
Degree-Preserving Trees

Hajo Broersma, Otto Koppius, Hilde Tuinstra
University of Twente, Faculty of Mathematical Sciences, P.O. Box 217, 7500 AE Enschede, The Netherlands

Andreas Huck
University of Hannover, Institute of Mathematics, Welfengarten 1, 30167 Hannover, Germany

Ton Kloks
Department of Mathematics and Computer Science, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands

Dieter Kratsch, Haiko Müller
Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität, 07740 Jena, Germany

We consider the degree-preserving spanning tree
(DPST) problem: Given a connected graph GGG, find a
spanning tree TTT of GGG such that as many vertices of TTT
as possible have the same degree in TTT as in GGG. This
problem is a graph-theoretical translation of a problem
arising in the system-theoretical context of identifiabil-
ity in networks, a concept which has applications in, for
example, water distribution networks and electrical net-
works. We show that the DPST problem is NP-complete,
even when restricted to split graphs or bipartite pla-
nar graphs, but that it can be solved in polynomial time
for graphs with a bounded asteroidal number and for
graphs with a bounded treewidth. For the class of inter-
val graphs, we give a linear time algorithm. For the class
of cocomparability graphs, we give an OOO(nnn4) algorithm.
Furthermore, we present linear time approximation al-
gorithms for planar graphs of a worst-case performance
ratio of 1 - ε for every ε > 0. © 2000 John Wiley & Sons, Inc.

Keywords: graphs; algorithms; complexity; spanning tree; de-
gree condition; planar graphs; cocomparability graphs; inter-
val graphs; treewidth; asteroidal number; AT-free graphs; NP-
completeness; approximation

1. THE PRACTICAL NICHE

Analysis of communication or distribution networks
is often concerned with finding spanning trees (or
forests) of those networks fulfilling certain criteria. Also,
in other contexts, spanning trees show up as important
tools in modeling and analyzing problems. Therefore, a

Received October 19, 1998; accepted March 2, 1999
Correspondence to: H. Broersma; e-mail: broersma@math.utwente.nl

c© 2000 John Wiley & Sons, Inc.

myriad of problems on spanning trees has been studied in
the literature (see, e.g., [11, 12, 17, 18]). This paper deals
with a virtually unexplored problem concerning span-
ning trees which we call the degree-preserving spanning
tree (DPST) problem: Given a connected graph G, find a
spanning tree T of G with a maximum number of degree-
preserving vertices, that is, with a maximum number of
vertices having the same degree in T as in G.

Some closely related questions were studied by
Lewinter et al. [1, 7, 24, 25] from a purely theoretical
point of view. They published a number of short notes
on the subject, but we have not found any paper in which
the DPST problem was studied extensively.

Our attention was initially turned to this problem
through a practical application in water-distribution net-
works (see [26]), which makes the DPST problem a nice
example of theory and practice going hand-in-hand. We
briefly describe the application:

Suppose that we have to determine (or control) all
flows in a water-distribution network by installing and
using a small number of flowmeters and/or pressure
gauges. The network can be regarded as an undirected
connected graph G and the flow through each edge of
G is described by an orientation of that edge and a non-
negative flow value. Since the sum of all flow values of
edges entering a vertex is always the same as the sum
of all flow values of edges leaving that vertex, except
for possible sources and sinks, it is not difficult to de-
rive all flows in the network from the flows through all
edges of a cotree C of G (i.e., C is obtained from G by
removing the edges of a spanning tree). Hence, it would
suffice to install flowmeters at the edges of C. However,

NETWORKS, Vol. 35(1), 26–39 2000 CCC 0028-3045/00/010026-14

the costs of installing a flowmeter are much higher than
those of installing a water-pressure gauge at some ver-
tex. Alternatively, we can derive the flow through an edge
from the water-pressure drop between the two incident
vertices. If we only use pressure gauges, and want to
minimize the costs, the problem becomes that of find-
ing a cotree whose edges are incident with a minimum
number of vertices (in order to minimize the number
of pressure gauges that have to be installed) or, equiva-
lently, of finding a spanning tree T whose complement
in G has as many isolated vertices as possible, that is,
T has a maximum number of degree-preserving vertices.
Recently, Rahal [28] independently discovered the cotree
approach in his investigation of a steady-state formula-
tion for water-distribution networks.

Our problem of determining all flows in the network
with minimal costs of measuring (installing pressure
gauges) is a so-called identifiability problem (see Wal-
ter [30]). The concrete water-distribution network that
we considered has 80 vertices and 98 edges, making it
a very sparse network. Our network is planar and it has
outerplanarity 2. Especially, this latter fact enables us to
solve the DPST problem in our case by a linear time
algorithm; see Section 4.

Although applications of DPSTs so far have been in
the area of water-distribution networks, this approach
generalizes immediately to all networks in which Kirch-
hoff’s laws [which (in an electrical context) state that
the sum of currents in a (nonsource, nonsink) vertex is
zero and that the sum of voltages over a cycle is zero]
are valid and a bijective relation exists between the flow
variable and the effort variable. The most obvious exam-
ple of such a system is an electrical network, with the
current I being the flow variable, the voltage V being
the effort variable, and the bijection being Ohm’s law
V = I ·R, but the model can be applied to a wide variety
of domains such as mechanics (flow = velocity, effort
= force), thermodynamics (f = heat flow, e = temper-
ature), acoustics (f = acoustics volume flow rate, e =
acoustic pressure), and, in our case, the hydraulics of the
water-distribution network (f = hydraulic volume flow
rate, e = hydraulic pressure).

In a slightly more abstract sense, the DPST problem
can be thought of as finding a tree of a network in which
as many vertices as possible remain “undamaged.” This
idea may have applications in, for instance, constraint
satisfaction problems where a minimal blocking set of
constraints needs to be found or a system that needs to be
made free from feedback (i.e., cycles) without damaging
too many vertices.

Lewinter [24] introduced the concept of degree-
preserving spanning trees and he proved that the num-
ber of degree-preserving vertices interpolates on the set
of spanning trees of a given connected graph G. In
other words, if spanning trees exist with k and l degree-
preserving vertices, respectively, and k < l, then there

exists a spanning tree with exactly m degree-preserving
vertices for every m with k < m < l. He later general-
ized the degree-preserving concept to that of deficiency
[1, 7]: A vertex is k-deficient if its degrees in the graph
and the spanning tree differ by exactly k, and a span-
ning tree is k-deficient if the maximum deficiency of its
vertices is k.

The rest of the paper is organized as follows: We start
with some terminology and preliminary results in Sec-
tion 2. Section 3 deals with the complexity of the DPST
problem. It is shown that the problem is NP-complete
in general and that it remains NP-complete even when
restricted to split graphs or bipartite planar graphs. In
Section 4, it is shown how the DPST problem can be
reformulated in Monadic Second Order Logic, thereby
proving that the problem is solvable in linear time for
graphs with a bounded treewidth. Especially, this case
is very interesting from a practical point of view, since
water-distribution networks (and other supply networks,
such as telephone, data, electricity, and, more recently,
ISDN networks) tend to be of a “treelike structure,” sim-
ply due to the high costs involved in installing and main-
taining such networks. (Indeed, these costs are in most
situations the bottleneck for the structure of the network
to be installed.) This requirement of a treelike structure
directly imposes the study of the problem for graphs
with a relatively small treewidth. In Section 5, we apply
an idea of Baker [3] to establish linear time approxima-
tion algorithms for the DPST problem when restricted
to planar graphs.

In the rest of the paper, we consider the DPST prob-
lem when the input graphs are restricted to some other
classes of graphs. In Section 6, we present a linear time
algorithm for interval graphs. In Section 7, we obtain
an O(n4) algorithm for cocomparability graphs using the
fact that the maximum degree-preserving tree in a 2-
edge connected cocomparability graph corresponds to a
set of vertices inducing a disjoint union of paths. In Sec-
tion 8, we show that the DPST problem can be solved
by a polynomial time algorithm for graphs with bounded
asteroidal number.

We recently became aware of a paper by Bathia et
al., to appear in [4], who independently obtained sim-
ilar results, in particular on NP-completeness, approxi-
mation for planar graphs, and the linear time solution for
graphs of bounded treewidth. Furthermore, they gave an
almost linear time general approximation algorithm with
an O(

√
n) approximation ratio. This is (in a sense) the

best possible, since for planar graphs, we show that it
is NP-complete for planar graphs, in general, to have an
approximation within a factor n1/2−ε for any given ε > 0
(see Section 3).

2. PRELIMINARIES

In this paper, a graph is a pair G = (V, E), where V

NETWORKS–2000 27

is a finite set (the vertices of G) and E ⊆ V× V is a set
of two-element (unordered) subsets of V (the edges of
G). We write v ∈ e if a vertex v ∈ V is incident with an
edge e ∈ E.

