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Abstract

An oriented walk double covering of a graph G is a set of oriented closed
walks which, traversed successively, combined will have traced each edge of
G once in each direction. A bidirectional double tracing of a graph G is
an oriented walk double covering which consists of a single closed walk. A
retracting in a closed walk is the immediate succession of an edge by its
inverse. Every graph with minimum degree 2 has a retracting free oriented
walk double covering and every connected graph has a bidirectional double
tracing. The minimum number of closed walks in a retracting free oriented
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walk double covering of G is denoted by c(G). The minimum number of
retractings in a bidirectional double tracing of G is denoted by r(G). We
shall prove that for all connected non-cycle graphs G with minimum degree
at least 2, r(G) = c(G)−1. The problem of characterizing those graphs G for
which r(G) = 0 was raised by Ore. Thomassen solved this problem by relating
it to the existence of certain spanning trees. We generalize this result, and
relate the parameters r(G), c(G) to spanning trees of G. This relation yields
a polynomial time algorithm to determine the parameters c(G) and r(G).

1 Introduction

An oriented walk double covering of a graph G is a set C of oriented closed walks

whose union traverses each edge of G exactly once in each direction. If C consists

of a single closed walk W , it is called a bidirectional double tracing. A retracting

in a walk W is the immediate succession of an edge by its inverse, as in the form

W = ...eve.., where edge e is called a retracting edge and v a retracting vertex.

We denote by r(W ) the number of retractings of W . It is easy to see that every

connected graph G has a bidirectional double tracing [3]. Indeed, replacing each

edge of G by two opposite arcs would result in an Eulerian digraph. The Euler

tour of this digraph is a bidirectional double tracing of G. We denote by r(G) the

minimum number of retractings in a bidirectional double tracing of G.

In 1951, Ore [6] raised the problem of characterizing those graphs which admit a

retracting-free bidirectional double tracing, i.e., those graphs G for which r(G) = 0.

This problem was studied by Fleischner [3], Eggleton and Skilton [2], etc. The

following theorem of Thomassen [8] gives a solution:

Theorem 1 A connected multigraph G has a retracting-free bidirectional double

tracing if and only if G has no vertex of degree 1 and has a spanning tree T such

that each connected component of G−E(T ) has an even number of edges or contains

a vertex v which has degree dG(v) ≥ 4.

In this paper, we investigate the parameter r(G) for connected graphs G, as
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well as constructions of bidirectional double tracings W for which r(W ) = r(G).

In Lemma 1, we observe that any graph G with minimum degree δ(G) ≥ 2 has

a retracting free oriented walk double covering. We denote by c(G) the minimum

number of closed walks in a retracting free oriented walk double covering of G. It

follows from the definition that r(G) = 0 if and only if c(G) = 1. We shall prove that

r(G) = c(G)− 1 for all connected non-cycle graphs with minimum degree δ(G) ≥ 2.

Then we generalize Thomassen’s result and relate the two parameters r(G) and

c(G) to the structures of spanning trees of G. Suppose T is a spanning tree of a

connected graph G. We denote by o(T ) the number of components of G − E(T )

with odd number of edges and with no vertex of degree (in G) greater than 3, we

refer such a component as an odd component of G−E(T ); and denote by o(G) the

minimum of o(T ) among all spanning trees T of G. Theorem 1 is equivalent to say

that, for a connected graph G with δ(G) ≥ 2, r(G) = 0 if and only if o(G) = 0.

We generalize this result and prove that r(G) = o(G) for all connected graphs with

minimum degree δ(G) ≥ 2. The original proof of Thomassen’s result transform the

existence of retracting free bidirectional double tracing of a graph G to the strictly

upper embeddability of G. Our proof use induction on the number of edges. The

case r(G) = 0 provides an alternate proof of Thomassen’s result. Using our proof,

the retracting free bidirectional double tracing can be constructed directly from the

spanning tree T for which o(T ) = 0.

Thomassen [8] also gave a polynomial time algorithm to determine whether or

not there exists a spanning tree with the above property, by reducing the problem

to the existence of perfect matching in 2-polymatroids. We shall use the same idea

to give an algorithm to determine the parameters c(G) and r(G) in time polynomial

in size of G. There is a minor error in Thomassen’s proof, which we shall explain

and which is corrected in the modified argument presented in this paper.

We shall use terminology and notation of Bondy and Murty [1]. All graphs

considered here are finite, but may have loops and multiple edges. A loop on a

vertex v contributes 2 to the degree of v. A spanning tree of G, of course, contains

no loops. For two walks X, Y of a graph G such that the last vertex of X is equal

to the first vertex of Y , we shall denote by XY the concatenation of X and Y ,

which is again a walk of G. When we consider the parameter r(G), we may assume
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that the graph G has minimum degree at least 2, because we can add a loop to

each vertex of degree 1, and this does not change the retracting number. Another

operation frequently used is the contraction of edges. Suppose e = ab is an edge of

G. We shall denote by G.e the graph obtained from G by contracting the edge e,

i.e., by deleting the edge e, and identifying its two end vertices a and b. Obviously,

if an edge e is incident to a vertex of degree 2, then r(G.e) = r(G). By successively

contracting the edges that incident with a vertex of degree 2, we obtain a graph

with minimum degree at least 3, denoted by G∗. It is obvious that G∗ is uniquely

determined by G, up to an isomorphism. So given a connected graph G not a cycle

we can by addition of a loop to each degree 1-vertex and successive contractions,

one by one, of each edge incident with a degree 2-vertex construct a graph H with

δ(H) ≥ 3 and r(H) = r(G).

