Differential Profiling

Paul E. McKenney
Sequent Computer Systems, Inc.
(now with IBM)
pmckenne@us.ibm.com

Abstract

Performance can be a critical aspect of software qual-
ity; in some systems, poor performance can cause fi-
nancial loss, physical damage, or even death. In such
cases, it is imperative to identify system performance
problems before deployment, preferably well before
implementation.

Unfortunately, the size of most software systems
grossly exceeds the capacity of current performance-
modelling techniques. Hence, there is a need for tech-
niques to quickly identify the portions of the system
that are performance-critical. These portions are of-
ten small enough to be modelled directly.

This paper describes one such technique, differential
profiling. Differential profiling combines two or more
conventional profiles of a given program run in dif-
ferent situations or conditions. The technique mathe-
matically combines corresponding buckets of the con-
ventional profiles, then sorts the resulting list by these
combined values. Different combining functions are
suitable for different situations.

This combining of conventional profiles frequently
yields much greater insight than could be obtained
from either of the conventional profiles. Hence, differ-
ential profiling helps to locate difficult-to-find perfor-
mance bottlenecks, such as those that are distributed
widely throughout a large program or system, perhaps
by being concealed within macros or inlined functions.

This paper also describes how this technique may be
used to pinpoint certain types of performance bottle-
necks in large programs running on large-scale shared-
memory multiprocessors. In this environment, the
critical bottleneck might consume only a small fraction
of the total CPU time, since typical critical sections
can consume at most one CPU’s worth of computa-
tion. This sort of bottleneck, particularly when widely
distributed throughout the program under consider-
ation, is often invisible to traditional profiling tech-
niques.

Keywords: parallel performance analysis profiling

Introduction

Performance tuning of large-scale systems is still some-
what of an art [1]. One reason for this is that the size
of current software systems far exceeds the capacity
of current analytic techniques. For example, a sys-
tem with 50,000 critical sections running on a 32-CPU
hardware platform has more than

(505232) S W

states, since any or all of the CPUs might be within or
waiting for any of the critical sections, but CPUs are
indistinguishable, as are critical sections containing no
CPUs. Clever state-collapsing techniques might result
in only 100 effective critical sections, which in turn

results in “only”
132 30
(1) 51 o

states. And even this number assumes that only the
lock-contention behavior of the program is relevant. If
other aspects are important, the state space becomes
even larger.

Any feasible performance tuning effort must con-
centrate on a very small subset of these states. Dif-
ferential profiling may be used to help identify this
subset, thereby forming a bridge between large real-
world systems and powerful, highly-focused analytic
techniques.

Classic profiling has been widely used for decades to
help locate performance bottlenecks. It is nonetheless
useful to quickly review this almost-reflexively-used
technique before introducing differential profiling.

A given type of profiling drastically filters a pro-
gram’s execution history to provide the needed infor-
mation within a finite storage budget—and the filter-
ing must be drastic indeed if the program visits even a
tiny fraction of its possible states. Most profiles form
a histogram of program-counter values, sampled ei-

ther deterministically or randomly[2].! The program-
counter information may be augmented with function-
call counts in order to get gprof-style profiling [5].
Machine-specific knowledge may be incorporated into
a toolset in order to help the user determine what
types of overhead are affecting a given segment of
code [6]. Reiser and Skudlarek show how to use a par-
ticular variant of differential profiling to find localized
algorithmic bottlenecks [7]. In contrast, this paper
presents generalized differential profiling and shows
how to use this technique to locate bottlenecks that
are diffused throughout a program or system, such as
those caused by data or lock contention in parallel
programs.

This paper describes some methods of extracting
more information from whatever data is retained, par-
ticularly for parallel programs and systems. For con-
creteness, this paper takes most of its examples from
the conventional sampled-program-counter variety of
profiles.

The following sections give an overview of differen-
tial profiling, demonstrate use of multiple profiles to
pinpoint performance problems on several “toy” prob-
lems, and describe experiences using differential pro-
filing on large programs.

Differential Profiling

The basic idea behind differential profiling is to col-
lect measurements at multiple load levels (bucketed
into sets of interest, e.g., by function or by machine in-
struction) and compare corresponding buckets of these
data sets. The most common comparison methods are
ratio, weighted differences, and projected saturation.?