Throughout, let G = (V, E) be a graph and let n = |V|
and m = |E|. For a nonempty subset S ⊆ V, we use G[S]
to denote the subgraph of G induced by the vertices of S.
For a subset S ⊆ V, we also write G−S for G[V\S], and
for a vertex x of G, we write G − x instead of G − {x}.

For a vertex x of G, we use NG(x) to denote the set of
neighbors of x in G, and we write NG[x] = {x} ∪NG(x)
for the closed neighborhood of x in G; the degree of x
in G is dG(x) = |NG(x)|. A pendant vertex or leaf of G
is a vertex with degree one in G. We omit the subscript
G from the above expressions if it is clear which graph
G we consider. For a graph G = (V, E) and W ⊆ V, we
define N[W] = ∪w∈WN[w] and N(W) = N[W]\W.

For a graph G let Comp(G) = {C : G[C] is a com-
ponent of G}. A cut vertex is a vertex x of G such that
G− x has more components than has G. A block of G is
a maximal subgraph of G without cut vertices, that is, a
vertex, an edge, or a maximal 2-connected subgraph.

Definition 1. A nonempty subset S ⊆ V is realizable
if there exists a spanning forest T of G such that the
degree of every vertex x ∈ S is preserved in T [i.e., if
dT(x) = dG(x) for every vertex x ∈ S]. If T is such a
spanning forest, then we call T an S-preserving forest.
If, moreover, T is chosen in such a way that |S| is max-
imum, then we call T a maximum degree-preserving for-
est, and |S|, the degree-preserving number (of T or G).
The DPST problem is the problem to find for a given
graph G a maximum degree-preserving spanning forest.

Remark 1. For historic reasons, we call the problem
the degree-preserving spanning tree problem. In case the
graph is not connected, we content ourselves with a span-
ning forest.

As an example, the degree-preserving number of a
tree, a unicyclic graph, and a complete graph (≠ K2, i.e.,
a single edge) on n vertices are, respectively, n, n − 2,
and 1.

Notice that to solve the DPST problem it is suffi-
cient to compute a maximum (cardinality) realizable set
S, since, given S, an S-preserving spanning forest, is then
easy to find. By p(G), we denote the cardinality of a max-
imum realizable set in G. If a graph G is disconnected,
then a maximum realizable set of G is simply the union
of maximum realizable sets of all components of G. If a
connected graph G (or a component of G) has a bridge e,
then to compute a maximum realizable set of G, delete e
and compute maximum realizable sets S1 and S2 for both
components. Let T1 be an S1-preserving forest and T2 be
an S2-preserving forest. Adding e as an edge between T1

and T2 gives a forest T which is S1∪S2-preserving, and
S1 ∪ S2 is a maximum realizable set in G.

Henceforth, in the rest of this paper, we will assume
that all graphs are 2-edge connected.

Let W be a set of vertices of a graph G. By G[[W]],
we denote the graph with vertex set N[W] containing all
edges of G incident with a vertex in W. Take note of the
following simple observations:

Lemma 2. Let S be a nonempty set of vertices of a
graph G = (V, E). Then, S is a realizable set of G if and
only if G[[S]] is a forest.

Proof. If S is realizable, then every edge of G[[S]]
must be an edge of T for every S-preserving forest T
of G. Conversely, if G[[S]] is a forest, then this forest is
clearly S-preserving.

Remark 2. Clearly, the above lemma implies that for
any realizable set S of G, G[S] is a forest.

Corollary 3. Let S be a realizable set of vertices of G
with x ∈ S. Then, G[N[x] ∩ S] is a star [isomorphic to
K1,k for some k ≤ dG(x), with center x].

Lemma 4. Let S be a realizable set with x ∈ S, and let
y ≠ x be a vertex with N(y) ⊆ N[x]. Then, {y} ∪ S\{x}
is realizable.

Proof. Let (V, F) be an S-preserving spanning forest
of G = (V, E). Then, for F′ = {{y, z} : z ∈ NG(y)} ∪
F\{{x, z} : z ∈ NG(y)}, the graph (V, F′) is a (y+(S−x))-
preserving spanning forest of G.

3. HARDNESS RESULTS

A graph G = (V, E) is called a split graph if V can be
partitioned into an independent set I and a clique C of
G. Such a split graph is also denoted by G = (I, C, E). It
is easy to see that split graphs are chordal graphs, that
is, graphs that do not contain a chordless cycle of length
greater than three.

Theorem 5. For a given split graph H and a given
integer k, it is NP-complete to decide whether H contains
a realizable set of cardinality k.

Proof. The reduction is from the NP-complete graph
problem independent set. Let G = (V, E) be a graph. We
define a split graph H with independent set V and clique
E × {1, 2} as follows: A pair {v, (e, i)} is an edge of H
if and only if v ∈ V, e ∈ E, i ∈ {1, 2} and v ∈ e. It is
easy to see that a set W ⊆ V is an independent set of G
if and only if W is a realizable set in H. Moreover, if G
has no isolated vertices (i.e., vertices with degree zero),
then for every realizable set W of H with |W| > 1, we
have W ⊆ V.

A graph G = (V, E) is called bipartite if V can be
partitioned into two independent sets X and Y of G. Such
a bipartite graph is also denoted by G = (X, Y, E).

28 NETWORKS–2000

Theorem 6. For a given bipartite planar graph B of
maximum degree six and a given integer k, it is NP-
complete to decide whether B contains a realizable set
of cardinality k.

Proof. The reduction is from the independent set
problem restricted to cubic (i.e., 3-regular) planar graphs
[18]. Let (G, k) be an instance of this NP-complete prob-
lem, where G = (V, E) with |E| = m. We define a bipar-
tite graph B = (V∪ (E×{2, 4, 6, 8}), E×{1, 3, 5, 7}, F1∪
F2), where

F1 = {{v, (e, i)} : v ∈ V, e ∈ E, i ∈ {1, 5}, v ∈ e}

F2 = {{(e, 1), (e, 2)}, {(e, 2), (e, 3)}, {(e, 3), (e, 4)},
{(e, 4), (e, 1)}, {(e, 5), (e, 6)}, {(e, 6), (e, 7)},
{(e, 7), (e, 8)}, {(e, 8), (e, 5)} : e ∈ E}.

Obviously, H is a bipartite graph, and H is planar since
G is planar. The maximum degree of a vertex in H is six
since G is cubic.

We observe that for every edge e ∈ E and every re-
alizable set S of B, |S∩ ({e} × {1, 2, 3, 4})| ≤ 2. In what
follows, we may assume that S ⊆ V ∪ (E × {2, 3, 6, 7})
for all realizable sets S of B, since for every other real-
izable set T, the set T′ = (T ∩ V) ∪ (E × {2, 3, 6, 7}) is
also realizable and fulfills |T| ≤ |T′|.

In what follows, we apply the idea of the previous
theorem. W ⊆ V is an independent set of G if and only
if W is a realizable set of B. Consequently, the planar
graph G has an independent set of cardinality k if and
only if the bipartite planar graph B has a realizable set
of cardinality k + 4m.

Our problem remains NP-complete even when re-
stricted to bipartite planar graphs of maximum degree
four or three [15].

The independent set problem is not only NP-
complete—it is also hard to approximate. More precisely,
for every ε > 0, there is no polynomial time approxima-
tion algorithm for the maximum independent set prob-
lem with a worst-case performance ratio of n1/2−ε unless
P = NP and there is no polynomial time approximation
algorithm with a worst-case performance ratio of n1−ε

unless ZPP = NP [20], where n is the number of ver-
tices of the input graph. We consider the reduction used
in the proof of Theorem 5 again. The split graph H has
at most |V(G)|2 vertices. Hence, for every ε > 0, there
is no polynomial time algorithm to approximate a maxi-
mum realizable set of a given (split) graph within factor
n1/4−ε unless P = NP (respectively, within factor n1/2−ε

unless ZPP = NP).
However, we cannot conclude the same for the restric-

tion to planar graphs, since the independent set problem
admits a polynomial time approximation scheme for pla-
nar graphs [3]. In fact, as we will show in Section 5, the

idea of Baker [3] can be applied to establish linear time
approximation algorithms for the DPST problem when
restricted to planar graphs.

For graphs in general, a polynomial time approxi-
mation algorithm with the worst-case performance ratio
O(
√

n) will appear in [4].

4. GRAPHS OF BOUNDED TREEWIDTH

In this section, we will prove that the problem of
finding a maximum realizable set is solvable in lin-
ear time for graphs which have a bounded treewidth.
From a practical viewpoint, this is of great interest, since
the graphs under consideration are often of a “treelike”
structure. Well-known examples of graph classes with
a bounded treewidth are forests, series-parallel graphs,
Halin graphs, almost trees, k-outerplanar graphs, and
graphs with bounded bandwidth and cutwidth (see e.g.,
[29]).