2 Some preliminary results

A rotation scheme of a graph G with vertices {v1, v2, · · · , vn} is a collection {π1, . . . , πn}
such that each πi is a permutation on the edges incident with vi, for i = 1, . . . , n.

Each rotation scheme corresponds to an oriented walk double covering, which con-

sists of the orbits e1vje2vke3 . . . , where πj(e1) = e2 = vjvk, πk(e2) = e3, etc. Con-

versely, each oriented walk double covering corresponds to a rotation scheme.

Lemma 1 Every graph G of minimum degree at least two has a retracting free

oriented walk double covering.

Proof. For every vertex v of G, choose a permutation πv which does not fix any

edge. Then the orbits of the rotation scheme forms a retracting free oriented walk

double covering of G.

Lemma 2 Suppose G is a graph and C is a retracting free oriented walk double

covering of G. If v is a vertex of G of degree at least 4, then all the walks in C
passing through v can be combined into a single retracting free walk.
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Proof. For each closed walk W ∈ C which passes through v, we cut W at vertex

v and obtain pieces of W . Each of the pieces is a walk which starts at v and ends

at v, but having all other vertices are distinct from v. (These walks are actually

closed walks, each passing through v exactly once and may contain retractings at v.

However we would rather consider them as walks with initial and terminal vertices

equal to v, as we shall paste them together into a single closed walk later.) Suppose

v has degree k ≥ 4. By applying this cutting operation to all the walks of C that

pass through v, we obtain k walks, all of which have initial vertices and terminal

vertices equal v. Let W1, W2, · · · , Wk be the k walks. Let D be the directed graph

with vertices W1, W2, · · · , Wk and in which (Wi, Wj) is an arc if and only if i 6= j and

the terminal edge of Wi is not the reverse of the initial edge of Wj. Thus each vertex

of D has out-degree at least k− 2 and in-degree at least k− 2. It is easy to see that

D has a directed Hamiltonian cycle H if k ≥ 4. Paste the walks W1, W2, · · · , Wk

together in such a way that the initial edge of Wj succeeds the terminal edge of Wi

when (Wi, Wj) is an arc of the Hamiltonian cycle H. It follows from the definition

of D that the resulting closed walk is retracting free, and combines all the walks

passing through v into a single closed walk.

Corollary 1 Suppose G is a connected graph with δ(G) ≥ 2. If G has at most

one vertex of degree 2 or 3, and the vertex of degree 2 or 3 has no loop on it, then

r(G) = 0.

Proof. By Lemma 1, G contains a retracting free oriented walk double covering.

Applying Lemma 2 to all vertices of G of degree at least 4, we obtain a retracting

free oriented walk double covering, say C, such that for every vertex u of degree at

least 4, there is only one closed walk of C passing through it. If C contains two or

more closed walks, then all these closed walks only intersect at the vertex, say v,

which has degree 2 or 3. This is possible only if v has a loop on it. Therefore C
consists of a single closed walk, and hence it is a bidirectional double tracing of G.

Lemma 3 Let G be a connected graph with δ(G) ≥ 2, then the following statements

hold:
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1. If G′ is a subdivision of G , then r(G) = r(G′), c(G) = c(G′), o(G) = o(G′).

2. If e is a nonloop edge of G, then r(G.e) ≤ r(G), c(G.e) ≤ c(G), o(G.e) ≤ o(G).

3. If e is not a cut edge of G and both end vertices of e has degree at least

3, then r(G − e) − 1 ≤ r(G) ≤ r(G − e) + 1, c(G − e) − 1 ≤ c(G) ≤
c(G− e) + 1, o(G− e)− 1 ≤ o(G) ≤ o(G− e) + 1.

4. Let u, v be two vertices of G , and G′ be the graph obtained by identifying u

and v, then r(G′) ≤ r(G), c(G′) ≤ c(G), o(G′) ≤ o(G).

Proof. We only prove (1), statements (2)-(4) can be proved similarly. Suppose G′

is obtained from G by replacing the edge e = uv with a path P = (u, w, v). Let

e1 = uw and e2 = wv.

Let W be a bidirectional double tracing of G with r(W ) = r(G). Then replace

in W the segment uev by ue1we2v, and the segment veu by ve2we1u, we obtain a

bidirectional double tracing W ′ of G′ with r(W ′) = r(G). Therefore r(G′) ≤ r(G).

Conversely, let W ′ be a bidirectional double tracing of G′ with r(W ′) = r(G′).

Without loss of generality, we may assume that W ′ has no retraction at w. Indeed,

if W ′ has a retraction at w, then it is of the form W ′ = Xve2we2vY ue1we1uZ.

