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Abstract: Let G be a graph and let t $ 0 be a real number. Then, G is t-tough if tv(G 2 S) # uSu for
all S # V(G) with v(G 2 S) . 1, where v(G 2 S) denotes the number of components of G 2 S. The
toughness of G, denoted by t(G), is the maximum value of t for which G is t-tough [taking t(Kn) 5 ` for
all n $ 1]. G is minimally t-tough if t(G) 5 t and t(H) , t for every proper spanning subgraph H of G.
We discuss how the toughness of (spanning) subgraphs of G and related graphs depends on t(G), we
give some sufficient degree conditions implying that t(G) $ t, and we study which subdivisions of
2-connected graphs have minimally 2-tough squares. © 1999 John Wiley & Sons, Inc. Networks 33: 233–238,
1999
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1. INTRODUCTION

In 1973, Chva´tal [8] introduced a new graph invariant called
toughness, and he investigated its relation to the existence of
Hamilton cycles. Although many results concerning the
relation between toughness and cycle structure have been
obtained since, the main conjectures raised in [8] are still
open, and little progress has been made toward (dis)proving
these conjectures.

More recently, toughness has also been considered as a
vulnerability measure for networks, since it measures how
extensively a graph breaks up into components when a set
of vertices is removed. Unfortunately, this measure is dif-

ficult to calculate: As shown by Bauer et al. [3], it is
NP-hard to determine the toughness of a graph.

Despite these negative observations, many new results
involving the toughness of a graph have appeared, and new
and interesting ideas have been added to the field, in an
attempt to solve the main problems and to get more of a grip
on the concept of toughness. The results presented here
should be considered in the same vein.

2. PRELIMINARIES

We start this section with some terminology and notation.
We refer to [4] and [12] for any undefined terminology and
notation and consider finite undirected graphs without loops
and multiple edges only.

Let G be a graph and lett $ 0 be a real number. Then,
G is t-toughif tv(G 2 S) # uSu for all S# V(G) with v(G
2 S) . 1, where v(G 2 S) denotes the number of
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components ofG 2 S. The toughnessof G, denoted by
t(G), is the maximum value oft for which G is t-tough
[taking t(Kn) 5 ` for all n $ 1]. A setS # V(G) with the
property thatt(G) 5 uSu/[v(G 2 S)] is called atoughness-
determining setof G. A Hamilton cycle(Hamilton path) of
G is a cycle (path) ofG containing every vertex ofG. A
graph G is called Hamiltonian if it contains a Hamilton
cycle and it is calledHamiltonian-connectedif between any
two vertices ofG there exists a Hamilton path ofG.

The concept of toughness was introduced in [8], where
relations between toughness and the existence of Hamilton
cycles ork-factors(k-regular spanning subgraphs) are stud-
ied, and several conjectures are stated. The following con-
jecture is still open:

Conjecture 1. There exists a t0 such that every t0-tough
graph is Hamiltonian.

Little progress has been made toward proving Conjecture
1, although in [10], it is shown that every 2-tough graph on
at least three vertices contains a 2-factor and that there exist
(2 2 e)-tough graphs not containing a 2-factor (hence,
non-Hamiltonian) for arbitrarily smalle . 0.

For many years, it was expected that if Conjecture 1 were
true thent0 would be equal to 2, but, recently, in [2], that
idea was refuted by constructing (9

4
2 e)-tough non-Hamil-

tonian graphs for arbitrarye . 0.
The results in Section 5 were obtained before Conjecture

1 was refuted fort0 5 2 and were a previous attempt to find
a counterexample to this conjecture within the class of
(spanning subgraphs of) squares of 2-connected graphs. The
results in the other sections are based on an attempt to get
more of a grip on the concept of toughness. In Section 3, we
express the toughness of spanning subgraphs of a graphG
and related graphs in terms of the toughness ofG. In the
main result of Section 4, a certain value of the toughness is
guaranteed by a degree sum condition.

