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INTERSECTION REPRESENTATION OF DIGRAPHS
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Abstract. The leafage of a digraph is the minimum number of leaves in a host
tree in which it has a subtree intersection representation. We discuss bounds on
the leafage in terms of other parameters (including Ferrers dimension), obtaining
a string of sharp inequalities.

1. INTRODUCTION

An intersection representation of a digraph D assigns an ordered pair (Sv, Tv) to each
vertex v ∈ V (D) such that uv ∈ E(D) if and only if Su ∩ Tv 6= Ø. We call Sv and Tv the
source set and sink set of v. This model was first described by Beineke and Zamfirescu [1]
under the name connection digraph. An essentially equivalent model in terms of bipartite
graphs was introduced by Harary, Kabell, and McMorris [7].

When each set in an intersection representation is a subtree of a fixed host tree, we
have a subtree representation. Every n-vertex digraph has a subtree representation in a
star with n leaves. Not every digraph has a subtree representation in a path; those that
do are the interval digraphs, which are characterized in [15,16]. We define the leafage
l(D) of a digraph D to be the minimum number of leaves in a host tree in which D has
a subtree representation. Thus leafage is a measure of distance from an interval digraph,
and the subtree representations in stars show that l(D) ≤ n(D). An analogous parameter
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for chordal (undirected) graphs is studied in [8]. Further results about adjacency matrices
of interval digraphs appear in [9,10,15,16,17].

We obtain lower bounds on leafage using the idea of Ferrers dimension. The successors
of a vertex v are {u ∈ V (D): vu ∈ E(D)}; the predecessors are {u ∈ V (D): uv ∈ E(D)}.
A digraph is a Ferrers digraph [14] if its successor sets are linearly ordered by inclusion,
which is equivalent to the adjacency matrix A(D) having no 2 by 2 permutation submatrix.
Viewing a digraph as a relation D ⊆ V (D) × V (D), the Ferrers dimension f(D) of D is
the minimum number of Ferrers digraphs on V (D) whose intersection is D (introduced in
[2]). Since the complement in V × V of a Ferrers digraph is also a Ferrers digraph, this
also equals the minimum number of Ferrers digraphs whose union is D.

Interval digraphs all have Ferrers dimension at most 2; a digraph D is an interval
digraph if and only if D is the union of two disjoint Ferrers digraphs [15]. This generalizes
to a lower bound on l(D) using Ferrers digraphs. Let f∗(D) denote the minimum number
of pairwise disjoint Ferrers digraphs whose union is D. These are Ferrers digraphs whose
intersection is D and whose pairwise unions are V (D)× V (D). Having imposed an extra
condition on the minimization, we have f∗(D) ≥ f(D); we prove that l(D) ≥ f∗(D).

On the upper side, we study the related catch leafage l∗(D) of a digraph D. This
is the minimum number of leaves in a host tree in which D has a subtree representation
such that each sink subtree is a single vertex. (Such representations, particularly when
the host tree is a path, are studied in [12,13,15].) This condition restricts the allowable
representations, so l∗(D) ≥ l(D). We prove that l∗(D) ≤ w(P (D)), where w(P (D)) is the
width of the inclusion poset P (D) on the sets whose incidence vectors are the columns of
the adjacency matrix A(D). We also give a sufficient condition for equality in this bound.

We thus obtain the chain of inequalities

f(D) ≤ f∗(D) ≤ l(D) ≤ l∗(D) ≤ w(P (D)) ≤ n(D).

We present examples to show that each inequality is best possible. We also present exam-
ples to show that each bound is arbitrarily weak, as any one of these parameters can be
at most 3 when the next parameter is arbitrarily large.

The upper bound w(P (D)) is easily computable, but the lower bounds are not. Cogis
[2] and Doignon, Ducamp, and Falmagne [4] proved an easily testable characterization of
the digraphs with Ferrers dimension at most 2, but Yannakakis [18] proved that recognition
of Ferrers dimension 3 is NP-complete. Müller [11] found a polynomial-time recognition
algorithm for interval digraphs (leafage 2). Other than this, we do not know the complexity
of recognizing digraphs with bounded values for any of {f∗(D), l(D), l∗(D)}.

