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ABSTRACT

We construct infinitely many connected, circulant digraphs of outdegree three that have no hamiltonian
circuit. All of our examples have an even number of vertices, and our examples are of two types: either
every vertex in the digraph is adjacent to two diametrically opposite vertices, or every vertex is adjacent to
the vertex diametrically opposite to itself.

1. INTRODUCTION

It is well known (and not difficult to prove) that every connected, circulant graph has a hamiltonian cycle (except the
trivial counterexamples on one or two vertices). (See [2] for much stronger results.) The situation is different in the
directed case: some connected, circulant digraphs are not hamiltonian. In general, no good characterization of the
hamiltonian circulant digraphs is known. For those of outdegree two, however, R. A. Rankin found a simple arithmetic
criterion that determines which are hamiltonian. To state this result, we introduce a bit of notation. (In this paper,
circulant digraphs are represented as Cayley digraphs on cyclic groups.)

Definition 1.1. For any natural numbern, we useZn to denote the additive cyclic group of integers modulon. For
any setA of integers, letCay(Zn;A) be the digraph whose vertex set isZn, and in which there is an arc fromu tou+a
(mod n), for everyu ∈ Zn and everya ∈ A. A digraph iscirculant if it is (isomorphic to)Cay(Zn;A), for some
choice ofn andA.

Note thatCay(Zn;A) is regular, and its outdegree is equal to the cardinality of the generating setA. It is easy to
see thatCay(Zn;A) is connected if and only ifgcd(a1, a2, . . . , am, n) = 1, whereA = {a1, a2, . . . , am}.

Theorem 1.2 (Rankin [5, Thm. 4]). A connected, circulant digraphCay(Zn; a, b) of outdegree two has a hamilto-
nian circuit if and only if there are nonnegative integerss andt, such thats + t = gcd(sa + tb, n) = gcd(a− b, n).

In contrast, little is known about the hamiltonicity of circulant digraphs of outdegree three (or more). The following
theorem provides an interesting class of examples that are hamiltonian.

Theorem 1.3 (Curran-Witte [4, Thm. 9.1]). SupposeCay(Zn;A) is connected, and has outdegree at least three.
If gcd(a, n) gcd(b1, b2, . . . , bm) ≥ n, whenevera, b1, b2, . . . , bm ∈ A anda 6∈ {b1, b2, . . . , bm}, thenCay(Zn;A) has
a hamiltonian circuit.
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Cay(Z12; 2, 3, 8) Cay(Z28; 2, 7, 16) Cay(Z36; 2, 9, 20) Cay(Z42; 2, 12, 33)

Cay(Z12; 3, 4, 6) Cay(Z30; 2, 3, 18) Cay(Z36; 2, 15, 20) Cay(Z42; 2, 15, 36)

Cay(Z18; 2, 3, 12) Cay(Z30; 2, 6, 21) Cay(Z36; 3, 8, 18) Cay(Z42; 2, 18, 39)

Cay(Z18; 2, 6, 15) Cay(Z30; 2, 9, 24) Cay(Z40; 2, 5, 22) Cay(Z42; 3, 14, 24)

Cay(Z20; 2, 5, 12) Cay(Z30; 2, 10, 25) Cay(Z40; 4, 5, 24) Cay(Z42; 6, 7, 28)

Cay(Z24; 2, 3, 14) Cay(Z30; 3, 10, 18) Cay(Z42; 2, 3, 24) Cay(Z44; 2, 11, 24)

Cay(Z24; 2, 9, 12) Cay(Z30; 5, 6, 20) Cay(Z42; 2, 6, 27)

Cay(Z24; 3, 4, 16) Cay(Z36; 2, 3, 20) Cay(Z42; 2, 7, 28)

FIGURE 1. Non-hamiltonian, connected, circulant digraphs of outdegree 3 with less than 48 vertices.

One non-hamiltonian example,Cay(Z12; 3, 4, 6), was found by D. Witte [6, p. 301]. In this paper, we construct
infinitely many non-hamiltonian, connected, circulant digraphs of outdegree three (without loops or multiple arcs).
(Figure 1 lists examples with less than48 vertices. For brevity, the table does not listCay(Zn;xa, xb, xc) if it includes
Cay(Zn; a, b, c), andgcd(x, n) = 1.) In all of our examples,n is even, and the examples come in two families: either
the generating setA contains the elementn/2 of order two inZn (see 3.1′), or two of the elements ofA differ by n/2
(see 4.6′).

