COLORING OF TREES WITH MINIMUM SUM OF COLORS

Tao Jiang and Douglas B. West
j-tao@math.uiuc.edu and west@math.uiuc.edu
University of Illinois, Urbana, IL 61801-2975

Abstract

The chromatic sum $\Sigma(G)$ of a graph G is the smallest sum of colors among all proper colorings with natural numbers. The strength $s(G)$ of G is the minimum number of colors needed to achieve the chromatic sum. We construct for each positive integer k a tree T_{k} with strength k that has maximum degree only $2 k-2$. The result is best possible.

1. INTRODUCTION

A proper coloring of the vertices of a graph G is a function $f: V(G) \rightarrow \mathbb{N}$ such that adjacent vertices receive different labels (colors). The chromatic number $\chi(G)$ is the minimum number of colors in a proper coloring of G. The chromatic sum $\Sigma(G)$ is a variation introduced by Ewa Kubicka in her dissertation. It is the minimum of $\sum_{v \in V(G)} f(v)$ over proper colorings f of G. A minimal coloring of G is a proper coloring of G such that $\sum_{v} f(v)=\Sigma(G)$.

One might think that a minimal coloring can be obtained by selecting a proper coloring with the minimum number of colors and then giving the largest color class color 1 , the next largest color 2 , and so on. However, even among trees, which have chromatic number 2 , more colors may be needed to obtain a minimal coloring. The strength $s(G)$ of a graph G is the minimum number of colors needed to obtain a minimal coloring. Kubicka and Schwenk [4] constructed for every positive integer $k \geq 2$ a tree T_{k} with strength k. Thus $s(G)$ may be arbitrarily large even when $\chi(G)=2$ (trivially $s(G) \geq \chi(G)$).

How large can $s(G)$ be in terms of other parameters? When vertices are colored greedily in natural numbers with respect to a vertex ordering v_{1}, \ldots, v_{n}, the number of colors used is at most $1+\max _{i} d^{*}\left(v_{i}\right)$, where $d^{*}\left(v_{i}\right)$ counts the neighbors of v_{i} in $\left\{v_{1}, \ldots, v_{i-1}\right\}$. Always this yields $\chi(G) \leq 1+\Delta(G)$. The best upper bound on $\chi(G)$ that can be obtained in this way is the Szekeres-Wilf number $w(G)=1+\max _{H \subseteq G} \delta(H)$ (also confusingly called the "coloring number"). Interestingly, the average of these two well-known upper bounds for the chromatic number is an upper bound for the strength $s(G)$.

THEOREM (Hajiabolhassan, Mehrabadi, and Tusserkani [2]) Every graph G has strength at most $\lceil(w(G)+\Delta(G)) / 2\rceil$.

We show that this bound is sharp, even for trees. Every nontrivial tree T has SzekeresWilf number 2, and thus $s(T) \leq 1+\lceil\Delta(T) / 2\rceil$. In the Kubicka-Schwenk construction [4],

Running head: COLORING OF TREES
AMS codes: 05C35, 05C55
Keywords: chromatic sum, minimal coloring, strength Written July 1998.
the tree with strength k has maximum degree about $k^{2} / 2$. To show that the bound above is sharp, we construct for each $k \geq 1$ a tree T_{k} with strength k and maximum degree $2 k-2$. Given a proper coloring f of a tree T, we use Σf to denote $\sum_{v \in V(T)} f(v)$.

2. THE CONSTRUCTION

Linearly order the pairs of natural numbers so that $(h, l)<(i, j)$ if either $h+l<i+j$ or $h+l=i+j$ and $l<j$. With respect to this ordering, we inductively construct for each pair $(i, j) \in \mathbb{N} \times \mathbb{N}$ a rooted tree T_{i}^{j} and a coloring f_{i}^{j} of T_{i}^{j}. In other words, we construct trees in the order $T_{1}^{1}, T_{2}^{1}, T_{1}^{2}, T_{3}^{1}, \ldots$. Our desired tree with strength k will be T_{k}^{1}. Let $[n]=\{k \in \mathbb{Z}: 1 \leq k \leq n\}$.

Construction. Let T_{1}^{1} be a tree of order 1 , and let f_{1}^{1} assign color 1 to this single vertex. Consider $(i, j) \neq(1,1)$, and suppose that for each $(h, l)<(i, j)$ we have constructed T_{h}^{l} and f_{h}^{l}. We construct T_{i}^{j} and f_{i}^{j} as follows. Let u be the root of T_{i}^{j}. For each k such that $1 \leq k \leq i+j-1$ and $k \neq i$, we take two copies of T_{k}^{m}, where $m=\lceil(i+j-k) / 2\rceil$, and we let the roots of these $2(i+j-2)$ trees be children of u. The resulting tree is T_{i}^{j} (see Fig. 1). Define the coloring f_{i}^{j} of T_{i}^{j} by assigning i to the root u and using f_{k}^{m} on each copy of T_{k}^{m} rooted at a child of u.