2. SUBTREE REPRESENTATIONS AND LEAFAGE

We use u → v to denote the successor relation; u → v means “uv is an edge”. A branch
point of a tree is a vertex of degree at least 3. We show first that leafage is well-defined.

THEOREM 1. If D is a digraph with n vertices, then D has a subtree representation
in a star with at most n leaves.



3

Proof: In a star H with n leaves, assign distinct leaves as sink sets for the n vertices.
For each v ∈ V (D), let Sv be the star induced by the center of H and the leaves corre-
sponding to the successors of v. Then u → v if and only if Tv ⊆ Su, and hence this is a
representation.

The bound l(D) ≤ n(D) is sharp, as it holds with equality for the digraph Dn in
Theorem 2. Our tool for proving lower bounds on l(D) is a property of subtrees of a tree.
If Ti, Tj , Tk are subtrees of a tree, then we say that Tk is between Ti and Tj if Ti ∩ Tj = Ø
and the unique path from Ti to Tj contains a vertex of Tk (possibly at the start or end).
A collection of pairwise disjoint subtrees having the property that none is between two
others is an asteroidal collection of subtrees.

LEMMA 1. If T1, . . . , Tn is an asteroidal collection of subtrees of a tree T , then T has
at least n leaves.

Proof: We may assume that the path from any leaf of T to the nearest branch point
contains a vertex of some Ti; otherwise, we could delete the vertices before the branch
point to reduce the number of leaves without changing the hypotheses. For each leaf v of
T , we assign to v the first subtree encountered on the path from v to its nearest branch
point. If T has fewer than n leaves, then some subtree Tk in our list is not assigned to any
leaf. Let x be a vertex of Tk, and let P be a maximal path containing x. The endpoints
of P are leaves of the tree, and Tk is between the subtrees assigned to those leaves. Hence
T must have at least n leaves.

LEMMA 2. If v, w have a common successor u that is not a successor of z in a digraph
D, then Sz is not between Sv and Sw in any subtree representation of D. Similarly, if
v, w have a common predecessor u that is not a predecessor of z in D, then Tz is not
between Tv and Tw in any subtree representation of D.

Proof: If Sz is between Sv and Sw, then Sv ∩ Sw = Ø, and Tu must contain the unique
path from Sv to Sw in the host. This contradicts Sz ∩ Tu = Ø, since Sz has a vertex on
this path. The proof of the other statement is similar.

Subtrees of a tree satisfy the Helly property; the members of a pairwise intersecting
family of (sub)trees have a common vertex (see, for example, [6, p. 92]).

LEMMA 3. If in a subtree representation of D the source subtrees are pairwise inter-
secting and the sink subtrees are pairwise intersecting, then A(D) has a row of 1’s or
a column of 0’s, and similarly A(D) has a column of 1’s or a row of 0’s.

Proof: In such a representation, the source subtrees have a common vertex, and the sink
subtrees have a common vertex. Let s, t denote these vertices, respectively. If s = t, then
A(D) is all 1’s and the claim holds. If s 6= t, let x be the vertex of

⋃

Si that is closest to
t on the unique s, t-path in T . Suppose x ∈ Sk. If A(D) has no row of 1’s, then x 6= t
and some sink subtree Tj fails to contain x. However, t ∈ Tj , and hence Tj intersects no
source subtree, forcing a column of 0’s in A(D). The other claim follows by considering
the vertex of

⋃

Tj that is closest to s on the s, t-path in T .
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Because permuting rows or columns is simply a relabeling of source or sink sets, leafage
can be viewed as a property of a 0,1-matrix (the adjacency matrix A(D)) rather than a
property of a digraph. We next show that asteroidal collections are forced by complements
of permutation matrices.

