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SUMMARY

A lightweight tool is proposed to aid in the development of operational semantics. To use LETOS an
operational semantics must be expressed in its meta-language, which itself is a superset of Miranda. The
LETOS compiler is smaller than comparable tools, yet LETOS is powerful enough to support publication
quality rendering using LATEX, fast enough to provide competitive execution using Haskell, and versatile
enough to support browsing of execution traces using Netscape. LETOS can be characterised as an
experiment in ‘creative laziness’, showing how far one can get by gluing existing components together.
The major specifications built using LETOS to-date are a smart card version of the Java Virtual Machine,
a deterministic version of theπ-calculus, and an electronic payment protocol. In addition, we have specified
the semantics of many small programming languages and systems, totaling over 9000 lines of formal text.
LETOS is unique in that it helps to check that a specification is operationally conservative. Copyright
1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

To design and specify the semantics of a programming language involves a number of clerical
tasks, such as rendering (pretty printing the semantic specification), type-checking (checking
that all objects in the specification have a unique type), execution (running sample programs
according to the semantics), and execution tracing (producing derivation trees to study the
details of executions). Tools help to perform these clerical tasks quickly and accurately, and
give the designer increased confidence in the validity of the specification.

The tools that are currently available to assist the practitioner of semantics exhibit
considerable variation in their sophistication. On the one hand, powerful systems such as
Centaur [1] and ASF+SDF [2] provide parsing, rendering, type-checking, execution, tracing
and more. On the other hand, some practitioners use a general purpose programming language
to complement, or even as a substitute for, the mathematical notation normally used to specify
a semantics. Textbook examples of such approaches include Nielson and Nielson [3], who use
Miranda [4]† to implement their semantic specifications, and Stepney [5], who uses Prolog to
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implement her semantics. The RML system [6] covers middle ground in that RML offers only
one facility: the compilation of operational semantics specifications into C. Concentrating
on one aspect pays off; the RML system executes an operational semantics faster than its
competitors.

The three approaches above represent as many points in a spectrum of possibilities. The
sophisticated tools provide comprehensive facilities, but not without imposing limitations.
The ASF+SDF system, for example, is not polymorphic, and it is also first order. This makes
it awkward to work with denotational semantics [7]. The complexity of a system such as
ASF+SDF makes it less than straightforward to experiment with, say, a higher order version of
the system. The Typol subsystem [8] of Centaur is slow [6]. Recent work on the Minotaur [9]
version of Typol has shown that imposing restrictions on the full generality of the Typol
inference rules makes speed improvements of a factor of about 10–15 possible. This still
leaves the performance of Typol wanting. The RML system does well on one aspect: speed of
execution. However, the lack of rendering and execution tracing facilities does not make for
a user-friendly system [6].

The systems referred to above have one factor in common: they are not small. For example,
in 1988 the Centaur system was reported to consist of 32,000 lines of code [10] and in 1996
the RML compiler and runtime system together comprised 15,000 lines of code [11].

The approach advocated in this paper is to build a lightweight tool that offers the most
important facilities at a minimal cost. This implies a small size of the meta-language compiler
and minimal runtime support, a quick edit-compile-run cycle and a short learning period. The
low cost is achieved by making maximum use of existing components, and by judiciously
selecting essential features. The proposed LETOS program is small (2000 lines of lex,
yacc and C). It takes as input a superset of Miranda. LETOS is capable of producing a
proper declarative program, which can be type-checked and executed by the appropriate
language system. Miranda and Haskell are used in the paper, but using Prolog would not
pose difficulties. LETOS can also produce a LATEX script, which when typeset provides
the conventional rendering of a semantics. Execution tracing is supported by the ability to
produce HTML files representing derivation trees. Small derivations can be rendered nicely
by Netscape.

In the literature, severalformats[12] have been proposed that impose a number of syntactic
constraints on the axioms and inference rules defining an operational semantics. These
formats can be shown to endow an operational semantics with one or more useful properties,
such as operational conservativity [13]. A LETOS specification is an operational semantics
that is machine readable. LETOS can thus be used as a vehicle for implementing a checker
of the various formats. The current version of LETOS warns if an axiom or inference rule
is not source dependent[13], (Section4). This is a necessary condition for operational
conservativity.

The paper makes three contributions. First, we show that it is possible to build a useful tool
with simple means and a number of sensible engineering choices. Secondly, we demonstrate
how using the tool helps to gain insight in the ambiguities of a semantic specification. Thirdly,
we show how LETOS helps to build modular specifications.

LETOS can be used for non-deterministic specifications with one restriction: execution
will only deliver one out of many possible results. All other features of LETOS, such as type-
checking, source dependency checking and rendering, are available for deterministic as well
as non-deterministic specifications.

The next section introduces the LETOS architecture. Section3 describes the input format,
using as a running example, the language While [3]. Section4 presents the semantics of the
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LETOS meta-language through a translation from axioms and inference rules to functions.
An assessment of the functionality and the performance of the tool is given in Section5. The
limitations are discussed in Section6. Related work is discussed in Section7. The last section
presents the conclusions.

2. THE LETOS ARCHITECTURE

LETOS links three standard tools (LATEX, Netscape and Miranda). Figure1 shows how these
components are connected. LETOS has the following properties:

• The LETOS source is a literate script. Sections of the input between delimiters.MS and
.ME are formal text, anything else is LATEX source.
• The formal text in the input to the program represents a specification written in a

superset of Miranda.
• LETOS is capable of translating the specification into LATEX, such that a publication

quality document of the specification can be obtained (-l command line option). This
paper is an example of the output of the program.
• LETOS is capable of generating a Miranda program for the formal text in its input (-m

command line option). When the program is compiled, the Miranda system performs
strong, polymorphic type checking.
• When executed, the Miranda program generated can be supplied with appropriate input

and deliver a result.
• Along with the result, a derivation tree can be generated to show how the behaviour

arose (-t option).
• The derivation tree is shown in a form that is under the control of the semantic
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specification and is not prescribed by LETOS. As an example, we show how a web
page is created, which can be browsed by Netscape.

3. THE LETOS INPUT LANGUAGE

The LETOS input language is basically Miranda, augmented with the following constructs:

• A reasonably general notation for expressing an abstract syntax as an algebraic data-
type.
• A notation for expressing relations in terms of axioms and inference rules.
• Basic set theoretic expressions, let expressions and conditionals.
• A number of further, minor features such as the provision of various kinds of brackets,

and ways of generating arbitrary LATEX symbols.

LETOS has a limited notion of the semantics of its input language. It ‘understands’ and
translates the extensions listed above into the target language. The tool relies mostly on the
target to provide a semantics for the language elements that the target and LETOS have in
common. This represents a significant difference between LETOS and other tools, which
generally fix the semantics of the entire specification language. On the one hand, this is a
disadvantage in that error messages about LETOS specifications are given in terms of the
generated LATEX or Miranda. These errors message are sometimes difficult to relate back to
the LETOS input. On the other hand, the LETOS user will have the skills to interpret the error
messages as they would also appear during the use of LATEX or Miranda on their own.

In the sequel, when the distinction is immaterial, we refer to axioms and inference rules as
‘rules’.

The best way of introducing the extensions is by discussing a typical example of a language
and its semantics: the natural semantics of the language While [3]. This is the subject of the
following (sub)sections.