Ratio Differential Profiling

Use the following procedure to produce a ratio differ-
ential profile:

Tn general, a profile is a histogram of some measurement
bucketed by regions of interest. A traditional profile uses num-
ber of profiling-interrupt “hits” as the measurement, and func-
tions as the buckets. Entirely different measurements are possi-
ble and often useful: disk activity, memory consumption, cache
misses, and other hardware operations [3, 4] might be measured
instead of the traditional profiling hits. In fact, a single profile
might well contain several different types of measurements.

The measurements might be bucketed by instruction, module,
data structure, or source-code line rather than by function.

2There are any number of additional variations on the
differential-profiling scheme, but these three appear to be the
most generally useful. In some cases, non-parametric statis-
tics [8] can be helpful.

1. Collect a pair of profiles from a workload run un-
der different conditions.?

2. Compute the ratio of the measurements from cor-
responding buckets of the two profiles. Place the
measurements taken from the more stressful? of
the two runs in the numerators of the ratios.

3. Sort the result in descending order of ratio values.

The buckets that sort to the beginning of the list are
likely to be the ones most affected by whatever prob-
lem caused the increased stress, be it cache thrashing,
data contention, or simply poor choice of algorithm.
Therefore, analyzing the system in the order that its
parts appear in the ratio differential profile is almost
always a good way to quickly locate problems.

Locating the source code and data structures corre-
sponding to those buckets can help pinpoint those data
structures and algorithms that can benefit most from
optimization effort, even in cases where their use is
diffused throughout a system, for example, by macros
or inlined functions.

The parts of a system that have similar scaling prob-
lems will often sort to the same location in a ratio
differential profile. For example, the parts of the sys-
tem with O(n?) complexity would sort before the parts
with O(n?) complexity, where n is a measure of the
condition being varied, such as the number of data
items processed by the system. For this reason, the
ratio differential profile can be thought of as the soft-
ware equivalent of the spectrascope. It takes profile
data that would otherwise be white noise and reveals
the inner structure of the program, just as the spec-
trascope allows astronomers to determine the compo-
sition of stars from the white light emanating from
them.

Weighted Differential Profiling

A ratio differential profile is the most versatile, and
is therefore usually the first choice in a new situa-
tion. However, a weighted differential profile is easier
to use when you can: (1) quantify the amount of work

3Any number of conditions might be varied, for example,
number of CPUs, number of disks, amount of memory, number
of network interfaces, number of data items, number of users,
transaction rate, network packet rate, and so on. Choose the
condition to vary based on the issue at hand. For example,
to determine how well the program scales on a multiprocessor
system, vary the number of CPUs.

4The concept of “more stressful” depends both on the work-
load and the part of the system under test. For example,
increasing the number of network interface cards places more
stress on the interface-selection code, but less stress on protocol
queueing and retransmission algorithms.

done in each run,® (2) show that the profile measure-
ments relate directly and linearly to this amount of
work done, and (3) run full-size workloads.

The procedure for a weighted differential profile is
identical to that for a ratio differential profile except
that the quantity:

d = wimy —wamy (3)

is used for each bucket in place of the ratio, where
m; and w; are the measurement and the amount of
work done, respectively, in the current bucket of the
it workload. Workload 1 is the least stressed, and
workload 2 is the most stressed.

The weighted differential profile’s ease of use is due
to the fact that it automatically filters out measure-
ments corresponding to code that scales extremely
poorly, but that consumes so few resources that the
poor scaling is irrelevant. This filtering is quite de-
sireable when you wish to optimize a program and
can run it under full load.

In contrast, ratio differential profiles would high-
light these poorly-scaling code fragments. Therefore,
it is often necessary to filter out these “false alarms”,
perhaps by rejecting any bucket whose measurements
both fall below some cutoff point. However, this high-
lighting is exactly what you want if you are trying to
eliminate scaling problems in cases where you cannot
run a full workload. In such cases, you are using dif-
ferential profiling to extrapolate to a higher level of
stress. The well-known hazards of extrapolation are
discussed at the end of the next section.

Projected-Saturation Differential Profil-
ing
Ratio and weighted differential profiling work best in
cases where the measurements could increase indefi-
nitely. For example, as you add CPUs, system-wide
CPU consumption can increase, limited only by the
number of CPUs you add.

