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13. INTRODUCTION OF to the known matching algorithms and which are differ-
THE PSEUDOCODE FORMALISM ent. At least, the search strategy and the disjoint set union

mechanism used belong to the latter class. Hence, these
components should be encapsulated for better replace-Balanced networks can be considered as a network flow
ments. Many applications of network flow algorithms aredescription of matching problems. Such networks are de-
reductions of other optimization problems to networkfined on skew-symmetric graphs where arc labelings satisfy
flows. A certain part of an algorithm may be best per-a certain symmetry constraint. A comprehensive introduc-
forming in the general problem setting, but should betion into the terminology and theory of balanced network
replaced in special cases. Hence, an inheritance mecha-flows was given in [5], where the reader can find problem
nism is useful.reduction mechanisms and explicit examples.
As an example for the formalism, consider the follow-Instead of repeating this general setup, we present

ing class declarations: The class OBJECT represents thesome object-oriented pseudocode for the methods associ-
universe of all available data objects. The class SET repre-ated with balanced networks, especially for solving the
sents set objects. The expression SET(OBJECT ) indicatesmaximum balanced flow problem. Our pseudocode is
the subclass relationship between SET and OBJECT . Inobject-oriented for the following reasons:
a way, the declarations of Procedure 1 are dummies sinceWe want to point out which techniques are common
there are no implementations given.
A set S can be allocated in computer storage and initial-

Correspondence to: D. Jungnickel; e-mail: jungnickel@math. ized by the constructor S.MAKE and can be disallocated
uni-augsburg.de by the destructor S.FREE. Note that these proceduresThe results of this paper form part of the first author’s doctoral thesis

are not associated with class SET but with class OBJECTwhich was written under the supervision of the second author.
AMS subject classification: 05C70, 90B10, 90C35 in the declaration above, since any dynamic data object
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30 FREMUTH-PAEGER AND JUNGNICKEL

has a lifetime. One says that SET inherits the features of class QUEUE(SET ) ;
publicthe class OBJECT.

There is an additional constructor, S.INIT, which function FIRST;
function LASTchecks whether S already is allocated or not. In the former

case, the memory is reused but all information is deleted. end.
In either case, an empty set results.
The prefix S . denotes that a method is applied to object Before we start the description of the algorithms, we

S . If the mathematical context is clear, or in method im- briefly describe our implementation of network flow ob-
plementations of the same class, the object prefix is omit- jects: The nodes and arcs of a NETWORK object N are
ted. If a class property is declared public, it can be ac- the integers 0, 1, . . . , n 0 1 and 0, 1, . . . , 2m 0 1,
cessed from outside the class declaration. respectively. With any arc a , the reverse arc is available
The call of EMPTY decides whether S is an empty set by aV . Furthermore, NONE and NO_ARC denote an unde-

or not. To access the members of S , one can prepare a fined node and arc, respectively.
stream of set members by the call of ACCESS which Both nodes incident with an arc a can be accessed as
references to some ‘‘first’’ member then. In this stream, a0 for the start node and a/ for the end node, respectively.
every member has to occur exactly once. The ‘‘next’’ In contrast, the arcs incident with a certain node cannot
member w can be read by READ(w) . If all members be accessed directly, but by a network search process: A
have been read, EOS should return TRUE and FALSE network search is initialized by a call of INVESTIGATE
otherwise. While a stream is active, no element can be which assigns a stream of incident arcs to every node £.
added to or removed from the set. Thus, CLOSE is needed This stream contains all arcs with a0 Å £ and rescap(a)
to terminate the set member stream. ú 0 which are accessed by the iterated call of READ(£,
To a set S , an element w may be added by the call of a) . If all arcs have been read, EOS(£) becomes TRUE.

INSERT(w) and an element £ may be removed by the The network search is finished by CLOSE.
call of DELETE(£) . The elements removed from a set
are chosen accordingly to a predefined strategy, and there Procedure 2. Network Objects
shall be no other way to remove an element. This strategy
is last-in first-out in the case of stack objects and first-

class NETWORK(OBJECT ) ;in first-out in the case of queue objects. If S is a stack,
privatethe uppermost element, the element which entered S last,
constant NONE, NO_ARC;can be accessed as TOP :
constant m , n ;
function a r a0;Procedure 1. Set Objects function a r a/ ;
function a r aV : aV :Å 2m 0 1 0 a;

class OBJECT; function rescap(a) ;
public

procedure INVESTIGATE;constructor MAKE;
procedure READ(£, var a) ;constructor INIT;
function EOS(£) ;destructor FREE
procedure CLOSE;end;

end.
class SET(OBJECT ) ;

class FLOW_NETWORK(NETWORK) ;public
privateprocedure ACCESS;
function cap(a) ;procedure READ(var w) ;
function f (a) ;function EOS;

procedure CLOSE; function rescap(a)
beginfunction EMPTY;
if a õ nprocedure INSERT(w) ;
then return cap(a) 0 f (a)procedure DELETE(var w)
else return f (aV )end;
fi

class STACK(SET ) ; end;
public
function TOP procedure PUSH(a , g)

end.end;
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BALANCED NETWORK FLOWS. II 31