THEOREM 2. For n ≥ 3, let Dn be the digraph such that A(Dn) = J − I, where J
is the matrix of all 1’s and I is the identity matrix. In every subtree representation
of Dn, either the source subtrees have a common vertex and the sink subtrees form
an asteroidal collection, or the sink subtrees have a common vertex and the source
subtrees form an asteroidal collection.

Proof: Let the vertices of Dn be {1, . . . , n}; we have i → j if and only if i 6= j. Consider a
subtree representation of Dn. By Lemma 3, the source subtrees and sink subtrees cannot
both be pairwise intersecting; we may assume by symmetry that there is a disjoint pair of
source subtrees.

When i, j, k are distinct vertices, we have i → k, j → k, and k 6→ k. Thus Lemma 2
implies that no source subtree can be between two other source subtrees. With between-
ness forbidden, Si and Sk cannot intersect if Si ∩ Sj = Ø. We conclude that if some pair
of source subtrees is disjoint, then the source subtrees are pairwise disjoint, and none is
between two others. Hence they form an asteroidal collection.

With the source subtrees pairwise disjoint, consider the sink subtrees. For any distinct
vertices i, j, k, we must have Tj containing the path from Si to Sk and Ti containing the
path from Sj to Sk. Hence Ti ∩ Tj 6= Ø, and the sink subtrees are pairwise intersecting.
The Helly property then implies that the sink subtrees have a common vertex.

Together, Lemma 1 and Theorem 2 imply that l(Dn) = n.

3. LEAFAGE AND DISJOINT FERRERS DIMENSION

We next prove our main lower bound on leafage. We use N+
D (u) to denote the successor

set and N−

D (u) to denote the predecessor set of a vertex u in a digraph D.

THEOREM 3. If D is a digraph, then l(D) ≥ f∗(D).

Proof: Suppose that l(D) = k, and let {(Sv, Tv): v ∈ V (D)} be a representation of D
in a host tree with k leaves. When k = 2, the result follows from the characterization
of interval digraphs in [15]. For k ≥ 3, we construct k pairwise disjoint Ferrers digraphs
whose union is D. With the host tree T embedded in the plane, let the leaves be x1, . . . , xn

in clockwise order around the tree. Let Pi denote the path in T from xi to xi+1, indexed
cyclically.

For each leaf xi of the host tree T , we construct an associated Ferrers digraph D(i).
The edges of D consist of those pairs uv such that Su ∩ Tv = Ø, meaning that the unique
shortest path from Su to Tv has length at least 1. Let D(i) consist of those edges uv in D
such that the first edge on the path from Su to Tv lies on Pi, with Su between xi and Tv

(see Fig. 1).
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If Su has no vertex on Pi, then u has no successors in D(i). If the last vertex of Su′

on Pi is closer to xi+1 than the last vertex of Su on Pi, then N+
D(i)(u

′) ⊆ N+
D(i)(u), by

construction. Hence the D(i)’s are Ferrers digraphs.

The paths Pi together cover each edge of the host tree exactly once in each direction.
Since each edge is covered in each direction,

⋃

iD(i) = D. Since each edge is covered only
once, and when Su ∩ Tv = Ø there is a unique first edge on the path from Su to Tv, the
subgraphs {D(i)} are pairwise disjoint.

•

••

•
x1

x2x3

x4

uv ∈ D(2), u′v ∈ D(3)

N+
D(2)(u

′) ⊆ N+
D(2)(u)

Su

Su′

Tv

P2

P4

P1P3

Fig. 1. Ferrers digraphs from subtree representation

This provides another proof that the leafage of the digraph Dn is n. Since each pair
of ones on the diagonal of A(Dn) induce a 2 by 2 permutation submatrix, no pair of them
can be covered by a single Ferrers digraph contained in Dn.

Although the inequalities f(D) ≤ f∗(D) ≤ l(D) ≤ n(D) are best possible, with equal-
ity throughout when D = Dn, the gaps can be arbitrarily large. For an interval digraph,
f(D) = f∗(D) = l(D) = 2. By the characterization of interval digraphs in [15], f∗(D) = 2
implies l(D) = 2. Nevertheless, there exist digraphs D with f∗(D) = 3 and l(D) = n(D).