In constrast, measurements such as per-disk I/0O
rate, lock hold time, and network packet rate are lim-
ited by the capacity of the entity being measured. In

5The definition of “amount of work done” is application spe-
cific. “Work done” might be the number of searches performed
for a data-structure-traversal algorithm, transactions per second
for a database system, packets per second for a network protocol
implementation, I/Os per second for a disk driver, number of
iterations for a scientific workload, number of users supported
with a given response time for an operating system, and so on.
A proper definition of “amount of work done” is crucial to any
performance-analysis effort. If you don’t know what the sys-
tem is supposed to be doing, you will likely have some difficulty
optimizing its performance.

these cases, attention must focus on the measurement
that is expected to reach saturation with the smallest
increase in load. This might not be the same mea-
surement whose ratio or difference is increasing most
quickly. For example, Table 1 shows hypothetical uti-
lizations measurements of three resources (CPU, mem-
ory, and disk) taken at two different loads, along with
their ratios and differences. The “L=1" and “L=2"
columns show saturation of the resources at one and
two units of load, respectively. The “R” column shows
the ratio of the saturations of the resources at the two
loads. The “D” column shows the weighted differ-
ence from Equation 3, where w; is one unit of load,
wy is two units of load, and m; and my are the two
measured saturations. The “LSL”, or linear satura-
tion load, column shows the number of units of load
that would cause the corresponding load to be 100%
saturated, assuming that saturation is a linear func-
tion of load. Note that the disk resource, which has

| [L=1[L=2] R D [ISL|
CPU 5% | 10% | 2.00 b} 20
Memory | 20% | 30% | 1.50 | 10 9
Disk 98% | 99% | 1.01 1 3

Table 1: Ratio, Difference, and Saturation Profiling

the smallest ratio and difference, will reach saturation
first, so in this (contrived) example, ratio and differ-
ence differential profiling would be misleading.

Therefore, a projected-saturation differential profile
should be used in cases where the measurements are
subject to saturation.

The procedure for a linear projected-saturation dif-
ferential profile is identical to that for a ratio differen-
tial profile with two exceptions. First, the quantity:

(ms —ma)(la — 1) n
mo — My

s = l2 (4)
is used for each bucket in place of the ratio, where
m; and [; are the measurement and the offered load,
respectively, in the current bucket of the i* work-
load. The my is the saturation measurement. Second,
the result must be sorted in ascending rather than de-
scending order.

There are many projection methods in addition to
linear. In cases where the entities being measured
have different asymtotic complexities (e.g., O(n) vs.
O(n?)), a power-law projection may be helpful:

oo log(ms/m?*)log(la/11)
B log(mz/m.)

Other projection methods may require measurements
at more than two loads.

+ log(ls) (5)

Projected-saturation differential profiling is in ef-
fect using extrapolation to estimate resource consump-
tion at higher loads than were measured. In prac-
tice, measurement errors, utilization of multiple re-
sources, and changes in behavior can often render the
always-dangerous process of extrapolation completely
foolhardy.

There are nevertheless situations where the risks in-
volved in this sort of extrapolation can be tolerated.
For example, careful performance extrapolation might
be used to help argue for the equipment and labor
expenditures required to test at a higher load than
could otherwise be justified. In addition, careful per-
formance extrapolation can help locate performance
bugs on smaller, cheaper machines than would other-
wise be required. Extrapolation does not completely
remove the need to test on expensive full-sized ma-
chines, but it can reduce the amount of test time re-
quired, given that fewer performance bugs remain to
be found, fixed, and retested. There are many tech-
niques and procedures from the field of capacity plan-
ning [9] that can reduce the risks associated with per-
formance extrapolation.

However, a later section shows that a class of algo-
rithms commonly used in parallel programs can make
simple CPU-time extrapolation extremely dangerous.
That section also shows how to more safely extrapo-
late the performance of this class of algorithms.

Example Profiling Exercises

This section demonstrates use of differential profiling
to pinpoint poorly-scaling algorithms, cache thrash-
ing, and lock contention.

Pinpointing Excessive CPU Usage

The first example demonstrates the use of differential
profiling to find a poorly-scaling algorithm in a toy
program. Actual measurements for loads of 1, 2, 3,
and 4 are plotted in Figure 1. The consumption ap-
pears to be fairly linear with the load, where “load”
is defined as the value of a parameter n.5 However,
an actual run at a load of 10 consumes over 350 CPU
seconds.

Ratio differential profiling, displayed in Table 2,
may be used to quickly locate this scaling problem
without actually running the program at a load greater
than 4. The ratio focuses our attention on the prob-

6This type of definition of “load” is often found in scientific
and engineering simulations, where a larger value of n might
indicate a finer mesh size, with correspondingly larger data sets
to be operated on.