A whole network search should be implemented so lected by BNS before and extracts a path p Å (£0 Å s ,
£1 , . . . , £k01 , £k Å £) of length k Å d[£] . This path isthat it runs in O(m) time. To make our later examples

deterministic, we will assume that the streams of inci- encoded into the labels p[£1] , . . . , p[£k] , and p[£i ] de-
notes the arc on p with end node £i .dences are implemented in such a way that the numbers

of the end nodes are ascending.
A FLOW_NETWORK object encapsulates capacity in- Procedure 3. Balanced Network Objects

formation, but also information about a certain flow which
can be accessed by cap(a) and f (a) . Here, cap(a) ú 0 class BALANCED_NW (NETWORK) ;
and 0 ° f (a) ° cap(a) are required. These values are private
associated with the forward arcs only which are labeled array d , p ;
0, 1, . . . , m 0 1. Since we are concerned with matching

function £ ! £ ! : £ ! :Å n 0 1 0 £;problems, we assume that neither parallel nor antiparallel
forward arcs exist. Under this assumption, the residual function a ! a ! : a ! :Å !a / 1, if a is even

a 0 1, if a is odd " ;capacities can be implemented as in Procedure 2.
A single-flow value can be modified by PUSH(a , e)

decreasing rescap(a) by an amount e, where rescap(a) function BNS(s , t) ;
ú 0 and 0 ° e ° rescap(a) holds. This operation will function EXPAND(u , £) ;
also affect f (a) . While a network search is active, no

function BAL_PATH_CAP(u , £) ;PUSH operation is allowed.
var a , e, w ;Concerning the time complexity, we assume that all
beginbut the network search operations are elementary. Note
e :Å ! ;that memory allocation is treated as an elementary opera-
w :Å £;tion although it has considerable effect on the perfor-
repeatmance of algorithms in practice.
a :Å p[w] ;
w :Å a0;
if p[w !] Å a !14. BALANCED NETWORK OBJECTS
then e :Å min{e, !rescap(a) /2"}
else e :Å min{e, rescap(a)}At this point, we can give a rough sketch of the behavior
fiof balanced network objects. Of course, we will add some

until w Å uimplementations to Procedure 3 as our discussion pro-
return egresses.
endThe crux is the symmetry of nodes defined by £! :Å n

end .0 1 0 £, which implies that (£ !) ! Å £. By this symmetry,
the node set splits into pairs of complementary nodes.

Recall that the path is called valid iff e :Å BALIf a is an arc with start node u and end node £, then a !
_PATH_CAP(s , £) ú 0 holds. Then, the call ofis required to have start node £ ! and end node u !. Simi-
BAL_AUGMENT(u , £, e) augments the flow along thelarly, a and a ! are called complementary arcs. We also
encoded path, but also along its complementary path. Werequire that capacities and flow values are balanced, that
will give linear time implementations of EXPAND,is, cap(a) Å cap(a !) and f (a) Å f (a !) .
BAL_PATH_CAP, and BAL_AUGMENT.The method MAX_BAL_FLOW of Procedure 4 is a
The ‘‘correctness’’ of the method MAX_BAL_FLOWgeneric augmentation algorithm for the problem of finding

is an immediate consequence of the augmenting patha maximum balanced flow for a given balanced flow net-
Theorem 4.2 given in [5] and a rather intuitive result.work. It is comparable to the algorithm of Ford and Ful-
The analysis of the BNS procedures will frequently usekerson [4] for the ordinary max flow problem. The re-
the terminology and the results of [5] . For understandingmainder of the Procedures 3 and 4 are components of this
the algorithms, it is probably necessary to study this pre-algorithm:
ceding paper first. If we refer to some mathematical state-The declaration of balanced network objects heavily
ment, it can be found there.depends on the balanced network search (BNS) algo-

rithms which will be discussed in the bulk of this paper. In [5] , we considered networks NG , NM , and N*M re-
sulting from the network flow reduction of certain match-The call of BNS(s , t) searches for valid paths connecting

the source s to the other nodes of the balanced network. ing problems. If we want to compute maximum balanced
flows, it is inefficient to generate these networks explicitly.If the node t is reached, BNS(s , t) returns TRUE and

FALSE otherwise. Efficient implementations will follow. We would rather declare a subclass of BAL_FLOW_NW
which has access to the data of the original graph. ByThe call of EXPAND(s , £) uses the information col-
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32 FREMUTH-PAEGER AND JUNGNICKEL

using inheritance, we can reimplement parts of the algo- else
u :Å petal[y]0;rithms which get simpler in the special situation (0–1

capacities for example) . £ :Å petal[y]/ ;
p[£] :Å petal[y] ;
EXPAND(x , u) ;Procedure 4. Balanced Flow Network Objects
CO_EXPAND(£, y)

ficlass BAL_FLOW_NW(BALANCED_NW, FLOW_
fiNETWORK) ;
end;private

procedure BAL_AUGMENT(u , £, e) ; procedure CO_EXPAND(£, y) ;
var a , w ; var u , w ;
begin begin
w :Å £; if y x £ then
repeat if prop[£ !] x NO_ARC then
a :Å p[w] ; p[(prop[£ !] !)/] :Å prop[£ !] ! ;
PUSH(a , e) ; CO_EXPAND((prop[£ !] !)/ , y)
PUSH(a !, e) ; else
p[w] :Å NO_ARC; u :Å (petal[£ !] !)0;
w :Å a0

w :Å (petal[£ !] !)/ ;
until w Å u p[w] :Å petal[£ !]! ;
end; EXPAND(£, u) ;

CO_EXPAND(w , y)procedure MAX_BAL_FLOW (s , t) ;
fivar e;

fibegin
endwhile BNS(s , t) do

end.EXPAND(s , t) ;
e :Å BAL_PATH_CAP(s , t) ;