THEOREM 4. Leafage is not bounded by any function of f∗ when f∗ ≥ 3. In particular,
let En be the n-vertex digraph with A(En) =

(

I Y

Y T 0

)

, where I denotes the n − 1 by
n − 1 identity matrix and Y denotes a column vector of n − 1 ones. If n ≥ 3, then
l(En) = n, but f∗(En) = f(En) = 3.

Proof: Because the last three rows and columns of A(En) form a row permutation of
A(D3), we have f

∗(En) ≥ f(En) ≥ 3. For equality, partition the zeros of A(En) into three
sets; those in the upper right of the submatrix I, those in the lower left of the submatrix
I, and the 0 in the lower right corner. These sets yield Ferrers digraphs, so f∗(En) ≤ 3.

To show that l(En) = n, we name the vertices by the row and column indices of the
matrix and let {(Si, Ti): 1 ≤ i ≤ n} be a subtree representation of En in the host tree
T . By Lemma 1, it suffices to show that the source subtrees or the sink subtrees form an
asteroidal collection in T .
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We have Sn ∩ Tn = Ø; let P be the unique path from Sn to Tn in T . For each k < n,
we have Sk ∩Tn 6= Ø, Sn ∩ Tk 6= Ø, and Sk ∩ Tk 6= Ø. Consider also i < n. If P contains a
vertex x of Si ∩ Ti, then the nonadjacency of i and k implies that x separates Sk and Tk.
This contradicts Sk ∩ Tk 6= Ø, so Si cannot intersect Ti in P . We conclude that Si ∩ Ti is
contained in the component of T −E(P ) containing Tn or in the component of T −E(P )
containing Sn. By symmetry, we may assume the latter. Since n → i, we now have P ⊂ Ti.
Applying this argument for all vertices other than n yields that all Si ∩ Ti lie in the same
component of T −E(P ), since there are no edges except loops among these vertices. Thus
P ⊂ Ti and P ∩ Si = Ø for all i < n.

Now consider disjointness and betweenness of the source subtrees. Since i → i, n → i,
and j 6→ i, Lemma 2 forbids Sj between Si and Sn for i, j < n. Since P separates Sn from
the others, this implies that the source subtrees are pairwise disjoint. Furthermore, if Sj

is between Si and Sk for i, j, k < n, then the union of the paths from Sn to the trees Si

and Sk must intersect Sj , which puts Sj between Sn and one of {Si, Sk}. Hence the source
subtrees are pairwise disjoint, and none is between two others. They form an asteroidal
collection, and Lemma 1 applies.

Every n by n (adjacency) matrix with leafage n is a minimal forbidden submatrix for
leafage less than n. We next present another such family. Given the adjacency matrix
A(D) of a digraph D, let H(D) be the graph with vertices corresponding to the zeros of
A(D) and edges corresponding to the pairs of zeros contains in a 2 by 2 permutation sub-
matrix. Cogis [2] and Doignon-Ducamp-Falmagne [4] proved that D has Ferrers dimension
2 if and only if H(D) is bipartite; here we need only the obvious necessity of the condition.

THEOREM 5. Let Cn be the digraph consisting of a directed cycle of length n plus a
loop at each vertex. Then l(Cn) = n, but f(Cn) = f∗(Cn) = 3.

Proof: Assume that the cycle is 1 → 2 → · · · → n → 1. Partition the zeros of A(Cn) into
three sets: those in the last row, those in the first n− 1 rows below the diagonal, and the
remainder. These sets form Ferrers digraphs, so f∗(Cn) ≤ 3. To prove that f(Cn) > 2, we
observe that the positions

{(i, i+ ⌈n/2⌉): 1 ≤ i ≤ ⌊n/2⌋} ∪ {(i, i+ 1− ⌈n/2⌉): ⌈n/2⌉ ≤ i ≤ n}

form an odd cycle in H(Cn).