3. TOUGHNESS OF SUBGRAPHS AND
RELATED GRAPHS

3.1. Toughness of Spanning Subgraphs

In this section, we will prove that every noncomplete graph
with toughness greater than one contains a spanning sub-
graph with toughness exactly one. In fact, we will prove a
stronger result from which the above follows as a special
case. One could wonder (as we did) whether for all non-
complete graphsG with t(G) not an integer there exists a
spanning subgraphH with t(H) 5 t(G). We were not
able to prove or disprove this. At the Ph.D. defense of the
third author, we were informed by Brouwer [5] that the
toughnesst of a graph can drop considerably below the

closest integert if one deletes an arbitrary edge. As an
example, he considered the so-called Higman–Sims graph
HS (see, e.g., [6], p. 391), a 22-regular distance-regular
triangle-free graph on 100 vertices such that each pair of
nonadjacent vertices has precisely six common neighbors.
The complementHS of this graph is a 77-regular claw-free
graph on 100 vertices witha 5 2 andt 5 k/2 5 d/2 5 38.5.
For an arbitrary edgee 5 uv [ E(HS), HS 2 e has a cut
set of 92 vertices, leaving onlyu, v, and aK6 consisting of
the six common neighbors ofu andv in HS; hence,t(HS
2 e) #

92
3

, 31.
In the next proof, we use the following easy observation:

Let S be a cut set of a graphG. Then,uSu $ 2t(G) [8].

Theorem 2. Let G be a graph (Þ K1, K2, . . . , K(4i17)/3)
with t(G) . i for some positive integer i. Then, there exists
a spanning subgraph H of G with(2i 1 1)/3 # t(H) # i .

Proof. Suppose there does not exist a spanning subgraph
H of G with (2i 1 1)/3 # t(H) # i . Let H1 andH2 be
spanning subgraphs ofG such thatH2 5 H1 2 e for some
e [ E(H1) and such thatt(H1) . i and t(H2) , (2i
1 1)/3. Then, there exists a cut setSof H2 for whicht(H2)
5 uSu/[v(H2 2 S)] , (2i 1 1)/3, and, thus,v(H2 2 S)
. (3uSu)/(2i 1 1). Sincev(H2 2 S) and 3uSu are integers,
we getv(H2 2 S) $ (3uSu 1 1)/(2i 1 1). First, suppose
that S is a cut set ofH1. Then,v(H1 2 S) $ v(H2 2 S)
2 1 $ [(3uSu 1 1)/(2i 1 1)] 2 1. On the other hand,
sincet(H1) . i , v(H1 2 S) , uSu/i ; hence,v(H1 2 S)
# (uSu 2 1)/i . Thus, we get (3uSu 1 1 2 2i 2 1)/(2i 1 1)
# uSu 2 1/i . For i 5 1, this clearly leads to a contradiction.
So leti . 1. Then, equivalently, 3i uSu 2 2i2 # 2i uSu 1 uSu
2 2i 2 1; hence, (i 2 1)uSu # 2i2 2 2i 2 1. So, the
following holds foruSu: uSu # (2i2 2 2i 2 1)/(i 2 1) 5 2i
2 1/(i 2 1) , 2i . But, on the other hand,uSu $ 2t(H1)
. 2i , a contradiction. This leaves us with the case thatS is
not a cut set ofH1. This means thate (in H1) connects the
only two components ofH2 2 S. SinceS is a toughness-
determining set ofH2, v(H2 2 S) 5 2, and sincet(H2)
, (2i 1 1)/3, uSu , (4i 1 2)/3; hence,uSu # (4i 1 1)/3.
If S ø { u} is a cut set ofH1 for someu [ V(H1), thenuS
ø { u} u $ 2t(H1) . 2i , so uSu $ 2i . This contradictsuSu
# (4i 1 1)/3 since i $ 1. This implies that the two
components ofH2 2 S areK1. But thenuV(G)u 5 uSu 1 2
# [(4i 1 1)/3] 1 2 5 (4i 1 7)/3; thus, uV(G)u # (4i
1 7)/3. This implies thatG is not complete. But, then,
t(G) # uSu/ 2 # (uV(G)u 2 2)/ 2 # (4i 1 1)/6 , i , our
final contradiction. ■