In [5] , we presented a series of statements which relateBAL_AUGMENT(s , t , e)
the blossoms of N[A] to the blossoms of the iteratedod
network N[ Ã] , where Ã results from A by adding a suit-end
able pair of complementary arcs. We have used layeredend.
auxiliary networks Aux(N) , an approach comparable to
shrinking the blossoms of the original network N .
The BNS algorithms that we discuss in this paper are15. PATH EXPANSION tree growing, that is, the occurring layered auxiliary net-

works are trees. For the time being, let BNS be arbitrary,If we want to analyze a given balanced network search but tree growing. The following path expansion rule ap-procedure, we have to describe the blossom structure for plies in that general setting and, in particular, to the BNScertain subnetworks N[A] . Here, N is some balanced net- procedures which follow.work, and A ⊆ A(N) is the set of arcs which have been In [5] , we assigned to every strictly reachable node £investigated by the BNS algorithm so far. either a prop or a petal. By that, we denote the arc which
was investigated when £ has become strictly reachable.

Procedure 5. A Path Expansion Procedure We showed that an augmenting path can be found by a
call of path(s , t) which is defined by path(x , x) :Å (x) :

class BALANCED_NW;
private path(x , y) :Å path(x , z !) ! prop[y]array prop, petal;

if prop[y] Å z !y is assigned, andprocedure EXPAND(x , y) ;
var u , £;

path(x , y) :Å path(x , u) ! petal[y] ! [path(y !, £)] !begin
if x x y then
if prop[y] x NO_ARC then if petal[y] Å u£ ! is assigned.

This was convenient for the discussion of examplesp[y] :Å prop[y] ;
EXPAND(x , prop[y]0) and also in the mathematical context. A concrete match-
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BALANCED NETWORK FLOWS. II 33

ing algorithm would rather call the method EXPAND is rooted at £, and to which we refer as the DSU tree.
An example is given in Figure 1.which is shown in Procedure 5. It returns the valid path

in terms of the labels p[£1] , . . . , p[£k] and is compatible A blossom and its canonical element are identified
then. A call of FIND(w) computes the canonical elementwith the methods BAL_AUGMENT and FIND_BAL_CAP

of the Procedures 3 and 4. £ of the blossom containing w and then puts B[w] :Å £.
The latter operation is called path compression.We did not devise a method which computes the com-

plementary path of a given valid path. Instead, we use the If we ignore the effects of path compression, then
rank[£] denotes the nesting depth of the DSU tree rootedmethod CO_EXPAND(£, y) in recursion which computes

(path(y !, £ !)) ! more directly. Both procedures path and at £. Since every node £ with rank[£] ¢ 2 has at least
two children, the rank is O( log n) . Together with theEXPAND are equivalent—hence, the correctness of the

new procedure follows by Theorem 11.4. The details are effects of path compression, the total effort for FIND
operations is O(m / n log n) .left to the reader.
This time bound is not tight. By a more careful analy-

sis, Tarjan [12] established the bound O(ma(m , n)) ,
where a(m , n) is some kind of inversion of the Acker-16. DISJOINT SET UNION STRUCTURES
man function. This analysis and the formal definition of
a(m , n) can also be found in [3] and [13].Every balanced network search algorithm based on the
In our later BNS algorithms, we use the DISJOINT_results of [5] will split into three parts: Growing the

SET_FAMILY class methods, additional labels base[£] ,subnetwork N[A] , computing all (A)-blossoms and the
and some method BASE to obtain the actual base of blos-base of the new blossom, if the investigated arc has the
soms. In Procedure 6, we included a method NUCLEIshrinking properties, and, finally, merging the (A)-blos-
which can be used to compute the nuclei of a balancedsoms which have been computed.
network. Since the nuclei are computed from the blos-We required that scanning the network N needs O(m)
soms, one must run a BNS first.operations. In the following sections, we will show how

to implement the second part also in O(m) time. It is
somewhat surprising that the merging of blossoms is the Procedure 6. Data Structures for the Management
critical part in the complexity analysis. Although we do of Shrinking Families
not want to spend too much effort on the description of
data structures, we are forced to discuss the crux of set class DISJOINT_SET_FAMILY;union algorithms briefly. privateLet Blossoms :Å (B1 , B2 , . . . , Bk) a family of non- array B;empty pairwise disjoint subsets of the node set V (N) . array rank;We allow three kinds of manipulation of this set family: constant n;

constant NONE;
• BUD: Appending to Blossoms a nonempty set, called
bud, B ⊆ V (N) disjoint to every current set in Blos- public
soms. procedure INIT;

var £;• UNION: Merging one set Bi into another set Bj of the
beginfamily Blossoms, while deleting the set Bi from Blos-
for £ :Å 0 to n 0 1 do B[£] :Å NONE odsoms.
end;• FIND: Verifying whether a given element £ √ V is a

member of some set Bi √ Blossoms and, if so, returning procedure MAKE(r) ;
the name Bi . begin

n :Å r ;
The process of successive application of these operations allocate B[0, 1, . . . , n 0 1];
is called disjoint set union (DSU). We apply UNION allocate rank[0, 1, . . . , n 0 1];
whenever (A)-blossoms are shrunk and BUD whenever INIT
a new bud is generated. We may assume that there are end;
O(m) FIND operations totally. An efficient implementa-
tion is given by Procedure 6 and works as follows: procedure BUD(£) ;