(Hence it has two retractions at w.) In this case, we may replace W ′ by W ′′ =

XY ue1we2ve2we1uZ. It is obvious that r(W ′′) ≤ r(W ′), and hence r(W ′′) = r(W ′),

because r(W ′) = r(G′). Since W ′ has no retraction at w, W ′ is of the form W ′ =

Xue1we2vY ve2we1uZ. Then W = XuevY veuZ is a bidirectional double tracing of

G with r(W ) = r(W ′). Therefore r(G) ≤ r(G′), and hence r(G) = r(G′).

Let C be a retracting free oriented walk double covering of G. Replace (in any

element C of C) the segment uev with ue1we2v, and replace veu with ve2we1u. Then

we obtain a retracting free oriented walk double covering of G′ which contains the

same number of closed walks as C. Therefore c(G′) ≤ c(G). Conversely, it is also

straightforward to show that c(G) ≤ c(G′). Therefore c(G) = c(G′).
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Let T ′ be a spanning tree of G′ with o(T ′) = o(G′). Then T ′ contains at least

one of the two edges e1, e2. Without loss of generality, assume T ′ contains the edge

e1. Let T = T ′.e1. Then T is (isomorphic to) a spanning tree of G. Obviously

o(T ) ≤ o(T ′) = o(G′). Hence o(G) ≤ o(G′). Conversely let T be a spanning tree

of G with o(T ) = o(G). If T contains the edge e, then let T ′ be obtained from T

by subdividing e into a path of length 2. Then T ′ is (isomorphic to) a spanning

tree of G′ with o(T ′) = o(T ). Therefore o(G′) ≤ o(G), and hence o(G′) = o(G). If

T does not contain the edge e, then let T ′ = T + e1 and let T ′′ = T + e2. Then

it is straightforward to verify that both T ′ and T ′′ are spanning trees of G′, and

min{o(T ′), o(T ′′)} = o(T ). Therefore o(G′) ≤ o(G) and hence o(G′) = o(G).

Lemma 4 Let W be a closed walk such that no two retracting edges retracting at

the same vertex and each retracting vertex is passed by W at least twice. Then W

can be decomposed into a set of at most r(W ) + 1 retracting free closed walks.

Proof. We prove this by induction on r(W ). It is clearly true when r(W ) = 0.

Assume that r(W ) = k > 0 and that the lemma is true for all closed walks W ′ with

r(W ′) < k. Let e = uv be an edge such that W has a retracting at v in the form

W = ueveuP1vP2u. Let W1 = veuP1v, W2 = uevP2u, then W1, W2 are two closed

walks and they traverse the the same edges in the same directions as W does, and

r(W1) + r(W2) = r(W ) − 1 = k − 1. If, for i = 1, 2, each retracting vertex of Wi

is passed by Wi at least twice, then by the induction hypothesis, W1, W2 can be

decomposed into a set of at most r(W1) + 1 + r(W2) + 1 = r(W ) + 1 retracting free

closed walks. If, say, W1 has a retracting vertex x, with retracting edge f = xy,

which is passed by W1 only once, then since x is a retracting vertex of W , and by

the assumption x is passed by W at least twice, it follows that W2 passes through

x. Let W1 = yfxfyP ′
1y, and let W2 = xP ′

2x. Then W3 = yfxP ′
2xfyP ′

1y is a closed

walk with r(W3) = r(W ) − 2, and which traverses the the same edges in the same

directions as W does. Hence W3 passes each retracting vertex at least twice. By

the induction hypothesis, W3 can be decomposed into a set of at most r(W3) + 1

retracting free closed walks.
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Theorem 2 For any connected non-cycle graph G with minimum degree at least 2,

we have r(G) = c(G)− 1.

Proof. Let W be a bidirectional double tracing with minimum number of retractings

r(W ) = r(G). We may assume that G has minimum degree at least 3. Then it is

easy to see that no two retracting edges of W are retracted at the same vertex.

By Lemma 4, W can be decomposed into at most r(W ) + 1 = r(G) + 1 retracting

free closed walks. Therefore c(G) ≤ r(G) + 1. Conversely, let C be a retracting free

oriented double walk covering of G with minimum number of closed walks |C| = c(G).

Let W1, W2 in C pass through the same vertex say v. By Lemma 2, dG(v) = 3. Thus

W1, W2 have a common edge e incident with v. Then vW1vW2v would be a closed

walk with retracting edge e.

Since G is connected, we can combine all closed walks in C into a single closed

walk. Each time the number of closed walks decreases by 1, the number of retract-

ings increases by 1. Thus the resulting closed walk has c(G) − 1 retracting edges.

Therefore r(G) ≤ c(G)− 1 and hence r(G) = c(G)− 1.

Theorem 3 Let G be a graph whose vertices are of degrees 2 and 3, and let C be

a retracting free oriented walk double covering of G. Then |C| ≡ |E(G)| − |V (G)|
(mod 2).