Figure 1. The construction of T_{i}^{j}

LEMMA For $(i, j) \in \mathbb{N} \times \mathbb{N}$, the construction of T_{i}^{j} is well-defined, and f_{i}^{j} is a proper coloring of T_{i}^{j} with color i at the root.
Proof: To show that T_{i}^{j} is well-defined, it suffices to show that when $(i, j) \neq(1,1)$, every tree used in the construction of T_{i}^{j} has been constructed previously. We use trees of the
form T_{k}^{m}, where $k \in[i+j-1]-\{i\}$ and $m=\lceil(i+j-k) / 2\rceil$. It suffices to show that $k+m \leq i+j$ and that $m<j$ when $k+m=i+j$.

For the first statement, we have $k+m \leq\lceil(i+j+k) / 2\rceil \leq i+j$, since $k \leq i+j-1$. Equality requires $k=i+j-1$, which occurs only when $j \geq 2$ and yields $m=1$. Thus $m<j$ when $k+m=i+j$. Since the trees whose indices sum to $i+j$ are generated in the order $T_{i+j-1}^{1}, \ldots, T_{1}^{i+j-1}$, the tree T_{k}^{m} exists when we need it.

Finally, f_{i}^{j} uses color i at the root of T_{i}^{j}, by construction. Since the subtrees used as descendants of the root have the form T_{k}^{m} with $k \neq i$, by induction the coloring f_{i}^{j} is proper.

3. THE PROOF

The two-parameter construction enables us to prove a technically stronger statement. The additional properties of the construction facilitate the inductive proof. Recall that all colorings considered are labelings with positive integers.

THEOREM The construction of T_{i}^{j} and f_{i}^{j} has the following properties:
(1) If f^{\prime} is a coloring of T_{i}^{j} different from f_{i}^{j}, then $\Sigma f^{\prime}>\Sigma f_{i}^{j}$. Furthermore, if f^{\prime} assigns a color different from i to the root of T_{i}^{j}, then $\Sigma f^{\prime}-\Sigma f_{i}^{j} \geq j$;
(2) If $j=1$, then $\Delta\left(T_{i}^{j}\right)=2 i-2$, achieved by the root of T_{i}^{j}. If $j \geq 2$, then $\Delta\left(T_{i}^{j}\right)=$ $2(i+j)-3$;
(3) The highest color used in f_{i}^{j} is $i+j-1$.

Proof: We use induction through the order in which the trees are constructed. As the basis step, T_{1}^{1} is just a single vertex, and f_{1}^{1} gives it color 1 ; conditions (1)-(3) are all satisfied.

Now consider $(i, j) \neq(1,1)$. For simplicity, we write T for T_{i}^{j} and f for f_{i}^{j}. To verify (1), let f^{\prime} be a coloring of T different from f. We consider two cases.

Case 1. f^{\prime} assigns i to the root u of T.
In this case, f^{\prime} and f differ on $T-u$. Recall that $T-u$ is the union of $2(i+j-2)$ previously-constructed trees. The colorings f^{\prime} and f differ on at least one of these trees. By the induction hypothesis, the total under f^{\prime} is at least the total under f on each of these subtrees, and it is larger on at least one. Hence $\Sigma f^{\prime}>\Sigma f$.

Case 2. f^{\prime} assigns a color different from i to the root u.
In this case, we need to show that $\Sigma f^{\prime}-\Sigma f \geq j$. Again the induction hypothesis gives f^{\prime} as large a total as f on each component of $T-u$. If $f^{\prime}(u) \geq i+j$, then the difference on u is large enough to yield $\Sigma f^{\prime}-\Sigma f \geq j$.

Hence we may assume that $f^{\prime}(u)=k$, where $1 \leq k \leq i+j-1$ and $k \neq i$. Since f^{\prime} is a proper coloring, it assigns a label other than k to the roots v, v^{\prime} of the two copies of T_{k}^{m} in $T-u$, where $m=\lceil(i+j-k) / 2\rceil$. Since f uses f_{k}^{m} on each copy of T_{k}^{m}, we have $f(v)=f\left(v^{\prime}\right)=k$. Since $f^{\prime}(v)$ and $f^{\prime}\left(v^{\prime}\right)$ differ from k, the induction hypothesis implies that on each copy of T_{k}^{m} the total of f^{\prime} exceeds the total of f by at least m. Since the total is at least as large on all other components, we have

$$
\Sigma f^{\prime}-\Sigma f \geq k-i+2 m=k-i+2\left\lceil\frac{i+j-k}{2}\right\rceil \geq j
$$

Next we verify (2). In the construction of $T=T_{i}^{j}$, we place $2(i+j-2)$ subtrees under the root u. These have the form T_{k}^{m} for $1 \leq k \leq i-1$ and $i+1 \leq k \leq i+j-1$, and always $m=\lceil(i+j-k) / 2\rceil$. Note that $m=1$ only when $k=i+j-1$ or $k=i+j-2$. The subtrees have maximum degree $2 k-2$ (when $m=1$) or $2(k+m)-3$ (when $m>1$). Note that $2(k+m)-3>2 k-2$ when $m \geq 1$. Thus

$$
\Delta\left(T_{k}^{m}\right) \leq 2(k+m)-3=2\left(k+\left\lceil\frac{i+j-k}{2}\right\rceil\right)-3=2\left\lceil\frac{i+j+k}{2}\right\rceil-3 .
$$