beginTo every blossom, a canonical element £ is assigned.
This node is determined by the identity B[£] Å £ and B[£] , B[£ !] :Å £;

rank[£] :Å 1may differ from the blossom base. All blossom nodes
form a tree which is determined by the B-labels, which end;
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34 FREMUTH-PAEGER AND JUNGNICKEL

procedure UNION(u , £) ;
begin
u :Å FIND(u) ;
£ :Å FIND(£) ;
if rank[u] õ rank[£]
then
B[u] :Å £

else
B[£] :Å u ;
if rank[£] Å rank[u] and u x £
then rank[u] :Å rank[u] / 1

Fig. 1. A DSU tree.fi
fi
end; b . In our example, the blossom bases and the canonical

elements coincide. The reader is asked for some counter-function FIND(£) ;
begin example. A simple DSU mechanism which treats blossom

bases as canonical elements would run in O(n 2) timeif B[£] x £ and B[£] x NONE
then B[£] :Å FIND(B[£]) (see Fig. 1) .

A linear time bound for the FIND operations can befi;
return B[£] achieved by using the incremental tree set union data

structure which was described by Gabow and Tarjan [7] .end
end; Despite the slight theoretical improvement, we expect no

better performance in practice.class BALANCED_NW; We mention that the presented type of DSU data struc-private ture does not apply to weighted matching algorithms,object F : DISJOINT_SET_FAMILY; where blossoms must be expanded during the BNS pro-array base; cess. This can be accomplished by an additional SPLIT
operation and merging by rank again. Path compressionpublic

function BASE(£) ; is then not available so that a FIND operation takes O( log
n) time.begin

if F.FIND(£) Å NONE
then return NONE
else return base[F.FIND(£)] 17. A BREADTH FIRST BNS ALGORITHM
fi
end; In this paper, we present two special implementations of

the balanced network search. The first of these algorithmsprocedure NUCLEI; is based on the paper by Kocay and Stone [9] . We havevar a , u , £; managed to speed up the procedure to almost linear timebegin complexity. However, our procedure has become morefor a :Å 0 to m 0 1 do involved than the original one by Kocay and Stone.u :Å BASE(a0) ;
£ :Å BASE(a/) ; Procedure 7. A Refined Version of the Kocay/Stoneif u x £ and d[u] õ d[£] õ d[£ !] õ ! and d[u!] Algorithmõ ! then
F.UNION(u , £) ; class BALANCED_NW;base[F.FIND(u)] :Å u privatefi function BNS(s , t) ;od object Q : QUEUE;end object Support: SET;end.

procedure ShrinkBlossom;
var Tenacity, x , y , z;In some sense, the base of a blossom is a canonical

element. However, if we merge a series of (A)-blossoms begin
x :Å BASE(u) ;into an ( Ã)-blossom B̃ successively by their rank, we

cannot guarantee the canonical element of B̃ to be its base y :Å BASE(£ !) ;

8U26 840/ 8U26$$0840 11-12-98 11:08:01 netwa W: Networks



BALANCED NETWORK FLOWS. II 35

Tenacity :Å d[u] / d[£ !] / 1; Q.DELETE(u) ;
while not EOS(u) do(1) while x x y do

if d[x] ú d[y] then READ(u , a) ;
£ :Å a/ ;if d[x !] Å ! then

petal[x !] :Å a ! ; if d[£ !] Å ! then
if d[£] Å ! thend[x !] :Å Tenacity 0 d[x] ;

Q.INSERT(x !) (3) d[£] :Å d[u] / 1;
prop[£] :Å a;fi;

Support.INSERT(x) ; F.BUD(£) ;
base[F.FIND(£)] :Å £;x :Å BASE(prop[x]0)

else Q.INSERT(£)
fiif d[y !] Å ! then

petal[y !] :Å a; else
if prop[u] x aV and prop[u !] x a ! thend[y !] :Å Tenacity 0 d[y] ;

Q.INSERT(y !) ShrinkBlossom fi
fifi;

Support.INSERT(y) ; od
od;y :Å BASE(prop[y]0)

fi Q.FREE;
CLOSE;od;

(2) while x x s and rescap(prop[x]) ú 1 do if d[ t] õ ! then return TRUE else return FALSE fi
endif d[x !] Å ! then

petal[x !] :Å a; end.
d[x !] :Å Tenacity 0 d[x] ;
Q.INSERT(x !) As the title suggests, the search order is breadth first

fi; like, that is, a queue Q manages the selection of the cur-
Support.INSERT(x) ; rent node u in first in-first out manner, and each investi-
x :Å BASE(prop[x]0)) gated node is expanded, that is, all successors of u are

od placed on Q immediately. Note that the FIFO selection
if d[x !] Å ! then is not essential for the further analysis and could be ex-
petal[x !] :Å a; changed by some other node selection rule.
d[x !] :Å Tenacity 0 d[x] ; In the original paper of Kocay and Stone, the canonical
Q.INSERT(x !) element of a blossom is always its base and blossoms are

fi; not merged by their cardinality or rank, respectively.
repeat Thus, the running time was O(n 2) according to the results
Support.DELETE(y) ; discussed in the preceding section. In our version, addi-
F.UNION(x , y) tional labels B[£] and rank[£] , encapsulated into a DSU

until Support.EMPTY; process, are used to get the bound O(ma(m , n)) .
base[F.FIND(x)] :Å x; Our second improvement concerns the determination
end; of the new blossom base during the shrinking operations.