The definition of the treewidth of a graph is usually
given in terms of a tree-decomposition (see e.g., [16, 21]).
For our purpose, it is more convenient to take as a start-
ing point the observation made in [29] that a graph has
treewidth at most k if and only if it is a subgraph of
a chordal graph with clique number at most k + 1. If
some constant upper bound is placed on the treewidth
of the graphs under consideration, we say that the class
of graphs has a bounded treewidth. So, for example, the
class of Halin graphs is a class of bounded treewidth
graphs, since it can be shown that Halin graphs have a
treewidth at most three (see e.g., [29]).

Many optimization problems can be solved “effi-
ciently” for graphs of a bounded treewidth by formu-
lating the problem in a logical language, called Monadic
Second Order Logic (MSOL). It is known that problems
which can be expressed in this way can be solved in
linear time for graphs with a bounded treewidth [2].

The description below of the logical language and
Definition 7 below are taken from [16] (see, e.g., [9]
for an older description of the method). We explicitly
describe the way our problem can be described in the
MSOL language:

For graphs G = (V, E), the MSOL consists of a lan-
guage in which predicates can be built with the following
constituents:

• The logic connectives ∧,∨,¬,⇒ and a (with their
usual meanings),

• Individual variables which may be vertex variables
(with domain V), edge variables (with domain E), ver-
tex set variables (with domain P(V), the power set of
V), and edge set variables [with domain P(E)],

• The existential and universal quantifiers ranging over
variables (∃ and ∀, respectively), and

• the following binary relations:

– v ∈ W (where v is a vertex variable and W a
vertex set variable),

NETWORKS–2000 29

– e ∈ F (where e is an edge variable and F an
edge set variable),

– “v and w are adjacent in G” (where v and w are
vertex variables),

– “v is incident with e in G” (where v is a vertex
variable and e an edge variable), and

– equality for variables.

It can easily be seen that if A and B are edge set variables
andH is a predicate in this language, then predicates like
∀A ⊆ B H and ∃A ⊆ B H are also admissible.

Definition 7. We define which graph properties and op-
timization problems are MS-definable as follows:

• An extended graph property is a function Q for which
there are D1, . . . , Dt (t ≥ 0), such that for each graph
G and each Xi ∈ Di, 1 ≤ i ≤ t, Q(G, X1, . . . , Xt) is
mapped to the value true or false.

• An extended graph property Q is said to be MS-
definable if there is a predicate R(Y1, . . . , Yt) that
is defined in MSOL for graphs, with free variables
Y1, . . . , Yt, such that for each graph G and every
X1, . . . , Xt with Xi ∈ Di for each i, Q(G, X1, . . . , Xt)
has the value true if and only if G satisfies
R(X1, . . . , Xt).

• An optimization problem is MS-definable if there is
an MS-definable extended graph property Q(G, X1, . . . ,
Xt) and constants α1, . . . , αt such that the problem is
to find for a given graph G the maximum value of
α1|X1|+ · · ·+ αt|Xt| for which Q(G, X1, . . . , Xt) eval-
uates to true.

Now, we consider the optimization problem P: Given a
graph G = (V, E), find a realizable set S ⊆ V of max-
imum cardinality. We will show that the problem P is
MS-definable. For that purpose, we define the follow-
ing predicates, for v ∈ V, e ∈ E, S ∈ P(V), and E′,
F ∈ P(E):

1. The Boolean expression “vertex v is incident with
edge e” is denoted as v ∈ e.

2. Vertex v is not incident with an edge e from an edge
set E′:

d0(v, E′) = ¬(∃e ∈ E′ v ∈ e).

3. Vertex v is incident with at least two edges in E′:
d≥2(v, E′) = ∃e1 ∈ E′ ∃e2 ∈ E′ (¬(e1 = e2)

∧v ∈ e1 ∧ v ∈ e2).

4. A set F of edges contains a cycle:

cycle(F) = ∃F′ ⊆ F (∃e′ ∈ F′ ∧ ∀v ∈ V

× (¬d0(v, F′)⇒ d≥2(v, F′))).

5. A set F ⊆ E of edges is the edge set of the graph
G[[S]]:

weakly(F, S) = ∀e ∈ E (e ∈ F a ∃v ∈ S v ∈ e).

6. The set of edges of G[[S]] contains no cycle:

R(S) = ∀F ⊆ E (weakly(F, S)⇒ ¬cycle(F)).

Lemma 8. R(S) evaluates to true if and only if S ⊆ V
is a realizable set.

Proof. This follows from Lemma 2 and the observa-
tion that a graph contains a cycle if and only if it has a
(nonempty) subgraph in which all vertices have degree
at least 2.

Corollary 9. Let Q be the extended graph property de-
fined by: Q(G, S) is true if and only if S ⊆ V is a real-
izable set of G. Then, Q is MS-definable.

Proof. This follows directly from Definition 7 and
Lemma 8.

Corollary 10. The optimization problem P is MS-
definable.

Proof. This follows from Definition 7 and Corollary
9: Take α1 = 1 and the extended graph property Q; then,
P is equivalent to finding the maximum value of α1|S|
for which Q(G, S) evaluates to true.

Arnborg et al. [2] showed that MS-definable opti-
mization problems can be solved in linear time, given a
tree decomposition of bounded width of the input graph.
Bodlaender [6] proved that for any fixed constant k ≥ 1
there exists a linear time algorithm that tests whether
a given graph has treewidth at most k and, if so, out-
puts a tree decomposition of the graph with treewidth at
most k. A linear time algorithm for the DPST problem
can now be described as follows: First, use the algorithm
by Bodlaender to find a tree-decomposition of minimum
width in linear time. Use this tree-decomposition to find
a solution for the DPST problem in linear time using the
dynamic programming method described in [2].

Theorem 11. The DPST problem is solvable in linear
time for graphs of a bounded treewidth.

It is important to notice that the graphs arising from
applications such as water-distribution networks are very
sparse and are likely to be k-outerplanar for a very small
k and, hence, have a small treewidth. However, for larger
values of k (say 4 or 5), the linear time algorithm de-
scribed above is mainly of theoretical interest. In those
cases, it is not very practical because of the enormous
constants involved.

5. APPROXIMATION FOR PLANAR
GRAPHS

In this section, we apply an idea of Baker [3] to estab-
lish linear time approximation algorithms for the DPST
problem when restricted to planar graphs. We will prove
the following theorem:

Theorem 12. For every ε > 0, there is a linear time ap-
proximation algorithm of a worst-case performance ratio
of 1−ε for the DPST problem restricted to planar graphs.

30 NETWORKS–2000

Let W ⊆ V be a set of (forbidden) vertices. A realiz-
able set R of G is called a maximum W-avoiding realiz-
able set if R∩W = � and |R| ≥ |R′| for every realizable
set R′ of G with R′ ∩W = �.

Let G = (V, E) be a planar graph given with a
fixed embedding in the plane. We partition V into levels
L1, L2, . . . , Ld. The level L1 contains all vertices on the
outer face of G. For i > 1, the level Li contains all ver-
tices on the outer face of G−∪i−1

j=1Lj. Let d be the largest
index such that Ld ≠ �. For technical reasons, set Li = �
for i > d or i < 1. A planar graph is k-outerplanar
if and only if it has an embedding defining at most k
nonempty levels. We remark that, given a planar graph,
a k-outerplanar embedding for which k is minimal can
be found in polynomial time [5].

We decompose the planar graph G into k-outerplanar
graphs. Each k-outerplanar graph consists of k consecu-
tive levels of G. More precisely, let k and r be integers
with 1 ≤ r ≤ k. For i = 0, 1, . . . , q with q = d(d−r)/ke,
we define

Gk,r,i = G


 ik+r⋃

j=(i−1)k+r+1

Lj


 and

Wk,r,i = L(i−1)k+r+1 ∪ Lik+r.

Note that Wk,r,i contains all vertices in the outer and
inner levels of Gk,r,i.

Lemma 13. For i = 0, 1, . . . , q, let Rk,r,i be a Wk,r,i-
avoiding realizable set of Gk,r,i. Then, ∪q

i=0Rk,r,i is a re-
alizable set of G.

Proof. For all i, the set Wk,r,i contains the vertices
on the outer and the inner levels of the k-outerplanar
graph Gk,r,i. Hence, the endvertices of an arbitrary edge
of G[[Rk,r]] belong to the same k-outerplanar graph.

Lemma 14. Let R be a maximum realizable set of G.
For every k ≥ 1, there is an index r(k) with 1 ≤ r(k) ≤ k
such that

∣∣∣∣∣R

∖ q⋃
i=0

Wk,r(k),i

∣∣∣∣∣ ≥
k− 2

k
p(G).

Proof. Let R be a maximum realizable set of G and
let Wk,r = ∪q

i=0Wk,r,i. For every level Lj, j = 1, 2, . . . , d,
of G, there exist at most two r ∈ {1, 2, . . . , k} with Lj ⊂
Wk,r. Hence,

∑k
r=1 |R∩Wk,r| ≤ 2|R|, which implies that

there is an r = r(k) such that |R∩Wk,r(k)| ≤ (2/k)|R|.