The lower bound ont(H) in Theorem 2 cannot be raised.
Let G be aK(4i18)/3, where we assume that (4i 1 8)/3 is
an integer. Then, for every proper spanning subgraphH of
G, t(H) # t(G 2 e) 5 {[((4 i 1 8)/3] 2 2)/ 2} 5 (2i
1 1)/3. We do notknow whether there exist noncomplete
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examples showing this. The complement of the Higman–
Sims graph mentioned before shows that the toughness ofG
can drop considerably belowt(G) if one deletes an edge.

By taking i 5 1 in Theorem 2, we get the following
result as a special case:

Corollary 3. Let G be a graph(Þ K1, K2, K3) with t(G)
. 1. Then, there exists a spanning subgraph H of G with
t(H) 5 1.

3.2. Toughness of Subgraph-related Graphs

The next two lemmas give a relation between the toughness
of a graphG and the toughness of the join of a small
complete graph and a component ofG 2 S, whereS is a
toughness-determining set ofG. These lemmas might turn
out to be useful in inductive proofs of structural results on
graphs with a certain toughness, because they guarantee the
same toughness for usually smaller graphs, each containing
one of the components ofG 2 S.

By G ~ H, we denote thejoin of two disjoint graphsG
andH, that is, the graph obtained fromG andH by joining
every vertex ofG to every vertex ofH.

First, we give a result for arbitrary toughness-determin-
ing sets:

Lemma 4. Let k be a positive integer, and let G be a graph
with t(G) $ k; S, an arbitrary toughness-determining set
of G; and Hi, an arbitrary component of G2 S. Then,t(Kk

~ Hi) $ k.

Proof. Suppose thatt(Kk ~ Hi) , k. Then, there exists
a subsetS9i , V(Kk ~ Hi) such thatuS9i u , kv((Kk ~ Hi)
2 S9i). Let V(Kk) 5 { v1, . . . , vk}. Define Si 5 S9i\
{ v1, . . . , vk}. Then, uSi u 5 uS9i u 2 k and v((Kk ~ Hi)
2 S9i) 5 v(Hi 2 Si). Now,

t~G! #
uSø Siu

v~G 2 ~Sø Si!!
5

uSu 1 uSiu
v~G 2 S! 1 v~Hi 2 Si! 2 1

,
uSu 1 uSiu

v~G 2 S! 1
uSiu
k

#
uSu

v~G 2 S!
,

a contradiction. ■

To show that the lower bound ont(Kk ~ Hi) in Lemma
4 cannot be increased, consider, for example, the graphGp,k

( p $ 2, k $ 1) obtained by joining aKpk to p disjoint
copies of aKk12 with one edgee deleted. Then,t(Gp,k)
5 ( pk)/p 5 [( p 1 1)k]/( p 1 1) 5 . . . 5 (2pk)/(2p)
5 k. Let S 5 V(Kpk). Then,Hi 5 Kk12 2 e and t(Kk

~ Hi) 5 t(Kk ~ (Kk12 2 e)) 5 (k 1 k)/ 2 5 k.
Although Lemma 4 is sharp, it can be improved in the

following manner if we only look at maximum toughness-
determining sets. Here, it is convenient to adopt the notation
that Kk21 ~ Hi 5 Hi if k 5 1:

Lemma 5. Let k be a positive integer, and let G be a graph
with t(G) $ k; S, a maximum toughness-determining set of
G; and Hi, an arbitrary component of G2 S. Then,t(Kk21

~ Hi) $ k.

