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Abstract: Let G be a graph and let t = 0 be a real number. Then, G is t-tough if to(G — S) = |S] for
all S C V(G) with (G — S) > 1, where w(G — S) denotes the number of components of G — S. The
toughness of G, denoted by 7(G), is the maximum value of t for which G is t-tough [taking 7(K,,) = o for
all n = 1]. G is minimally t-tough if 7#(G) = t and 7(H) < t for every proper spanning subgraph H of G.
We discuss how the toughness of (spanning) subgraphs of G and related graphs depends on 7(G), we
give some sufficient degree conditions implying that 7(G) = t, and we study which subdivisions of
2-connected graphs have minimally 2-tough squares. © 1999 John Wiley & Sons, Inc. Networks 33: 233-238,
1999
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1. INTRODUCTION ficult to calculate: As shown by Bauer et al. [3], it is
NP-hard to determine the toughness of a graph.

Despite these negative observations, many new results
In 1973, Chvéal [8] introduced a new graph invariant called involving the toughness of a graph have appeared, and new
toughness, and he investigated its relation to the existence ahd interesting ideas have been added to the field, in an
Hamilton cycles. Although many results concerning theattempt to solve the main problems and to get more of a grip
relation between toughness and cycle structure have beem the concept of toughness. The results presented here
obtained since, the main conjectures raised in [8] are stilshould be considered in the same vein.
open, and little progress has been made toward (dis)proving
these conjectures.

More recently, toughness has also been considered asg2 pRELIMINARIES

vulnerability measure for networks, since it measures how

extensively a graph breaks up into components when a S%e start this section with some terminology and notation.

of vertices is removed. Unfortunately, this measure is dn‘-We refer to [4] and [12] for any undefined terminology and

notation and consider finite undirected graphs without loops
and multiple edges only.
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components ofG — S. The toughnessf G, denoted by
7(G), is the maximum value of for which G is t-tough
[taking 7(K,,) = o for alln = 1]. A setS C V(G) with the
property thatr(G) = |§/[w(G — 9)] is called atoughness-
determining sebf G. A Hamilton cycle(Hamilton patf) of

closest integef#if one deletes an arbitrary edge. As an

example, he considered the so-called Higman-Sims graph
HS (see, e.g., [6], p. 391), a 22-regular distance-regular
triangle-free graph on 100 vertices such that each pair of
nonadjacent vertices has precisely six common neighbors.

G is a cycle (path) ofG containing every vertex ofs. A
graph G is called Hamiltonian if it contains a Hamilton
cycle and it is calledHamiltonian-connected between any
two vertices ofG there exists a Hamilton path @&.

The complemenHS of this graph is a 77-regular claw-free
graph on 100 vertices with = 2 andr = k/2 = 6/2 = 38.5.
For an arbitrary edge = uv € E(HS), HS — e has a cut
set of 92 vertices, leaving only, v, and aKg consisting of

The concept of toughness was introduced in [8], wherghe six common neighbors af and v in HS; hence,r(HS
relations between toughness and the existence of Hamilton €) = %2 < 31.

cycles ork-factors(k-regular spanning subgraphs) are stud-

ied, and several conjectures are stated. The following conket S be a cut set of a grap8. Then,

jecture is still open:

Conjecture 1. There exists agtsuch that every ttough
graph is Hamiltonian.

Little progress has been made toward proving Conjecture

1, although in [10], it is shown that every 2-tough graph on
at least three vertices contains a 2-factor and that there exi
(2 — e)-tough graphs not containing a 2-factor (hence,
non-Hamiltonian) for arbitrarily smak > 0.

For many years, it was expected that if Conjecture 1 were_

true thent, would be equal to 2, but, recently, in [2], that
idea was refuted by constructin%{- €)-tough non-Hamil-
tonian graphs for arbitrary > O.

The results in Section 5 were obtained before Conjecture

1 was refuted fot, = 2 and were a previous attempt to find
a counterexample to this conjecture within the class o
(spanning subgraphs of) squares of 2-connected graphs. T
results in the other sections are based on an attempt to g
more of a grip on the concept of toughness. In Section 3, w
express the toughness of spanning subgraphs of a gaph
and related graphs in terms of the toughnes§&ofn the
main result of Section 4, a certain value of the toughness i
guaranteed by a degree sum condition.