3.1. Abstract syntax

An abstract syntax is represented as a type. Below, the abstract syntax is given of
While numerals (n), identifiers (x), arithmetic expressions (a), boolean expressions (b) and
statements (S). The example shows how numerals (n) are represented by the primitive
Miranda type for numbers. Similarly, an identifier (x) is represented as a string (i.e. a list
of characters). It is worth noting that Miranda’s primitive number type provides unbounded
precision integer arithmetic.

n ≡ num;
x ≡ string;
a ≡ n | x | a + a | a ? a | a − a;
b ≡ true | false | a = a | a ≤ a | ¬ b | b ∧ b;
S≡ x := a | skip | S ; S |

if b then S else S |
while b do S;

The differences between the rendering above and that of Nielson and Nielson [3] are
as follows. First, the representation above identifies meta-variables ranging over syntactic
categories with the syntactic categories themselves. Separate syntactic categories could be
introduced as type synonyms. Secondly, Nielson and Nielson use subscripts on recursive
occurrences ofa, b andS. The subscripts are not used, and can thus be omitted.
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LETOS input

In the literate programming convention of LETOS, the abstract syntax is input as a set of
algebraic data type declarations. We follow Miranda, in that a prefix binary constructor may
be preceded by a dollar sign to turn the prefix constructor into an infix constructor.

.MS
n == num ;
x == string ;

a ::= ‘N n | ‘V x |
a $Add a | a $Mul a | a $Sub a ;

b ::= Btrue | Bfalse | a $Eq a | a $Le a |
Neg b | b $And b ;

\stm ::= x $Ass a | Skip | \stm $Comp \stm |
If b Then \stm Else \stm |
While b Do \stm ;

.ME

The next two sections discuss the details of the LETOS input shown above as part of the
presentation of the LATEX and Miranda output that is generated.

LATEX output

For the purpose of rendering, the algebraic data type definitions shown above should be
embedded in a LATEX array-environment below. The array-environment should have three
columns: one for the left-hand side of the definitions, one for the symbols== or ::= and one
for the right-hand side of the definitions. The line\begin{array}{...} is part of the
LETOS input, and can therefore be varied, for example to centre the middle column.

\newcommand{\Add}{+}
\newcommand{\stm}{\mathsf{S}}
\begin{array}{@{}lll}
.MS
...
.ME
\end{array}

LETOS offers two simple ‘editing’ facilities. First, the backquote prefix (‘ ) causes symbols
(‘N and ‘V in the example) to be invisible in the generated LATEX. This conforms to the
common mathematical practice of omitting injection and projection functions when working
with disjoint sums (an algebraic data type is a disjoint sum of products).

Like the Z tools ZTC [14] and PiZa [15], LETOS allows an identifier to begin with a
backslash (\ ). This tells LATEX to interpret the identifier as a macro call, so that an appropriate
symbol may be used to render the identifier. In addition, LETOS automatically represents
constructors as macro calls. The macros\Add and\stm show how this facility is used.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(15), 1379–1416 (1999)
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Miranda output

The LETOS declarations for the syntactic categoriesn, x andb are already valid Miranda.
Dropping the prefixes (‘ ) yields valid Miranda for the definition of arithmetic expressionsa.
The \ prefix of \stm is replaced by the prefixmacro . Finally, the type\stm uses dist-fix
notation, which is not supported by Miranda. LETOS implements dist-fix constructions by
generating a new type for each constructor except the first. The Miranda generated for the
statement type is shown below. (The apostrophe’ is a legal character in a Miranda identifier.)

macro_stm ::=
x $Ass a | Skip |
macro_stm $Comp macro_stm |
If b then’ macro_stm else’ macro_stm |
While b do’ macro_stm ;

do’ ::= Do ;
else’ ::= Else ;
then’ ::= Then ;

The combination of invisible symbols, macro prefixes and distfix-constructors makes it
possible to render any conceivable abstract syntax. The cost of implementing these three
facilities is small, as the effect of each is localised; that is no global information is required.
This is a good example of providing an essential facility at minimal cost by making a sensible
engineering choice.

3.1.1. Using the abstract syntax

With the above definitions of the abstract syntax of While, it is now possible to write the
code for a sample statement in the While language. The factorial function is given below,
takingy as argument, and delivering the result inz. The code is written as separate definitions
to emphasise the structure.

fact = z := 1 ; while ¬ y = 1 do body;
body= z := z ? y ; y := y − 1;
y = "y" ;
z = "z" ;

We omit the LETOS input or LATEX output for this example, as it shows nothing new.
With the abstract syntax and a sample code fragment in place, it is now time to look at the

semantics proper.

3.2. Semantic functions

The semantic functionA below defines the value of arithmetic expressions (a). An
expression may contain identifiers (x), so the semantic function must know about a mapping
from identifiers to values. The definitions below give the type of the value domainZ and the
type of the mappingstate.

Z ≡ num;
state≡ {〈x 7→ Z〉};
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A sample state that specifies an initial value of 3 for the variabley is:

s3 :: state;
s3 = {〈y 7→ 3〉};

The semantic functionA performs case analysis on the components of the abstract syntax
and defines the value of an arithmetic expression thus:

A :: a→state→Z;
A[[n]]s =N [[n]];
A[[x]]s = s(x);
A[[a1 + a2]]s=A[[a1]]s+A[[a2]]s;
A[[a1 ? a2]]s =A[[a1]]s∗A[[a2]]s;
A[[a1 − a2]]s=A[[a1]]s−A[[a2]]s;

There is a fundamental difference between an executable specification as given above and a
mathematical specification as given by Nielson and Nielson [3]. In mathematics, it is possible
to explicitly reason about the partiality ofA. This would arise if an expression contains
variables that are not represented in the state. For example:

A[[y]]{} = ⊥;
In an executable specification, execution would be terminated when an identifier cannot be

mapped onto a value. Another instance of the same difference may be found in Section3.3.1.

LETOS input

The LETOS input for the range of the mappingstate and the mapping itself are given as
follows:

\newcommand{\bbZ}{\bbB{Z}}
.MS
\bbZ == num ;
state == { <x|->\bbZ> } ;
.ME

The input for the second clause of the functionA is representative for the LETOS notation
employed to specify functions:

\calA [[‘V x]] s = s{/x/} ;

In addition to some minor differences (dealing with the\ prefix and the emphatic brackets),
the clause uses the expressions{/x/} . This indicates thats is an association set, in which
x should be looked up.

Miranda output

In the Miranda output, the sets used in the LETOS input notation are represented by lists
without duplicates. The Miranda output for the definitions ofZ andstate are:

macro_bbZ == num ;
state == [(x,macro_bbZ)] ;
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The Miranda code forA should be consistent with this use of lists. For example, the code
for the second clause is shown below. Alookup function is used to search the association
list (LETOS has replaced the emphatic brackets by parentheses):

macro_calA (V x) s = lookup s x ;

The definition of thelookup function as well as a number of other utility functions are
provided with LETOS as a separate module. This provides for flexibility as the functions may
then be redefined, for example to improve their efficiency.

3.2.1. Boolean expressions

The semantic functionB for boolean expressions (b) is not reproduced here, becauseB
requires no new features. We just give the type of the function:

B :: b→state→B;

The boolean type (B) and the relevant constants as used by the semantic function are:

B≡ bool;
tt = True;
ff = False;

As was done before, for identifiers and numerals, we rely on a built-in data type of Miranda
to provide booleans.

3.3. Natural semantics of While

An operational semantics is usually represented by a set of rules. The natural semantics of
the statementsS of the language While is shown below. On the left of each arrow we find a
configuration, which contains a pair of statement and state. The right-hand side is just a state.

[assns] 〈x := a, s〉 1→ s⊕ {x 7→A[[a]]s};

[skipns] 〈skip , s〉 1→ s;

〈S1, s〉 1→ s′,
〈S2, s′〉 1→ s′′

[compns] 〈S1 ; S2, s〉 1→ s′′;

〈S1, s〉 1→ s′

[ifttns] 〈if b then S1 else S2, s〉 1→ s′,
if B[[b]]s = tt;

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(15), 1379–1416 (1999)
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〈S2, s〉 1→ s′

[ifffns] 〈if b then S1 else S2, s〉 1→ s′,
if B[[b]]s = ff;

〈S1, s〉 1→ s′,
〈while b do S1, s′〉 1→ s′′

[whilett
ns] 〈while b do S1, s〉 1→ s′′,

if B[[b]]s = tt;

[whileff
ns] 〈while b do S1, s〉 1→ s,

if B[[b]]s = ff;

There are two differences between the representation above and that of Nielson and Nielson
[3]. First, the notation above for substitution using curly brackets makes it explicit that
a mapping is a set. This particular notation is not standard in the programming language
semantics, but it is borrowed from Z.