Proof. Suppose thatt(Kk21 ~ Hi) , k. Then, as in the
proof of the previous lemma, there now exists a nonempty
setSi , V(Hi) such that (uSi u 2 1)/k 1 1 , v(Hi 2 Si).
Hence,v(Hi 2 Si) $ 1 1 uSi u/k. So,

t~G! ,
uSø Siu

v~G 2 ~Sø Si!!
5

uSu 1 uSiu
v~G 2 S! 1 v~Hi 2 Si! 2 1

#
uSu 1 uSiu

v~G 2 S! 1
uSiu
k

#
uSu

v~G 2 S!
,

a contradiction. ■

To show that the lower bound ont(Kk21 ~ Hi) in
Lemma 5 cannot be increased, consider, for example, the
graphHp,k ( p $ 2, k $ 1) obtained by joining aKpk to p
disjoint copies of aC4 joined to aKk21 having k $ 2.
Then, t(Hp,k) 5 k. Thus, S 5 V(Kpk) is a maximum
toughness-determining set ofG. SinceHi 5 Kk21 ~ C4,
we conclude thatt(Kk21 ~ Hi) 5 k.

4. SUFFICIENT CONDITIONS FOR
T-TOUGHNESS

In this section, we present some sufficient conditions guar-
anteeing a graph to bet-tough.

Chvátal and Erdo¨s [9] proved that a graphG on at least
three vertices witha(G) # k(G) is Hamiltonian and,
hence, 1-tough. It is very easy to extend this result to
t-toughness.

Lemma 6. Let G be a graph. If ta(G) # k(G), then G is
t-tough.

Proof. Suppose thatG is not t-tough. Then, there exists
a cut setS of G with v(G 2 S) . uSu/t. Clearly, a(G)
$ v(G 2 S), so a(G) . uSu/t, which implies thatta(G)
. uSu $ k(G). ■

The connectivity condition in Lemma 6 cannot be re-
laxed and still guaranteet-toughness, as can easily be seen
from the graphKp ~ K# q with p . q: a 5 q, k 5 p and
t 5 p/q 5 k/a.

VARIOUS RESULTS ON THE TOUGHNESS OF GRAPHS 235



In a similar way, one might try to extend degree condi-
tions for Hamiltonicity (hence, 1-toughness) to results for
t-toughness, for example, the following result of Ore [14]:

Theorem 7. Let G be a graph on n$ 3 vertices such that
for every two nonadjacent vertices u andv of G, d(u)
1 d(v) $ n. Then, G is Hamiltonian.

The degree condition in this theorem can be changed as
follows to obtain a degree condition which impliest-tough-
ness. In the following results, we usesk(G) to denote the
minimum degree sum of the vertices of an independent set
of k vertices of the graphG [if such exists; otherwise, we
definesk 5 k(uV(G)u 2 1)]:

Theorem 8. Suppose that k and kt$ 1 are integers. If G
is a kt-connected graph on n vertices withsk11 $ (k
1 1)(nt/(t 1 1)), thenG is t-tough.

Proof. Suppose thatG Þ Kn andG is nott-tough. Then,
for someS # V(G): v(G 2 S) . uSu/t. If v(G 2 S) , k
1 1, then uSu/t , v(G 2 S) # k, implying that k(G)
# uSu , kt, a contradiction. So,v(G 2 S) $ k 1 1. Let
v1, v2, . . . , vk11 denote k 1 1 vertices from distinct
components ofG 2 S. Then, (k 1 1)(nt)/(t 1 1) # sk11

# ¥ i51
k11 d(vi) # (k 1 1)uSu 1 n 2 uSu 2 v(G 2 S)

, kuSu 1 n 2 uSu/t. Hence, (k 1 1)tn , k(t 1 1)uSu
1 n(t 1 1) 2 [ uSu(t 1 1)]/t and (kt 2 1)n , [kt(t
1 1)]/t uSu 2 [( t 1 1)/t] uSu 5 (kt 2 1)[(t 1 1)/t] uSu. If
kt 5 1, we obtain a contradiction. Hence, assume thatkt
. 1. Then,uSu . (tn)/(t 1 1), hence,v(G 2 S) . uSu/t
. n/(t 1 1). But, now,n $ uSu 1 v(G 2 S) . (tn)/
(t 1 1) 1 n/(t 1 1) 5 n, a contradiction. ■

Note that ifG is kt-connected withk $ a(G), then we
know thatG is t-tough (by Lemma 6). In the case whenk
, a(G), G has an independent set ofk 1 1 vertices and the
degree sum condition makes sense.