Theorem 3.1′. Fork ≥ 1, the circulant digraphCay(Z12k; 6k, 6k + 2, 6k + 3) has no hamiltonian circuit.

If gcd(x, n) = 1, thenCay(Zn;xa, xb, xc) is isomorphic toCay(Zn; a, b, c), so this theorem can be restated in the
following more general form.

Corollary 1.4. If gcd(a − b, 12k) = 1, and either2a − 3b ≡ 6k (mod 12k) or 3a − 2b ≡ 6k (mod 12k), then
Cay(Z12k; 6k, a, b) has no hamiltonian circuit.

Theorem 4.6′. The circulant digraphCay(Z2k; a, b, b+k) has no hamiltonian circuit if and only ifgcd(a, b, k) 6= 1,
or

• gcd(a− b, k) = 1; and
• gcd(a, 2k) 6= 1; and
• gcd(b, k) 6= 1; and
• eithera or k is odd; and
• a is even, or both ofb andk are even.

It is natural to ask whether there are any other non-hamiltonian examples. In this vein, an exhaustive computer
search reported that every non-hamiltonian, connected, circulant digraph of outdegree three with no more than95
vertices is described by either Corollary 1.4 or Theorem 4.6′. (If this computer calculation is correct, then Corollary 5.2
implies that if there exists a connected, non-hamiltonian, circulant digraph with outdegree four (or more), then it must
have more than 95 vertices.) Perhaps the first question to ask is whether the converse of Corollary 1.4 is true: if
Cay(Z2n;n, a, b) has no hamiltonian circuit, must it be the case thatn is divisible by6, gcd(a− b, 2n) = 1, and either
2a−3b or 3a−2b is≡ n (mod 2n)? More fundamental, but also, presumably, more difficult, is to determine whether
there are any examples with an odd number of vertices, or of outdegree≥ 4.

Our results do not provide any counterexamples to the following conjecture.

Conjecture 1.5 (Curran-Witte [4, p. 74]). SupposeCay(Zn;A) is connected, and has outdegree at least three. If,
for every proper subsetA′ of A, the subdigraphCay(Zn;A′) is not connected, thenCay(Zn;A) has a hamiltonian
circuit.

As mentioned above, circulant digraphs are Cayley digraphs on cyclic groups. Thus, this paper is related to the
literature on hamiltonian circuits in Cayley digraphs [1], [3], [6]. Indeed, Rankin’s Theorem (1.2) was proved for
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2-generated Cayley digraphs on any abelian group, not just on cyclic groups (and even some Cayley digraphs on
nonabelian groups). Similarly, Theorem 1.3 and Conjecture 1.5 are only special cases of statements for all abelian
groups.

A basic lemma and some definitions are presented in Section 2. The proofs of Theorems 3.1 and 4.6 are given in
Sections 3 and 4, respectively. A small result on the hamiltonicity of circulants of outdegree four or more appears in
Section 5.

2. A PARITY LEMMA

Definition 2.1. Given a digraphG, let C = C(G) be the set of all spanning subdigraphs ofG with indegree1 and
outdegree1 at each vertex. (Thus, each component of a digraph inC is a circuit.)

Lemma 2.2. Given a digraphG, supposeH andH ′ belong toC. Let u1, u2, andu3 be three vertices ofH, and let
vi be the vertex that followsui in H. AssumeH ′ has the same arcs asH, except:

• instead of the arcs fromu1 to v1, fromu2 to v2, and fromu3 to v3,

• there are arcs fromu1 to v2, fromu2 to v3, and fromu3 to v1.

Then the number of components ofH has the same parity as the number of components ofH ′.

Proof. Letσ be the permutation of{1, 2, 3} defined by:uσ(i) is the vertex that is encountered whenH first reenters
{u1, u2, u3} afterui. Thus, ifσ is the identity permutation, thenu1, u2, u3 lie on three different components ofH.
On the other hand, ifσ is a2-cycle, then two ofu1, u2, u3 are on the same component, but the third is on a different
component. Similarly, ifσ is a3-cycle, then all three of these vertices are on the same component. Thus, the parity of
the number of components ofH that intersect{u1, u2, u3} is precisely the opposite of the parity of the permutationσ.