Secondly, the arrows have been labelled, to be able to distinguish the present relation from
other relations that will appear in later sections. This is important because relations have a
type:

1→ :: (S, state)↔state;
The idea of making the type of a relation unambiguous makes it possible to type check

specifications mechanically. Labelling relations also helps to better understand the semantics,
as we shall see in Section3.4.

LETOS input

The LETOS input language allows rules to be defined at the top level, together with data
type and function definitions. The source for theassns axiom is:

axiom ass_ns =
|- <x $Ass a, s> =1=> s{/x|->\calA[[a]]s/};

The name of the axiom,assns, is used for execution tracing purposes (see below). Label (1)
on the arrow is used to identify a particular relation. The notations{/x|-> . . . /} denotes
substitution.

The LETOS specification for the composition rule is:

rule comp_ns =
|- <\stm_1, s> =1=> s’,
|- <\stm_2, s’> =1=> s’’
------------------------------------------
|- <\stm_1 $Comp \stm_2, s> =1=> s’’ ;

As usual, the premises are written above the dashed line, and the conclusion is written
below the line.

Some rules have a side condition. In the LETOS language this is indicated as follows:
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axiom while_nsˆff =
|- <While b Do \stm_1, s> =1=> s,
if \calB [[b]] s = ff ;

A rule with a side conditionif Eb can always be replaced by a rule with one (one more)

premise(s). The new premise would then be of the formEb
id→ True. This will be elaborated

in Section4.

Miranda output

In the Miranda output, a transition system with a label (l say) is represented by a set of
functional clauses with the namerule_l . For each rule a clause is generated that checks
the assumptions, the premises (for rules) and the side conditions. When all these checks are
successful, a list of states is produced as output.

For symmetry reasons, input is encoded also as a singleton list containing the current
configuration. An empty list signals that none of the rules in the transition system apply,
otherwise a singleton list results. For example, the generated Miranda for theassns axiom
above is:

rule_1 :: [(macro_stm,state)]->[state] ;
rule_1 [(x $Ass a,s)]

= [substitute s (x,macro_calA a s)] ;

The translation of an inference rule into a function must take the premises into account.
Consider the functions generated for the inference rulecompns. The recursive calls to
rule_1 under thewhere expression below represent the two premises. The guard on the
clause checks that the recursive calls do indeed deliver at least one ‘success’ each, by making
sure that the relevant lists are non-empty. The last success in the lists returned by the premises
is the chosen value for further computation.

rule_1 [(macro_stm_1 $Comp macro_stm_2,s)]
= [s’’],if non_empty t_1 /\ non_empty t_2

where
s’ = last t_1 ;
t_1 = rule_1 [(macro_stm_1,s)] ;
s’’ = last t_2 ;
t_2 = rule_1 [(macro_stm_2,s’)] ;
;

At the end of all function clauses generated for a labelled transition system, a default clause
is appended:

rule_1 x = [] ;

This default case would apply when all other clauses fail (functional clauses are tried top-
down in Miranda). For example, in the natural semantics, omitting the rule for a particular
statement would cause the functionrule_1 to fail on a program that contains such a
statement.

The method for translating rules into functions will be discussed in more detail in Section4.
For now, we note that the rules in a LETOS specification must be ordered as the order of the
generated functional clauses matters.
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3.3.1. Executing and tracing the natural semantics

With the definition of a suitable abstract syntax, and the specification of the semantic
functions and rules, all ingredients necessary to execute the specification for an example (the
factorial) are now available. The semantics of a particular program is a functionSns, which
when given an initial state returns a list of final states. This will be specified here as follows,
using the arrow as a postfix operator in our expression language:

Sns :: S→state→[state];
Sns[[S]]s= (〈S, s〉 1→);

Compare this to the mathematical specification ofSns by Nielson and Nielson, which is as
follows:

Sns [[S]] s =
{

s′, if 〈S, s〉 1→ s′
⊥, otherwise

There is considerable difference between the mathematical and the executable
specifications. The reason is that the latter cannot decide whether the derivation is finite
(cf. the Halting problem). To acknowledge this, only the essential part of the mathematical
specification has been retained in the executable representation. This is the part shown in the
shaded areas above.

When applied to the sample factorial program and the sample states3 given earlier, the
following equality can be proved:

Sns fact s3 = [{〈y 7→ 1〉, 〈z 7→ 6〉}]
The equality shows that the behaviour of the program is to decrement the value associated

with y from 3 to 1 and to return3! as the value associated with the variablez.

Miranda output

The Miranda functionmacro_sns generated forSns relies on the functionrule_1
as shown below. The functionmacro_sns is usually invoked from the main expression
supplied to the Miranda interpreter.

macro_sns :: macro_stm -> state -> [state] ;
macro_sns macro_stm s = rule_1 [(macro_stm, s)] ;

This concludes the presentation of abstract syntax, semantic functions, and rules for the
natural semantics of the language While.

3.3.2. Browsing a derivation tree

The semantic functions and rules of the natural semantics can be used to prove that the
above equality aboutfact is indeed true. It is technically not difficult to write down such a
proof. However, to render the proof nicely as a derivation tree is laborious. The actual proof
of the equality above is shown in Figure2(a). The use of an axiom in the proof is shown in
the tree as a single line with one transition. The name of the axiom is used as the label on the
transition. When an inference rule is used, the premises are shown, each on a separate line,
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[assns] 〈z := 1, s3〉 1→ s31

[assns] 〈z :=(z ? y), s31〉 1→ s33

[assns] 〈y :=(y − 1), s33〉 1→ s23

[compns] 〈body, s31〉 1→ s23;

[assns] 〈z :=(z ? y), s23〉 1→ s26

[assns] 〈y :=(y − 1), s26〉 1→ s16

[compns] 〈body, s23〉 1→ s16;

[whileff
ns] 〈while (¬(y = 1))do body, s16〉 1→ s16

[whilett
ns] 〈while (¬(y = 1))do body, s23〉 1→ s16;

[whilett
ns] 〈while (¬(y = 1))do body, s31〉 1→ s16;

[compns] 〈fact, s3〉 1→ s16;

(a) Conventional proof (b) Sample LETOS rendering

Figure 2. Two ways of representing the proof associated with computing the factorial of 3. (a) Is isopmorphic to
the folded items in (b). The notationsjk is an abbreviation for{〈y 7→ j〉, 〈z 7→ k〉} ands3 = {〈y 7→ 3〉}

followed by a horizontal line and then a conclusion. The conclusion is labelled by the name
of the inference rule.

A proof such as that given in Figure2(a)is read bottom up. At the bottom of the figure we
see a transition labelledcompns. This is the conclusion of two sub-proofs, shown as sub-trees
above the horizontal line at the bottom of the diagram. Both sub-trees are offset to the right.
The first sub-tree occupies the first line of the figure. It corresponds to a single transition
for the assignmentz := 1. The second sub-tree occupies the remainder of the diagram. This
second sub-tree serves to show that the transition labelledwhilett

ns at the bottom of the figure
is valid.