For this goal, we added distance labels d to the procedure
begin which prevent ShrinkBlossom from investigating the
F.INIT; nodes outside of the new blossom.
for £ :Å 0 to n do
prop[£] :Å NO_ARC; Theorem 17.1. Let N be a balanced network. The calld[£] :Å ! of BNS has the following effects:od;

d[s] :Å 0;
(a) If the node £ is strictly reachable, then path(s, £)F.BUD(s) ;

determines a valid s£-path with length d[£] .base[F.FIND(s)] :Å s;
(b) If one of £ or £ ! is strictly reachable, then BASE(£)INVESTIGATE;

is the base of the blossom containing £.Support.MAKE(n) ;
Q.MAKE(n) ;
Q.INSERT(s) ; Proof. First, observe that the outer while-loop orga-

nizes the node selection. The inner while-loop expandswhile not Q.EMPTY do
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36 FREMUTH-PAEGER AND JUNGNICKEL

the selected node u . In each iteration, an arc a with resid- :Å aux(path(s , u)) and q :Å aux(path(s , £ !)) of the
layered auxiliary network because of the tree-growingual capacity ú 0 and start node u is searched. The arc a

is investigated, and the end node £ Å a/ is explored. strategy. Hence, botA(u , £ !) is the last common arc of p
and q which has auxiliary capacity one. Note that theWe grow the set A of investigated arcs simultaneously

with the algorithm by setting A :Å A ! {a , a !} after loop starting at (1) traverses the disjoint parts of p and
q and the loop starting at (2) traverses the common parteach iteration of the inner while-loop. We will use as

the induction hypothesis that in the beginning of an arc of p and q until botA(u , £ !) is reached.
By Corollary 10.9, x is baseÃ(u , £ !) at the end ofinvestigation the following is true:

loop (2). By Theorem 10.8, Support consists of all (A)-
blossom bases other than x that have to be merged. Hence,• d[£] is finite, and path(s , £) is a valid s£-path of length
BÃ(u , £ !) is correctly merged together by the algorithm,d[£] iff dA(£) is finite.
and the new base is assigned to the canonical element.• F.FIND(£) Å NONE iff dA(£) Å dA(£ !) Å ! .
By the induction hypothesis, we have• F.FIND(u) Å F.FIND(£) iff u and £ are in a common

(A)-blossom.
Tenacity Å d[u] / d[£ !] / 1 Å ÉpÉ / ÉqÉ / 1.• BASE(u) is the base of the (A)-blossom containing u .

Any node w which becomes strictly reachable by theIn the very beginning, A is empty so that all statements
investigation of (u , £) and (£ !, u !) satisfies w ! √ Supportare true. Let A be the set of arcs investigated before a
with d[w] Å dA(w) Å ! . For such a node, the call ofand assume that the hypothesis is true up to this point.
path(s , w) will expand parts of p and q so that d[w]In particular, the algorithm is tree growing until a is
Å Tenacity 0 d[w !] and Épath(s , w)É are indeed equal.searched. If one of the cases
This is the induction step. !

(a) d[£] õ d[£ !] Å !
We give a detailed example of what is going on. Con-(b) prop[u] Å aV , d[£ !] õ !

sider the balanced network N which is associated with(c) prop[u !] Å a !, d[£ !] õ !
the search for a 2-factor of the graph G in Figure 2. In
Table I, we list all assignments to d , prop, and petal inapplies, the algorithm just ignores the arc a Å u£. Hence,
order of their occurrence during the call of N.BNS(s , t) .we have to prove that investigating a has no effect on the
Furthermore, column £ shows the order in which the nodesreachability of nodes and on the accessibility of residual
are placed on Q .arcs in these cases:
In the beginning, the procedure grows an ordinary BFSThe case (c) is trivial, since a and a ! were investigated

tree including the nodes s , 10, 5!, 8 !, 4, 6, 7, 1!, 2 !, 3 !,when a ! was searched. Consider case (b): If BA(u) and 9 !, and 12!. Then, node 1! is expanded, and a Å (1 !, 2)BA(£) are different, then u is an (A)-blossom base, and
is the only arc investigated. Since 2! is already reachable,every (A)-valid su-path p ends with aV , since the algo- the procedure ShrinkBlossom is called. At this point, werithm is tree growing. Hence, p cannot be extended by a
have path(s , 1 !) Å (s , 10, 5 !, 6, 1 !) and path(s , 2 !)validly. If u and £ ! are in the same (A)-blossom, then Å (s , 10, 5 !, 6, 2!) which are paths of the auxiliarythis blossom is proper since the prop a ! cannot be a loop.
network since no blossoms have been shrunk yet. TheHence, the investigation of a is redundant by Corol-
procedure putslary 10.4.

If case (a) applies, the arc a is an anomaly of £. If £ !
Tenacity :Å d[u] / d[£ !] / 1 Å 4 / 4 / 1 Å 9,becomes strictly reachable later, the algorithm will ex-

pand £ ! and search a !. At this point, case (a) cannot
apply, so the algorithm will investigate a and a! ( i.e., and x :Å 1 !, y :Å 2 !. Because of d[x] Å d[y] , to the

node y ! Å 2, the petal a Å (1 !, 2) and the distance d[2]the anomaly is resolved). Theorem 11.2 shows that the
unresolved anomalies cannot prevent the algorithm from Å Tenacity 0 d[2 !] Å 5 are assigned. After that, 2 is

placed on Q and y :Å 6 is set.finding all strictly reachable nodes and all accessible arcs.
Suppose that a is searched by the algorithm. Then, the In the next iteration, we have d[x] ú d[y], and x! Å 1

is treated in a similar way. But now x Å y Å 6 is reached,investigation of a is either a bud generation [starting at
label (3)] or a blossom shrinking operation (managed by and the first while-loop ends. Because of rescap(5 !, 6)

Å 1, the second while-loop is not executed. Then, x!the procedure ShrinkBlossom) . In the former case, the
induction step is obvious since we can apply Theorem Å 6 ! is labeled just as 1 and 2 before. After this shrinking

operation, 6 is the base and the canonical element of the10.2. In the latter case, we can apply Theorems 10.3–
10.9 which refer to the shrinking condition. new blossom {1, 1!, 2, 2 !, 6, 6 !}.