There is a similar permutationσ′ for H ′. From the definition ofH ′, we see thatσ′ is simply the product ofσ with
the3-cycle (1, 2, 3), soσ′ has the same parity asσ, because3-cycles are even permutations. Thus, the parity of the
number of components ofH that intersect{u1, u2, u3} is the same as the parity of the number of components ofH ′

that intersect{u1, u2, u3}. Because the components that do not intersect{u1, u2, u3} are exactly the same inH as
in H ′, this implies that the number of components inH has the same parity as the number of components inH ′.

Definition 2.3. Let G = Cay(Zn;A), and supposeH ∈ C. For anyu ∈ Zn anda ∈ A, we say thatu travels by a
in H if the arc fromu to u + a is in H.

3. A GENERATOR OF ORDER TWO

Theorem 3.1. If a is divisible by6, thenCay(Z2a; a, a + 2, a + 3) has no hamiltonian circuit.

Proof. Suppose there is a hamiltonian circuitH0; let r be the number of vertices that travel bya, let s be the
number of vertices that travel bya + 2, and lett be the number of vertices that travel bya + 3. Sincea anda + 2 are
both even, we havegcd(a, a + 2, 2a) 6= 1, sot 6= 0. Also, sincea is divisible by3, we havegcd(a + 3, 2a) 6= 1, so
t 6= 2a. Therefore,0 < t < 2a.

We must haver + s + t = 2a, andra + s(a + 2) + t(a + 3) must be divisible by2a. Therefore, we have

t =
(

ra + s(a + 2) + t(a + 3)
)

− (a + 2)(r + s + t) + 2r ≡ 2r (mod 2a),

and

s = (a + 3)(r + s + t) −
(

ra + s(a + 2) + t(a + 3)
)

− 3r ≡ −3r (mod 2a).
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Now r ≤ a, because the hamiltonian circuit can never have two consecutivea-arcs. Therefore, because0 < t < 2a,
the congruencet ≡ 2r implies that

t = 2r.

Therefore, we have2s + 3t = t + 2s + 2t = 2(r + s + t) = 2(2a) = 4a.
For eachi ∈ Z2a, let

Bi = {i, i + 1, i + 2, a + i, a + i + 1, a + i + 2}.

We claim that

for eachi, the subdigraph ofH0 induced byBi has exactly two arcs.

Consider the walkW in Cay(Za; 2, 3) that results from reducingH moduloa, and removing the loops. This walk may
be lifted to a pathW in Cay(Z; 2, 3) that begins at0 and ends at4a. Thus, for eachj, with 0 ≤ j < 4a, there is exactly
one arcuj→vj of W with uj ≤ j andvj > j. Becausej < vj ∈ {uj + 2, uj + 3}, we haveuj ≥ j − 2, so the arc
uj→vj starts in the set{j − 2, j − 1, j} and ends outside this set. The corresponding arcuj→vj of H starts inBj−2

and ends outsideBj−2. BecauseBj−2 = Bi iff j − 2 ≡ i (mod a), we conclude that the hamiltonian circuitH0 has
exactly4 arcs that start inBi and end outsideBi. The claim follows.

LetD be the collection of all spanning subdigraphsH of Cay(Z2a; a, a + 2, a + 3), such that

(1) every vertex ofH has indegree1 and outdegree1 (that is,H ∈ C);
(2) H has an odd number of components;
(3) we havet = 2r, wheret = tH is the number of vertices that travel bya + 3 in H, andr = rH is the number

that travel bya; and
(4) for eachi, the subdigraph ofH induced byBi has exactly two arcs.

We knowD is nonempty, because the hamiltonian circuitH0 belongs toD.
LetH be a digraph inD, such thatr is minimal.
We claim that some vertex travels bya in H. For, otherwise, we haver = rH = 0, which impliest = 2r = 0, so

every vertex ofH must travel bya+2. Therefore, the number of components ofH is preciselygcd(a+2, 2a). Because
a is even (indeed, it is divisible by6), this implies thatH has an even number of components, which contradicts the
definition ofD.

Case 1. For some i, the two consecutive vertices i and i + 1 both travel by a in H . By vertex-transitivity, there is no
harm in assumingi = a+ 1. Since the two arcs(a+ 1)→1 and(a+ 2)→2 must be the only arcs within the blocksB1

andB2, we see that0, a, and1 must all travel bya+ 3. For the same reason, the vertex2 cannot travel bya. However,
the vertex2 cannot travel bya+ 2, lest the vertexa+ 4 have indegree two; so the vertex2 must travel bya+ 3. Then
the vertex3 must also travel bya + 3, lest eithera + 3 or a + 5 have indegree two. Continuing this argument, we see
that4, 5, 6,. . . must all travel bya+3. So every vertex travels bya+3, which contradicts the assumption thati travels
by a.