CPU Time (seconds)

0051152253354
Load (value of n)

SO P N W M OO N
1
]

Figure 1: CPU Time for Example 1

| Function | Load=3 | Load=4 | Ratio |

poly2 1 12 | 12.00
log 409 554 | 1.35
polyl 60 70 | 1.16

Table 2: Differential Profile

lem area-the log and polyl functions are exhibiting
near-linear increases in execution time, but the poly2
function is clearly growing very rapidly.

The source code to the polyl and poly2 functions
are displayed in Figures 2 and 3, respectively. The
poly?2 function has time complexity O(n?), which fully
accounts for poor scaling-at a load of 10, the poly2
function accounts for more than 95% of the CPU con-
sumption.

Note that this technique of sorting on ratios of exe-
cution times can help focus on the most critical areas
even if there are tens of thousands of functions in an
existing program with no documentation and no gu-
rus.

for (i = 0; i < n; i++)
for (j = 0; j < 100000; j++) {
x = log(x);
if (x <= 1.)
x =x + b.;

Figure 2: polyl — Linear Time Complexity

A potential complication is that a large number of
functions may be executed so infrequently that they
only accumulate a few counts on any given run. These
functions can have very large ratios merely due to sta-
tistical fluctuations. The resulting false alarms may

for (i1 = 0; il < n; il++4)

for (i9 = 0; i9 < n; i9++)
sum++;
return (sum);

Figure 3: poly2 — O(z%) Time Complexity

be eliminated by rejecting functions that do not have
at least one profiling count that is well above the level
of measurement error.

Pinpointing Cache Thrashing

Cache thrashing occurs when a parallel algorithm
causes CPUs to frequently reference data items that
are often modified by other CPUs. Each such data
item will “thrash” back and forth across the global
bus or interconnect connecting the CPUs’ local caches.
Since global processing is very costly in comparison to
local processing and is expected to become even more
expensive as technology advances [10, 11, 12], cache
thrashing causes dramatic decreases in performance.

Thrashing is demonstrated by the code fragment
shown in Figure 4. This code fragment searches for
a pair of control blocks in separate lists, incrementing
a counter in each of the control blocks that it finds.
If one or the other of the control blocks could not be
found, the corresponding pointer will be NULL. Similar
code fragments are used to keep separate local (per-
CPU) and global state. Such separate local and global
state can be used to detect and optimize cases where
the corresponding entity happens to be used only by
a single CPU.

In this example, “load” is the number of CPUs, and
the measure of work is the number of searches per-
formed. The number of searches per CPU is held con-
stant, so that the amount of work done is proportional
to the number of CPUs.

If this code fragment scaled perfectly, search time
would not depend on the number of CPUs. How-
ever, the two-CPU run of this code fragment consumed
about 19% more CPU per process than did the single-
CPU run. Although this is not disasterously greater
CPU consumption, this is only a two-CPU run. Dis-
aster very likely awaits a four- or eight-CPU run.

A standard per-source-line profile of the two-CPU
run is shown in Table 3. Four of the top five lines are
from the second for-loop from Figure 4, hinting that
the data structure searched by this loop be restruc-
tured.

© 0 N

10

12

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

struct ctrlblk {
struct ctrlblk *next;

int id;
int ctr;
char pad[20];

/* Search for control blocks. */

for (p = tp; p != NULL; p = p->next) {

if (p->id == key) {
p—>ctr++;
break;

}

for (q = tpp; q !'= NULL; q = q->next) {

if (q->id == key) {
q->ctr++;
break;

Figure 4: Cache-Thrashing Code Fragment

| Line | Profiling Hits |

73 956
64 519
75 457
70 417
71 206
68 162
63 142
66 108
65 21
72 18

Table 3: Two-CPU Conventional Profile

However, a weighted differential profile, shown in
Table 4, tells a different story. The last column of
this table is computed using Equation 3, where w; is
1 CPU,” wy is 2 CPUs, m; is the 1-CPU profile mea-
surement, and ms is the 2-CPU profile measurement.
Line 64 is the only line whose overhead increased dra-
matically from the single-CPU to the dual-CPU run.
Line 64 is the first line to reference the next element in
the linked list in the first loop, which hints that there
may be a cache-thrashing problem.

CPUs | Weighted
Line 1| 2| Difference
64 61 | 519 397
75 198 | 457 61
68 74 | 162 14
71 96 | 206 14
72 4| 18 10
76 13| 25 -1
73 279 | 556 -2
65 16 | 21 -11
70 214 | 417 -11
66 68 | 108 -28

Table 4: Differential Profile

The problem is that the increment on line 65 invali-
dates the cache line, removing it from all other CPU’s
caches. When one of these other CPUs next tries to
reference this line, it must fetch a new copy. Since the
second loop (lines 60-74) searches a list that is pri-
vate to each CPU, this loop does not suffer from this
cache-thrashing effect.

