm RFR: 0.50 1.00 RSR: 0.25 0.50 0.75 1.00 
1 (a) Ö83 5J58 8X34 Z9Ö L20 058 
1 (b) 1.30 19.51 34.81 5.32 1.77 0.68 
2 1.35 43.37 81.24 9.17 1.13 0.23 
3 4.07 51.08 94.63 11.75 4.80 1.72 

Table 5: Average computation times for resource classes (sec) — J = 16 

Algorithm < 0.01 < 0.1 < 1 < 10 < 100 < 1000 < 10000 
1 (a) 21.5 43.5 70.2 92.4 99.6 100.0 100.0 
1 (b) 21.6 41.8 67.1 90.2 97.8 99.8 100.0 
2 23.8 42.3 70.1 88.1 96.8 99.5 100.0 
3 16.5 33.4 58.1 82.1 96.5 99.8 100.0 

Table 6: Distribution of the computation times (%) — J == 16 
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procedures have been compared both theoretically and numerically. In our experiments 
based on a Standard set of more than 2000 instances, the precedence tree approach by 
Sprecher and Drexl [17] outperformed the other two algorithms with respect to the average 
and maximal computation times. It seems to be well suited to solve hard instances. The 
procedure based on mode and delay alternatives suggested by Sprecher et al. [20] was 
shown to be the fastest when applied to easy instances. Furthermore, according to our 
experience, the precedence tree algorithm seems to be easier to implement as at each node 
of the branch-and-bound tree (single) activities are scheduled instead of sets of activities. 
Hence, we conclude that the precedence tree guided enumeration scheme currently is the 
algorithm of choice when solving larger project instances. 

Acknowledgement: We are indebted to Arno Sprecher for helpful comments and 
suggestions. 
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