Proof. If G is a cycle, then it is obvious that the theorem is true. Assume that G

contains at least one vertex of degree 3. Since contracting an edge e does not change

the parity of |E(G)| − |V (G)|, by applying Lemma 3, we may assume that G has

minimum degree at least 3, and hence G is a cubic graph. We proceed by induction

on |E(G)|. Assume that |E(G)| = k, and that the theorem is true for all graphs G′

with |E(G′)| < k. Let e = uv be an edge of G. Assume that W1 ∈ C contains uev,

and let W2 ∈ C contain veu.

If W1 = W2 = uevP1veuP2u, then since both vertices u, v have degree 3, the

closed walks W ′ = vP1v and W ′′ = uP2u are both retracting free. Let G′ = G− e.

Then C ′=(C\{W1}) ∪ {W ′, W ′′} is a retracting free oriented walk double covering

of G′. By the induction hypothesis, we have |C ′| ≡ |E(G′)| − |V (G′)| (mod 2).
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Obviously |E(G)| − |V (G)| = |E(G′)| − |V (G′)| − 1 (mod 2). Therefore |C| =

|C ′| − 1 ≡ |E(G)| − |V (G)| (mod 2).

Assume next that W1 6= W2. Let W1 = uevP1u and W2 = veuP2v. Then

W = vP1uP2v is a retracting free closed walk of G′ = G − e, and C ′ = (C \
{W1, W2}) ∪ {W} is a retracting free oriented walk double covering of G′. Again,

by the induction hypothesis, |C ′| ≡ |E(G′)| − |V (G′)| (mod 2), which implies that

|C| = |C ′|+ 1 ≡ |E(G)| − |V (G)| (mod 2).

The following result proved in [8] is an easy consequence of Theorem 2 and

Theorem 3.

Corollary 2 Suppose G is a connected graph whose vertices are of degrees 2 and 3.

If |E(G)| − |V (G)| ≡ 0(mod2), then r(G) > 0.

Lemma 5 Let v be a vertex of G of degree at least 3. If r(G−v) = 0, then r(G) = 0.

Proof. Let v1P1v2P2v3 . . . vkPkv1 be a retracting-free bidirectional double tracing

of G− v, where v1, . . . , vk are the neighbours of v. Let ei = vvi, i = 1, . . . , k. Then

v1e1vek−1vk−1Pk−1vkekvek−2vk−2Pk−2vk−1ek−1vek−2 . . . v3e3ve1P1v2e2vekvkPkv1

is a retracting-free bidirectional double tracing of G.

3 Bidirectional double tracing and spanning trees

We shall show in this section that r(G) = o(G) for all connected graphs G with

δ(G) ≥ 2. This generalizes Thomassen’s result, which is the case r(G) = 0. We

first give an alternative proof of Thomassen’s result, that a connected graph G with

δ(G) ≥ 2 has r(G) = 0 if and only if o(G) = 0.

An alternative proof of Theorem 1. Suppose r(G) = 0. We shall prove that

o(G) = 0 by induction on |E(G)|. By Lemma 3, we may assume that δ(G) ≥ 3.
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If |E(G)| = 2, then G is a vertex with two loops. In this case r(G) = 0, and

E(T ) = Ø for any spanning tree T of G so o(G) = 0.

Assume that |E(G)| ≥ 3 and the above statement is true for graphs G′ with

|E(G′)| < |E(G)|. Let W be a retracting free bidirectional double tracing of G.

Suppose there are two edges e1, e2 of G incident to a vertex v such that W is of

the form e1ve2P1e2ve1P2. Then let G′ be the graph obtained from G by splitting

the vertex v into two vertices v′ and v′′ so that v′ is incident only to edges e1, e2,

and that v′′ is incident to all other edges that were incident to v. Now W can be

viewed as a bidirectional double tracing of G′, which implies that r(G′) ≤ r(W ) =

r(G) = 0. Define G′∗ as the graph obtained from G′ by successively contracting

edges which are incident to a vertex of degree 2. Then G′ is a subdivision of G′∗.

Since G′ does have a vertex of degree 2, it follows that E(G′∗) < E(G′) = E(G). As

r(G′∗) = r(G′) = 0, by the induction hypothesis, o(G′∗) = 0. It follows from Lemma

3 that o(G) ≤ o(G′) = o(G′∗) = 0. Hence o(G) = 0.

In the following we assume that for any two edges e1, e2 incident to a vertex v,

at most one of the segments e1ve2, e2ve1 is contained in W .

We now choose any edge e = uv such that W = uevP1veuP2 and all the edges of

P1 are distinct. Note that such an edge exists, we may simply choose P1 to be any

maximal closed walk which contains each edge at most once. Observe that P1, P2

are closed walks which cover all the edges of G−e, once in each direction. Moreover

P1, P2 are retracting free. Indeed, P1 is retracting free, as all the edges of P1 are

distinct. If P2 contains a retraction, then the retraction occurs at u and P2 is of

the form ue′wZwe′u. This implies that W contains both segments eue′ and e′ue,

contrary to our assumption.