The traditional way to prevent cache thrashing in
this case is to place the ctr field into its own cache
line as shown in Figure 5. This placement prevents
modifications to the ctr field from invalidating the
id and next fields that are used in the search. The

modified program runs slightly slower on a single CPU
(11.6 CPU seconds compared to 11.5 for the original
version), but runs much faster for greater numbers of
CPUs, as shown in Figure 6.

200 1T T T T T
n
2
S 150 | d
(8}
(O]
¢ .
-] 100 Original —
a -
O e
g 50 = -~ -~" Modified]
— e

0 L1111 1

012 3 456 7 8
Load (number of CPUS)

Figure 6: Original vs. Modified Implementation

In this example, ratio differential profiling correctly
identified the cause of poor scaling. In contrast, con-
ventional profiling gave misleading information.

Pinpointing Contention

This example demonstrates the use of differential pro-
filing to locate lock contention, again in a toy program.
Figure 7 shows an example program that is subject
to contention. The s_lock._p function is an instru-

s_lock p(&spinlock) ;

p = idp;

for (; p->idmext != NULL; p = p->idmnext) {
p—>id_ctr++;

}

s_unlock_p(&spinlock) ;

7 struct ctrlblk {

8 struct ctrlblk *next;
9 int id;

10 char pad1[24];

11 int ctr;

12 char pad2[28];

13 };

Figure 5: Fix to Cache-Thrashing Code Fragment

7Since the amount of work done is proportional to the num-
ber of CPUs, the numbers of CPUs may be used directly as the
weights.

Figure 7: contend — Lock Contention

mented version of the s_lock function that acquires a
spinlock, and the s_unlock_p function is likewise an
instrumented version of the s_unlock function that
releases a spinlock [13].

In this example, “load” is defined to be the number
of elements in the linked list pointed to by idp, in
thousands.

The fraction of time spent spinning is shown as a
function of load in Figure 8. This number increases
sharply and suddenly when the load reaches 1.4. Thus,
the fraction of CPU time spent spinning is not a good

0.35
03 [
0.25 -
0.2 -
0.15 |-
0.1
0.05 |-

0

Fraction CPU Time

0 02040608 1 1214
Load (thousands of elements)

Figure 8: Fraction CPU Time Spinning

predictor of the maximum load that can be sustained.®

To see why, consider that short, frequently-occuring
critical sections are often guarded by spinlocks. Such
critical sections running on a shared-memory parallel
processor will typically spin for a time period approx-

imated by:
rsx

flz) = (6)

T 1-s2

Here, f(z) is the spin time not including the time re-
quired to execute the critical section and surrounding
code, r is the average time required to execute the crit-
ical section and s is a constant that converts a load x
into a utilization such that when the utilization is 1.0
the critical section is saturated®. This saturation will
occur when the critical section consumes one full CPU.
Thus, on a machine with a large number of CPUs, the
CPU overhead of the worst critical section excluding
spinning might rank quite low, and therefore might
not stand out on a conventional profile.

One might hope that the spinning overhead would
stand out. To extrapolate this overhead, we take a
measurement of the time spent spinning at some load
b. The presence of measurement errors means that a
zero measurement must be interpreted to mean that
the spin time f(z) at load b is less than the measure-
ment error (call it €). It is often sufficient just to show
that the spin time f(z) at the higher load ¢ will be
within some budget M.

Substituting Equation 6 into the measurement-error
and budget constraints yields the following solutions

8However, spin time can be helpful in diagnosing an existing
performance problem.

9This equation assumes that the critical section is en-
tered at a exponentially-distributed rate and executes at an
exponentially-distributed rate. This equation is a reasonable
approximation for other distributions, as can be seen from
graphs of this and related functions [14]. Queuing theorists will
note that r is 1/u, sz is the utilization A\/p (sometimes denoted
by p), and that f(z) itself is the in-queue waiting time Wj.

for r and s whenever M/e > ¢/b:1°

c—b _ Mb—ec)
Mb—ec’® ™ Mbe— ebe

Hence, it is possible for an algorithm to not spin at all
below load b but still exceed an arbitrarily large bud-
get at load ¢, regardless of how closely-spaced b and
¢ are. Therefore, simple profile-based extrapolation
just does not work for predicting critical-section spin
times. The author has personally witnessed several
algorithms whose spin times “blow up” in response to
small increases in load.