Case 2. For every i, if the vertex i travels by a, then the vertex i− 2 also travels by a. Some vertex travels bya, so, by
vertex-transitivity, there is no harm in assuming that0 travels bya. Hence, by repeated application of the hypothesis,
we see that the vertex2j travels bya, for everyj. In particular, the vertices0, 2, a, anda + 2 all travel bya. This
contradicts the fact that the subdigraph ofH induced by the blockB0 has only two arcs.

Case 3. The general case. Some vertex travels bya, so, by vertex-transitivity, there is no harm in assuming that3
travels bya. From Case 2, we may assume that1 does not travel bya. However, the vertex1 also does not travel
by a + 2, lest the vertexa + 3 have indegree two; thus, the vertex1 must travel bya + 3.

Now, from Case 1, we may assume that the vertex2 does not travel bya. However, it also does not travel bya+ 2,
lest the vertexa + 4 have indegree two; hence, the vertex2 must travel bya + 3.

Now, we construct another spanning subdigraphH ′ in which the vertices1, 2, and3 all travel bya+ 2: H ′ has the
same arcs asH, except:

• instead of the arcs from1 to a + 4, from 2 to a + 5, and from3 to a + 3,
• there are arcs from1 to a + 3, from 2 to a + 4, and from3 to a + 5.
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Note thatt′ = t− 2 andr′ = r − 1, sot′ = t− 2 = 2r − 2 = 2r′.
From Lemma 2.2, we know that the number of components ofH has the same parity as the number of components

of H ′. That is, the number of components ofH ′ is odd. We conclude thatH ′ ∈ D. But, becauser′ = r − 1, this
contradicts the minimality ofH.

4. GENERATORS WHOSE DIFFERENCE IS THE ELEMENT OF ORDER TWO

Definition 4.1. Let G = Cay(Z2k; a, b, b + k). Let E = E(G) be the set of all spanning subdigraphs ofG with
indegree1 and outdegree1 at each vertex, such that, in each coset of the subgroup{0, k}, exactly one vertex travels
by a, and the other byb or b + k. (Note thatE is a subset of the classC introduced in§2.)

Notation 4.2. For any subsetA of a groupΓ, we use〈A〉 to denote the subgroup ofΓ generated byA. ForA ⊂ Zn,
note thatCay(Γ;A) is connected if and only if〈A〉 = Zn.

Definition 4.3. Let G = Cay(Z2k; a, b, b + k), and assumeG is connected. We construct an elementH0 of E . Let
d = 2k/ gcd(a, 2k) be the order of the elementa in the cyclic groupZ2k; the construction of our example depends on
the parity ofd.

Case 1. d is odd. In this case,k 6∈ 〈a〉. Every vertexv in Z2k can be uniquely written in the formxva + yvb + zvk
with 0 ≤ xv < d, 0 ≤ yv < k/d, and0 ≤ zv < 2. LetH0 be the spanning subdigraph in which a vertexv ∈ Z2k

• travels bya if zv = 0;
• travels byb if zv = 1 andzv+b = 1; and
• travels byb + k otherwise.

(By construction, the verticesv that satisfyzv = 0 are both entered and exited via ana-arc inH0; the other vertices
are neither entered nor exited via ana-arc.)

Case 2. d is even. In this case,k ∈ 〈a〉, so every vertexv in Z2k can be uniquely written in the formxva + yvb with
0 ≤ xv < d and0 ≤ yv < 2k/d. LetH0 be the spanning subdigraph in which a vertexv ∈ Z2k

• travels bya if xv < d/2;
• travels byb + k if xv ≥ d/2 and1 ≤ xv+b ≤ d/2; and
• travels byb otherwise.

(By construction, the verticesv that satisfy1 ≤ xv ≤ d/2 are precisely those that are entered via ana-arc inH0.)

Lemma 4.4. Let G = Cay(Z2k; a, b, b + k), assumeG is connected, and letH0 be the element ofE constructed in
Definition 4.3. ThenH0 has an odd number of components if and only if either

• both ofa andk are even; or
• a is odd, and eitherb or k is odd.