Let k ≥ 1. For every r = 1, 2, . . . , k and every
i = 1, 2, . . . , q, let Rk,r,i be a maximum Wk,r,i-avoiding
realizable set of Gk,r,i. By Lemma 13, Rk,r = ∪q

i=0Rk,r,i

is a realizable set of G. Consequently,

max{|Rk,r| : 1 ≤ r ≤ k} ≥ k− 2
k

p(G).

For every k, we are able to develop an exact linear
time algorithm computing a maximum W-avoiding real-
izable set for k-outerplanar graphs. Using a variant of
the method of Section 4, using labels to indicate the ver-
tices of W, it can be shown that a linear time algorithm
exists (see, e.g., [9]). Notice that the treewidth of a k-
outerplanar graph is at most 3k − 1 (see [29]). Conse-
quently, for every fixed k, we can obtain a linear time
approximation algorithm of a worst-case performance
ratio of (k− 2)/k.

Remark 3. A detailed analysis of the dynamic pro-
gramming algorithm for the DPST problem on k-
outerplanar graphs could give a polynomial time approx-
imation algorithm with better worst-case performance
ratio for the DPST problem on planar graphs.

6. INTERVAL GRAPHS

Definition 15. A graph is chordal if it contains no in-
duced cycle of length more than three.

There are many characterizations of chordal graphs,
for example, using perfect elimination schemes, inter-
section models of subtrees of a tree, and the existence
of simplicial vertices. For an introduction into this graph
class, we refer to [19].

Notice that for chordal graphs, in general, the prob-
lem of finding a maximum realizable set is NP-complete,
since the class of split graphs is a proper subclass of the
class of chordal graphs. However, for the class of inter-
val graphs, which is another important subclass of the
class of chordal graphs, we can give a fast algorithm.

Our first result shows that for chordal graphs we can
restrict our search for realizable sets to independent sets:

Theorem 16. If G is a 2-edge connected chordal graph,
then any realizable set S of G is an independent set of G.

Proof. Let G = (V, E) be a 2-edge connected chordal
graph and assume that {x, y} ∈ E for two distinct vertices
x, y ∈ S. Since G is 2-edge connected, {x, y} is contained
in a cycle of G, and, since G is chordal, this implies that
{x, y} is contained in some triangle of G. This contradicts
Lemma 2.

Remark 4. Notice that the condition that S is indepen-
dent is, in general, not sufficient. A counterexample is
the diamond (i.e., K4− e). It has an independent set with
two vertices, but clearly this set is not realizable.

We will use the above observations and the following
properties of 2-edge connected interval graphs:

Definition 17. An interval graph is a graph for which
one can associate with each vertex an interval on the real
line such that two vertices are adjacent if and only if their
corresponding intervals have a nonempty intersection.

NETWORKS–2000 31

Interval graphs can be recognized in linear time, and
given an interval graph, an interval model for it can be
found in linear time [8, 19]. In the following, we assume
that an interval model of the graph is given, and we iden-
tify the vertices of the graph with the corresponding in-
tervals. Without loss of generality, we may assume that
no two intervals have an endpoint in common.

Definition 18. An interval and its corresponding vertex
are called minimal if the interval is minimal with respect
to inclusion, that is, if it does not contain any other in-
terval.

Lemma 19. Let G be a 2-edge connected interval
graph. Then, there exists a maximum realizable set S of
G such that for every vertex p ∈ S the corresponding
interval is minimal.

Proof. Let S be a maximum realizable set containing
a vertex x which is not minimal. Then, there exists an
interval y contained in the interval x. By Theorem 16,
we know that a realizable set can contain only one of
x and y and, hence, y /∈ S. Now, N(y) ⊆ N[x], and,
hence, by Lemma 4, there exists a maximum realizable
set S′ = {y} ∪ S\{x}. Repeating the arguments, we can
prove the assertion of the lemma.

Consider the ordering of the minimal intervals defined
by the left endpoints.

Lemma 20. Let G be a 2-edge connected interval
graph with corresponding interval model and let x be
the first minimal interval (i.e., with the leftmost left end-
point). There exists a maximum realizable set S of G with
x ∈ S.

Proof. Consider a maximum realizable set S of G
containing only minimal intervals. If x ∈ S, there is
nothing to prove. Otherwise, let y be the first interval
in S. The other intervals of S lie totally to the right of
y because S is an independent set by Theorem 16. The
right endpoint of y must be to the right of the right end-
point of x since the interval x is minimal. It follows that
S′ = {y} ∪ S\{x} is also realizable, since x lies totally
left of S\{y} and N(z) ∩ N(x) ⊆ N(z) ∩ N(y) for all
z ∈ S\{y}.
Theorem 21. There is a linear time algorithm to com-
pute a maximum realizable set S for a given interval
graph G.

Proof. Locate the set of bridges B in G and compute
maximum cardinality realizable sets for each component
of G − B. This can be done as follows:

Consider an interval model for a 2-edge connected
component. First, mark the minimal intervals. Take the
minimal interval with the leftmost left endpoint as the
first element of S. Consider the endpoints one by one,

from left to right. We keep track of the last minimal
interval in S which is totally left of the current position.
We also keep a counter for the number of intervals that
have one endpoint to the left of the current position and
that overlap with the last interval in S. If we encounter
a left endpoint of a minimal interval which starts to the
right of the last interval in S so far, and if there is at most
one interval overlapping the current position and the last
interval of S, then we put this new minimal interval in S.

Let S′ be a maximum realizable set such that S ≠ S′.
By the previous lemmas, we may assume that S′ con-
tains minimal intervals only and that S and S′ have a
common first interval. Suppose that y is the first inter-
val of S′ which is not in S and that x1, x2, . . . , xp are
common intervals of S and S′ and xp+1 ≠ y is the next
interval of S chosen by the above procedure. We com-
plete the proof by showing that y in S′ can be replaced
by xp+1. This follows by the same arguments as in the
proof of Lemma 20 and the following observations: By
the choice of x1, x2, . . . , xp, for all i, j ∈ {1, . . . , p} with
i ≠ j, xi and xj have at most one common neighbor and
N(xp+1) ∩ N(xi) ⊆ N(xp+1) ∩ N(xi+1)(i = 1, . . . , p − 1).
If the addition of xp+1 to {x1, . . . , xp} would cause a cy-
cle in G[[{x1, x2, . . . , xp, xp+1}]], then such a cycle would
already exist in G[[{x1, . . . , xp}]], a contradiction to the
choice of x1, x2, . . . , xp.

7. COCOMPARABILITY GRAPHS

Definition 22. A graph G = (V, E) is a cocomparability
graph if and only if there is an ordering v1, v2, . . . , vn of
V such that i < j < k and {vi, vk} ∈ E implies either
{vi, vj} ∈ E or {vj, vk} ∈ E. Hence, N(vj)∩ {vi, vk} ≠ �
for all j with i < j < k. Such an ordering is called a
cocomparability ordering.

For w, w′ ∈ V, we shall write w < w′ if w is on the
left of w′ in the ordering, that is, w = vi, w′ = vj and
i < j.

Given a cocomparability graph G = (V, E), a co-
comparability ordering can be computed in linear time
[27]. In this section, we consider a cocomparability graph
G = (V, E) with a fixed cocomparability ordering.

Lemma 23. Let P be a path with endvertices vi and
vk, i < k, in a cocomparability graph G. Then, i < j < k
implies that vj has a neighbor in P.

Proof. Assume that i < j < k and vj does not belong
to P. Then, P contains an edge {vh, vl} such that h < j <
l. Hence, vh or vl is adjacent to vj.

We will use chordless paths of a cocomparability
graph in our algorithm to solve the DPST problem.

32 NETWORKS–2000

Lemma 24 [22]. Let P = (p1, p2, . . . , pk), k ≥ 1, be a
chordless path in a cocomparability graph G with p1 <
pk. Then, pi < pi+2 for all i with 1 ≤ i ≤ k− 2.

Consider a chordless path P = (p1, p2, . . . , pk) with
p1 < pk and traverse P from p1 to pk. Then, each tra-
versed edge is either a forward edge, that is, the next
vertex is further to the right than is any previous ver-
tex, or a backward edge, that is, the next vertex is to the
left of the previous vertex but to the right of all other
previous vertices. By Lemma 24, there cannot be two
consecutive backward edges.

Let S be a subset of vertices such that each component
of G[S] is a chordless path. An S-path is either the vertex
set or the corresponding chordless path of a component
of G[S], depending on the context. We say that a vertex
w is a common neighbor of two different S-paths S′ and
S′′ if w /∈ S′ ∪ S′′ and w is adjacent to a vertex s′ ∈ S′
and to a vertex s′′ ∈ S′′.