However, the behavior of parallel algorithms may
often be reasonably safely extrapolated by estimating
the values of r and s directly from the code itself.
These estimates may be accomplished either by di-
rectly measuring the quantities, perhaps by using a
high-accuracy clock, or by computing them from pro-
filing data.

Usually, the value of interest is sz, the CPU uti-
lization of the critical section. When this value ap-
proaches one, the corresponding critical section be-
comes a bottleneck. The value of sz for the example
is shown in Figure 9. This fraction clearly cannot rise

r=Me

CPU Time

0 02040608 1 1214
Load (thousands of elements)

Figure 9: Fraction of One CPU Consumed by Critical
Section

above 1.0 for any given critical section. In fact, in
this case, it does not even rise much above 0.9. This
is due partially to measurement error but mostly be-
cause variations in execution rate can cause the CPUs
to all be executing outside of the critical section. This
time spent with no CPUs in the critical section can
never be made up.

Figure 10 shows that the spin time is fit very closely
by a function of the form of Equation 6 with r equal
to 0.05 and s equal to 0.73.

10This condition will normally hold. The budget M should
be very large compared to the measurement error € — otherwise,
you should be using a better measurement methodology.

0 r—T—T T T T 7

10} & A

Number of CPUs Consumed

o
@/6
5 < -
L5
16’6
0 NI I N I |
0 02040608 1 1214

Load (thousands of elements)

Figure 10: CPUs vs. Load Fit

As noted earlier, spin times can suddenly “blow up”
in response to small changes in offered load. This
effect is demonstrated by the code fragment in Fig-
ure 11. This code fragment is invoked every clock
tick, each time on a different CPU. The offered load is
simply the number of elements in the linked list. The
larger the number of elements, the more CPU time
will be consumed in the critical section. Figure 12
shows that the spin time increases sharply and sud-
denly, with no warning. However, the hold time gives
a good picture of scaling limits.

s_lock_p(&lockl);

p = idp;

while (p->idmnext != NULL) {
p~>id_ctr++;
p = p~>id._next;

}

s_unlock p(&lockl);

Figure 11: Periodic List Scan

This example demonstrates the pitfalls of naively
extrapolating the CPU consumption of code that is
subject to contention. This section has demonstrated
an alternative, more robust method:

1. Instrument locking primitives to measure the
amount of time that each lock is held.

2. If necessary, also account for the time required for
the lock to move from one CPU to the next.

3. Divide each such measurement by the duration of
the run to obtain the fraction of time that each
lock was held.

8 100F ises=
5 /
8 80 [~ hold time /
& /
[60 [//
= il
[= 40 - / L.
) / spin time
2 20k p a
@) /
o L 1 1

0 1000 2000 3000 4000
Load (elements)

Figure 12: Spin/Hold Times For Periodic List Scan

4. Apply projected-saturation differential profiling
to the resulting fractions.

This method allows you to see which locks are nearest
to becoming saturated and thus becoming bottlenecks,
even if the corresponding critical sections are scattered
widely throughout the code.

Differential-Profiling Cautions

Differential profiling located these problems readily.
However, some caution is required when using differ-
ential profiling on the large-scale systems found in the
“real world”. No technique, not even differential pro-
filing, will ever be an acceptable substitute for careful
thought, planning, and analysis.

First, it is not uncommon for large-scale systems to
use different algorithms at different load levels. For
example, it is quite common for parallel programs to
have special-case code for single-CPU operation. In
these cases, it is necessary to compare two-CPU and
three-CPU runs rather than one-CPU and two-CPU
runs. In general, you must take care either to compare
identical systems or to allow for any differences that
might appear.

Second, obtaining accurate and meaningful mea-
surements often requires much care and creativity.
This is especially true in distributed applications,
where the effects of communications overheads can be
difficult to measure properly. For example, in a dis-
tributed lock manager, the time taken to communicate
the availability of a lock to the next process wishing
to acquire it should be counted as time that the lock
is unavailable. Otherwise, you will get an overly opti-
mistic estimate of the system’s scalability. This effect
is not limited to distributed systems; the relatively
long latencies found in large-scale SMP systems can
also distort lock-hold-time measurements.