Driven by a command line option (-t ), LETOS is able to generate a Miranda program
that calculates not just the final state, but also the entire derivation tree that was generated to
create the final state. To illustrate this, the generated Miranda for the inference rulecompns is
shown below, with tracing code added automatically. Remembering the derivation, inclusive
of all intermediate states, involves a change of type for the functionrule_1 from producing
a list of values of typestate to producing a list of pairs:(state,string) .

rule_1 :: [(macro_stm,state)]->[(state,string)] ;
rule_1 [(macro_stm_1 $Comp macro_stm_2,s)]

= [(s’’,trace_1 "Comp_ns" ts)],
if non_empty t_1/\non_empty t_2
where
ts = [map snd t_1,map snd t_2] ;
s’ = fst(last t_1) ;
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t_1 = rule_1 [(macro_stm_1,s)] ;
s’’ = fst(last t_2) ;
t_2 = rule_1 [(macro_stm_2,s’)] ;
;

The functiontrace_1 used above combines the lists of inputs received with the label
of the current rule. A function such as this should be supplied as part of the LETOS input.
The formatting of the derivation tree is entirely under control of the user, thus providing for
maximal flexibility. It is straightforward to produce something like HTML in this way, but
other formats such as LATEX are also possible. Here is a fragment of the HTML that represents
the derivation tree for the factorial program, when applied to the initial states3:

<DT><H3>comp_ns</H3>
<DL><p>

<DT><H3 FOLDED>ass_ns</H3>
...

<DT><H3>while_ns’tt</H3>
<DL><p>

<DT><H3>comp_ns</H3>
<DL><p>

<DT><H3 FOLDED>ass_ns</H3>
...

<DT><H3 FOLDED>ass_ns</H3>
...

<HR>
<DT><H3 FOLDED>comp_ns</H3>

...
</DL><p>

A convenient way of browsing a HTML derivation tree is by incorporating the tree in the
file bookmarks.html so that Netscape can render the tree as a normal, quite verbose
HTML page, and also in various compact forms. Unfortunately, Netscape does not render
arbitrary HTML files in compact forms. The compact representation of the derivation from
Figure2(a)is shown in Figure2(b) by the bookmarks window. Fine control over the amount
of information is provided by clicking on the appropriate triangles, which fold and unfold sub
trees.

Netscape provides an alternative to browsing the derivation tree by using pull-down menus.
Below is the menu corresponding to the conclusion of the derivation. It represents an instance
of the compns rule. The two derivations to be made for the premises are shown above the
line. The name of the rule for the root of the derivation tree is given below the line.

Moving the mouse to the field markedAss_ns displays the derivation subtree associated
with the first premise, which represents an instance of theassns axiom. It shows the effect
of executing the first assignment statement on the state of the computation. The screen shot
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below was actually produced by a slightly more elaborate version of thetrace_1 function,
which has access to the configurations, in addition to having access to the label of a rule.

To explore the depth of the derivation tree, move the mouse to the field marked
While_ns’tt . This displays the root of the derivation subtree for the second premise.

Following the path further down in the tree yields the configuration below. It is now possible
to view further assignments, but this will not be done here.

These two compact ways of rendering provide for a flexible and powerful way of browsing
derivation trees. Using existing notation and tools (Netscape and HTML), should make
the method easy to learn and use, and thus lightweight. Probably inherent to graphical
representations of derivation trees, the present method does not scale up to large derivation
trees. It does, however, permit browsing trees larger than those typically found in the literature
due to the folding properties of the browser.

3.4. Structured operational semantics of While

Like the natural semantics, a Structured Operational Semantics (SOS) is represented by a
set of rules. The SOS of the language While, following Nielson and Nielson, is shown below:

[asssos] 〈x := a, s〉 2⇒ s⊕ {x 7→A[[a]]s};

[skipsos] 〈skip , s〉 2⇒ s;
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〈S1, s〉 3⇒ 〈S′1, s′〉
[comp1

sos] 〈S1 ; S2, s〉 3⇒ 〈S′1 ; S2, s′〉;

〈S1, s〉 2⇒ s′

[comp2
sos] 〈S1 ; S2, s〉 3⇒ 〈S2, s′〉;

[ifttsos] 〈if b then S1 else S2, s〉 3⇒ 〈S1, s〉,
if B[[b]]s = tt;

[ifffsos] 〈if b then S1 else S2, s〉 3⇒ 〈S2, s〉,
if B[[b]]s = ff;

[whilesos] 〈while b do S1, s〉 3⇒
〈if b then S1 ; while b do S1 else skip , s〉;

This specification consists of two separate relations:

2⇒ :: (S, state)↔state;
3⇒ :: (S, state)↔(S, state);

These relations are different because their types are different. In their specifications,
Nielson and Nielson [3] ignore the difference, but introduce it again when the execution of
the specification in Miranda is discussed [3]. To be able to type check the specification, it is
necessary to make the distinction, and labelled relations provide a tidy way of doing so.

An SOS yields a derivation sequence, whereas a natural semantics delivers a derivation
tree. To put the two on a level playing field, it is convenient to add another inference rule to

the SOS specification. This new relation
4⇒ given below first computes the transitive closure

of the relation
3⇒, and then selects final state:

4⇒ :: (S, state)↔state;
〈S1, s〉 3⇒ ∗〈S′1, s′〉,
〈S′1, s′〉 2⇒ s′′

[runsos] 〈S1, s〉 4⇒ s′′;

With this preparation, the SOS of While statements can be expressed in the same way as
the natural semantics:

Ssos :: S→state→[state];
Ssos[[S]]s= (〈S, s〉 4⇒);

The translation of the SOS into Miranda and LATEX is straightforward.
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3.4.1. Executing and tracing the SOS

The introduction of the extra inference rulerunsos makes it possible to render the derivation
sequence for the factorial example in the same way as the derivation tree for the natural
semantics was rendered. Here is the menu-style result:

This shows that at the root of the ‘derivation tree’, and as a result of using the∗ operator,
11 steps have to be taken. The steps that represent the inference rules (comp_sos’1 and
comp_sos’2 ) have subsidiary derivation trees; others will exhibit just a transition on the
configuration.

3.5. Alternative approaches

Most books present abstract syntax, axioms and inference rules in the same way as we have
done above [3, 16–18]. However, some texts [19] leave out embellishments, and represent
an abstract syntax purely as an algebraic data type. LETOS supports both approaches. For
example, the LETOS input of the pure abstract syntax of While could be represented as shown
below.

n == num ;
x == string ;

a ::= N n | V x |
Add a a | Mul a a | Sub a a ;

b ::= Btrue | Bfalse | Eq a a | Le a a |
Neg b | And b b ;

s ::= Ass x a | Skip | Comp s s |
If b s s | While b s ;

The advantage of using the a pure abstract syntax is that the clutter of the special symbols
like $, ‘ or \ has disappeared. The disadvantage is that functions and rules defined over a pure
abstract syntax cannot be presented in textbook style. Compare the axiomwhilesos from the
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previous section with the version using the pure abstract syntax below. The lack of keywords
makes the pure version less readable.

[whilesos] 〈while b S1, s〉 3⇒
〈if b(comp S1(while b S1))skip , s〉;

Tools such as RML [20], and Centaur/Typol [1] work with a pure abstract syntax. For
example, here is a fragment of the Metal specification of arithmetic expressions taken from
the Centaur Tutorial [21]. It corresponds exactly to the pure abstract syntax ofa above:

definition of Exp is
abstract syntax

integer -> implemented as INTEGER;
variable -> implemented as IDENTIFIER;
add -> EXP EXP;
mul -> EXP EXP;
sub -> EXP EXP;
EXP ::= add mul sub integer variable;

end definition

Centaur offers facilities to specify a concrete syntax, the ability to parse input according to
the concrete syntax whilst building terms in the abstract syntax, and pretty printing facilities
to render the abstract syntax. LETOS does not offer these facilities, but we have shown that
the LETOS rendering is of the same high standard as that used in textbooks.

The lack of parsing facilities makes inputting ‘abstract syntax’ inconvenient. An elegant
way to add scanning and parsing facilities would be to use parser combinators [22]. This
could be achieved without adding further facilities to LETOS; see, for example, our earlier
work [23].