We use induction on n to prove that l(Cn) = n. The claim holds for n = 3 because
A(C3) is a permutation of A(D3). For n > 3, let T be the host tree for an optimal rep-
resentation of Cn. Suppose first that Si−1 ∩ Si 6= Ø for some i (all indexing is circular).
The subtree Ti must intersect both of these, so by the Helly property Si−1, Ti, Si have a
common vertex x in T. No other source subtree intersects Ti, and no other sink subtree
intersects Si−1 and Si; hence no other assigned subtree contains x. Every two consecutive
subtrees in the list Ti+1, Si+1, Ti+2, . . . , Si−2, Ti−1 intersect; hence their union is connected
and contained in one component of T − x. The remaining components of T − x can be
deleted without changing the intersection digraph, so we may assume that x is a leaf.

Let P be the path in T from x to the nearest branch point. By symmetry, we may
assume that Si−1 contains as much of P as Si. If Si does not contain all of P , then Ti+1
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intersects Si−1, which is forbidden. Hence P ⊆ Si ∩ Si−1, and no sink subtree other than
Ti intersects P . If another source subtree extends onto P , then deleting its edges on P
does not change the intersection digraph. We can now delete Ti and replace Si−1, Si by a
single source subtree with edge set (E(Si−1) ∪ E(Si)) − E(P ) to obtain a representation
of Cn−1 with l(Cn)− 1 leaves. By the induction hypothesis, this yields l(Cn) ≥ n.

Hence we may assume that Si−1∩Si = Ø for all i, and by symmetry also Ti−1∩Ti = Ø
for all i. In this case, let Pi be the portion of Si that is the unique Ti, Ti+1-path, and let Qi

be the portion of Ti that is the unique Si−1, Si-path. Note that Qi ∩Pi and Pi ∩Qi+1 are
single vertices. The union of all these paths is thus a closed walk in which no consecutive
edges are the same. Such a walk contains a cycle, which is impossible in a host tree. Hence
this case does not arise.

We have presented examples with fixed f∗(D) and large l(D). Also f∗(D) may be
arbitrarily large when f(D) = 2. We construct a two-parameter family of adjacency ma-
trices. The matrix Mk,m is a km by km matrix consisting of k rows and k columns of m
by m blocks. The diagonal blocks are the identity matrix, the blocks below the diagonal
consist entirely of 0’s, and the blocks above the diagonal consist entirely of 1’s. The zeros
can be covered by two Ferrers digraphs, each consisting of all the subdiagonal blocks and
half of each diagonal block; hence f(Mk,m) = 2. We will prove that f∗(Mk,m) = c + 1
when k = 1+

(

c
2

)

and m is sufficiently large. (In this discussion we use the notation Mk,m

for both the digraph and its adjacency matrix.)

Let In denote the n-vertex digraph whose adjacency matrix is the identity. A partition
of Īn into c Ferrers digraphs can be viewed as a special c-coloring of the 0’s in the n by n
identity matrix In. We say that colors A,B are a crossed pair if A,B appear together in
some row and appear together in some column.

LEMMA 4. If n ≥ 3c!/2, then every partition of Īn into c Ferrers digraphs has a crossed
pair of colors.

Proof: The proof is by induction on c. For c = 2, a 2-coloring of the 0’s in the 3 by 3
identity matrix cannot have all rows or all columns monochromatic without having a 2 by
2 permutation matrix with 0’s in one color. For c > 2, let n = 3c!/2 and r = 3(c− 1)!/2.
Consider a partition of Īn into c Ferrers digraphs, and suppose that the corresponding
coloring has no crossed pair.

Since each row of the identity matrix has n − 1 0’s, the pigeonhole principle implies
that each row has at least ⌈(3(c− 1)!/2)(c/c)− 1/c⌉ = r 0’s in some color. By symmetry,
we may assume there are 0’s of color A in the first r columns of row r+1 (see Fig. 2). Let
D be the subdigraph induced by the first r vertices, with K the corresponding submatrix.
By the induction hypothesis, every partition of D into c − 1 Ferrers digraphs yields a
coloring of the 0’s in K with a crossed pair of colors. Hence we may assume that all c
colors (including A) appear in K.