3. TOUGHNESS OF SUBGRAPHS AND
RELATED GRAPHS

3.1. Toughness of Spanning Subgraphs

In this section, we will prove that every noncomplete graph
with toughness greater than one contains a spanning su
graph with toughness exactly one. In fact, we will prove a

?:)II

In the next proof, we use the following easy observation:
S = 27(G) [8].

Theorem 2. Let G be a graph# Ky, Ky, ..., Kqi47y/30
with 7(G) > i for some positive integer iThen, there exists
a spanning subgraph H of G wiif2i + 1)/3 = 7(H) =< i.

H of G with (2i + 1)/3 = 7(H) = i. LetH; andH, be
gpanning subgraphs & such that, = H, — e for some
e € E(H,;) and such that(H,) > i and 7(H,) < (2i
+ 1)/3. Then, there exists a cut s&of H,, for which v(H,)
|S/[w(H, — )] < (2i + 1)/3, and, thusw(H, — )
> (3|9])/(2i + 1). Sincew(H, — S) and 39 are integers,
we getw(H, — S) = (3|9 + 1)/(2i + 1). First, suppose
thatSis a cut set oH,. Then,w(H; — 8 = w(H, — 9)
1= [(3]9 + 1)/(2i + 1)] — 1. On the other hand,

sincer(H,) > i, o(H; — S) < |9/i; hence,w(H; — 9

&= (IS — 1)/i. Thus, we get (5 + 1 — 2i — 1)/(2 + 1)

|S| — 1/i. Fori = 1, this clearly leads to a contradiction.
leti > 1. Then, equivalently,i3S — 2i? = 2i|S| + |§
2i — 1; hence, ( — 1)|§ = 2i? — 2i — 1. So, the
owing holds for|S: |S| = (2i? — 2i — 1)/(i — 1) = 2i
— 1/(i — 1) < 2i. But, on the other handS| = 27(H,)
& 2i, a contradiction. This leaves us with the case st
not a cut set oH,. This means thag (in H,) connects the
only two components o, — S. SinceS is a toughness-
determining set oH,, w(H, — S) = 2, and sincer(H,)
< (2i + 1)/3,|9 < (4i + 2)/3;hence|S = (4i + 1)/3.
If SU {u}is a cut set ofH, for someu € V(H,), then|S
U {u}| = 27(H,) > 2i, so|S| = 2i. This contradictgS|
= (4i + 1)/3 sincei = 1. This implies that the two
components oH, — SareK;. But then|V(G)| = | + 2
= [(4i + 1)/3] + 2 = (4i + 7)/3;thus,|V(G)| = [(4i
g= 7)/30 This implies thatG is not complete. But, then,
7(G) = |9/2 = (|V(G)| — 2)/2 = (4i + 1)/6 < i, our

stronger result from which the above follows as a speciafinal contradiction. "

e

2P

case. One could wonder (as we did) whether for all non-

complete graph& with 7(G) not an integer there exists a
spanning subgraphl with 7(H) = &(G)d We were not

The lower bound orr(H) in Theorem 2 cannot be raised.
Let G be aK i, g)3 Where we assume thati(4- 8)/3 is

able to prove or disprove this. At the Ph.D. defense of thean integer. Then, for every proper spanning subgtdpf

third author, we were informed by Brouwer [5] that the
toughnessr of a graph can drop considerably below the

G, 7(H) = 7(G — €) = {[((4i + 8)/3] — 2)/2} = (2i
+ 1)/3. We do noknow whether there exist noncomplete

Proof. Suppose there does not exist a spanning subgraph
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examples showing this. The complement of the Higman-following manner if we only look at maximum toughness-

Sims graph mentioned before shows that the toughneSs of determining sets. Here, it is convenient to adopt the notation

can drop considerably belola(G)Uif one deletes an edge. thatK,_, \/ H; = H; if k = 1:

By takingi = 1 in Theorem 2, we get the following

result as a special case: Lemma 5. Let k be a positive integer, and let G be a graph
with 7(G) = k; S, a maximum toughness-determining set of

Corollary 3. Let G be a grapi# K;, K,, K3) with 7(G) G; and H,, an arbitrary component of G- S. Then,r(K,_,

> 1. Then, there exists a spanning subgraph H of G with\/ H;) = k.