Proof. Let d = 2k/ gcd(a, 2k) be the order of the elementa in the cyclic groupZ2k; the proof depends on the
parity ofd.

Case 1. d is odd. Becausead is a multiple of2k, we see, in this case, thata must be even. Thus, we wish to show
that the parity of the number of components ofH0 is the opposite of the parity ofk.

For i ∈ {0, 1}, let Gi = { v ∈ Z2k | zv = i }, so each ofG0 andG1 has exactlyk vertices. From the definition
of H0, we see that each component ofH0 is contained in eitherG0 orG1. Each component inG0 is a circuit of lengthd
(all a-arcs), so the number of components inG0 is k/d. Becaused is odd, this has the same parity ask, so we wish to
show thatG1 contains an odd number of components ofH0.

The number of components contained inG1 is equal to the order of the quotient groupZ2k/〈b, k〉. Because
〈a, b, k〉 = Z2k, we know thata generates this quotient group. Then, becausea has odd order, we conclude that the
quotient group also has odd order, as desired.
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Case 2. d is even. Letxa+yb be a vertex that travels bya in H0. Thenv = (d/2)a+yb is in the same component (by
following a sequence ofa-arcs). Furthermore, ify < (2k/d) − 1, then we see thatxv+b = d/2, sov travels byb + k;
this means that(y + 1)b = v + b+ k is also in the same component. By induction ony, this implies that all thea-arcs
of H0 are in the same component, and this component contains some(b + k)-arcs. Thus, thea-arcs are essentially
irrelevant in counting components ofH0: there is a natural one-to-one correspondence between the components ofH0

and the components ofCay(Zk; b). Thus, the number of components is equal to the order of the quotient groupZk/〈b〉.
This quotient group has odd order if and only if eitherb or k is odd. Therefore,H0 has an odd number of components
if and only if eitherb or k is odd.

Thus, we have the desired conclusion ifa is odd, so we may now assumea is even. Since2k/ gcd(2k, a) = d
is even, this implies thatk is also even. So we wish to show thatH0 has an odd number of components. Because
Cay(Z2k; a, b, k) is connected, it cannot be the case thata, b, andk are all even, so we conclude thatb is odd. From
the conclusion of the preceding paragraph, we see thatH0 has an odd number of components, as desired.

The following result is a consequence of the proof of Lemma 2.2.

Lemma 4.5. Let G = Cay(Z2k; a, b, b + k), assumeH ∈ E , and supposeu is a vertex ofH that travels bya, such
thatu, u+k, andu+a+k are on three different components ofH. Then there is an elementH ′ of E , with exactly the
same arcs asH, except the arcs leavingu andu+ k, and the arc enteringu+ a+ k, such thatu, u+ k, andu+ a+ k
are all on the same component ofH ′.

Theorem 4.6. The circulant digraphCay(Z2k; a, b, b + k) has a hamiltonian circuit if and only ifgcd(a, b, k) = 1,
and either

• gcd(a− b, k) 6= 1; or
• gcd(a, 2k) = 1; or
• gcd(b, k) = 1; or
• both ofa andk are even; or
• a is odd, and eitherb or k is odd.

Proof. (⇒) Because hamiltonian digraphs are connected, we know thatgcd(a, b, k) = 1. We may assumegcd(a−
b, k) = 1, gcd(a, 2k) 6= 1, andgcd(b, k) 6= 1.

Choose a hamiltonian circuit; letr be the number of vertices that travel bya, and lets be the number of vertices
that travel byb or b + k. We must haver + s = 2k, andra + sb must be divisible byk. Therefore, we conclude that
r(a− b) is divisible byk. Sincegcd(a− b, k) = 1, this impliesr is divisible byk. Because0 ≤ r ≤ 2k, this implies
r ∈ {0, k, 2k}. Becausegcd(a, 2k) 6= 1, we know〈a〉 6= Z2k, so we cannot haver = 2k; becausegcd(b, k) 6= 1, we
know 〈b, k〉 6= Z2k, so we cannot haver = 0. Therefore, we must haver = k. So exactly half of the vertices travel
by a, and the other half travel byb or b + k.