From Theorem 8, we can simply derive an extension of
Theorem 7 tot-toughness. To show that it is an extension,
we need the following lemma:

Lemma 9. Let G be a graph on n vertices such thats2

$ 2nt/(t 1 1), where 1 # t # n 2 1. Then, G
is t-connected.

Proof. Suppose thatG is not t-connected. Then, there
exists a cut setS # V(G) with uSu , t. SinceuSu is an
integer, this implies thatuSu # t 2 1 , t. SinceS is a cut set,
G 2 Sconsists of at least two components. Choose a vertex
u in one component and a vertexv in another component.
Then,s2 # d(u) 1 d(v) # 2uSu 1 n 2 2 2 uSu 5 n 1 uSu
2 2 , n 1 t 2 2, so 2nt/(t 1 1) , n 1 t 2 2 or,
equivalently, (n 2 t)(t 2 1) , 22, which is absurd since
1 # t # n 2 1. ■

Corollary 10. Let G be a graph on n vertices such thats2

$ 2nt/(t 1 1), where1 # t # n 2 1. Then, G is t-tough.

Corollary 10 generalizes a result of Bauer et al. [3] in
which the minimum-degree conditiond(G) $ nt/(t 1 1) is
shown to be sufficient fort-toughness.

5. SPANNING SUBGRAPHS OF SQUARES

One possible approach to disproving the 2-tough-conjecture
(Conjecture 1 witht0 5 2) was to try to disprove the
equivalent conjecture that all 2-tough graphs are Hamilto-
nian-connected (see [1]), that is, by finding a graph which is
2-tough but not Hamiltonian-connected. To avoid the diffi-
culty of checking whether the considered graphs are 2-tough
(which is an NP-hard problem [3]), one could restrict the
search for a counterexample to a class of graphs every
member of which is known to be 2-tough. An example of
such a class of graphs is the class consisting of the squares
of all 2-connected graphs. Thesquare G2 of a graphG is the
graph obtained fromG by joining all vertices at distance 2
in G. By an elementary result of Chva´tal [8], the square of
ak-connected graph isk-tough. Unfortunately, the square of
a 2-connected graph is also Hamiltonian-connected, by an
observation in [7] based on the beautiful deep result due to
Fleischner [11] that all squares of 2-connected graphs are
Hamiltonian. So, all attempts to find a counterexample
within this class of squares of 2-connected graphs will fail,
that is, if we restrict ourselves to graphs within this class.
But, by the ease of showing that squares of 2-connected
graphs are 2-tough, and the difficulty of showing that these
squares are Hamiltonian-connected, one could be tempted
to think that there exist spanning subgraphs of these squares
that are 2-tough, but not Hamiltonian-connected. This led us
to define and study minimally 2-tough graphs or, more
generally, minimallyt-tough graphs. A graphG is called
minimally t-tough if t(G) 5 t and there does not exist a
proper spanning subgraphH of G with t(H) 5 t. By the
above motivation, we concentrate on squares of 2-con-
nected graphs and consider the problem which of these
graphs are (not) minimally 2-tough. We need one more
definition. LetG andH be graphs, ands, an integer withs
$ 0. G is ans-subdivisionof H if G can be obtained from
H by replacing every edgeuv of H by a path betweenu and
v with at leasts internal vertices. We callG an s-subdivi-
sion if it is an s-subdivision of some graphH. Clearly, a
graph which is ans-subdivision (s $ 1) is also an (s
2 1)-subdivision, and ans-subdivision of a 2-connected
graph is 2-connected.

As mentioned in [13] during the Workshop on the Ham-
iltonicity of 2-Tough Graphs held at Enschede, The Neth-
erlands, in November 1995 (sponsored by EIDMA: the
Euler Institute for Discrete Mathematics and Its Applica-
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tions), “sufficiently” subdivided 2-connected 3-regular
graphs have minimally 2-tough squares. In this section, we
will further specify what “sufficiently” subdivided means.