H) = 1.
7(H) Proof. Suppose that(K,_, \/ H;) < k. Then, as in the

proof of the previous lemma, there now exists a nonempty
3.2. Toughness of Subgraph-related Graphs setS C V(H,) such that (S| — 1)/k + 1 < o(H; — S).

The next two lemmas give a relation between the toughnes'é'ence’w(Hi —8)=1+Slk So,

of a graphG and the toughness of the join of a small

complete graph and a component®f— S, whereSis a 7(G) < [Su S| _ S| + IS
toughness-determining set 6t These lemmas might turn o(G-(SUS)) o(G-9 +wH -9 -1
out to be useful in inductive proofs of structural results on S| + |S| S
graphs with a certain toughness, because they guarantee the = |S| = 0G-9"
same toughness for usually smaller graphs, each containing o(G—9) +—

one of the components @ — S.

By G \/ H, we denote thgoin of two disjoint graph<s
andH, that is, the graph obtained fro@ andH by joining @ contradiction. L
every vertex ofG to every vertex oH.

First, we give a result for arbitrary toughness-determin- To show that the lower bound on(K,_; \/ H;) in
ing sets: Lemma 5 cannot be increased, consider, for example, the

graphH, , (p = 2, k = 1) obtained by joining &, to p
Lemma 4. Letk be a positive integer, and let G be a graph disjoint copies of aC, joined to aK,_, havingk = 2.
with 7(G) = k; S, an arbitrary toughness-determining set Then, 7(H,,) = k. Thus, S = V(K. is a maximum

of G; and H, an arbitrary component of G- S. Then,r(K,, ~ toughness-determining set 6. SinceH; = K,_, \/ C,,
Vv H) =k we conclude that(K,_, \/ H;) = k.

Proof. Suppose that(K, \/ H;) < k. Then, there exists

a subset] C V(K, \/ H;) such thatS/| < ka((K,\/ H;) 4. SUFFICIENT CONDITIONS FOR
- S). Let V(K) = {vg, ..., v}. Define S = S\ T.-TOUGHNESS
{v1, ..., vJ. Then, |S| = |S| — k and w((K, \/ H;)

- S) = o(H; — S). Now, . . - -
) = o(H = S) In this section, we present some sufficient conditions guar-

anteeing a graph to ketough.

7(G) = [SUS| — S+ S| Chvaal and Erds [9] proved that a grap® on at least
o(G-(SUS)) w(G-9 +owH -9 -1 three vertices witha(G) = «(G) is Hamiltonian and,
IS + || E hence, 1-tough. It is very easy to extend this result to
|S| = w(G-9’ t-toughness.
o(G—=9 +—
Lemma 6. Let G be a graph. If&(G) = «(G), then G is
- t-tough.
a contradiction. ]

Proof. Suppose tha® is nott-tough. Then, there exists
To show that the lower bound arfK, \/ H,) in Lemma @ cut setS of G with (G — S) > [§/t. Clearly, «(G)
4 cannot be increased, consider, for example, the gBaph = (G — §), soa(G) > |S/t, which implies thata(G)

(p = 2, k = 1) obtained by joining &, to p disjoint > [S| = k(G). L]
copies of aK,,, with one edgee deleted Theng (G, \)

= (pK)/p = [(p + LDKI/(p + 1) =...= (2pK)/(2p) The connectivity condition in Lemma 6 cannot be re-
= k. Let S = V(K. Then,H; = K, — eand7(K, laxed and still guaranteetoughness, as can easily be seen
V H) = 7KgV (Keyo — €) = (k + k)/2 = k. from the graphK, \/ K, withp > q: « = g, k = p and

Although Lemma 4 is sharp, it can be improved in thet = p/q = «/a.
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In a similar way, one might try to extend degree condi-Corollary 10. Let G be a graph on n vertices such that
tions for Hamiltonicity (hence, 1-toughness) to results for= 2nt/(t + 1), wherel =<t = n — 1. Then, G is t-tough.

t-toughness, for example, the following result of Ore [14]: ) )
Corollary 10 generalizes a result of Bauer et al. [3] in

which the minimum-degree conditidi{G) = nt/(t + 1) is

Theorem 7. Let G be a graph on ri= 3 vertices such that -
shown to be sufficient fot-toughness.

for every two nonadjacent vertices u andof G, d(u)
+ d(v) = n. Then, G is Hamiltonian.