Let i be the index of a row in K in which color A appears. If another color appears
in row i of K, then it crosses A in the full matrix. Thus we may assume that row i of K
has only color A. Now, to avoid the forbidden submatrix in color A, position i, r+1 must
have some other color B. Now colors A and B appear in a row together, so they cannot
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appear in a column together. This contradicts the observation that every color, including
B, appears in K.

A A A A A A

1

1

1

1

1

1

A A

1

A A A B

K

Fig. 2. Coloring 0’s in an identity matrix.

The bound 3c!/2 in Lemma 4 is not best possible. For c = 2, 3, 4, the bound is 3, 9, 36,
but the actual minimum values forcing the desired behavior are 3, 4, 6. We are content
with the bound arising from the short argument in Lemma 4 because our aim is to show
that f∗(Mk,m) grows arbitrarily large.

THEOREM 6. If k ≥ 1 +
(

c
2

)

and m ≥ 3c!/2, then f∗(Mk,m) > c.

Proof: Suppose M̄k,m has a partition into c pairwise-disjoint Ferrers digraphs. By Lemma
4, in each copy of Im in the block structure of Mk,m, the corresponding coloring has a
crossed pair of colors. Since there are more than

(

c
2

)

diagonal blocks, by the pigeonhole
principle some pair of colors A,B is crossed twice.

Let r, s be the indices of the diagonal blocks where A,B are crossed, with r < s. Let
j be the column within diagonal block r where A,B both appear, and let i be the row
within diagonal block s where A,B both appear. Position i, j of block s, r is now forced to
have both color A and color B to avoid the forbidden substructure for the Ferrers digraphs
given by colors A and B. This is impossible.

It is worth noting that f∗(Mk,m) ≤ c for all m when k ≤
(

c

2

)

. This is illustrated by
the block coloring in Fig. 3.































A\B 1 1 1 1 1 1 1 1 1
A A\C 1 1 1 1 1 1 1 1
B C B\C 1 1 1 1 1 1 1
A A A A\D 1 1 1 1 1 1
B B B D B\D 1 1 1 1 1
C C C D D C\D 1 1 1 1
A A A A A A A\E 1 1 1
B B B B B B E B\E 1 1
C C C C C C E E C\E 1
D D D D D D E E E D\E































Fig. 3. A 5-coloring of the 0’s in the blocks of M10,l.
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We previously gave examples with f(D) = 3, f∗(D) = 3, and l(D) large. We next
prove that the family Mk,m includes examples with f(D) = 2, f∗(D) = 3, and l(D) large.

THEOREM 7. For m ≥ 3, M2,m is a 2m-vertex digraph with f(M2,m) = 2, f∗(M2,m) =
3, and l(M2,m) = m.

Proof: With four blocks of order m, M2,m =
(

I 1
0 I

)

. The value f(M2,m) = 2 was obtained
before Lemma 4. The lower bound on f∗ comes from Theorem 6 (with c = 2), and the
upper bound comes from the coloring illustrated in Fig. 3 (with c = 3).

To prove that l(M2,m) ≤ m, we construct a representation with m leaves. Let the
host tree be the union of m paths q, si, ti with q as a common endpoint. Let Si and Ti+m

be the entire ith path, for 1 ≤ i ≤ m. Let Si+m be the single vertex si, and let Ti be the
single vertex ti.

It remains to prove that l(M2,m) ≥ m. Consider a subtree representation with source
subtrees S1, . . . , S2m and sink subtrees T1, . . . , T2m for the vertices indexed by the rows
and columns of M2,m in order. If Tm+1, . . . , T2m have no common point, then some Ti, Tj

among these are disjoint. Since Ti and Tj must intersect each of S1, . . . , Sm, those subtrees
contain the Ti, Tj-path and hence have a common point. Similarly, if S1, . . . , Sm have no
common point, then Tm+1, . . . , T2m must. By symmetry, we may assume that S1, . . . , Sm

have a common point q.