Our algorithm is based on the following characteriza-
tion of realizable sets:

Theorem 25. Let G = (V, E) be a 2-edge connected
cocomparability graph. A set S ⊆ V is realizable if and
only if

1. G[S] is a union of chordless paths,
2. Two vertices of an S-path have no common neighbor

outside S, and
3. Different S-paths have at most one common neighbor.

Proof. Assume that S is realizable. First, consider
condition 1. Suppose, on the contrary, that the vertices
c, x, y, z ∈ S induce a claw in G with central vertex c.
There is a vertex x′ ∈ N(x)\{c} since G is 2-edge con-
nected. Moreover, x′ is not adjacent to c, y, or z since S
is realizable. Similarly, there exist vertices

y′ ∈ N(y)\N({c, x, z}) and z′ ∈ N(z)\N({c, x, y}).

If {x′, y′, z′} is an independent set of G, then these
three vertices form a so-called asteroidal triple (see
also Section 8), which is impossible in cocomparability
graphs. Hence, we may assume that {x′, y′} ∈ E. But,
now, x′, x, c, y, and y′ induce a chordless 5-cycle in G,
which is also impossible. Consequently, for 2-edge con-
nected cocomparability graphs, condition 1 holds. It is
easy to check that a realizable set S must satisfy condi-
tions 2 and 3.

Assume that a set S satisfies the three conditions. Con-
sider a shortest cycle C in G[[S]]. By conditions 2 and 3,
C contains vertices from at least three S-paths. Since C
is a shortest cycle, each vertex of C that does not belong
to S has exactly two neighbors in S which belong to C by
condition 2. Hence, all three vertices of C in different S-
paths form an asteroidal triple. This proves the theorem

since cocomparability graphs do not contain asteroidal
triples.

Combining Lemma 23 and Theorem 25, we obtain

Lemma 26. Let S be a realizable set of a 2-connected
cocomparability graph G with vi, vj, vk ∈ S and i < j <
k. If vi and vk belong to one S-path, then vj belongs to
the same S-path.

Our dynamic programming algorithm is based on
Theorem 25. We still assume that the input graph is 2-
edge connected. The algorithm constructs a set S such
that G[S] is a union of chordless paths. Thus, the algo-
rithm can be considered as a procedure to construct a
particular collection of chordless paths of G. For two
chordless paths T′ and T′′ of G, we define T′ < T′′ if
t′ < t′′ for all t′ ∈ T′ and all t′′ ∈ T′′. Notice that
Si < Sj or Sj < Si for any two different S-paths of a
realizable set S by Lemma 26.

Lemma 27. Let T′, T′′, and T̃ be chordless paths of a
cocomparability graph G such that T′ < T̃ < T′′ and
there is no edge between either T′ or T′′ and T̃. Then,
t′ ∈ T′ and t′′ ∈ T′′ imply that {t′, t′′} /∈ E. Furthermore,
if T′ and T′′ have a common neighbor, then every t̃ ∈ T̃
is adjacent to every common neighbor of T′ and T′′.

Proof. Let t̃ ∈ T̃, t′ ∈ T′ and t′′ ∈ T′′. Then, by the
definition of a cocomparability ordering, t′ < t̃ < t′′ and
{t′, t′′} ∈ E imply that either {t̃, t′} ∈ E or {t̃, t′′} ∈ E,
contradicting the choice of T̃.

Now, let w be a common neighbor of T′ and T′′. Then,
there are t′ ∈ T′ and t′′ ∈ T′′ such that {w, t′} ∈ E and
{w, t′′} ∈ E. Hence, (t′, w, t′′) is a path in G. Since t′ <
t̃ < t′′ for all t̃ ∈ T̃, Lemma 23 implies that {w, t̃} ∈ E.

Our algorithm constructs a maximum realizable set S
of a given cocomparability graph G = (V, E) with co-
comparability ordering v1, v2, . . . , vn. It uses a dynamic
programming approach with a linear scan through the
cocomparability ordering. This technique has been used
in previous algorithms for cocomparability graphs (see,
e.g., [22]).

A subsolution constructed by the algorithm is a re-
alizable set S. Subsolutions are stored as states Z ∈
{0, 1, . . . , n}4 with Z = [z1, z2, z3, z4] such that z4, z3 and
z2 are the indices of the last, second last, and third last
vertex of S, respectively, in the order of the path or, in
case of different S-paths, according to the cocompara-
bility ordering. (zj = 0 if the corresponding vertex of S
does not exist.) Finally, z1 indicates the maximum num-
ber of vertices in a realizable set with last vertices z2, z3,
and z4.

The algorithm starts with a preprocessing in which it
computes A2 in time O(n2.376) by matrix multiplication
[14], where A is the adjacency matrix of G for which

NETWORKS–2000 33

A(i, j) = 1 if i ≠ j and {vi, vj} ∈ E, and A(i, j) = 0 oth-
erwise. Consequently, during the dynamic programming
part of the algorithm, the number of common neighbors
of two vertices vi and vj can be computed in constant
time.

The dynamic programming algorithm starts with the
subsolution S = � and state Z = [0, 0, 0, 0]. It works in
rounds j = 0, 1, . . . , n− 1, such that in round j the suc-
cessors of all existing states Z with j = max(z3, z4) are
computed. As typical for the dynamic programming ap-
proach, the algorithm maintains the following invariant:
If Z is a state computed by the algorithm, then there is a
realizable set S corresponding to Z, that is, |S| = z1 and
z2, z3, z4 are the last vertices of S. Furthermore, for any
realizable set S of G, the algorithm computes a state Z
such that S corresponds to Z with the possible exception
of z1 > |S|.

Now, Z′ is a successor of the state Z = [z1, z2, z3, z4]
if Z′ is a state corresponding to a realizable set S∪{vk},
where S is a realizable set corresponding to Z and vk is
added by a backward or a forward step. This means that
vk is a vertex with z3 < k < z4 in a backward step and
max(z3, z4) < k in a forward step.

Any round j of our algorithm consists of two phases:
In the first phase, all successors via a backward step
of previously computed states Z with j = max(z3, z4)
are computed. In the second phase, all successors via
a forward step of previously computed states Z with
j = max(z3, z4) are computed. Notice that this implies
that in the second phase all successors of states obtained
during the first phase are computed. To justify the cor-
rectness of our algorithm, we show that it is enough to
know the last three vertices of any realizable set S for
deciding whether S∪ {vk} is realizable or not.

Lemma 28. Let P = (p1, p2, . . . , pk), k ≥ 4, be a chord-
less path and p1 < pk. Let u be a vertex with pk−1 < u.
Assume that P̃ = (pk−2, pk−1, pk, u) is a chordless path.
Then, P′ = (p1, p2, . . . , pk, u) is also a chordless path.
Furthermore, if no vertex of P̃ has a common neighbor
with u outside P̃, then no vertex of P′ has a common
neighbor with u outside P′.

Proof. Suppose that P̃ = (pk−2, pk−1, pk, u) is chord-
less but P′ is not. Let l be the largest index l < k for
which {u, pl} ∈ E. By our assumption, l < k− 2. Thus,
(pl, pl+1, . . . , pk, u, pl) is a chordless cycle of length at
least 5 in G. This is a contradiction since a chordless
cycle of a cocomparability graph has length at most 4.
Suppose that w is a common neighbor of u and a vertex
in P′, while the only neighbor of w in P̃ is u. Let pl be
the rightmost neighbor of w in P′. Hence, l < k− 2 and
(pl, pl+1, . . . , pk, u, w, pl) is a chordless cycle of length at
least 6 in G—a contradiction.

Lemma 29. Let P = (p1, p2, . . . , pk) be a chordless
path and p1 < pk. Let L(P) = {pk−1, pk} if k ≥ 2,

and L(P) = {pk} if k = 1. Let u be a vertex with
max(pk−1, pk) < u. If u is nonadjacent to the vertices
of L(P), then u has no neighbor in P. Furthermore, let
w be a common neighbor of u and a vertex of P. Then,
u has a common neighbor with a vertex of L(P), unless
either |L(P)| = 2 and u is adjacent to both vertices of
L(P) or w has at least two neighbors in P.

Proof. Let pi /∈ L(P) be a vertex of the path P with
{u, pi} ∈ E. Then, k ≥ 3, i ≤ k− 2 and pi < pk. Hence,
pi < pk < u and {u, pi} ∈ E implies that {u, pk} ∈ E,
since {pi, pk} /∈ E by the choice of P. Hence, u has a
neighbor in L(P).

Let w be a common neighbor of u and a vertex pi /∈
L(P) of the path P. Then, k ≥ 3, i ≤ k− 2, and pi < pk.
If max(pk−1, pk) < w, then w has a neighbor in L(P) as
shown above.

Now, assume that u is not adjacent to both vertices of
L(P) and that w has exactly one neighbor in P, implying
that w has no neighbor in L(P). If w < min(pk−1, pk),
then {w, u} ∈ E implies that both pk−1 and pk are ad-
jacent either to u or to w. By our assumption, u is not
adjacent to pk−1 or pk. Thus, w has two neighbors in P—
a contradiction. Finally, w cannot be between pk−1 and
pk in the cocomparability ordering since {pk−1, pk} ∈ E
implies that w is adjacent to a vertex of L(P), a contra-
diction.