The degree condition in this theorem can be changed @8 SPANNING SUBGRAPHS OF SQUARES

follows to obtain a degree condition which impliesough-
ness. In the following results, we usg(G) to denote the One possible approach to disproving the 2-tough-conjecture
minimum degree sum of the vertices of an independent s€Conjecture 1 witht, = 2) was to try to disprove the
of k vertices of the grapl® [if such exists; otherwise, we equivalent conjecture that all 2-tough graphs are Hamilto-
defineo, = k(|V(G)| — 1)]: nian-connected (see [1]), that is, by finding a graph which is
2-tough but not Hamiltonian-connected. To avoid the diffi-
Theorem 8. Suppose that k and kt 1 are integers. If G culty of checking whether the considered graphs are 2-tough
is a kt-connected graph on n vertices with,, = (k  (which is an NP-hard problem [3]), one could restrict the
+ 1)(nt/(t + 1)), thenG is t-tough. search for a counterexample to a class of graphs every
member of which is known to be 2-tough. An example of
such a class of graphs is the class consisting of the squares
of all 2-connected graphs. Tisguare G of a graphG is the
graph obtained fron& by joining all vertices at distance 2
in G. By an elementary result of Chtz [8], the square of
ak-connected graph istough. Unfortunately, the square of
a 2-connected graph is also Hamiltonian-connected, by an
observation in [7] based on the beautiful deep result due to
Fleischner [11] that all squares of 2-connected graphs are
Hamiltonian. So, all attempts to find a counterexample
within this class of squares of 2-connected graphs will fail,
that is, if we restrict ourselves to graphs within this class.
But, by the ease of showing that squares of 2-connected
graphs are 2-tough, and the difficulty of showing that these
squares are Hamiltonian-connected, one could be tempted
to think that there exist spanning subgraphs of these squares
that are 2-tough, but not Hamiltonian-connected. This led us
to define and study minimally 2-tough graphs or, more
generally, minimallyt-tough graphs. A grapls is called
Tminimally ttoughif 7(G) = t and there does not exist a
proper spanning subgraph of G with 7(H) = t. By the
above motivation, we concentrate on squares of 2-con-
nected graphs and consider the problem which of these
graphs are (not) minimally 2-tough. We need one more
definition. LetG andH be graphs, and, an integer withs
= 0. G is ans-subdivisionof H if G can be obtained from
H by replacing every edgev of H by a path between and
Proof. Suppose tha® is not[i[3connected. Then, there v with at leasts internal vertices. We calG an s-subdivi-
exists a cut se8 C V(G) with |S| < [0 Since|S| is an  sion if it is ans-subdivision of some grapH. Clearly, a
integer, this implies thag = (01— 1 < t. SinceSis acutset, graph which is ans-subdivision § = 1) is also an
G — Sconsists of at least two components. Choose a vertex 1)-subdivision, and ars-subdivision of a 2-connected
u in one component and a vertexin another component. graph is 2-connected.
Then,o, =d(u) +d(v) = 2|9 +n—-2—-|F =n+ |9 As mentioned in [13] during the Workshop on the Ham-
—-2<n+t—-2,soht/(t+1)<n+t— 2or ilonicity of 2-Tough Graphs held at Enschede, The Neth-
equivalently, 6 — t)(t — 1) < —2, which is absurd since erlands, in November 1995 (sponsored by EIDMA: the
l1=t=n-1. | Euler Institute for Discrete Mathematics and Its Applica-

Proof. Suppose that # K,, andG is nott-tough. Then,
for someS C V(G): w(G — ) > |F/t. If o(G — S) <k
+ 1, then|g/t < (G — 9 = k, implying that k(G)
= |9 < kt, a contradiction. Sop(G — S) = k + 1. Let
U1, Vs ..., Ugyq denotek + 1 vertices from distinct
components o — S. Then, k + 1)(nt)/(t + 1) = o4,
=30 d(v) = (k + 1S + n— |5 - w(G - 9
< kg + n — |9/t. Hence, k + 1)tn < k(t + 1)|§
+ n(t + 1) — [|9(t + 1))/t and kt — 1)n < [Kki(t
+ DIt]S = [(t + DAY = (kt — D)[(t + 1)A]|S. If
kt = 1, we obtain a contradiction. Hence, assume #iat
> 1. Then,|§ > (tn)/(t + 1), hencew(G — ) > |/t
> n/(t + 1). But, now,n = | + o(G — ) > (tn)/
(t + 1) + n/(t + 1) = n, a contradiction. [

Note that ifG is kt-connected wittk = «(G), then we
know thatG is t-tough (by Lemma 6). In the case whkn
< «(G), G has an independent setloft- 1 vertices and the
degree sum condition makes sense.