We now show that T1, . . . , Tm is an asteroidal collection of subtrees. If Ti ∩ Tj 6= Ø
with i, j ≤ m, then the entire path from q to the closest vertex of Ti∩Tj belongs to at least
one of {Si, Sj}, which contradicts the requirement that each of {Si, Sj} intersects exactly
one of {Ti, Tj}. If Tj is between Ti and Tk, then let P be the path between Ti and Tk, and
let r be the vertex of P closest to q. Depending on the location of r relative to Tj on P ,
the q, Tk-path in Sk or the q, Ti-path in Si intersects Tj , contradicting their disjointness
from Tj . Thus T1, . . . , Tm is an asteroidal collection, and Lemma 1 implies that the host
has at least m leaves.

4. CATCH LEAFAGE

If D has a subtree representation in which every sink subtree is a single vertex, then
we say this is a catch representation, and D is a catch-tree digraph. In discussing catch
representations, we say “sink point” instead of “sink subtree” to make the usage clear. If
D has a catch-tree representation in which the host is a path, then D is a catch-interval
digraph. The corresponding classes in which the source sets are single vertices are merely
those whose adjacency matrices are the transposes of the digraphs in the classes defined
above. Catch-interval digraphs are characterized in [12] under the name “interval catch
digraphs” and in [15] under the name “interval-point digraphs”.

The catch leafage l∗(D) is the minimum number of leaves in a host tree in which D has
a catch-tree representation; the catch-interval digraphs are the digraphs with catch-leafage
2. In the proof of Theorem 1, we gave every n-vertex digraph a catch representation in a
star with n leaves, so catch leafage is well-defined. Since every catch-tree representation is
a subtree representation, we have n ≥ l∗(D) ≥ l(D).
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We may make several simplifying assumptions about the form of optimal catch-tree
representations. In a catch-tree representation, sink subtrees can occupy the same vertex
of the host if and only if the corresponding columns of the matrix are identical. We may
split such a vertex of the host (without increasing the number of leaves), including the
source subtrees to cover both. Thus we may assume that in catch representations each
vertex is occupied by at most one sink point. Also, if a vertex of degree at most two in the
host tree is not assigned as a sink point, then an edge incident to it can be contracted.

Recall that the predecessor set for v is N−(v) = {u: u → v}; this is the set whose
incidence vector is the column of the adjacency matrix corresponding to v. Because the
source sets occupy single vertices, a catch-tree representation can be described by listing,
for each vertex of the host tree, the non-empty collection of source sets containing it. This
will be a catch-tree representation if and only if 1) among these sets appear the predecessor
sets, and 2) the set of vertices assigned to each source set forms a subtree of the host.

Therefore, our analysis of catch leafage focuses on the columns of the adjacency ma-
trix as incidence vectors for the predecessor sets. We define an associated partial order.
Let P (D), the incidence poset of the digraph D, be the collection of predecessor sets in
D, ordered by inclusion. For simplicity, we will use the same notation Vj to refer to a
predecessor set or the column of the adjacency matrix that is its incidence vector.

The width w(P ) of a poset P is the maximum size of its antichains (collections of
pairwise incomparable elements). Dilworth’s Theorem [3] says that the elements of a finite
poset P can be partitioned into w(P ) disjoint chains.

THEOREM 8. The inequality l∗(D) ≤ w(P (D)) holds for every digraph D with
w(P (D)) ≥ 2.

Proof: Let k = w(P (D), and let C1, . . . , Ck be a partition of P (D) into k disjoint chains.
Let the host tree T be a subdivision of a star with k leaves. That is, T consists of a
central point of degree k from which k paths emerge. Assign the central vertex the set
of all predecessors, and assign to each emerging path the sets on one of the chains Ci, in
decreasing order. The predecessor sets all appear at vertices, and the occurrences of each
predecessor form a subtree, so this is a catch-tree representation.