Obtaining accurate and meaningful measurements
in monolithic systems can be just as challenging. For
example, the overhead of taking the measurements
might completely change the behavior of the system.
To guard against this, it is wise to perform an unpro-
filed run so that you can determine whether the act of
measurement is changing the system’s behavior.

Third, especially when using a ratio differential pro-
file, statistical variations can cause false alarms. A
given code fragment might, just by chance, collect one
profiling hit on the first run and three hits on the sec-
ond run. This coincidence could sort this irrelevant
code fragment to the top of the list. It is therefore
often necessary to filter a ratio differential profile to
eliminate buckets that have too few hits to be sta-
tistically significant, or, if possible, to use a weighted
differential profile instead.

If this filtering eliminates data that is known to be
of interest, collect more data either by running the
workload for a longer time period or by summing the
profiles of several runs. If it is not possible to col-
lect a large enough sample, it may be possible to get
a valid comparison using comparison methods other
than ratio or weighted difference. For example, non-
parametric statistics [8] can sometimes be helpful.

Fourth, cache-capacity effects can confound the
measurements. For example, if a two-CPU run uses
more data than does a one-CPU run, the differen-
tial profile may locate cache misses due to the larger
dataset no longer fitting into the CPU caches. Such
cache misses may or may not be of interest; if they
are not, then it is necessary to select the dataset sizes
carefully in order to avoid this effect. This problem
is not confined to hardware memory caches—the same
problem can occur when profiling systems involving
software caches for disk I/O or search structures.

Finally, hardware effects such as speculative execu-
tion and interrupt masking (for interrupt-based profil-
ers) can produce misleading results. Hopefully, CPU
designers will more carefully consider the needs of per-
formance analysts in future designs.

Case Studies

The following three sections each describe a situa-
tion where differential profiling allowed developers to
quickly locate a scalability performance problem. The
first section describes a software bottleneck exposed by
FDDI, the second section describes a process-creation
bottleneck, and the third section describes an unusual
cache-thrashing bottleneck.

FDDI Bottleneck

A pair of FDDI boards achieved only about 1.6 times
the throughput of a single FDDI board, compared to
the expected factor of 2.0. A conventional profiling re-
port produced no useful insights; there was no obvious
single point in the code responsible for the increased
overhead.

Combining a profile of a system running a single
FDDI board with that of a system running two boards
pinpointed the problem. The time required to perform
a particular hardware operation quadrupled as the of-
fered load increased by a factor of 1.6. However, the
operation itself accounted for less than 1% of the to-
tal CPU time consumed on the two-board benchmark,
and is thus not noticeable on either of the profile re-
ports when considered separately.!?

However, a ratio differential profile put the offend-
ing operation right at the top of a list of well over a
thousand functions.

A later version of the hardware eliminated the need
for the offending operation.

Process-Creation Bottleneck

A benchmark showed disappointing process-creation
rates: beyond a certain point, adding more CPUs and
memory did not result in increased ability to create
and destroy processes via the UNIX fork() system call.

A conventional profile simply pointed out the “usual
suspects” responsible for much of the overhead of cre-
ating processes.

Combining a profile at low process-creation rate and
at high process-creation rate demonstrated that some
of the memory-allocation algorithms were subject to
cache-thrashing at high load. Almost all of the in-
crease in CPU overhead responsible for the poor scal-
ing could be attributed to the five instructions used
to copy the old process image while creating the new
process image, and the combined profile put these in-
structions at the top of the list despite their being
widely distributed throughout the code.

This information enabled developers to design new
algorithms with better cache locality.

I/0 Bottleneck

A pair of quad-SCSI interface boards was unable to
perform more I/Os per second than was a single board.
Since all previous versions of the operating system did

' The dramatic reduction in throughput was due to an inter-
action between the hardware operation and DMA.

scale I/Os per second with number of interfaces, sus-
picion fell on software.

Conventional profiling failed to find any significant
CPU consumption. However, measurements of the
system bus showed that the new software saturated
the bus. Unfortunately, the hardware provides no rea-
sonable way to assign bus utilization to software mod-
ules.

A differential profile comparing a single- and dual-
interface benchmark run showed that a single instruc-
tion in the idle loop'? consumed far more CPU time
in the dual-interface run than in the single-interface
run. However, it did not consume enough CPU time
to stand out in a conventional profile.

Further analysis showed that this instruction was
looking for newly-runnable processes as part of a new
process-scheduling algorithm. However, this algo-
rithm was thrashing the caches, resulting in excessive
bus utilization, which in turn limited the bus band-
width available for disk I/O.