3.6. Abstract machines

Nielson and Nielson [3] describe a low level abstract machine and a ‘provably correct
implementation’ of While. Both the abstract machine and the compiler have been expressed
using LETOS and the associated standard tools. Here is the abstract syntax of the instructions
of the machine:

i ≡ PUSH n |
ADD | MULT | SUB |
TRUE | FALSE |
EQ | LE |
AND | NEG |
FETCH x | STORE x |
NOOP |
BRANCH(c, c) | LOOP(c, c);

c≡ ε | i : c;
The translation functions for arithmetic expressions (a), boolean expressions (b) and

statements (S) do not pose new problems to LETOS. Below are just the types of the translation
functions, whereCS represents the compiler from the While language to the abstract machine
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code. The compiler is easily written in the conventional recursion equation style using
LETOS.

CA :: a→c;
CB :: b→c;
CS :: S→c;

The operational semantics of the abstract machine defines a relation between
configurations. This relation is conventionally indicated by the symbol�:

5
� :: (c, stack, state)↔(c, stack, state);

The first component (c) of a configuration is a sequence of instructions; the second
component (stack) contains boolean and integer values; the third component is the mapping
from variables to values (state).

The relation
5
� defines the single step transitions. The full semantics of the abstract machine

is given by a new relation
6
�, which takes the transitive closure and selects the final state as

before, for the SOS:

6
� :: (c, stack, state)↔state;

The compilerCS and the abstract machine represented by the relation
6
� together provide

for the third specification of the semantics of the While language:

Sam :: S→state→[state];
Sam[[S]]s= (〈CS[[S]], [], s〉 6

�);
The derivation sequence produced by the computation for3! on the abstract machine is

long. Here are the beginning and the end, omitting 27 intermediate steps:

... 27 steps omitted

This time, the derivation sequence is absolutely flat, (cf. Gunter [24]). Moving the mouse
to a sub-menu would show the actual transition step.
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3.7. Denotational semantics

LETOS can be used to render a conventional denotational semantics. It also supports type
checking and execution of a denotational semantics. Unfortunately, LETOS does not allow
for derivation trees from denotational semantics to be generated and browsed. The reason is
that the structure of each rule corresponds to the structure of a node in a derivation tree. In
a denotational semantics, the semantic function is not defined using rules, but as a system
of recursion equations. It is possible for a tool to discover where in these equations recursive
calls are made to the relevant semantic functions. It is difficult, but presumably not impossible,
to decide how such calls should be modified automatically to allow for tracing information to
be gathered.

However, even without the tracing and browsing facility, it is illustrative of the pretty
printing capabilities of the tool to show the denotational semantics of the While language [3]:

Sds :: S→state→state;
Sds[[x := a]]s = s⊕ {x 7→A[[a]]s};
Sds[[skip ]] = id;
Sds[[S1 ; S2]] = Sds[[S2]].Sds[[S1]];
Sds[[if b then S1 else S2]] = cond(B[[b]], Sds[[S1]], Sds[[S2]]);
Sds[[while b do S1]] = FIX F

where
F g= cond(B[[b]], g.Sds[[S1]], id);
;

The auxiliary functionFIX is the fixed-point combinator, and thecond function is a higher
order version of the ordinary conditional:

cond :: (α→bool, α→α, α→α)→(α→α);
cond(p, g1, g2)s= g1 s, if p s = tt;

= g2 s, otherwise;
FIX :: ((α→α)→(α→α))→(α→α);
FIX g = g(FIX g);

The functionSds can be applied to the factorial program and the sample initial states3 to
yield the final state as follows:

Sds fact s3 = {〈y 7→ 1〉, 〈z 7→ 6〉}
A continuation semantics [3] is also easy to describe. It does not add much to what has

been said before.

4. TRANSLATING RELATIONS

This section gives a transformational semantics to LETOS by describing how rules are
translated into functions. The translation is loosely based on Johnsson’s method for translating
attribute grammars into lazy functional programs [25]. Here an axiom plays the role of a
terminal, and an inference rule plays the role of a non-terminal in a grammar. An axiom,
or the conclusion of an inference rule receives information through its left-hand side and
produces information via its right-hand side. This is comparable to, respectively, inherited
and synthesised attributes. The premises of an inference rule inherit information from either
the left-hand side of the conclusion, or from other premises. Similarly, they synthesise
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information for use by further premises or by the right-hand side of the conclusion and the
side condition. Recent work on Typol is also based on this relationship between rules and
attribute grammars [9]. Stepney [5] uses a similar method based on definite clause translation
grammars [26], which are the logic programming equivalent of attribute grammars.

The following sections discuss the syntax and semantics of the LETOS rules. The definition
of the remaining language elements, such as types and function definitions, relies entirely on
the target language and is not discussed here.

4.1. Syntax of patterns and expressions

Rules contain patterns (P), and expressions (E). A pattern is at-tuple (witht = 0 or t > 1),
ann-ary constructor symbolCn (with n ≥ 0), or a variablev. Without loss of generality, we
ignore here the usual syntactic sugar for lists and infix constructors:

P≡ (P1, . . . , Pt ) |
Cn P1 . . . Pn |
v;

A pattern isirrefutable if it contains only tuples and variables. A pattern with constructor
symbols is refutable.

An expression is either at-tuple, the application of ann-ary constructor symbol, the
application of anm-ary function symbolFm (with m ≥ 0) or a variable.

E≡ (E1, . . . , Et ) |
Cn E1 . . . En |
Fm E1 . . . Em |
v;

The expressions above represent a first order sub-language of the more general notion
of expressions in a higher order functional language. This is somewhat restrictive, but it
should be noted that the functions available in addition to the rules still provide the full
power of higher order programming to LETOS specifications. The denotational semantics
of Section3.7illustrate this point.

Function symbols (F) and constructor symbols (C) must be distinct. This is consistent with
the use of patterns in most functional languages; languages based on term rewriting (e.g. ASF)
take a more liberal view [27].

4.2. Syntax of axioms and inference rules

The syntax of an axiom without a side condition is given by the axiom schema below. The
patternP0 to the left of the arrow is usually referred to as the subject of the axiom. The
expressionE0 will be referred to as the object of the axiom.

[schema1] P0
R→ E0;

If there is a side condition, which must be a boolean expression (Eb), the syntax is:

[schema2] P0
R→ E0,

if Eb;
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To cope with inference rules that have a different number of premises a family of rule-
schema is used. The syntax of an inference rule withn ≥ 1 premises, and without a side
condition is given by the appropriate member ofschema3 below: Again, the patternP0 to
the left of the arrow in the conclusion is referred to as the subject of the inference rule. The
expressionE0 is the object of the inference rule.

E1
1→ P1,

. . . ,

En
n→ Pn

[schema3] P0
R→ E0;

With a side condition, the syntax of an inference rule withn premises must conform to:

E1
1→ P1,

. . . ,

En
n→ Pn

[schema4] P0
R→ E0,

if Eb;

Each of the arrows in the premises can be adorned with an asterisk to indicate the transitive
closure of the relation.

In a subsequent section, the syntactic conditions will be given that have to be satisfied
for axioms and inference rules to yield a syntactically correct translation into Miranda. To
simplify the presentation, the four different kinds of axioms and inference rules will first
be translated into inference rules of the kindschema3. This is the subject of the following
section.

4.3. Simplifying axioms and inference rules

Each axiom of the formschema2 (i.e. with a side conditionif Eb) is replaced by an
inference rule with a single premise as shown below.

Eb
id→ True

[schema3] P0
R→ E0;

The auxiliary relation
id→ is the (polymorphic) equality relation:

[id] x
id→ x;

Similarly, each inference rule of the formschema4 (i.e. with a side conditionif Eb and
n premises) is replaced by an inference rule of the formschema3 with an extra premise

Eb
id→ True.