Let us show that every hamiltonian circuit belongs toE . That is, in each coset of the subgroup{0, k}, exactly one
vertex travels bya, and the other byb or b + k. If not, then, from the conclusion of the preceding paragraph, there
must be some coseti+ {0, k} in which both vertices travel bya. Therefore, both vertices ofi+ a+ {0, k} are entered
via a, which means that neither of the vertices ini + a − b + {0, k} travels byb or b + k, so they both must travel
by a. Repeating the argument, we see that both of the vertices ini + j(a− b) + {0, k} travel bya, for all j. Because
gcd(a − b, k) = 1, every vertex in the digraph is of the formi + j(a − b) or i + j(a − b) + k, so we see that every
vertex travels bya. This contradicts the conclusion of the preceding paragraph.

Recall the digraphH0 of Definition 4.3. It suffices to show, for everyH ∈ E , that the number of components ofH
has the same parity as the number of components ofH0. For then, because the preceding paragraph implies thatE
contains a hamiltonian circuit, we conclude thatH0 has an odd number of components. Then Lemma 4.4 provides the
desired conclusion.

Letu1 be some vertex that travels bya in H, and letv1 = u1 + a. Letu2 = u1 + k, and letv2 ∈ u2 + {b, b+ k} be
the vertex that followsu2 in H. Finally, letv3 = v1 + k, and letu3 ∈ v3 − {b, b + k} be the vertex thatprecedes v3

in H. We construct an elementH ′ of E in which it isu2 that travels bya, instead ofu1: H ′ has the same arcs asH,
except:

• instead of the arcs fromu1 to v1, fromu2 to v2, and fromu3 to v3,
• there are arcs fromu1 to v2, fromu2 to v3, and fromu3 to v1.
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Lemma 2.2 implies that the number of components ofH has the same parity as the number of components ofH ′.
BecauseH andH0 both have the property that, in each coset of{0, k}, exactly one vertex travels bya, and the other

by b or b+ k, we may transformH intoH0, by performing a sequence of transformations of the formH 7→ H ′. Thus,
we may transformH intoH0, without changing the parity of the number of components, as desired.

(⇐) Becausegcd(a, b, k) = 1, we know that〈a, b, k〉 = Z2k.

Case 1. We have gcd(a, 2k) = 1. In this case, we have〈a〉 = Z2k, so there is an obvious hamiltonian circuit in the
Cayley digraph (alla-arcs).

Case 2. We have gcd(b, k) = 1 In this case, either〈b〉 = Z2k or 〈b+k〉 = Z2k, so there is again an obvious hamiltonian
circuit.

Case 3. We have gcd(a− b, k) 6= 1. In this case, we have〈a− b, k〉 6= Z2k. There are many digraphs inC in which

• every vertex not in〈a− b, k〉 travels by eitherb or b + k; and
• for each vertexv ∈ 〈a− b, k〉, one ofv andv + k travels bya, and the other travels by eitherb or b + k.

Among all such digraphs, letH be one in which the number of components is minimal.
We claim thatH is a hamiltonian circuit. If not, thenH has more than one component. Because〈a, b, k〉 = Z2k,

we know thatb generates the quotient groupZ2k/〈a− b, k〉, so every component ofH intersects〈a− b, k〉, and hence
either

• there is some vertexu in 〈a− b, k〉 such thatu andu + k are in different components ofH; or
• for all v ∈ 〈a − b, k〉, the verticesv andv + k are in the same component ofH, but there is some vertexu in

〈a− b, k〉 such thatu andu + (a− b) are in different components ofH.

In either case, letu1 be the one ofu andu + k that travels bya.
Let v1 = u1 + a. Let u2 = u1 + k, and letv2 ∈ u2 + {b, b + k} be the vertex that followsu2 in H. Finally, let

v3 = v1 + k, and letu3 ∈ v3 − {b, b + k} be the vertex thatprecedes v3 in H. The choice ofu1 implies thatu1, u2

andu3 do not all belong to the same component ofH.
Letw1 andw2 be the vertices thatprecede u1 andu2, respectively, onH. (Sow1 = w2 + k.)
Let σ be the permutation of{1, 2, 3} defined in the proof of Lemma 2.2. Ifσ is an even permutation, letH1 = H;

if σ is an odd permutation, letH1 be the element ofC that has the same arcs asH, except:

• instead of the arcs fromw1 to u1, and fromw2 to u2,
• there are arcs fromw1 to u2, and fromw2 to u1.