We will not describe all of the details since nearlyThe procedure ShrinkBlossom visits the paths p
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that the BNS algorithm might find minimum valid paths
in general. As a counterexample, consider the balanced
network N in Figure 3. The reader may check for himself
or herself that the call of BNS will result in

path(s , t)

Å (s , 25, 1 !, 2, 3 !, 4, 5 !, 6, 7 !, 8, 9 !, 10, 11!, 12, 26 !, t)

instead of the shorter path

Fig. 2. A 2-factor problem. (s , 25, 24 !, 23, 22 !, 21, 16 !, 15, 14 !, 13, 26 !, t) .

all of the subsequent investigation steps lead to similar
shrinking operations. The reader is asked to close the gaps 18. A DEPTH FIRST BNS ALGORITHMwith the aid of Table I and to perform the DSU process
for himself. One can use Figure 1 which shows the DSU In this section, we present our version of the little-knowntree coming from this example. cardinality matching algorithm of Kameda and MunroNote that path(s , 3!) Å (s , 10, 5 !, 6, 3!) and path(s , [8] which is adapted to balanced flow networks. This6 !) Å (s , 10, 5 !, 6, 1 !, 2, 6 !) correspond to the auxiliary algorithm was intriguing for its simplicity which resultspaths (s , 10, 5 !, 6, 3 !) and (s , 10, 5!, 6) , respectively. from the data structures used and the depth first searchHence, the following investigation of (3!, 6) affects node strategy. Unfortunately, the original paper contains a seri-3 only which is labeled and placed on the queue. Further-
more, {3 !, 3} is merged into the blossom with base 6.
Then, node 9! is expanded. During that, the arc (9!, TABLE I. The call of BNS for our running example

11) is investigated so that d[11] :Å d[9 !] / 1 Å 5 is
£ d[£] prop[£] petal[£]assigned, the bud {11, 11!} is generated, and 11 is placed

on Q . s 0 NO_ARC NO_ARC
The next shrinking operation occurs during the investi- 10 1 (s, 10) NO_ARC

gation of the arc (9!, 12) where path(s , 9 !) Å (s , 10, 5! 2 (10, 5!) NO_ARC8 !, 7, 9 !) and path(s , 12 !) Å (s , 10, 8 !, 7, 12 !) are
8! 2 (10, 8!) NO_ARCconsidered. Note that (10, 8!) instead of (8!, 7) is the
4 3 (5!, 4) NO_ARCdesired bottleneck, since we have rescap(8 !, 7) Å 2. In
6 3 (5!, 6) NO_ARCthis situation, the second while-loop of ShrinkBlossom is
7 3 (8!, 7) NO_ARCneeded. By this shrinking operation, 8! becomes the base
1! 4 (6, 1!) NO_ARCand the canonical element of the new blossom.
2! 4 (6, 2!) NO_ARCNow, the arc (3, 7!) is investigated so that the paths

(s , 10, 5 !, 6) and (s , 10, 8 !) of the auxiliary network 3! 4 (6, 3!) NO_ARC
are considered. Since (s , 10) is not a bottleneck, all nodes 9! 4 (7, 9!) NO_ARC
on these paths are merged into one blossom. In particular, 12! 4 (7, 12!) NO_ARC
t becomes strictly reachable, and a valid augmenting path 2 5 NO_ARC (1!, 2)
can be obtained by 1 5 NO_ARC (2!, 1)

6! 6 NO_ARC (1!, 2)
path(s , t) Å path(s , 3) ! (3, 7 !) ! [path(s , 7)]! 3 7 NO_ARC (6!, 3)

11 5 (9!, 11) NO_ARCÅ path(s , 6 !) ! (6 !, 3) ! [path(3 !, 3 !)] !
12 5 NO_ARC (9!, 12)

! (3, 7 !) ! (s , 10, 8 !, 7)!
9 5 NO_ARC (12!, 9)

Å (s , 10, 5 !, 6, 1 !) ! (1 !, 2) ! (6, 2 !) ! 7! 6 NO_ARC (9!, 12)
8 7 NO_ARC (9!, 12)

! (6 !, 3)!(3, 7 !, 8, 10 !, t)
5 9 NO_ARC (7, 3!)

Å (s , 10, 5 !, 6, 1 !, 2, 6 !, 3, 7 !, 8, 10 !, t) . 10! 10 NO_ARC (3, 7!)
t 11 NO_ARC (3, 7!)