As a second simplification the distinction between axioms and inference rules will be
dropped; an axiom will be treated as an inference rule with 0 premises. From now on all
rules will thus be of the formschema3.
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4.4. Translating rules to functions

In what follows, letfv(·) denote the set of free variables of a given pattern or expression.
A rule (after the simplification of the previous section) should satisfy the two syntactic
constraints below:

pure A rule should not have free variables:

n⋃
k=0

fv(Ek) ⊆
n⋃

k=0

fv(Pk)

linear Patterns must be pairwise disjoint; ifi 6= k then:

fv(Pi) ∩ fv(Pk) = ∅
A set of rules is pure (linear) if all rules are pure (linear).
There are two reasons for insisting on pure rules. The first is that impure rules are

not necessarily operationally conservative (see Section4.5). The second reason is that the
semantics of functional programming languages are defined in terms of closed lambda terms.
If free variables were admitted, then a translation into Prolog would be more appropriate [8];
the free variables would then be represented as logic variables.

The second condition is a linearity condition, which avoids variables being defined more
than once. Without the linearity condition, unification would be required to execute rules.

The linearity requirement does not affect operational conservativity. However, the
requirement does make it less convenient to specify a semantics that essentially uses
unification, such as a type checker. In such a case, one has to manipulate substitutions
explicitly and program the unification process [28]. In the dynamic semantics of the languages
that LETOS has been applied to (see Sections5 and 6), the restriction to linear rules has not
posed a problem.

For each pure and linear member the family ofschema3 an appropriate functional clause is
created as shown below. This forms the basis of the translation. The Miranda code fragments
discussed earlier in the paper provide concrete examples of the translation.

ruleR[P0] = [E0], if non emptyt1∧ . . . non emptytn
where
P1 = last t1;
t1 = rule1[E1];

...
Pn = last tn;
tn = rulen[En];
;

In the next two sections, the generated Miranda is refined to take into account refutable
patterns and the reflexive transitive closure of relations. In the section thereafter, the syntactic
constraints are discussed again in relation to the notion of operational conservativity.

4.4.1. Translating refutable patterns

Most patterns that occur in the premises of an operational semantics are tuples containing
only variables. Such patterns are irrefutable, that is, they will always match. Patterns that
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contain constructors are refutable; they can fail to match. The patterns introduced by the
simplification to support side conditions are an example of refutable patterns.

LETOS generates code to support refutable patterns as follows. For each refutable pattern
Pi, the test nonemptyti is replaced by the testmatchi ti. Furthermore, a new function
definition is generated, to decide whether the match succeeds:

matchi(Pi : )= True;
matchi = False;

As an example, consider the relation
gt→ below, where bothx andy range over{0,1}:

gt→ :: (num, num)↔bool;
x
id→ 1,

y
id→ 0

[gt] (x, y)
gt→ True;

The translation of this rule into a functional clause calledrulegt is shown below. (This
program fragment represents code that has first been generated by LETOS, and then processed
again to pretty print the code.)

rulegt :: [(num, num)]→[bool];
rulegt[(x, y)] = [True], if match1 t1∧match2 t2

where
t1 = ruleid[x];
t2 = ruleid[y];;

rulegt x = [];
According to the general pattern formatchi above, new function definitions are generated

to perform the matching as follows:

match1, match2 :: [num]→bool;
match1(1 : ) = True;
match1 = False;
match2(0 : ) = True;
match2 = False;

Whenrulegt is executed, the first step is to bind the variables (x andy). The second step is
to evaluate the first conjunct of the guard (match1 t1). Then there are two possibilities:

False The guard fails and the functionrulegt returns the empty list.

True Otherwise, the third step is to evaluate the second conjunct (match2 t2), giving two
possibilities again:

False The entire guard fails and the functionrulegt returns the empty list.

True Otherwise, the entire guard succeeds, so that the functionrulegt will return the
singleton list[True].
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4.4.2. Translating closures

The premises of a rule can be adorned with an asterisk to indicate that the transitive closure
of the relation is desired:

` Ei
i→∗ Pi

The where clause generated in this case relies on the support functionclosure as follows:

Pi = last ti;
ti = closure rulei[Ei];

The definition of the functionclosure is shown below. It repeatedly tries to apply the
appropriate function, passed as the argumentr, until the latter yields an empty list of
successes. A rule using a closure may thus deliver a result list with more than one element.
The SOS and abstract machine semantics of While provide examples of use.

closure r s= s′ : closure r[s′], if non emptyss;
= [], otherwise

where
ss= r s;
s′ = last ss;
;

A transition system is fully defined by a collection of rules that bear the same label (l say).
Each of the individual rules is translated into the definition of a function clause as described
above. In addition, a default clause is added. The functional clauses together then fully define
a functionrulel .

This completes the description of the semantics of LETOS.

4.5. Operational conservativity

The extension of a set of rules isoperationally conservativeif provable transitions in the
original system are the same as those in the extended system. Groote en Vaandrager [29]
show that the original system must be pure andwell-founded. LETOS specifications are
always pure, but they need not be well founded. Rather than reproducing the definition of
well-founded here, we give an example (below) of a legitimate LETOS rule that is not well-
founded. The problem is the cyclic dependency between the two premises (the problem is not
the infinitary nature of the rule). Rules such as this do occur; Mini-Freja (see Section5) uses
a similar rule to create a (finite) environment for aletrec construct.

x : xs
id→ ys,

y : ys
id→ xs

[cycle] 〈x, y〉 xyxy→ ys;

Well-foundedness is an awkward property to check. Fortunately, Fokkink and Verhoef [13]
show that a more liberal condition is sufficient: the original system must be source dependent.
A rule issource dependentif all variables in the rule are source-dependent. Using the notation
for schema3 from Section4.2, we define set of source dependent variables inductively as
follows:
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• All variables inP0 are source-dependent.
• If all variables in Ei are source-dependent, then the variables inPi are source-

dependent.
• No other variables are source-dependent.

LETOS issues a warning when a rule is not source-dependent. This helps writing
operational semantics that can be extended later. It should be noted that an extension to a
source-dependent set of rules should itself be source dependent, and that the extension should
satisfy a number of further requirements [13] (Theorem 3.21).

Working with an operationally conservative semantics is a technique that allows a language
designer to save effort, because a valid property of a language remains valid in an extension of
the language. Baeten and Verhoef [30] give a systematic presentation of the technique. They
also discuss a host of languages, showing how basic theorems can be reused over and over
again. To illustrate this with an example, consider the usual inductive definition of the natural
numbersn:

n ≡ 0 | S(n);
The relation→ given by the two rules below defines addition over the natural numbers.

Both rules are pure and source-dependent.

[+0] 〈0+ p〉 → p;
〈p + q〉 → r

[+1] 〈S(p)+ q〉 → S(r);

With these two rules it is possible to prove useful properties, for example that addition is
commutative. Now suppose that the set of rules is extended with two further rules to define
multiplication thus:

[×0] 〈0× p〉 → 0;
〈p × q〉 → r,
〈q + r〉 → s

[×1] 〈S(p)× q〉 → s;

It would be tedious if the proof of the commutativity of addition would have to be repeated
for the extended set of rules. Fortunately, the set of four rules+0, +1, ×0 and×1 is a
conservative extension of the initial set (+0, +1), which automatically discharges the proof
obligation for the extended system.

The essence of the operational conservativity is the notion of source-dependency. This
notion is not only useful in the realm of operational conservativity, but also in conservativity
of rewrite systems. For example, Fokkink and Verhoef [31] give a treatment of source-
dependency for term rewriting systems with applications to software renovation. Roughly,
a component that rewrites legacy code into better code, can also extend it with more
functionality. When the extension is conservative, we can be sure that the original
functionality of the renovation component is not affected by the extension. Again, it is
crucial to check for source-dependency. To illustrate source-dependency, we provide a simple
example, also due to Fokkink and Verhoef [13].
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Given two constantsa andb, consider the inference rule below. With this rule alone it is
not possible to prove thata→ a:

x→ x
[a] a→ a;

However, if rulea is extended with axiomb as shown below, it does become possible to
give such a proof in the extended system (by instantiating the variablex to the constantb):

[b] b→ b;

Rulea is not source-dependent (because the variablex is not source-dependent). Therefore,
rulesa andb together do not form an operationally conservative extension of rulea. The fact
that rulea is not source-dependent warns us of this undesired behaviour.