In either case, the permutationσ1 for H1 is even. Thus,σ1 is either trivial or a3-cycle. If it is a3-cycle, thenu1,
u2 andu3 are all contained in a single component ofH1, soH1 has less components thanH, which contradicts the
minimality ofH. Thus,σ1 is trivial.

LetH ′ be the element ofC that has the same arcs asH1, except:

• instead of the arcs fromu1 to v1, fromu2 to v2, and fromu3 to v3,
• there are arcs fromu1 to v2, fromu2 to v3, and fromu3 to v1.

Becauseσ1 is trivial, we see that the permutationσ′ for H ′ is the3-cycle (1, 2, 3). Hence,u1, u2 andu3 are all
contained in a single component ofH ′, soH ′ has less components thanH, which contradicts the minimality ofH.

Case 4. Either both of a and k are even; or a is odd, and either b or k is odd. In this case, Lemma 4.4 asserts that the
digraphH0 of Definition 4.3 has an odd number of components. We construct a hamiltonian circuit by amalgamating
all of these components into one component. We start with the component containing0, and use Lemma 4.5 to add the
other components to it two at a time.

Note that the assumption of the present case, together with the fact thatgcd(a, b, k) = 1, implies thatgcd(b, k) is
odd. Furthermore, we may assume thatgcd(b, k) 6= 1, for, otherwise, Case 2 applies. Thus,gcd(b, k) ≥ 3.

Let d = 2k/ gcd(a, 2k) be the order of the elementa in the cyclic groupZ2k; the proof depends on the parity ofd.

Subcase 4.1. d is odd. Note that two verticesu andv are in the same component ofH0 if and only if either

• zu = zv = 0 andyu = yv; or
• zu = zv = 1 andxu ≡ xv (mod gcd(b, k)).
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Lemma 4.5 implies there is an elementH ′

0 of E , such that0, k, anda+k are all in the same component ofH ′

0. (The
other components ofH ′

0 are components ofH0.)
Then Lemma 4.5 implies there is an elementH1 = (H ′

0)
′ of E , such thata+ b, a+ b+ k, and2a+ b+ k are all in

the same component ofH1. (The other components ofH1 are components ofH0.)
With this as the base case of an inductive construction, we construct, for1 ≤ i ≤ k/(2d), an elementHi of E , such

that

{ v | zv = 0 and0 ≤ yv ≤ 2i− 1 } ∪ { v | zv = 1 andxv ≡ 0, 1, or 2 (mod gcd(b, k)) }

is a component ofHi, and all other components ofHi are components ofH0. Namely,Hi has exactly the same arcs
asHi−1, except:

• instead of the arcs

(2i− 2)b → a + (2i− 2)b
(2i− 2)b + k → (2i− 1)b + k

a + (2i− 3)b + k → a + (2i− 2)b + k

(2i− 1)b → a + (2i− 1)b
(2i− 1)b + k → v

a + (2i− 2)b + k → a + (2i− 1)b + k

(wherev = (2i)b + k if i < k/(2d), andv ∈ {(2i)b, (2i)b + k} if i = k/(2d)),
• there are arcs

(2i− 2)b → (2i− 1)b + k
(2i− 2)b + k → a + (2i− 2)b + k

a + (2i− 3)b + k → a + (2i− 2)b

(2i− 1)b → v
(2i− 1)b + k → a + (2i− 1)b + k

a + (2i− 2)b + k → a + (2i− 1)b

Let K1 = Hk/(2d). With this as the base case of an inductive construction, we construct, for1 ≤ i ≤ (gcd(b, k) −
1)/2, an elementKi of E , such that

{ v | zv = 0 } ∪ { v | zv = 1 andxv ≡ 0, 1, . . . , or 2i (mod gcd(b, k)) }

is a component ofKi, and all other components ofKi are components ofH0. Namely, Lemma 4.5 implies there is an
elementKi = K ′

i−1 of E , such that(2i− 1)a, (2i− 1)a + k, and(2i)a + k are all in the same component ofKi.
Then, fori =

(

gcd(b, k)−1
)

/2, we see that a single component ofKi contains every vertex, soKi is a hamiltonian
circuit.

Subcase 4.2. d is even. Note that one component ofH0 is

{ v | xv < d/2 } ∪ { v | xv ≡ 0 (mod gcd(b, k)) }.