If we would complete the computation, we would obtain 11! 6 NO_ARC (11, 11!)
the correct distance labels of the residual network. So, 4! 8 NO_ARC (8, 4!)
the preceding example and the FIFO management suggest
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petal[u !] :Å a ! ;
d[u !] :Å tenacity 0 d[u] ;
S2.INSERT(u) ;
S2.INSERT(u !)

else
S1.DELETE(u)

fi
until S1.EMPTY or (d[u] ° d[£ !] and rescap
(prop[u]) Å 1));

S1.INSERT(u) ;
u :Å S2.TOP
end;

begin
Fig. 3. Missing the minimum valid path. S1.MAKE(n) ;

S2.MAKE(n) ;
UnresolvedAnomaly :Å FALSE;ous logical mistake which has not been noticed in the
for £ :Å 0 to n dosubsequent literature but was observed by one of our
prop[£] :Å NO_ARC;students [2] .
petal[£] :Å NO_ARC;The algorithm determines props and petals, but main-
d[£] :Å !tains the layered auxiliary networks AuxA(N) very implic- od;itly. In contrast to the breadth first search procedure of

d[s] :Å 0;the last section, the shrinking of blossoms is managed by
u :Å s;an additional stack instead of a DSU process.
INVESTIGATE;
while u x NONE doProcedure 8. A Refined Version of the Kameda/

if EOS(u) then BacktrackMunro Algorithm
else
READ(u , a) ;class BALANCED_NW;
£ :Å a/ ;private
if d[£ !] Å ! thenfunction BNS(s , t) ;
if d[£] Å ! thenobject S1, S2: STACK;
d[£] :Å d[u] / 1;var a , UnresolvedAnomaly, tenacity, u , £;
prop[£] :Å a;

procedure Backtrack; S1.INSERT(u) ;
begin u :Å £
if d[u !] Å ! then S1.DELETE(u) fi
else else
if S2.TOP Å u then S2.DELETE(u) fi; if prop[u] x aV and prop[u !] x a !
if d[S1.TOP] ° d[S2.TOP] and not S2.EMPTY then
then u :Å S2.TOP if EOS(£ !)
else then UnresolvedAnomaly :Å TRUE
S1.DELETE(u) ; else ShrinkBlossom
if S1.EMPTY then u :Å NONE else S1. fi
DELETE(u) fi

fi fi
fi fi
end; od;

CLOSE;procedure ShrinkBlossom;
if d[ t] õ ! then return TRUE else return FALSE fibegin
endS1.INSERT(u) ;

end.tenacity :Å d[u] / d[£ !] / 1;
repeat
S1.DELETE(u) ; The active path p which connects s and the active node

u in terms of AuxA(N) is held on a stack S1 with theif d[u !] Å ! then
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blossom base or the predecessor of u atop. If a proper
! (6, 2 !) ! [path(6, 2)] !]!(A)-blossom is traversed by p , then S1 contains the blos-

som base followed by the last node of B on p . If blossoms Å (s , 10, 5 !, 6) ! [ path(s , 3 !) ! (3 !, 6, 2 !)
are shrunk during the investigation of some arc u£, the

![path(6, 1 !) ! (1 !, 2)] !] !DFS procedure backtracks up to the base of the new ( Ã)-
blossom which is an element of S1. All nodes on S1 on Å (s , 10, 5 !, 6) ! [(s , 10, 5!, 4, 8 !, 7, 3 !, 6, 2 !)
top of the base belong to the new blossom and are moved

! (6, 1 !, 2) !] !to S2 for further investigation.
This simple shrinking procedure works if the arc u£ Å (s , 10, 5 !, 6, 1 !, 2, 6 !, 3, 7 !, 8, 4 !, 5, 10 !, t) .

under consideration is not a resolved anomaly. By that
we denote the following situation: The arc £ !u ! has been

Although this code is considerably simpler than theconsidered before, but u !was reachable yet and no shrink-
breadth first BNS procedure of the last section, there areing operation available at that point of time. In between,
some serious disadvantages:u£ and £ !u ! have become available for blossom shrinking.

It may happen that baseA(£) is not a member of the
active path or the stack S1. Since £ !u ! has been considered

• The algorithm is incorrect in the general case, sincebefore, we have EOS(£ !) Å TRUE from the moment of
anomalies are not resolved. Incorrect results seem tobacktracking from £ !. Hence, EOS(£ !) is checked by the
be relatively rare but no one has researched this up toalgorithm. The behavior of the procedure should be obvi-
now.ous now, although no formal correctness proof is avail-

• Depth first procedures cannot be adapted to parallelizedable.
computing techniques.We will study the effects of Procedure 8 for our run-

ning example in Figure 2 and the associated residual bal- • If a matching is computed from scratch, there is a pre-
anced network N . Initially, the algorithm grows an active ferred direction of search given by the node numbering.
path (s , 10, 5 !, 4, 8 !, 7, 3 !, 6, 1 !, 2) where all of the Hence, arcs are flipped several times. To avoid this,
nodes but u Å 2 form the content of S1. The stack S2 is the search order should be disturbed anyway.
still empty.
Then, the arc (2, 6!) is investigated which triggers off

a blossom shrinking operation. All nodes on S1 are Figure 4 shows an example where the algorithm does
not find an augmenting path although such a path exists.popped until u Å 6 is reached. The stack S2 looks like

S2: 2, 2 !, 1 !, 1, 6, 6 ! now, and u Å 6 ! Å S2.TOP holds. In this figure, the lines with arrowheads are the a-props
instead of the props of Section 8. The arcs (8, 9!) andThe nodes 1 ! and 2 are popped from S1, whereas the

base 6 is left for reconstructing auxiliary paths later. (17, 18!) are a-petals, and the arcs (1, 7!) and (10, 16 !)
are a-anomalies which are not resolved by the algorithm.The next arc investigated is (6!, 5) , and Shrink-