First we assume that dG(v) = 3. Let the other two edges incident to v be e′ = vx

and e′′ = vy. Since P1 covers each edge of G at most once, it is easy to see that

both closed walks P1, P2 covers e′, e′′. We may assume that P1 = ve′xAye′′v and

P2 = ve′′yBxe′v. Let W ′ = xAyBx. Then W ′ is a closed walk which covers all the

edges of G − v once in each direction. We shall show that W ′ is retracting free.

Indeed, if to the contrary W ′ contains a retraction, then the retraction occurs at x

or y. Without loss of generality we assume that W ′ = xe∗zCze∗x has a retraction
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at x. Then W contains both segments e′xe∗ and e∗xe′, contrary to our assumption.

Thus r(G − v) = 0. By the induction hypothesis, we have o(G − v) = 0. Let T ′

be a spanning tree of G − v with o(T ′) = 0. It is easy to see that T = T ′ + e is a

spanning tree of G with o(T ) = 0 in G. Therefore o(G) = 0.

Assume now that dG(v) ≥ 4. Suppose P1 = ve′xAv and that P2 = xe′vBx. Let

W ′ = AB. Then W ′ is a closed walk which covers each of the edges of G−e−e′ once

in each direction. We shall show that W ′ is retracting free. If W ′ = xe′′yCye′′x has

a retraction at x then W contains both segments e′xe′′ and e′′xe′, contrary to our

assumption. If W ′ = ve′′zCze′′v contains a retraction at v then we obtain a graph

G′ from G by splitting v into two vertices v′, v′′ and by letting e, e′, e′′ incident to

v′ and the other edges incident to v be incident to v′′. It is easy to see that W is a

retracting free bidirectional double tracing of G′. By applying the argument of the

previous paragraph to G′ with v = v′ (observe that dG′(v′) = 3), we conclude that

o(G′) = 0, and it follows from Lemma 3 (2) that o(G) = 0.

Therefore W ′ is retracting free and hence r(G − e − e′) = 0. By the induction

hypothesis, o(G − e − e′) = 0. Let T be a spanning tree of G − e − e′ such that

o(T ) = 0. Then since dG(v) ≥ 4, it follows that T as a spanning tree of G also has

o(T ) = 0. Therefore o(G) = 0.

Next suppose that o(G) = 0. We shall prove that G has a retracting free bidi-

rectional double tracing by induction on s(G) =
∑

dG(v)≥3(dG(v)− 3).

Suppose first that s(G) = 0. Hence G is a cubic graph. We proceed by induction

on |E(G)|. If |E(G)| = 3, then the only case that o(G) = 0 is that G has two vertices

and three parallel edges joining them, we denote this graph by G0. (As s(G) = 0, G

contains no vertex of degree greater than 3. The only other connected cubic graph

with three edges is K2 with a loop on each of the two vertices, and this graph has

o(G) = 2.) It is easy to find a retracting free bidirectional double tracing of G0.

Assume now that G is a connected cubic graph, o(G) = 0 and that for any

connected cubic graph G′ with fewer edges than G and o(G′) = 0 we have r(G′) = 0.

Let T be a spanning tree of G such that o(T ) = 0, and let B be a non-trivial

component of G − E(T ), i.e., B contains at least one edge. Then B is either an

even cycle or an even path. If B is an even cycle, then let v be any vertex of B;
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if B is an even path then let v be the second vertex of B along the path. In any

case dB(v) = 2, hence dT (v) = 1. Let T ′ = T − v. Then T ′ is a spanning tree of

G − v and all components of (G − v) − T ′ have even number of edges. Therefore

o(T ′) = 0 in G− v. If δ(G− v) ≥ 2, then r(G− v) = 0 by the induction hypothesis.

(Note that although G− v is not 3-regular, by Lemma 3, we may change G− v into

a 3-regular graph G′ such that o(G′) = o(G − v) and r(G′) = r(G − v) and that

|E(G′)| ≤ |E(G− v)|.) Applying Lemma 5, we have r(G) = 0.

If G− v has a vertex, say u, of degree 1, then it must be the case that there are

two parallel edges between u and v. Denote by e1, e2 the two parallel edges between

v and u, and denote by e3 the other edge incident with u, and e4 the other edge

incident with v. Let w be the neighbour of u (in G − v), and let z be the other

neighbour of v. If w 6= z, then it is straightforward to verify that T − u − v is a

spanning tree of G− u− v with o(T − u− v) = 0. Hence o(G− u− v) = 0. By the

induction hypothesis, r(G − u − v) = 0. Let W be a retracting free bidirectional

double tracing of G− u− v. Assume that W = AwBz. Then

W ′ = Awe3ue1ve2ue3wBze4ve1ue2ve4z

is a retracting free bidirectional double tracing of G. If w = z, then let y be the

other neighbour of w (i.e., the one different from u and v), and let e5 = wy. It is

easy to verify that T − u− v−w is a spanning tree of G− u− v−w with o(T ) = 0.

Hence by the induction hypothesis, G−u− v−w has a retracting free bidirectional

double tracing W . Assume W = Ay. Then

W ′ = Aye5we3ue1ve2ue3we4ve1ue2ve4we5y

is a retracting free bidirectional double tracing of G.