From Theorem 8, we can simply derive an extension o
Theorem 7 ta-toughness. To show that it is an extension,
we need the following lemma:

Lemma 9. Let G be a graph on n vertices such thaj
= 2nt/(t + 1), wherel =t = n — 1. Then, G
is [I(3connected.
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tions), “sufficiently” subdivided 2-connected 3-regular Lemma 13. Let G = H? be a minimally 2-tough graph.
graphs have minimally 2-tough squares. In this section, w&hen, H is minimally 2-connected and triangle-free.

will further specify what “sufficiently” subdivided means.
To prove that the square of a 4-subdivision of a 2-con
nected 3-regular graph is minimally 2-tough, we first prove,

that if H is a 2-connected 3-subdivision the(H?) = 2.

Lemma 11. Let H be a 3-subdivision of a 2-connected

graph and let G= HZ2 Then,(G) = 2.

Proof. Suppose thatd is not minimally 2-connected.
Then, there exists a proper spanning subgraplfiH which

is 2-connected. But, theR? is a proper spanning subgraph
of G andF? is 2-tough, a contradiction. Next, suppose that
H has a triangleuvwu. BecauseH is minimally 2-con-
nectedw is a cut vertex oH — uv. Denote the components
of (H — uv) — w asH, (the component which containg

Proof. From [8] we know that the square of every 2-con- andH,, (the component which containg. Notice that there

nected graph is 2-tough, which means th4G) = 2.
Suppose thatl = C,. Then, every vertex il has degree
4; thus,7(G) = 2. So suppose that # C,,. Now, label the
vertices ofG with degree exceeding 2 iH asv,, v, . . .,
v ConstructS such that it contains all the vertices and
for everywv;, dy(v;) — 1 vertices which are neighbors of
in H. Here,d,(v;) denotes the degree of in H. Then,|S
= 3K, dy(v;). By deletingS from G, there is a contribu-
tion of one tow(G — S) for every two vertices);, v; of G

are no other components dfi(— uv) — w; otherwise H
— w would be disconnected. By similar argumenids a
cut vertex of H — uw but not of H. BecauseH, is
connected, there are no edges betweemdH, other than
uw; otherwise,H — uw would not havev as a cut vertex.
Analogously, there are no edges betwéenandw other
than vw. Now, H; can only containu and H, can only
containv; otherwiseu or v would be a cut vertex dfl. So,
H = Kj, a contradiction, since, them(G) # 2. ]

which are connected by a path containing only internal

vertices of degree 2 inl. S0,w(G — §) = %Ei‘;l du(v)
and7(G) = |9/[w(G — 9] = 2. ]

Theorem 12. Let H be a 4-subdivision of a 2-connected

3-regular graph and let G= HZ? Then, G is minimally
2-tough.

Proof. From Lemma 11, we know that{G) = 2, so it
is sufficient to prove that(G — e) < 2 for an arbitrary
edgee € E(G). This is clear ife is incident to a vertex of

degree 4 irG. ConstrucSas is Lemma 11, and consider the

three remaining possibilities fa: First, assume that is
incident to two verticesv; € Sandw, € S of degree 5.
Denote the common neighbor af;, andw, with degree 5
by w;, and defineés’ = (S U {wg})\{w,, w,}. Then, |S|
=1]9 - 1andw((G —€) — ) = o(G — 9. So,7(G
—€) = |S[w((G — &) = §)] < [/[w(G - 9] = 2.
Next, assume that is incident to two verticesv; € S and
w, ¢ S of degree 5. DefineS" = S{w,}. As in the
previous caser(G — e) < 2. Finally, assume thag is
incident to a vertexv, of degree 6 and a vertex, of degree
5. Denote byP the path inH containinge betweenw, and

the next vertex of degree 3 irH. Note that we may choose

Sin such a way that the predecessomxasn P is not in S.
DefineS = (S U Ng(w;) U Ng(w,))\{w,, w,}. Then,
(G — e) = |F)/[w((G — e) — F)] = (|9 + 3)/[w(G
-9 + 2] < 2. ]

We will now prove that if two neighbors and v with
d(u) + d(v) = 6 exist in a 2-connected graph then H?