Clearly, if u and all vertices of P are contained in a
realizable set S of G, then neither u nor w can be adjacent
to two vertices of P.

Summarizing, we obtain

Proposition 30. Let S be a realizable set of a cocom-
parability graph G. Let L3(S) be the set of the last three
vertices of S, if |S| ≥ 3. Otherwise, let L3(S) = S. Let u
be a vertex such that either s < u for all s ∈ S (forward
edge or nonedge) or s < u for all but one s ∈ S (back-
ward edge). Then, S∪{u} is realizable in G if L3(S)∪{u}
is realizable.

Proof. By Lemma 27, when we add vertex u to a
realizable set S, we only have to consider the component
of G[S ∪ {u}] containing u and the previous S-path in
the cocomparability ordering. Then, by Lemmas 28 and
29, checking L3(S)∪ {u} is sufficient if u creates a new
component or is added to an isolated vertex of G[S]. By
Lemma 29, when adding u to an S-path of more than two
vertices, the previous component need not be checked.
Hence, by Lemma 28, checking L3(S)∪ {u} suffices.

The proposition immediately guarantees the correct-
ness of our dynamic programming algorithm: In a back-
ward step, Z′ = [z1 + 1, z3, z4, k] is a successor of a
state Z = [z1, z2, z3, z4] if z3 < k < z4, {vz4 , vk} ∈ E
and {vz2 , vz3 , vz4 , vk} is realizable. In a forward step, Z′ =

34 NETWORKS–2000

[z1+1, z3, z4, k] is a successor of a state Z = [z1, z2, z3, z4]
if max(z3, z4) < k and {vz2 , vz3 , vz4 , vk} is realizable.

Consider the running time: The test whether a set of
up to four vertices is realizable can be done in con-
stant time, since, by Theorem 25, it requires only adja-
cency tests and the computation of the number of com-
mon neighbors for vertices in the set. States are main-
tained as follows: There is a three-dimensional array
B[0..n, 0..n, 0..n] initialized to be zero. Whenever a new
state Z′ = [z′1, z′2, z′3, z′4] has been computed as a succes-
sor, then z′1 is stored in B(z′2, z′3, z′4), if z′1 is larger than the
current value of B(z′2, z′3, z′4) (which means that we found
a better subsolution). Hence, during the algorithm, the
O(n) successors of O(n3) different states are computed.
The algorithm uses a variable max to maintain the largest
first entry of any state computed. Hence, the value of
max upon termination is the degree-preserving number
of the input graph. Consequently, the running time of the
algorithm is O(n4).

Using a standard pointer structure, the algorithm can
be implemented to compute within the same time a max-
imum realizable set and this can easily be transformed
into a maximum degree-preserving forest. Hence, we
may conclude.

Theorem 31. There is an algorithm to compute a maxi-
mum degree-preserving forest of a cocomparability graph
in time O(n4).

8. GRAPHS WITH BOUNDED ASTEROIDAL
NUMBER

We remind the reader that we still assume that G is
2-edge connected.

Definition 32. A set A ⊆ V is called an asteroidal set
if for every vertex a ∈ A the set A\{a} is contained in
a component of G − N[a]. The asteroidal number of a
graph G, denoted by an(G), is the maximum cardinality
of an asteroidal set in G.

Clearly, every asteroidal set of G is an independent
set of G. On the other hand, every independent set of
cardinality at most two is asteroidal in G. An asteroidal
set of cardinality three is called an asteroidal triple (AT).
The class of AT-free graphs contains all graphs G with
an(G) ≤ 2. This class, studied in detail in [13], con-
tains all cocomparability graphs. The intersection with
the class of chordal graphs gives exactly all interval
graphs [23].

In this section, we consider graphs with a bounded
asteroidal number.

For a vertex w ∈ W, a neighbor u ∈ N(w) is called
a W-private neighbor of w if u /∈ N[W\{w}]. We define
M(c) = {v ∈ V : N[v] ⊆ N[c]}\{c}. Note that if S is a
realizable set containing c then S∩M(c) = �. The next
lemma bounds |S∩N(c)|.

Lemma 33. Let c be a vertex in a realizable set S of a
graph G with an(G) ≤ k. Then, |S∩N(c)| ≤ k2.

Clearly, S contains no elements of M(c). To prove the
lemma, we need the following claim:

Claim. Let G be a graph on n vertices such that every
independent set of G contains at most a vertices and
every block of G contains at most c vertices. Then, n ≤
a · c.

Proof. For fixed values a and c, we choose a graph
G = (V, E) such that it has maximum number of vertices
and, among those, one with maximum number of edges.
This implies that every block of G is complete.

Let Z be the set of cut vertices of G and N = V\Z.
We consider a block G[B] of G with B∩ N ≠ �. By

maximality, we have |B| = c. Every maximal indepen-
dent set of G contains exactly one vertex of B since G[B]
is a complete graph. By the induction hypothesis applied
to G− B, we know that n− c ≤ (a− 1)c. Consequently,
n ≤ ac.

It remains to show that G has a block containing a
vertex in N. Therefore, we consider a graph (B∪ Z, F),
where B = {B : G[B] is a block of G} and F = {{B, x} :
B ∈ B and x ∈ B∩ Z}. It is well known that this graph
is a forest. Every leaf of this forest corresponds with a
block containing a vertex in N.

Now, we are able to prove the lemma:

Proof. We define X = S ∩ N(c) and choose a set
Y ⊆ N(X)\N[c] such that every vertex in X has exactly
one X-private neighbor in Y. Notice that |X| = |Y| and
every vertex of Y has exactly one neighbor in X. Then,
every independent set of G[Y] is an asteroidal set of G,
and for every block G[T] of G[Y], the set N(T) ∩ X is
an asteroidal set of G. Thus, an(G) ≤ k and our claim
implies that |X| = |Y| ≤ k2.

Definition 34. Let A be an asteroidal set of G = (V, E)
and C ∈ Comp(G−N[A])∪{�}. The pair (A, C) is called
a lump of G if either

• A = � and C ∈ Comp(G) or
• A = {a} and C ∈ Comp(G −N[a])\Comp(G) or
• |A| ≥ 2 and C = ∩a∈ACa, where Ca is the set in

Comp(G −N[a]) with A\{a} ⊆ Ca.

We give some examples: For every asteroidal set A of
G = (V, E) with |A| > 1, there is exactly one set C ⊆ V
such that (A, C) is a lump of G.

If an(G) = 1, then G is complete and (�, V) is the
unique lump of G.

For all C ∈ Comp(G), every lump of G[C] is a lump
of G. All other lumps of G are of the type ({x, y}, �) for
two vertices x and y in different components of G.

If G is isomorphic to Kn,m, n ≥ 1 and m ≥ 2, and
(A, C) is a lump of G with A ≠ � or C ≠ V, then there

NETWORKS–2000 35

FIG. 1. The set A = {2, 4, 7, 9} is an asteroidal set in this graph.
Since |A| ≥ 2, there is a unique set C such that (A, C) is a lump. Here,
C = {0, 1, 3, 5, 6, 8, 10, 11}. The vertex 3 ∈ C decomposes (A, C)
into three smaller lumps, namely, ({2, 3}, �), ({3, 4,}, �), and ({3, 7,
9}, {8, 10, 11}). The vertex 6 ∈ C decomposes (A, C) into four smaller
lumps, namely, ({2, 6}, {0}), ({4, 6}, {1}), ({6, 7}, {10}), and ({6, 9},
{11}).

exist two different nonadjacent vertices x and y of G such
that A = {x} and C = {y} or A = {x, y} and C = �.

Lemma 35. Every graph G on n vertices with an(G) =
k ≠ 2 has at most nk lumps. Every AT-free graph G on n
vertices has at most 3

2 n2 lumps.

Proof. The number of lumps (A, C) with A = � is
bounded by n. The number of lumps (A, C) with |A| = 1
is bounded by n(n− 1), since for every vertex a, at most
n−1 components of G−N[a] exist. The number of lumps
(A, C) with |A| = i is bounded by (n

i) for 2 ≤ i ≤ k, since
in this case, C is uniquely determined by A. For k > 2,
this sums up to at most nk since n ≥ 2k.

The following theorem shows how to decompose
lumps into smaller lumps. The basic technique was de-
veloped in [10]:

Theorem 36. Let (A, C) be a lump of G. For every c ∈
C, there exist unique partitions A of A and C of C\N[c]
such that

1. For every set B ∈ A, either (B∪ {c}, �) is a lump of
G or there is a set D ∈ C such that (B∪ {c}, D) is a
lump of G, and

2. For every set D ∈ C, either ({c}, D) is a lump of G or
there is a set B ∈ A such that (B∪ {c}, D) is a lump
of G.

Proof. Let (A, C) be a lump of G = (V, E) and c ∈ C.
We define

A = {A∩D : D ∈ Comp(G −N[c])}\{�},
C1 = {D : D ∈ Comp(G −N[c]) and A∩D = �},
C2 = {D : (B∪ {c}, D) is a lump of G and B ∈ A, and

C = C1 ∪C2\{�}.