Now suppose s(G) = k > 0 and that r(G′) = 0 for all graphs G′ for which

o(G′) = 0 and s(G′) < k. Similarly let T be a spanning tree of G such that

o(T ) = 0. Let v be a vertex of G with dG(v) ≥ 4, and let B be the component of

G − E(T ) which contains v. If B is a singleton, then let G′ be obtained from G

by splitting v into two vertices v′, v′′ and connecting v′, v′′ by an edge. The edges

incident to v are arbitrarily distributed among v′ and v′′ so that dG′(v′), dG′(v′′) ≥ 3.

Let T ′ = T + v′v′′. Then T ′ is a spanning tree of G′ with o(T ′) = 0 in G′. Since
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s(G′) < s(G), by the induction hypothesis, r(G′) = 0. It follows from Lemma 3 that

r(G) = 0.

Secondly assume that dB(v) = 1. Let e = vu ∈ B and let e′ = vw ∈ E(T ) be the

edge contained in the (unique) cycle of T +e. Let G′ be obtained from G by splitting

v into two vertices v′, v′′ and connecting v′, v′′ by an edge. The edges incident to v

are arbitrarily distributed among v′ and v′′, so that dG′(v′), dG′(v′′) ≥ 3 and that e, e′

are incident to v′, v′′ respectively. If |E(B)| is even, then let T ′ = T +v′v′′. It is easy

to see that T ′ is a spanning tree of G′ with o(T ′) = 0 in G′. Since s(G′) < s(G), by

the induction hypothesis, r(G′) = 0. It then follows from Lemma 3 that r(G) = 0.

If |E(B)| is odd, then let G′′ be obtained from G′ by deleting the edge v′v′′, and let

T ′ = T + e. Again T ′ is a spanning tree of G′′ with o(T ′) = 0 in G′′. By induction

hypothesis, r(G′′) = 0. It follows from Lemma 3 that r(G) = 0.

Thirdly assume that dB(v) ≥ 2, dT (v) ≥ 2. If B is a single loop edge e, then

let T ′ = T, G′ = G − e. Then o(T ′) = 0 in G′ and r(G′) = 0 by the induction

hypothesis. Let W be a retracting free bidirectional double tracing of G′, and let

W1, W2 be the loop on v traversed in opposite directions. Then {W, W1, W2} is a

retracting free oriented walk double covering of G. By Lemma 2, these three walks

can be combined into a single retracting free closed walk, which is a retracting free

bidirectional double tracing of G. Hence r(G) = 0. If B is not a single loop edge,

then let G′ be the graph obtained from G by splitting v into two vertices v′, v′′, and

let all the edges of B incident to v be incident to v′ and all edges of T incident

to v be incident to v′′, and connect v′, v′′ by an edge. If |E(B)| is even, then let

T ′ = T + v′v′′. It is easy to see that T ′ is a spanning tree of G′ for which o(T ′) = 0

in G′. Therefore r(G′) = 0 by induction hypothesis (as s(G′) < s(G)) and it follows

from Lemma 3 that r(G) = 0. If |E(B)| is odd, then let G′′ be obtained from G′

by deleting the edge v′v′′, and let T ′ = T + e′ where e′ ∈ B is an edge incident to

v (thus incident to v′ in G′′) for which B − e′ is either connected or consists of two

parts, each has an even number of edges. (It is easy to see that at least one of the

edges of B incident to v can be chosen as e′.) Now T ′ is a spanning tree of G′′ with

o(T ′) = 0 in G′′. Again by induction r(G′′) = 0, and it follows from Lemma 3 that

r(G) = 0.
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Finally assume that dT (v) = 1. Then dB(v) ≥ 3, let G′ be the graph obtained

from G by splitting v into two adjacent vertices v′, v′′ such that two edges of B

incident to v′ and all other edges incident to v′′. The two edges of B incident to v′

are chosen in such a way that |E(B′)| has the same parity as |E(B)|, where B′ is

the component of B formed by the splitting and containing v′. It is easy to see that

such a splitting exists. Indeed, if there exists a splitting such that B becomes B′,

i.e., all the edges of B are still in the same connected component, then this is true,

as B′ and B consist of the same set of edges. Otherwise each edge of B incident with

v is a cut edge of B. Then it is easy to choose a splitting satisfying the conditions.

If |E(B)| is even, then let G′′ = G′, T ′ = T +v′v′′. It is easy to see that o(T ′) = 0

and hence o(G′) = 0. By the induction hypothesis r(G′) = 0, and it follows from

Lemma 3 that r(G) = 0.

If |E(B)| is odd, then let e ∈ E(B′) be an edge such that B′ − e is either

connected or contains two components of even number edges. Let G′′ = G′ − v′v′′

and T ′ = T + e. Then T ′ is a spanning tree of G′′ with o(T ′) = 0 in G′′. Again by

the induction hypothesis, r(G′) = 0, and it follows from Lemma 3 that r(G) = 0.

This completes the proof of Theorem 1.