To prove that the square of a 4-subdivision of a 2-con-
nected 3-regular graph is minimally 2-tough, we first prove
that if H is a 2-connected 3-subdivision thent(H2) 5 2.

Lemma 11. Let H be a 3-subdivision of a 2-connected
graph and let G5 H2. Then,t(G) 5 2.

Proof. From [8] we know that the square of every 2-con-
nected graph is 2-tough, which means thatt(G) $ 2.
Suppose thatH 5 Cn. Then, every vertex inG has degree
4; thus,t(G) # 2. So suppose thatH Þ Cn. Now, label the
vertices ofG with degree exceeding 2 inH asv1, v2, . . . ,
vk. ConstructS such that it contains all the verticesvi, and
for everyvi, dH(vi) 2 1 vertices which are neighbors ofv i

in H. Here,dH(v i) denotes the degree ofv i in H. Then,uSu
5 ¥i51

k dH(vi). By deletingS from G, there is a contribu-
tion of one tov(G 2 S) for every two verticesvi, v j of G
which are connected by a path containing only internal
vertices of degree 2 inH. So,v(G 2 S) 5 1

2
¥ i51

k dH(v i)
and t(G) # uSu/[v(G 2 S)] 5 2. ■

Theorem 12. Let H be a 4-subdivision of a 2-connected
3-regular graph and let G5 H2. Then, G is minimally
2-tough.

Proof. From Lemma 11, we know thatt(G) 5 2, so it
is sufficient to prove thatt(G 2 e) , 2 for an arbitrary
edgee [ E(G). This is clear ife is incident to a vertex of
degree 4 inG. ConstructSas is Lemma 11, and consider the
three remaining possibilities fore: First, assume thate is
incident to two verticesw1 [ S andw2 [ S of degree 5.
Denote the common neighbor ofw1 andw2 with degree 5
by w3, and defineS9 5 (S ø { w3}) \{ w1, w2}. Then, uS9u
5 uSu 2 1 andv((G 2 e) 2 S9) 5 v(G 2 S). So,t(G
2 e) # uS9u/[v((G 2 e) 2 S9)] , uSu/[v(G 2 S)] 5 2.
Next, assume thate is incident to two verticesw1 [ S and
w2 ¸ S of degree 5. DefineS9 5 S\{ w1}. As in the
previous case,t(G 2 e) , 2. Finally, assume thate is
incident to a vertexw1 of degree 6 and a vertexw2 of degree
5. Denote byP the path inH containinge betweenw1 and
the next vertexx of degree 3 inH. Note that we may choose
S in such a way that the predecessor ofx on P is not in S.
Define S9 5 (S ø NG(w1) ø NG(w2))\{ w1, w2}. Then,
t(G 2 e) # uS9u/[v((G 2 e) 2 S9)] 5 (uSu 1 3)/[v(G
2 S) 1 2] , 2. ■

We will now prove that if two neighborsu and v with
d(u) 1 d(v) $ 6 exist in a 2-connected graphH thenH2

is not minimally 2-tough. To prove that, we need the fol-
lowing lemma. A graphG is minimally 2-connectedif k(G)
5 2 and k(H) , 2 for every proper spanning subgraph
of G:

Lemma 13. Let G 5 H2 be a minimally 2-tough graph.
Then, H is minimally 2-connected and triangle-free.

Proof. Suppose thatH is not minimally 2-connected.
Then, there exists a proper spanning subgraphF of H which
is 2-connected. But, then,F2 is a proper spanning subgraph
of G andF2 is 2-tough, a contradiction. Next, suppose that
H has a triangleuvwu. BecauseH is minimally 2-con-
nected,w is a cut vertex ofH 2 uv. Denote the components
of (H 2 uv) 2 w asH1 (the component which containsu)
andH2 (the component which containsv). Notice that there
are no other components of (H 2 uv) 2 w; otherwise,H
2 w would be disconnected. By similar arguments,v is a
cut vertex of H 2 uw but not of H. BecauseH1 is
connected, there are no edges betweenw andH1 other than
uw; otherwise,H 2 uw would not havev as a cut vertex.
Analogously, there are no edges betweenH2 and w other
than vw. Now, H1 can only containu and H2 can only
containv; otherwise,u or v would be a cut vertex ofH. So,
H 5 K3, a contradiction, since, then,t(G) Þ 2. ■

Theorem 14. Let H be a 2-connected graph with dH(u)
1 dH(v) $ 6 for some, u, v [ V(H) with uv [ E(H), and
let G 5 H2. Then, G is not minimally 2-tough.