Blossom is called again. Because of rescap(s , 10) Å re- Hence, the bridge (6, 15!) is not investigated at all, and,
thus, the augmenting path is missed.scap(10, 5 !) Å 2, the stack S1 is entirely flushed, and

all nodes (together with their complements) are moved If one wants to extend Procedure 8 to a correct BNS
algorithm, one would have to resolve anomalies and toto S2 which consists of 2, 2!, 1 !, 1, 6, 6!, 3 !, 3, 7, 7 !,

8 !, 8, 4, 4 !, 5 !, 5, 10, 10 !, s and t now. perform a DSU process again. This would be incompati-
ble with the main idea of the algorithm and result in aThen, by operation Backtrack, the nodes on S2 are

searched and popped without any further effect until u rather ugly code. Therefore, we have not devised such a
procedure.Å 7 is reached. By the investigation of (7, 9!) and (9 !,

11) , the nodes 7 and 9 ! are pushed onto S1. Then, the Except for the disadvantages mentioned above, Proce-
dure 8 is an economic augmentation rule which containsarc (11, 11 !) is investigated, resulting in S1: s , 7, 9 !, 11,

S2: 2, 2 !, 1 !, 1, 6, 6 !, 3 !, 3, 7, 11, 11 ! and u Å 11 !. a simple anomaly check. Indeed, there is no augmenting
path if d[ t] Å ! and UnresolvedAnomaly Å FALSE holdFinally, (11 !, 12) and (12, 7!) are investigated such

that ShrinkBlossom is called and S1 is flushed again. All at the end of the search. On the other hand, if we have
d[ t] õ ! , we can expand an augmenting path and cannodes have been found to be in one blossom. The algo-

rithm searches the remaining nodes on S2 (without any neglect possible mistakes.
Only in the case of d[ t] Å ! and UnresolvedAnomalyeffect) and then halts. We get the following augmenting

path: Å TRUE, the result is uncertain. One might use another,
probably slower BNS algorithm to verify the result in
that case. Hence, it seems likely that the depth first BNSpath(s , t)Å path(s , 5 !) ! (5 !, 6) ! [path(s , 6 !)] ! algorithm will yield very powerful heuristical matching
algorithms.Å path(s , 10) ! (10, 5 !, 6) ! [path(s , 6)
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TABLE II. The call of BNS for our running exampleSUMMARY

£ d[£] prop[£] petal[£]The BNS procedures presented in this paper lead to effi-
cient algorithms for a broad class of matching problems. s 0 NO_ARC NO_ARC
If the graphs are simple, the maximum flow value for the 10 1 (s, 10) NO_ARC
corresponding balanced flow networks are bounded 5! 2 (10, 5!) NO_ARC
by the number of arcs in the original graph. Hence, an 4 3 (5!, 4) NO_ARC
f-factor can be found in O(m2a(m , n)) time and a 8! 4 (4, 8!) NO_ARCk-factor (where k is fixed) in O(nma(m , n)) time. Even

7 5 (8!, 7) NO_ARC( f , g)-factors can be derived in O(m2a(m , n)) time.
3! 6 (7, 3!) NO_ARCIf the graphs are not necessarily simple, the best-known
6 7 (3!, 6) NO_ARCalgorithm for the f-factor problem is due to Anstee [1] .
1! 8 (6, 1!) NO_ARCThe algorithm determines a maximum flow for the bal-
2 9 (1!, 2) NO_ARCanced flow network. This flow is transformed into a bal-
2! 8 NO_ARC (6, 2!)anced flow and finally augmented O(n) times to obtain

a maximum balanced flow. Here, our BNS algorithms 1 9 NO_ARC (6, 2!)
apply. We will discuss this approach in a forthcoming 6! 10 NO_ARC (6, 2!)
paper [6] . 3 7 NO_ARC (5!, 6)
Although Procedure 7 is almost linear, it can be im- 7! 8 NO_ARC (5!, 6)

proved in practice where we are looking for a valid aug- 8 9 NO_ARC (5!, 6)
menting path only: Shrinking blossoms is the expensive 4! 10 NO_ARC (5!, 6)part of the algorithm and such operations should be

5 11 NO_ARC (5!, 6)avoided.
10! 12 NO_ARC (5!, 6)To achieve this goal, a node u is not entirely expanded,
t 13 NO_ARC (5!, 6)but all outgoing arcs which have the shrinking properties
9! 6 (7, 9!) NO_ARCare collected in an additional set. These arcs are investi-
11 7 (9!, 11) NO_ARCgated only if no other operation is possible. But, of course,
11! 8 NO_ARC (11, 11!)every augmenting path traverses a bridge.

If u is adjacent to the sink t , then either su! has been 12 9 (11!, 12) NO_ARC
investigated before or the investigation of ut leads to an 12! 6 NO_ARC (7, 12!)
augmentation immediately. The latter situation can be 9 9 NO_ARC (7, 12!)

detected without any effort. Hence, it is reasonable to
delay the investigation of the arcs starting at the source
s at long as possible.
A significant improvement would be a BNS procedure

which finds valid augmenting paths of minimum length.
Such an algorithm is available by the theory of Vazirani
[13], but very complex. In a forthcoming paper, we pre-
sent an extension of the algorithm of Micali and Vazirani
[10] to balanced network flows which also runs in (al-
most) linear time.
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