By Theorem 1 and the proof above, we obtain a structure theorem concerning

graphs G with r(G) = 0.

Definition 1 Suppose G is a graph and u, v are vertices of G. When we say add

a bond bridge between u and v we mean the addition of two new vertices x and y

and the following four edges: two parallel edges between x and y, one edge between

x and u, and one edge between v and y.

When we say add a bud at vertex u we mean the addition of three new vertices

x, y and z, and the following five edges: two parallel edges between x and y, one edge

between x and z, one edge between y and z, and one edge between z and u.

In the alternative proof of Theorem 1 (the part for the case that s(G) = 0), we

actually proved that if r(G) = 0, then the addition of a bond bridge or the addition

of a bud, result in a graph G′ with r(G′) = 0. Lemma 5 shows that the addition
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of a vertex of degree 3 result in a graph G′ with r(G′) = 0. Lemma 3 shows that

subdivision of an edge, contracting an edge, identifying two nonadjacent vertices of

G will also result in a graph G′ with r(G′) = 0. Our next result asserts that all

graph G′ with r(G′) = 0 can be constructed from G0 by a series of these operations.

Theorem 4 Suppose G is a connected graph. Then r(G) = 0 if and only if G can

be constructed from G0 through a series of subdivision and adding 3-vertex, bond

bridge or bud, and finally contracting edges and identifying vertices.

Proof. We have already shown that all such constructed graphs G have r(G) = 0.

Conversely, suppose r(G) = 0. Then δ(G) ≥ 2, o(G) = 0 by Theorem 1. If

there is a vertex v ∈ V (G) such that dG(v) > 3, by the second part of the proof

of Theorem 1 given above, we can split v into two adjacent or nonadjacent vertices

v′, v′′ such that the obtained graph G′ satisfies o(G′) = 0, 2 ≤ dG′(v′) < dG(v), 2 ≤
dG′(v′′) < dG(v). Note that the inverse operation of splitting is contracting an edge

or identifying two vertices according to v′ and v′′ are adjacent or not. Continue the

splitting, we finally obtained a graph G1 with 2 ≤ δ(G1) ≤ ∆(G1) ≤ 3, o(G1) = 0.

Then Contract the edges incident with a degree 2-vertex one by one, we obtain

a cubic graph G2 with o(G2) = 0. Again by the the proof of Theorem 1, we

can delete a degree 3-vertex, a bond bridge or a bud to obtain a graph G3 with

o(G3) = 0, 2 ≤ δ(G3) ≤ ∆(G3) ≤ 3, n(G3) < n(G2). Continue this process, we will

finally obtain G0. Inverse the process, we conclude that G can be obtained from G0

through a series of subdivisions, adding degree 3-vertices, adding bond bridges or

buds, and finally contracting edges and identifying vertices.

Theorem 5 Let G be a connected non-cycle graph with δ(G) ≥ 2, then r(G) =

o(G).

Proof. By Theorem 1, we may assume that r(G) > 0, o(G) > 0. By Lemma

3, we may assume that δ(G) ≥ 3. We shall prove this theorem by induction on

|E(G)|. If |E(G)| ≤ 3, then it can be easily verified that the theorem is true.

Suppose the theorem is true for all graphs G′ with |E(G′)| ≤ k and that G is a

15



graph with |E(G)| = k ≥ 4. Let W be a bidirectional double tracing of G with

minimum number of retracings. Similar to the alternative proof of Theorem 1,

we may assume that there are no edges e1, e2 of G such that W is of the form

e1ve2P1e2ve1P2. Let e = uv be a retracting edge of W retracting at v. Now delete e

in W , we obtain a bidirectional double tracing W ′ of G− v with r(W ′) = r(W )− 1

so that r(G − e) ≤ r(G) − 1. Then by the induction hypothesis and Lemma 3,

o(G) − 1 ≤ o(G − e) = r(G − e) ≤ r(G) − 1, hence o(G) ≤ r(G). Conversely, let e

be an edge in an odd component B of G−E(T ), for which o(T ) = o(G) and B − e

is connected. Then delete e we have o(G − e) ≤ o(T ′) = o(T ) − 1 ≤ o(G) − 1, and

then r(G)− 1 ≤ r(G− e) = o(G− e) ≤ o(G)− 1. Therefore o(G) = r(G).

Theorem 6 There is a polynomial time algorithm to determine r(G).

Proof. By Lemma 3, we may assume that δ(G) ≥ 3.

Let H be the subgraph of G induced by the vertices of degree 3. For each edge

e = uv of G, we associate a subset E(e) of E(G) as follows: if {u, v} ∩ V (H) = Ø,

then E(e) = {e′ ∈ E(G) : e′ 6= e, e′ 6∈ E(H)}; if {u, v} ⊂ V (H), then E(e) =

{e′ ∈ E(G) : e′ is incident with e}; if {u, v} ∩ V (H) 6= Ø and {u, v} 6⊂ V (H), then

E(e) = {e′ ∈ E(G) : e′ 6∈ E(H) or e′ is incident with e};

Let G′ be the graph obtained from G by subdividing each edge e = uv such that

it becomes a path, say Pe, of length |E(e)|. We label each of the |E(e)| edges in the

path Pe by one of the labels {e, e′}, e′ ∈ E(e). Thus each edge of G′ is labeled with

an unordered pair of edges of G, and each label appears twice among the edges of

G′. We say that the two edges with the same label are partners. For a spanning

tree T ′ of G′, we denote by t(T ′) the number of edges e in T ′ whose partners are

not edges of T ′, and let t(G′) = min{t(T ′) : T ′ is a spanning tree of G′}. We

show that t(G′) = o(G) when |E(G)| − |V (G)| − o(T ) + 1 is even, and otherwise

t(G′) = o(G) + 1.