Fulkerson [5] observed that Dilworth’s Theorem is equivalent to the König-Egerváry
Theorem on matchings in bipartite graphs. Thus bipartite matching or other algorithms
can be used to compute w(P (D)). Nevertheless, this is only a bound on l∗(D), and this
bound also can be arbitrarily bad. The digraph D consisting of a directed path plus a loop
at each vertex has catch leafage 2 but w(P (D)) = n − 1, so w(P (D)) is not bounded by
any function of l∗(D).

Note that w(P (D)) = 1 when D is a Ferrers digraph. Thus Theorem 8 requires
w(P (D)) ≥ 2, and we see that the break between w(P (D)) and n(D) can be large.

We now have the chain of inequalities

f(D) ≤ f∗(D) ≤ l(D) ≤ l∗(D) ≤ w(P (D) ≤ n(D).

One may have equality throughout (achieved by Dn). To prove that there can be arbitrar-
ily bad breaks between any pair, it suffices to produce examples where l(D) is bounded
and l∗(D) is large. To do this, we prove a sufficient condition for l∗(D) = w(P (D)).
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THEOREM 9. If D is a digraph such that P (D) has a unique maximal element and
w(P (D)) ≥ 2, then l∗(D) = w(P (D)).

Proof: Let V0 be the unique maximal element, and let A = V1, . . . , Vk denote a maximum
antichain in P (D). Let qi denote the vertex of the host assigned to Vi in an optimal
catch representation. Iteratively delete leaves of the host tree that are not in {qi} until
all remaining leaves belong to {qi}. If the number of leaves (other than q0) is less than
k, then some set Vi in A is assigned to a non-leaf qi. Every path from q0 to another
remaining vertex can be extended to reach a remaining leaf. In particular, the path from
q0 to qi belongs to a path from q0 to a leaf assigned qj . Since Vj ⊆ V0 and each predecessor
is assigned to the vertices of a tree, this entire path including qi belongs to the source
subtrees for Vj . This yields Vj ⊆ Vi, contradicting the choice of A as an antichain.

THEOREM 10. Catch leafage is not bounded by any function of leafage. If Fn denotes
the n-vertex digraph whose adjacency matrix is

(

I Y

Y T 1

)

, where I denotes the n− 1 by
n − 1 identity matrix and Y denotes a column vector of n − 1 ones, then f∗(Fn) =
l(Fn) = 2, but l∗(Fn) = n− 1.

Proof: The upper left and lower right zeros in the portion I of the adjacency matrix yield
two disjoint Ferrers digraphs whose union is Fn. As proved in [15], this is equivalent to
leafage 2. On the other hand, the predecessor set of the last vertex contains all the other
predecessor sets, so l∗(Fn) = w(P (Fn)) = n− 1.

The sufficient condition in Theorem 9 does not characterize equality in l∗(D) ≤
w(P (D)). For the digraph Cn consisting of a directed cycle plus loops, we have seen
that l(Cn) = n. Also the columns of A(Cn) form an antichain, so l(Cn) = l∗(Cn) =
w(P (Cn)) = n.

This example shows also that leafage and catch leafage can drop arbitrarily much
when a single vertex is deleted. Deleting one vertex from a cycle with loops leaves a path
with loops. The former has leafage and catch leafage n; the latter has leafage and catch
leafage 2.

Our proof of l∗(D) ≤ w(P (D)) shows that every digraph has a catch representation
in a host tree having only one branch point, and if P (D) has a unique maximum this can
be achieved in a host tree with the minimum number of leaves. This is not true of all
digraphs. The digraph D with adjacency matrix below contains C4 and thus has catch
leafage at least 4. However, every catch representation of D in a host tree with four leaves
has two branch points. We thus close by mentioning two further optimization problems for
digraphs with catch leafage k: Among catch representations in trees with k leaves, what
is the minimum number of branch points, and what is the minimum number of vertices?











1 0 0 1 0
1 1 0 0 1
0 1 1 0 1
0 0 1 1 1
1 1 1 1 1
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