When the process-scheduling algorithm was modi-
fied to avoid this cache-thrashing behavior, disk I/O
again scaled with increasing numbers of quad-SCSI
interface boards.

Conclusions

This paper showed how differential profiling can pro-
vide invaluable insights into the behavior of a pro-
gram, by focusing attention on a small portion of the
program so that powerful analysis techniques may be
brought to bear. This technique may be used to lo-
cate conditions such as inefficient algorithms, spinlock
contention, and cache-thrashing in large programs for
which gurus, and perhaps even source code and doc-
umentation, are not available. In addition, this tech-
nique can make use of any type of profiling data. No
new measurement tools are required.

The technique was demonstrated on several small
example programs. Experiences successfully using it
on real-world programs were discussed.

In the future, we expect to adapt this technique
to more types of profiling data such as cache misses,
and to more difficult situations, such as where a given
function’s overhead must be charged to its caller.

12This was the only time I ever conducted a performance
analysis of the idle loop, something I had never expected to
do. However, one of the anonymous referees is aware of similar
occurrences in least two other systems.

Acknowledgments

I owe thanks to Noelan Olson, Brent Kingsbury, and
Tony Petrossian for involving me in the situations that
gave birth to the idea of differential profiling. Ken
Dove implemented the fine-grained profiling system
that made fine-grained differential profiling possible.
Numerous conversations with Jack Slingwine helped
me better understand the different approaches to pro-
filing and how they are related to the ideal “complete”
profile. I am grateful to Joseph Skudlarek, Jon In-
ouye, and Phil Krueger for their careful review of early
drafts of this paper, to James Bash for helping to ren-
der it human-readable, and to Kirk Bailey for naming
it.

Finally, I am indebted to Dale Goebel for his sup-
port of my efforts in this area.

References

[1] Raj Jain. The Art of Computer Systems Perfor-
mance Analysis. John Wiley and Sons, 1991.

[2] Steven McCanne and Chris Torek. A random-
ized sampling clock for CPU utilization estima-
tion and code profiling. In USENIX Conference
Proceedings, Berkeley CA, February 1993.

[3] Jennifer M. Anderson, Lance M. Berc, Jef-
frey Dean, Sanjay Ghemawat, Monika R. Hen-
zinger, Shun-Tak A. Leung, Richard L. Sites,
Mark T. Vandevoorde, Carl A. Waldspurger, and
William E. Weihl. Continuous profiling: Where
have all the cycles gone? In Proceedings of
the 16th ACM Symposium on Operating Systems
Principles, New York, NY, October 1997.

[4] Jeffrey Dean, James E. Hicks, Carl A. Wald-
spurger, William E. Weihl, and George Chrysos.
Profileme: Hardware support for instruction-level
profiling on out-of-order processors. In Proceed-
ings of IEEE Micro-30, Piscataway, NJ, Decem-
ber 1997.

[5] S. L. Graham, P. B. Kessler, and M. K. McKu-
sick. gprof: A call graph execution profiler. In
Proceedings of the SIGPLAN’82 Symposium on
Compiler Construction, June 1982.

[6] A. J. Goldberg and J. L. Hennessy. Mtool:
An integrated system for performance debug-
ging shared memory multiprocessor appliations.
IEEE Transactions on Parallel and Distributed
Systems, January 1993.

[7]

[8]

[10]

[11]

[12]

[13]

[14]

John F. Reiser and Joseph P. Skudlarek. Program
profiling problems, and a solution via machine
language rewriting. SIGPLAN Notices, 29(1):37—
45, January 1994.

W. J. Conover. Practical Nonparametric Statis-
tics, 2ed. John Wiley & Sons, New York 1980.

Daniel A. Menasce, Vergilio A. F. Almeida, and
Larry W. Dowdy. Capacity Planning and Perfor-
mance Modeling. Prentice Hall, 1994.

John L. Hennessy and Norman P. Jouppi. Com-
puter technology and architecture: An evolv-
ing interaction. IEEE Computer, pages 18-28,
September 1991.

Harold S. Stone and John Cocke. Computer ar-
chitecture in the 1990s. IEEE Computer, pages
30-38, September 1991.

Doug Burger, James R. Goodman, and Alain
Kagi. Memory bandwidth limitations of future
microprocessors. In ISCA, New York, NY, 1996.

Sequent Computer Systems, Inc. Guide to Par-
allel Programming, 1988.

Frederick S. Hillier and Gerald J. Lieberman. In-
troduction to Operations Research. Holden-Day,
1986.