Two verticesu and v that are not in this component are in the same component ofH0 if and only if xu ≡ xv

(mod gcd(b, k)).
We may assume2k/d > 1, for otherwise Case 1 applies. WithH0 as the base case of an inductive construction, we

construct, for0 ≤ i ≤
(

gcd(b, k) − 1
)

/2, an elementHi of E , such that

{ v | xv < d/2 } ∪ { v | xv ≡ 0, 1, . . . , or 2i (mod gcd(b, k)) }

is a component ofHi, and all other components ofHi are components ofH0. Namely, Lemma 4.5 implies there is an
elementHi = H ′

i−1 of E , such that(2i− 1)a, (2i− 1)a + k, and(2i)a + k are all in the same component ofHi.
Then, fori =

(

gcd(b, k)−1
)

/2, we see that a single component ofHi contains every vertex, soHi is a hamiltonian
circuit.
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5. OUTDEGREE AT LEAST FOUR

Proposition 5.1. SupposeCay(Zn;A) has outdegree four or more, and assume there is a proper subsetA′ of A, such
thatCay(Zn;A′) is connected and has outdegree three. If every non-hamiltonian, connected, circulant digraph that
has outdegree three and exactlyn vertices is described by either Corollary 1.4 or Theorem 4.6′, thenCay(Zn;A) has
a hamiltonian circuit.

Proof. Suppose the contrary. Then the spanning subdigraphCay(Zn;A′) also has no hamiltonian circuit. There-
fore, by assumption, there are two cases to consider.

Case 1. Cay(Zn;A′) is described by Corollary 1.4. We haven = 12k, and there is no harm in assuming that
Cay(Zn;A′) is described by Theorem 3.1′, soA′ = {6k, a, b}, wherea = 6k+2 andb = 6k+3. Let c be an element
of A that is not inA′. Because6k 6∈ {a, b, c}, we know thatCay(Zn; a, b, c) is not described by Corollary 1.4, so it
must be described by Theorem 4.6′. Thus, we must havec ∈ {a + 6k, b + 6k}. Because both ofa and6k are even,
we see from Theorem 4.6 thatCay(Z12k; a, b, b + 6k) has a hamiltonian circuit. Therefore, it must be the case that
c = a+6k ≡ 2 (mod n), so{2, 6k, 6k+2, 6k+3} ⊂ A. LetH be the spanning subdigraph ofCay(Zn;A) in which
every vertex travels by2, except:

• the vertex2 travels by6k;

• the vertex6k travels by6k + 2; and

• the vertices0 and6k + 1 travel by6k + 3.

ThenH is a hamiltonian circuit.

Case 2. Cay(Zn;A′) is described by Theorem 4.6′. Writing n = 2k, we haveA′ = {a, b, b+ k}; let c be an element
of A that is not inA′. By interchangingb andb+ k if necessary, we may assumeCay(Zn; a, b) is connected. Then we
may assumeCay(Zn; a, b, c) is described by Theorem 4.6′, for otherwise Case 1 applies. Therefore,c ∈ {a+k, b+k},
so, becausec 6∈ A′, we must havec = a + k. Any Euler circuit inCay(Zk; a, b) passes through each vertex exactly
twice; any such circuit may be lifted to a hamiltonian circuit inCay(Z2k; a, a + k, b, b + k), which is a spanning
subdigraph ofCay(Zn;A).

Corollary 5.2. SupposeCay(Zn;A) is connected, and has outdegree four or more, and assumen < 420. If every
non-hamiltonian, connected, circulant digraph that has outdegree three and exactlyn vertices is described by either
Corollary 1.4 or Theorem 4.6′, thenCay(Zn;A) has a hamiltonian circuit.

Proof. From the proposition, we may assume there is no3-element subset{a, b, c} of A with gcd(a, b, c, n) = 1.
This implies thatn has at least four distinct prime factors. Then, sincen < 420 = 22 · 3 · 5 · 7, we know thatn is
square free. Therefore, becausen < 2310 = 2 · 3 · 5 · 7 · 11, this implies thatn is the product of four distinct primes.
Hence, there are four elements{a, b, c, d} of A with gcd(a, b, c, d, n) = 1, so we may assume thatA has exactly four
elements. These conditions imply that the hypotheses of Theorem 1.3 are satisfied, soCay(Zn;A) has a hamiltonian
circuit.

Remark. The proof of Corollary 5.2 is much simpler (namely, the first two sentences suffice) ifn < 2 ·3 ·5 ·7 = 210.
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