5. ASSESSMENT

To demonstrate that LETOS is a useful tool, we first characterise the most important
specifications that have been built using LETOS. The total portfolio of LETOS specifications
is 27 languages and systems, totalling over 9000 lines of formal text. To show that LETOS
also offers good performance, we compare it with RML.

5.1. Functional assessment

LETOS has been applied to a number of operational semantics and models from various
sources to assess its usefulness:

JSP (183 rules) The Java Secure Processor (JSP) is a byte code interpreter for a smart
card implementation of Java [32]. The JSP does not support floating point data types,
dynamic linkage, garbage collection or exceptions, but it does support the full object
model of Java. The complete SOS of the JSP has been specified as a case study of a
realistically sized SOS. Without a tool such as LETOS it would not have been possible
to execute and trace any but the most trivial Java programs, because of the large number
of byte codes involved. LETOS proved to be an essential tool to validate the semantics
by supporting experiments with a suite of small to medium sized Java programs.

π-calculus with application (72 rules) A deterministic operational semantics of theπ -
calculus [33] has been specified using LETOS [34]. The resulting tool has been used
for the exhaustive state space exploration of a simple model of a distributed data base
system. The state space exploration has pointed out two problems with theπ -calculus
model of the data base: first, the model used global names (instead of private names)
to communicate the response to a request. This is open to abuse by other processes.
Secondly, the model allowed names to escape their scope, which makes it vulnerable
to undesired interactions with other agents. Problems such as these commonly occur
in π -calculus specifications. They are generally difficult to detect, unless one uses an
appropriate tool. This was easily provided by the LETOS execution of the model.

QuickPay (13 rules) is a system for micro-payments aiming to avoid the cost of
cryptographic operations during payments [35]. An operational model of the system
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has been built to assist in the search for weaknesses in the protocols. The messages
exchanged by the QuickPay protocols have been modelled by LETOS rules. The
parties and the messages involved in the protocols are shown in Figure3. Theupdate
transaction supplies the customer with value tokens, which can be passed on to the
merchant during asell transaction, and thence to the broker for clearing. Authentication
tokens are provided by the broker to the merchant (stock) and subsequently exchanged
between broker and merchant during mutual authentication (authm, authb).

As a result, the model building activity, one minor weakness has been found. Another,
more serious, weakness has been re-discovered, and a number of solutions are proposed.
The strongest solution is proved correct. LETOS executions were instrumental in
discovering counter-examples for certain desirable properties, such as the conservation
of electronic money.

Scil (80 rules) The secure card instruction language (SCIL) is a threaded code language
designed for writing secure and compact smart card operating systems [36]. LETOS
has been applied to specify the operational semantics of extended high and low level
variants of SCIL, as well as a compiler from the high to the low level language.

Mini-Freja (67 rules) Mini-Freja is a call-by-name pure functional language [6]. The
operational semantics for the language is available in Typol and in RML. The LETOS
version is a literal translation from the RML version, which itself is a literal translation
of the Typol version.

While (40 rules) The language While has been the running example of this paper. The
differences between our version of the various styles of semantic specifications (NS,
SOS, DS and AM) and the same specifications from the literature are minor.

TTA (19 rules) A Transport Triggered Architecture (TTA) is a novel kind of Very Long
Instruction Word (VLIW) architecture. The instruction set and the instruction fetch
and execute cycle of this architecture has been described as a parallel, synchronous
SOS [37].

Memory manager (9 rules) An operational semantics of the memory manager of a smart
card operating system has been specified using LETOS.

Pattern matching compiler (34 functions) A compiler for pattern matching functions in a
style similar to that found in Peyton Jones [28] has been specified.

This represents a relatively wide range of operational semantics, though with the exception
of the Java Secure Processor, all of a relatively small size.

5.2. Performance assessment

The LETOS+Miranda combination is useful during development because the combination
provides fast compilation. When fast execution is desired, the generated Miranda can be
converted into Haskell, for which good compilers are available. We have used GHC, the
Glasgow Haskell compiler [38]. This conversion can be done largely automatically using a
simplesed script (it would also be straightforward to extend LETOS to generate Haskell
directly).
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Figure 3. The QuickPay parties and transactions. Thick arrows represent value token transfer and thin arrows
represent authentication token transfer

Table I. Using the Mini-Freja operational semantics to compare the performance of RML, Sicstus Prolog,
LETOS+GHC and LETOS+Miranda. Seconds represent average user+system time over 10 runs on a
SPARCstation-20, 60 MHz, 128 MB, Solaris 2.5. The Prolog version of Mini-Freja ran out of memory when

calculating the first 60 primes.

Compiler RML Sicstus LETOS+GHC LETOS+Miranda
Version 2.0-pl3 2.1 #9 3.02 2.020
Option -O2 fastcode -O

Time sec. sec. sec. sec.
Compilation 6.7 2.0 111.3 3.2
Primes 18 0.1 1.9 0.8 42.8
Primes 30 0.4 8.8 3.2 171.1
Primes 60 4.2 — 26.1 1423.5

To assess the performance of the code generated by LETOS, the operational semantics for
Mini-Freja has been used to compute the firstn primes (forn = 18,n = 30 andn = 60),
using the sieve of Eratosthenes.

Experiments have been carried out using four different compilers as shown in TableI.
Times reported are in seconds user+system time, measured as an average over 10 runs. The
first two columns show the results for repeating the experiments from Table 10.8 in Mikael
Pettersson’s PhD thesis [6]. The third column reports the results obtained after translating the
Miranda code generated by LETOS into Haskell. The last column applies to direct execution
of the Miranda code.

The conclusions from this experiment are:

• The best compile time is provided by Sicstus Prolog, closely followed by the
LETOS+Miranda combination. The best run time is delivered by RML, followed by
the LETOS+GHC combination.
• Using existing technology makes it possible to build a flexible system with limited

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(15), 1379–1416 (1999)



LETOS 1407

effort. Miranda offers fast compilation and slow execution, which would be appropriate
most of the time. Haskell offers faster execution, at the cost of longer compilation times.
• Chosing a lazy functional language as a target works well; the runtime results are better

than those obtained with a good Prolog compiler.
• Writing a specialised tool that concentrates on one aspect (fast execution) pays off:

RML is fast.

6. LIMITATIONS

LETOS has two limitations to its execution capabilities: a semantics should be deterministic,
and execution should not rely on unification. These limitations have not caused difficulty
whilst specifying extensive collection of deterministic, dynamic semantics reported in
the previous section. However, the limitations do pose problems for the specification of
concurrent systems and type inference. These applications will be discussed in the following
two sections.

6.1. Non-determinism

The disadvantage of using a functional language to execute semantic specifications is the
lack of direct support for working with relations. However, the ‘list-of-successes’ method [39]
can be used to create a function that will simulate a relation. When given a relation
R :: A↔ B, this method creates a functionF as follows:

F :: A→{B};
F a′ = {b | 〈a, b〉∈R ∧ a = a′};

If a relation is deterministic, the corresponding function either delivers a singleton set
to represent success, or an empty set representing failure. For a non-deterministic relation
there might be several successes. When LETOS executes a non-deterministic specification,
only one result is delivered. This is a safe approximation to the desired set of results. This
restriction can be lifted, because lazy evaluation makes it possible to generate all possible
successesin principle, but in practice only ever to use one or just a few successes. This is the
subject of the next section.