A is a partition of A since Comp(G−N[c]) is a partition
of V\N[c]. By the definition of a lump (Definition 34),
B∪{c} is an asteroidal set of G for every B ∈ A. C is a
partition of C\N[c], since for every set D ∈ Comp(G −
N[c]), either C ∩ D = � or there is exactly one set in
C containing C ∩ D. Consider the latter case in detail:
Either A ∩ D = �, D ∈ C1, and ({c}, D) is a lump or
A ∩ D = B ≠ �, implying that B ∈ A and (B ∪ {c},
C∩D) is a lump.

Now, we consider any pair (A′,C′) of partitions of A
and C satisfying the conditions of the theorem. Then,A′
is a refinement ofA, that is, for every set A′ ∈ A′, there
is a set B ∈ A such that A′ ⊆ B. Otherwise, there would
be a set A′ ∈ A′ such that A′ ∪ {c} is not asteroidal,
contradicting the first assumption. Furthermore, let A′ ∈
A′ and B ∈ A be sets such that b ∈ B\A′. The first
condition implies that b ∈ D′ for the lump (A′ ∪ {c}, D′)
of G contradicting b /∈ C. Consequently, A′ =A. Now,
the first condition implies that C′ = C, since C1 ⊆ C′ by
the second condition.

Let (A, C) be a lump of G. For a fixed vertex c ∈ C,
let A and C be the partitions given in the proof of the
previous theorem. We define the decomposition of (A, C)
to be the set of lumps (A′ ∪ {c}, C′) of G with A′ ∈
A∪{�} and C′ ∈ C∪{�}. This set of lumps is denoted
by Dec(A, C, c). See Fig. 1 and Fig. 2.

Our algorithm is a dynamic programming algorithm
on the lumps of G. Let (A, C) be a lump and let S be
a realizable set of G such that A ⊆ S ⊆ N[A] ∪ C. Let
B = S ∩ N(A). If C ∩ S = �, then S = A ∪ B. Oth-
erwise, let c ∈ C ∩ S and consider the decomposition
Dec(A, C, c) = {(Ai, Ci) : 1 ≤ i ≤ l}. Let U = S∩ N(c)
and Si = S∩ (N[Ai]∪ Ci) for 1 ≤ i ≤ l. Now, it is easy
to express Si ∩ N(Ai) and Si ∩ Ci in terms of A, B, and
U. However, our task is the other way around: Given the
decomposition Dec(A, C, c) and the sets Si, 1 ≤ i ≤ l,
we have to assemble these sets to a realizable set S of
G. The next lemma gives a condition that ensures that
realizable sets Si can be joined to a realizable set S:

Lemma 37. Let (A, C) be a lump of G and B ⊆ N(A).
Let c be a vertex in C and U ⊆ N(c) such that U∪{c} is
realizable and N(A)∩U = N(c)∩ B. Let Dec(A, C, c) =

FIG. 2. The set A = {3, 5, 7} is an asteroidal set in this graph. Since
|A| ≥ 2 there is a unique set C = {1, 2, 4, 6, 8, 9} such that (A, C) is
a lump. The vertex 6 ∈ C decomposes (A, C) into two smaller lumps,
namely, (A ∪ {6}, {1, 2, 4}) and ({6}, {8, 9}).

36 NETWORKS–2000

{(Ai, Ci) : 1 ≤ i ≤ l}. For all realizable sets Si ⊆
N[Ai] ∪ Ci of G such that Ai ⊆ Si and Si ∩ N(Ai) =
(B ∪ U) ∩ N(Ai), for all 1 ≤ i ≤ l, then the set S =
∪l

i=1Si is realizable in G, A∪{c} ⊆ S, and S∩N(A) = B.

Proof. Let D be shorthand for N(A) and Di = N(Ai)
for 1 ≤ i ≤ l.

First, we observe that Si∩Di∩Dj = (B∪U)∩Di∩
Dj = Sj∩Di∩Dj for all indices i and j with 1 ≤ i, j ≤ l.
This implies that Si = S∩ (Ai ∪ Ci ∪Di) for all i.

Now, we apply Lemma 2 to show that S is a realizable
set of G. We consider a chordless cycle Z in G[[S]]. Z con-
tains a vertex z /∈ N[c] since U∪ {c} is realizable in G.
Let i be an index such that z ∈ Si and let (b, . . . , z, . . . , d)
be a longest subpath of Z contained in G[[Si]]. Then,
b, d ∈ U since Ci = C ∩ Compz(G − N[c]). Now,
(c, b, . . . , z, . . . , d) is a cycle in G[[Si]] since c ∈ Ai ⊆ Si,
contradicting the fact that Si is realizable. Hence, such
a cycle Z cannot exist, and by Lemma 2, the set S is
realizable in G.

By Theorem 36, c ∈ Ai and Ai ⊆ Si for all i = 1, . . . , k
implies that A∪{c} ⊆ S. Finally, Si∩Di = (B∪U)∩Di

for all i, 1 ≤ i ≤ l, implies that S ∩ D = B since U ⊆
N(c) and N(A)∩U = N(c)∩ B.

Let (A, C) be a lump of G. For all B ⊆ N(A), we define

p(A, B, C) = max{|S∩ C| : A ⊆ S, S∩N(A) = B,

and S is realizable in G}.
Note that p(A, B, C) = −∞ if no such realizable set

exists.

Lemma 38. Let (A, C) be a lump of a graph G with
an(G) = k. Then, for all B ⊆ N(A), we have

p(G) =
∑

C∈Comp(G)

p(�, �, C) and

p(A, B, C) =
{

max(0, maxc∈C p′(c)) if A∪ B is realizable,
−∞ otherwise.

Here,

p′(c)=1+ max
U∈U(c)

∑
(A′,C′)∈Dec(A,C,c)

p(A′, (B∪U)∩N(A′), C′)

U(c) = {U : U ⊆ N(c)\M(c), B∩N(c) = U∩N(A),

and U∪ {c} is realizable in G}.

Proof. The formula for p(G) follows directly from
p(G[C]) = p(�, �, C) for all components G[C] of G. Next,
we consider the trivial cases concerning the formula for
p(A, B, C). If there is no realizable set S with A∪B ⊆ S,
then p(A, B, C) = −∞. Otherwise, if C ∩ S = � for all
these realizable sets S, then p(A, B, C) = 0. In the for-
mula, we have maxc∈C p′(c) = −∞ if C = �. Otherwise,
for every c ∈ C, there is a block (A′, C′) ∈ Dec(A, C, c)
such that A′ ∪ (B∩N(A)) is not realizable, since C∩ S

= � for all S. Since every subset of a realizable set is
realizable, this implies that A′ ∪ B′ is not realizable for
all c ∈ C and all U ∈ U(c) and B′ = (B ∪ U) ∩ N(A).
Again, this implies that maxc∈C p′(c) = −∞. Hence, our
formula is correct if A∪ B is realizable, but C∩ S = �
for all realizable set S with A ⊆ S and S ∩ N(A) = B.
This completes the base step of an induction.

Now, we assume that a realizable set S exists with
A ⊆ S, S∩N(A) = B, and C∩ S ≠ �. We choose S such
that |S ∩ C| is maximum. Let c be an arbitrary vertex
in C∩ S. Let Dec(A, C, c) = {(Ai, Ci) : i = 1, . . . , l}. Let
U = S∩N(c)\M(c). Then, U ∈ U(c).

We consider an arbitrary lump (Ai, Ci) ∈ Dec(A, C, c)
and define Bi = (B ∪ U) ∩ N(Ai). First, let Si = S ∩
(N[Ai]∪Ci). Then, p(Ai, Bi, Ci) ≥ |Si∩Ci| by the induc-
tion hypothesis. By induction, we obtain |S∩C| ≥ p′(c).
This proves that p(A, B, C) ≥ maxc∈C p′(c).

To prove the other inequality, we choose realizable
sets Ti ⊆ N[Ai] ∪ Ci with Ai ⊆ Ti and Ti ∩ N(Ai) =
(B ∪ U) ∩ N(Ai) such that |Ti ∩ Ci| is maximum. By
Lemma 37, the set T = {c}∪∪l

i=1Ti is realizable, A ⊆ T,
and T∩N(A) = B. Now, |S∩C| ≤ |T∩C| since |Si ∩
Ci| ≤ |Ti ∩ Ci| for all i. This proves that p(A, B, C) ≤
maxc∈C p′(c).