Let T ′ be a spanning tree of G′ with t(T ′) = t(G′). Let T be the subgraph of G

induced by the edge set E(T ) = {e : Pe ⊂ E(T ′)}. It is easy to verify that there is at

least one edge e in each odd component of G−E(T ) and another edge e′ such that

only one of the edges with label {e, e′} is in T ′, and when |E(G)|−|V (G)|−o(T )+1
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is odd, there is at lesat one edge in the non-odd component of G−E(T ) with above

property. Therefore o(T ) ≤ t(T ′), o(G) ≤ t(T ′) = t(G′), and when |E(G)|−|V (G)|−
o(T ) + 1 is odd, o(T ) ≤ t(T ′)− 1, thus o(G) ≤ t(T ′)− 1 = t(G′)− 1.

Conversely, for a spanning tree T of G with o(T ) = o(G). It is not difficult to see

that we can pair off a subset of the edges of E(G)−E(T ) in such a way that, when

|E(G)| − |V (G)| − o(T ) + 1 is even, exactly o(T ) edges are not paired with other

edges; otherwise exactly o(T ) + 1 edges are not paired with other edges, and each

pair of edges {e, e′} satisfies e ∈ E(e′), and hence e′ ∈ E(e). We delete all the edges

of G′ whose labels are those paired edges {e, e′}, and for those e ∈ E(G) − E(T )

which is not paired with other edges, we arbitrarily delete an edge from the path

Pe. Then we obtain a spanning tree T ′ of G′ with t(T ′) = o(T ) = o(G) or t(T ′) =

o(T )+1 = o(G)+1. Therefore when |E(G)|−|V (G)|−o(T )+1 is even, t(G′) ≤ o(G),

hence t(G′) = o(G). When |E(G)| − |V (G)| − o(T ) + 1 is odd, t(G′) ≤ o(G) + 1,

then t(G′) = o(G) + 1.

Now we know that o(G) can be determined by t(G′). Since t(G′) = n(G′)− 2ν,

where ν is the size of the maximum matching of the linear 2-polymatroid formed by

the pairs of G′ and the rank function of graph, and it is shown in [4],[5] that the ν

can be determined in polynomial time of the size of G′. Therefore we can determine

o(G) in time polynomial of the size of G.

The proof of Theorem 6 is essentially the one presented in [8]. However there

was a minor error in the algorithm presented in [8]. In that algorithm, the set E(e)

associated to edges e = uv for which {u, v} 6⊂ V (H) are equal to E(G)− {e}. (The

rest is the same as the algorithm presented here, except that the algorithm in [8] only

tells whether o(G) = 0.) It is easy to see that thus constructed graphs G′ always

have t(G′) = 0, provided that |E(G)| − |V (G)|+ 1 is even (which is assumed).

We close this paper with two open questions:

(1): Even though there is a polynomial time algorithm for determining r(G),

as shown by Theorem 6, the running time is about O(n40), which is certainly not

efficient. This is due to fact that the best known algorithm for finding the maximum

matching in a linear 2-polymatroid is O(n′10) [5]. It is probably worthy to find a

direct algorithm for determining r(G) and for finding a bidirectional double tracing
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with nimimum number of retractings.

(2): The authors of this paper came across the problem of bidirectional double

tracing by considering the so called “garbage collecting” problem, where a garbage

collecting truck needs to traverse each side of every street exactly once, making as

few U-turns (retractions) as possible. In practical situation, for narrow streets (or

backyard streets), the truck may just traverse the street once in either direction.

Thus we have a graph G and a subset E ′ ⊂ E(G). We need to find a closed walk

of G that traverses each of the edges in E ′ once in either direction, and traverses

all the other edges once in each direction. Such a closed walk exists if and only

if all degrees of the graph induced by E ′ are even [3]. In case such a walk exists,

our goal is also to minimize the number of retractions of the closed walk. Denote

by r(G; E ′) the minimum number of retractions in such a closed walk. How to

determine the parameter r(G; E ′) remains an open problem. In case such a closed

walk does not exist, one problem is to find a closed walk that traverses each edge in

the right direction at least as many times as required, and which has the shortest

total length. The case E ′ = E(G) of this problem is exactly the Chinese postman

problem. When E ′ 6= E(G), then because of the directions of the edges involved,

it is different from the Chinese postman problem. In the objective function, we

may also combine the total length of the closed walk and the number of retractings

together, which might result in some interesting problems.
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