Theorem 14. Let H be a 2-connected graph with,¢l)
+ dy(v) = 6 for some, yv € V(H) with uv € E(H), and
let G = H?. Then, G is not minimally 2-tough.

Proof. Suppose tha is minimally 2-tough. Thent(G
— e) < 2 for everye € E(G), so this also holds if we let
e = Uv. Hence, there exists a vertex cBtC V(G — e)
such thatw((G — e) — S) > |9]/2. Sincew is an integer,
o((G —e) — 9 = [ + 1)/20= 0I/20+ 1. First,
suppose thab is a vertex cut of5. SinceG is 2-tough, we
havew(G — ) = /20 which implies thaiw((G — €)
-9 = 09/20+ 1 andw(G — S) = [9/20 Two
vertices of two distinct components & — S have no
common neighbors i® in H; otherwise, inG, there would
be an edge between these components. Sihdég 2-con-
nected, every component other than the component contain-
ing e has at least two distinct neighbors $in H. Now,
consider the number of neighbors $nin H of the compo-
nent ofG — S containinge. Sincedy(u) + dy(v) = 6 by
assumption and sinaeandv cannot have neighbors ki in
the components ofG — €) — S, except by the edge,
ING(U) NS + [Ng(v) N = 4. If [Ny (u) N Ny(v) N S
# 0, thenH contains a triangle. This is impossible by
Lemma 13. Hence, the component®f— S containinge
has at least four distinct neighbors$in H. We conclude
that |§| = 2(09/20 — 1) + 4 = 2(09/20 + 1)
= 2{[(|§ — 1)/2] + 1} = |§ + 1, a contradiction.

Next suppose tha$ is not a vertex cut of. Then, 2
= o((G — €) — 9 > |9/2, implying that|§| = 3. But
for the same reasons as befar@ndwv have together at least

is not minimally 2-tough. To prove that, we need the fol- four distinct neighbors it in H, a contradiction. |

lowing lemma. A grapl& is minimally 2-connected «(G)

= 2 andk(H) < 2 for every proper spanning subgraph

of G:

So, squares of 4-subdivisions of 3-regular 2-connected
graphs are minimally 2-tough whereas squares of 2-con-



238 BROERSMA, ENGBERS, AND TROMMEL

(1]

®

(2]
Fig. 1. The square of this graph is minimally 2-tough. 13]

nected graphs with at least one vertex of degree exceedingy)
3 are 2-tough, but not minimally 2-tough. The same is true
for squares of 2-connected graphs which have two adjacents)
vertices with degree sum 6 or more. What can we say about[6]
squares ob-subdivisions withs = 37 There are examples

of squares of 3-subdivisions which are minimally 2-tough [7]
and examples of squares of 3-subdivisions which are not
minimally 2-tough. If we take the square of the 3-subdivi-
sion drawn in Figure 1, the resulting graghis minimally 8]
2-tough.

To prove this, it is sufficient to show that deletion of the g
marked edge or f decreases the toughness. All other edges
are incident to a vertex of degree 4 or can be proved t 10]
decrease the toughness in either the same way or as in the
proof of Theorem 127(G — e) = g < 2 due to the vertex
cut marked with circles in the figure an(G — f) = g <2
due to the vertex cut marked with stars in the figure.

The example that we give of a 3-subdivision whose[;2)
square is not minimally 2-tough is less spectacular H.ee
the graph obtained frorK, by replacing each edge by a [13]
path with exactly three internal vertices and @t= HZ.
Clearly, G is 2-tough. ButG — e is also 2-tough, where
is an edge oH incident to a vertex of degree 3 i (we
omit further details).

The above examples illustrate the difficulties in obtain-

(11]

(14]

ing a full classification of all minimal 2-tough squares of
3-subdivisions.
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