Now, it is easy to derive a recursive algorithm from
the formulas in Lemma 38. We consider the running
time of our algorithm on an input graph G = (V, E)
with |V| = n, |E| = m, and an(G) = k. We use a
data structure to memorize values of p(A, B, C) already
computed. This data structure supports the following
operations:

• store(A, B, C, p) stores the value p for the lump
(A, C) and the set B ⊆ N(A),

• present(A, B, C) returns true, if an operation
store(A, B, C, p) has been performed before, for any
value of p, and false otherwise, and

• value(A, B, C) returns the value p of the (last)
store(A, B, C, p) operation, if present(A, B, C) =
true.

All three operations can be executed by iterated search
for a vertex in the universe V. A single search can be
done in time O(log n) by standard techniques. To find a
whole triple (A, B, C), we need at most |A| + |B| + 1
single searches. If (A, C) is a lump, then A, B, and C are
pairwise disjoint and, consequently, |A| + |B| + 1 ≤ n.
This implies that the operations store, present, and
value can be executed in time each of O(n log n).

Consider the algorithm in Table I:
This algorithm calls value(A, B, C) only if

present(A, B, C) = true. Furthermore, if store(A, B,
C) is called, then we have present(A, B, C) = false,
that is, for each triple (A, B, C), store is called at most
once. The number of such triples is bounded by the
number of lumps (A, C) times the number of subsets
B ⊆ N(A). By Lemma 33, |B ∩ N(a)| ≤ k2 for every

NETWORKS–2000 37

TABLE 1. The algorithm.

procedure main;
begin

p ← 0;
for C ∈ Comp(G) do p ← p+ access(�, �, C);
return(p)

end.

procedure access(A, B, C);
begin

if not present(A, B, C) then compute(A, B, C);
return(value(A, B, C))

end;

procedure compute(A, B, C);
begin

if A∪ B is realizable in G
then

begin
p ← 0;
for c ∈ C do

begin
Q← {B∩N(c)};
while Q ≠ � do
begin

choose a set U ∈ Q of minimum cardinality;
Q← Q\{U};
r ← 1 +|U\N(A)|;
for (A′, C′) ∈ Dec(A, C, c) do
r ← r+ access(A′, (B∪U) ∩ N(A′), C′);

p ← max{p, r};
for x ∈ N(c)\(U∪M(c) ∪ N(A)) do

if U ∪ {c, x} is realizable then Q← Q ∪
{U ∪ {x}};

end
end

end
else p ← −∞;

store(A, B, C, p)
end;

a ∈ A. By Lemma 35, we have to evaluate compute for
at most O(2k3

nk) triples (A, B, C).
Finally, we consider the running time of a sin-

gle call of compute(A, B, C) without counting the
running time of those recursive calls of procedure
compute for which present(A′, B′, C′) = false
when compute(A′, B′, C′) is called. We consider at most
n vertices c ∈ C. By Lemma 33, we know |U| ≤ k2

for every U ∈ U(c). Hence, U(c) can be computed in
time O(2k2

n). Clearly, |Dec(A, C, c)| < n. Consequently,
we have at most 2k3

n2 calls access(A′, B′, C′). Thus,
the total time for one call of compute is bounded by
O(2k3

n3 log n).

Theorem 39. There is an algorithm to solve the degree-
preserving spanning tree problem for any graph G in time
O(2k3

nk+3 log n), where k = an(G).

9. OPEN PROBLEMS

It follows from Theorem 6 that the DPST problem
is NP-complete for the class of bipartite planar graphs
with maximum degree six. It can be easily seen that a

proper subclass of this class is the class of grid graphs (a
grid graph is a vertex induced finite subgraph of the in-
finite grid). So, an interesting question is whether the
DPST problem restricted to grid graphs remains NP-
complete.

REFERENCES

[1] M. Aaron and M. Lewinter, 0-deficient vertices of spanning
trees, NY Acad Sci Graph Theory Notes 27 (1994), 31–32.

[2] S. Arnborg, J. Lagergren, and D. Seese, Easy problems for
tree-decomposable graphs, J Alg 12 (1991), 308–340.

[3] B.S. Baker, Approximation algorithms for NP-complete
problems on planar graphs, J ACM 41 (1994), 153–180.

[4] R. Bhatia, S. Khuller, R. Pless, and Y.J. Sussmann, The full
degree spanning tree problem, Proc 10th Annual ACM–
SIAM Symp on Discrete Algorithms, SODA ’99, to appear.

[5] D. Bienstock and C.L. Monma, On the complexity of em-
bedding planar graphs to minimize certain distance mea-
sures, Algorithmica 5 (1990), 93–109.

[6] T. Bocchi, D. Gagliardi, and M. Lewinter, K-deficient span-
ning trees, NY Acad Sci Graph Theory Notes 29 (1995),
42–43.

[7] H.L. Bodlaender, A linear-time algorithm for finding tree-
decompositions of small treewidth, SIAM J Comput 25
(1996), 1305–1317.

[8] K.S. Booth and G.S. Lueker, Testing for the consecutive
ones property, interval graphs, and graph planarity using
PQ-tree algorithms, J Comput Syst Sci 13 (1976), 335–
379.

[9] R.B. Borie, G. Parker, and C.A. Tovey, Automatic gen-
eration of linear-time algorithms from predicate calculus
descriptions of problems on recursive constructed graph
families, Algorithmica 7 (1992), 555–581.

[10] H.J. Broersma, T. Kloks, D. Kratsch, and H. Müller, In-
dependent sets in asteroidal triple-free graphs, Proc 24th
Int Colloq on Automata, Languages and Programming,
ICALP’97, Lecture Notes in Computer Science 1256,
Springer-Verlag, Berlin, 1997, 760–770.

[11] P.M. Camerini, G. Galbiati, and F. Maffioli, Complexity of
spanning tree problems: Part I, Eur J Oper Res 5 (1980),
346–352.

[12] P.M. Camerini, G. Galbiati, and F. Maffioli, The complex-
ity of weighted multi-constrained spanning tree problems,
Colloq Math Soc Janos Bolyai 44 (1984), 53–101.

[13] D. Coppersmith and S. Winograd, Matrix multiplication
via arithmetic progressions, J Symb Comput 9 (1990), 251–
280.

[14] D.G. Corneil, S. Olariu, and L. Stewart, Asteroidal triple-
free graphs, SIAM J Discr Math 10 (1997), 399–430.

[15] P. Damaschke, Degree-preserving spanning trees and col-
oring bounded degree graphs, manuscript, 1997.

[16] M. Dell’Amico, M. Labbé, and F. Maffioli, Complexity
of spanning tree problems with leaf-dependent objectives,
Networks 27 (1996), 175–181.

[17] B. de Fluiter, Algorithms for graphs of small treewidth,
PhD Thesis, Utrecht University, Utrecht, The Netherlands,
1997.

[18] M.R. Garey and D.S. Johnson, Computers and intractabil-
ity: A guide to the theory of NP-completeness, Freeman,
New York, 1979.

38 NETWORKS–2000

[19] M.C. Golumbic, Algorithmic graph theory and perfect
graphs, Academic Press, New York, 1980.

[20] J. Håstad, Clique is hard to approximate within n1−ε, Acta
Math 182 (1999), 105–142.

[21] T. Kloks, Treewidth-computations and approximations,
LNCS 842, Springer-Verlag, Berlin, 1994.

[22] D. Kratsch and L. Stewart, Domination on cocomparability
graphs, SIAM J Discr Math 6 (1993), 400–417.

[23] J. van Leeuwen, Graph algorithms, Handbook of theoreti-
cal computer science, A: Algorithms and complexity, J. van
Leeuwen (Editor), Elsevier, Amsterdam, 1990, 527–631.

[24] C.G. Lekkerkerker and J. Ch. Boland, Representation of a
finite graph by a set of intervals on the real line, Fundam
Math 51 (1962), 45–64.

[25] M. Lewinter, Interpolation theorem for the number of
degree-preserving vertices of spanning trees, IEEE Trans
Circ Syst CAS-34 (1987), 205.

[26] M. Lewinter and M. Migdail-Smith, Degree-preserving
vertices of spanning trees of the hypercube, NY Acad Sci
Graph Theory Notes 13 (1987), 26–27.

[27] R.M. McConnell and J.P. Spinrad, Linear time transitive
orientation, Proc 8th Ann ACM–SIAM Symp on Discrete
Algorithms, SODA’97, 19–25.

[28] I.W.M. Pothof and J. Schut, Graph-theoretic approach to
identifiability in a water distribution network, Memoran-
dum 1283, Faculty of Applied Mathematics, University of
Twente, Enschede, The Netherlands, 1995.

[29] H. Rahal, A co-tree flows formulation for steady state in
water distribution networks, Adv Eng Softw 22 (1995),
169–178.

[30] E. Walter, Identifiability of state space models with appli-
cations to transformation systems, Springer-Verlag, New
York, 1982.

NETWORKS–2000 39