Also, we always have $k+m=\lceil(i+j+k) / 2\rceil$ for the subtree T_{k}^{m}.
When $j=1$ we only have $k \leq i-1$, and thus $\Delta\left(T_{k}^{m}\right) \leq 2\lceil(i+1+k) / 2\rceil-3 \leq 2 i-3$. Hence each vertex in $T-u$ has degree at most $(2 i-3)+1=2 i-2$ in T. Since $d_{T}(u)=$ $2 i-2$, we have $\Delta(T)=2 i-2$, achieved by the root.

When $j \geq 2$, the values of k for the subtrees are $1 \leq k \leq i-1$ and $i+1 \leq k \leq i+j-1$. By the induction hypothesis, the maximum degree of T_{i+j-1}^{1} is $2(i+j-1)-2=2(i+j)-4$ and is achieved by its root. In T this vertex has degree $2(i+j)-3$, which exceeds $d_{T}(u)$. For $k \leq i+j-2$, we have $\Delta\left(T_{k}^{m}\right) \leq 2\lceil(i+j+k) / 2\rceil-3 \leq 2(i+j)-5$. Hence $\Delta(T)=$ $2(i+j)-3$, achieved by the roots of the trees that are isomorphic to T_{i+j-1}^{1}.

It remains to verify (3): the maximum color used in f_{i}^{j} is $i+j-1$. By the induction hypothesis and the construction, the maximum color used by f_{k}^{m} on each T_{k}^{m} within f_{i}^{j} is $k+m-1=\lceil(i+j+k) / 2\rceil-1$. Since the largest k is $i+j-1$ when $j \geq 2$ and is $i-1$ when $j=1$, this computation yields $i+j-1$ when $j \geq 2$ and $i-1$ when $j=1$ as the maximum color on $T-u$. Since f assigns i to the root u, we obtain $i+j-1$ as the maximum color on T for both $j \geq 2$ and $j=1$.

We have proved that f_{i}^{j} is the unique minimal coloring of T_{i}^{j} and that it uses $i+j-1$ colors. Hence $s\left(T_{i}^{j}\right)=i+j-1$. The maximum degree is $2 i-2$ or $2(i+j)-3$, depending on whether $j=1$ or $j \geq 2$. In particular, T_{i}^{1} is a tree with strength i and maximum degree $2 i-2$.

COROLLARY 1. There exists for each positive integer i a tree T_{i} with $s\left(T_{i}\right)=i$ and $\Delta\left(T_{i}\right)=2 i-2$.

COROLLARY 2. For every real number $\alpha \in(0,1 / 2)$, there is a sequence of trees $T_{1}^{\prime}, T_{2}^{\prime}, \ldots$ such that $\lim _{n \rightarrow \infty} s\left(T_{n}^{\prime}\right) / \Delta\left(T_{n}^{\prime}\right)=\alpha$.
Proof: Let $t=\left\lfloor\left(\frac{1}{\alpha}-2\right) i\right\rfloor+2$. Consider the construction of T_{i}^{1}. Form T_{i}^{\prime} by adding t additional copies of the subtree T_{i-1}^{1} under the root u of T_{i}^{1}. The strength of T_{i}^{\prime} is i, but $\Delta\left(T_{i}^{\prime}\right)=2 i-2+t$. As $i \rightarrow \infty$, we have

$$
\frac{s\left(T_{i}^{\prime}\right)}{\Delta\left(T_{i}^{\prime}\right)}=\frac{i}{2 i+t-2}=\frac{i}{2 i+\left\lfloor\left(\frac{1}{\alpha}-2\right) i\right\rfloor} \rightarrow \alpha
$$

References

[1] P. Erdős, E. Kubicka, and A.J. Schwenk, Graphs that require many colors to achieve their chromatic sum, Congr. Numer. 71(1990), 17-28.
[2] H. Hajiabolhassan, M.L. Mehrabadi, and R. Tusserkani, Minimal coloring and strength of graphs. Proc. 28th Annual Iranian Math. Conf., Part 1 (Tabriz, 1997), Tabriz Univ. Ser. 377 (Tabriz Univ., Tabriz, 1997), 353-357.
[3] E. Kubicka, Constraints on the chromatic sequence for trees and graphs, Congr. Numer. 76(1990), 219-230.
[4] E. Kubicka and A.J. Schwenk, An introduction to chromatic sums, Proc. ACM Computer Science Conference, Louisville(Kentucky) 1989, 39-45.
[5] C. Thomassen, P. Erdős, Y. Alavi, P.J. Malde, and A.J. Schwenk, Tight bounds on the chromatic sum of a connected graph, J. Graph Theory 13(1989), 353-357.
[6] Z. Tuza, Contraction and minimal k-colorability Graphs and Combin. 6(1990), 51-59.