Proof. Suppose thatG is minimally 2-tough. Then,t(G
2 e) , 2 for everye [ E(G), so this also holds if we let
e 5 uv. Hence, there exists a vertex cutS , V(G 2 e)
such thatv((G 2 e) 2 S) . uSu/ 2. Sincev is an integer,
v((G 2 e) 2 S) $ (uSu 1 1)/ 2 5 uSu/2 1 1. First,
suppose thatS is a vertex cut ofG. SinceG is 2-tough, we
havev(G 2 S) # uSu/ 2, which implies thatv((G 2 e)
2 S) 5 uSu/ 2 1 1 and v(G 2 S) 5 uSu/ 2. Two
vertices of two distinct components ofG 2 S have no
common neighbors inS in H; otherwise, inG, there would
be an edge between these components. SinceH is 2-con-
nected, every component other than the component contain-
ing e has at least two distinct neighbors inS in H. Now,
consider the number of neighbors inS in H of the compo-
nent ofG 2 S containinge. SincedH(u) 1 dH(v) $ 6 by
assumption and sinceu andv cannot have neighbors inH in
the components of (G 2 e) 2 S, except by the edgee,
uNH(u) ù Su 1 uNH(v) ù Su $ 4. If uNH(u) ù NH(v) ù Su
Þ 0, then H contains a triangle. This is impossible by
Lemma 13. Hence, the component ofG 2 S containinge
has at least four distinct neighbors inS in H. We conclude
that uSu $ 2(uSu/ 2 2 1) 1 4 5 2(uSu/ 2 1 1)
$ 2{[( uSu 2 1)/ 2] 1 1} 5 uSu 1 1, a contradiction.

Next suppose thatS is not a vertex cut ofG. Then, 2
5 v((G 2 e) 2 S) . uSu/ 2, implying thatuSu # 3. But
for the same reasons as before,u andv have together at least
four distinct neighbors inS in H, a contradiction. ■

So, squares of 4-subdivisions of 3-regular 2-connected
graphs are minimally 2-tough whereas squares of 2-con-
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nected graphs with at least one vertex of degree exceeding
3 are 2-tough, but not minimally 2-tough. The same is true
for squares of 2-connected graphs which have two adjacent
vertices with degree sum 6 or more. What can we say about
squares ofs-subdivisions withs # 3? There are examples
of squares of 3-subdivisions which are minimally 2-tough
and examples of squares of 3-subdivisions which are not
minimally 2-tough. If we take the square of the 3-subdivi-
sion drawn in Figure 1, the resulting graphG is minimally
2-tough.

To prove this, it is sufficient to show that deletion of the
marked edgee or f decreases the toughness. All other edges
are incident to a vertex of degree 4 or can be proved to
decrease the toughness in either the same way or as in the
proof of Theorem 12.t(G 2 e) #

9
5

, 2 due to the vertex
cut marked with circles in the figure andt(G 2 f ) #

9
5

, 2
due to the vertex cut marked with stars in the figure.

The example that we give of a 3-subdivision whose
square is not minimally 2-tough is less spectacular. LetH be
the graph obtained fromK4 by replacing each edge by a
path with exactly three internal vertices and letG 5 H2.
Clearly,G is 2-tough. ButG 2 e is also 2-tough, wheree
is an edge ofH incident to a vertex of degree 3 inH (we
omit further details).

The above examples illustrate the difficulties in obtain-

ing a full classification of all minimal 2-tough squares of
3-subdivisions.
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Fig. 1. The square of this graph is minimally 2-tough.
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