6.1.1. Non-deterministic CCS fragment

A separate paper discusses how the completeπ -calculus [33] can be specified using
LETOS [34]. To illustrate the principle here, a fragment of the basic agent constructions
of CCS [40] will be presented in LETOS. The fragment omits restriction, recursion and
relabelling. Adding these features would make the example more complicated, but not more
informative. The abstract syntax of the fragment is given below. The syntactic categoryAct
specifies the actions, whereτ is the silent action. The variablesα andβ range overAct. The
syntactic categoryE names the inactive agent (0), it describes the action prefix of an agent
expression (α ·E), summation (E+F) and communication (E‖F). The variables E and F range
overE :

α, β ∈ Act≡ τ | a | ā | b | b̄ | . . .;
E,F ∈ E ≡ 0 | α · E | E+ F | E ‖ F;

The operational semantics of the fragment of CCS below is based on Milners
specification [40] (Section 2.5). The type declaration shows that→ relates an agent
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expression E to a configuration〈α,E〉, whereα is the action taken. LETOS does not permit
associating an action label with the arrow of the transition. Instead, an action label is
associated with the right hand side of the transitions.

→ :: E↔〈Act, E〉;
[act] α · E→ 〈α, E〉;

E→ 〈α, E′〉
[sum1] E+ F→ 〈α, E′〉;

F→ 〈β, F′〉
[sum2] E+ F→ 〈β, F′〉;

F→ 〈α, E′〉
[com1] E ‖ F→ 〈α, E′ ‖ F〉;

F→ 〈β, F′〉
[com2] E ‖ F→ 〈β, E ‖ F′〉;

E→ 〈α, E′〉,
F→ 〈β, F′〉

[com3] E ‖ F→ 〈τ, E′ ‖ F′〉,
if match(α, β);

An auxiliary functionmatch is used to yield true when presented with a andā, or with b
andb̄, etc.

Non-determinism arises because there is a choice betweensum1 andsum2 for any agent
expression of the form E+ F. There are even three choices for an agent expression of the
form E‖F.

The semantics can be made deterministic by a source to source transformation. The idea is
to replace each set of rules with a common subject (and arbitrary object) by a new rule. This
new rule relates the common subject to the set of all possible objects. The result of applying
the transformation to the fragment of CCS is presented in the next section.

6.1.2. Deterministic CCS fragment

The source to source transformation changes the type of the relation→ such that it relates
an agent expression to a set of configurations, instead of a single configuration. The axiom
undergoes a similar change, yielding

→ :: E↔{〈Act, E〉};
[act] α · E→ {〈α, E〉};

The summation rulessum1 and sum2 have one premise each. These premises are
independent. Both must therefore be carried over to the combined rule. The new premises
each relate an agent to a set of configurationsẼ andF̃. We therefore take as the object of the
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new summation rule the union of the configurations:

E→ Ẽ,
F→ F̃

[sum] E+ F→ Ẽ ∪ F̃;

Gathering all premises fromcom1 . . . com3, and removing the duplicates to avoid name
clashes yields the two premises below. The objects of each of the three rules are combined
into a single object.

E→ Ẽ,
F→ F̃

[com] E ‖ F→
{〈α, E′ ‖ F〉 | 〈α, E′〉∈Ẽ} ∪
{〈β, E ‖ F′〉 | 〈β, F′〉∈F̃} ∪
{〈τ, E′ ‖ F′〉 | 〈α, E′〉∈Ẽ∧ 〈β, F′〉∈F̃∧
match(α, β)};

Finally, if there are agent expressions for which the non-deterministic semantics does not
give a transition, these must be related to the empty set by the determinstic semantics:

[inaction] 0→ {};

The correctness of the transformation can be proved by induction on the shape of the
derivation trees.

LETOS can now execute the relation→ to generate all possible transitions of an agent
expression. For example, the agent expression below would evolve in one step to four different
configurations, thus:

(a · E+ b · 0)‖ ā · F→ { 〈a, E ‖ ā · F〉,
〈b, 0 ‖ ā · F〉,
〈ā, a · E+ b · 0 ‖ F〉,
〈τ, E ‖ F〉};

It would be possible to extend LETOS with the capability to perform the above source-
to-source transformation. However, our experience with theπ -calculus semantics shows
that to control the potentially large number of results poses practical problems. There are
two possible approaches. The first is to let the user make the choices interactively. The
second approach is to check properties of intermediate and/or final configurations in a
model checking fashion. This is how the deterministic semantics of theπ -calculus has been
validated [34]. The first approach scales up better but cannot be automated. The second
approach only works with finite state spaces but it can be automated.

6.2. Unification

The previous section showed how a relationR :: A↔ B, can be simulated by a function.
However, this relies on the assumption that the relation is used such, that when given some
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a ∈ A (a is ground), we wish to know which values ofb ∈ B satisfya R b. The simulation
method above would also work if the relation is to be driven backwards, i.e. ifb ∈ B is ground.
However the simulation method would fail if neithera norb are fully ground. Such a situation
would arise typically when specifying a type inference system.

With considerable extra work, it would be possible to use LETOS to specify a type inference
system. For example Milner’s [41] algorithmW (and Robinson’s unification algorithm [42]
which it uses) could be written directly using LETOS. However, it would probably be more
convenient to extend LETOS so that it would generate Prolog.

However, to show that the execution capabilities of LETOS are not limited to specifying
dynamic semantics, the next section present a type checker for the simply typedλ-calculus.

6.2.1. Simply typedλ-calculus

The abstract syntax of Church’ version of the simply typed lambda calculus [43] is given
below. The typeτ defines function typesτ → τ , a ground type 0 and an error type⊥. The
latter has been included to cope with terms that cannot be typed in this particular calculus.
The syntax of an expressione shows how a bound variable is annotated with its typev : τ .
The context0 maps variables to types.

v ≡ a | b | . . . ;
τ ≡ τ → τ | 0 | ⊥;
e ≡ v | λ v : τ · e | e e;
0 ≡ {〈v 7→ τ 〉};

The axiomvar below shows that the type of the variablev can be inferred from the context
0, provided the variable actually occurs in the context.

The inference rulelam asserts that the type of the lambda abstractionλv : τ · e is the
function typeτ → σ . The premise asserts that the type of the expressione is σ in a context
which mapsv onto the typeτ .

The inference ruleapp asserts that the expressionf e has typeµ, when the functionf has
typeσ → µ and when the argumente has typeτ , under the condition thatσ andτ are the
same.

These three rules suffice to specify well typings. They do not specify what should happen
in case of an error. Therefore, two extra axioms have been added, which apply when none of
the earlier rules apply. The axiomvarerr applies whenv does not occur in the context0. The
axiom apperr applies when eitherf does not yield a function type, or when the formal and
actual argument types differ.

[var] 〈w 7→ τ 〉∈0 ∧ v = w`v : τ ;
0 ⊕ {v 7→ τ }`e : σ

[lam] 0`λ v : τ · e : τ → σ ;
0`f : σ → µ,
0`e : τ,
σ = τ

[app] 0`f e : µ;
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[varerr] 0`v : ⊥;
[apperr] 0`f e : ⊥;

The specification is succinct, close to a textbook representation and directly executable by
LETOS. To demonstrate this, consider the followingλ-terms:

K= λ a : 0 · λ b : 0 · a;
I = λ a : 0→ 0→ 0 · a;

The LETOS execution of the type checker calculates the types of expressions as follows:

I : (0→ 0→ 0)→(0→ 0→ 0);
K : 0→ 0→ 0;
I K : 0→ 0→ 0;
K I : ⊥;

No unification is necessary, as all type information is explicit in the terms.

7. RELATED WORK

The execution of specifications (not specifically of programming languages) by means of
translation, either mechanical or by hand, into declarative languages (Prolog, SML, Miranda
and Haskell) has been practised widely and for a long time. See Sherrell and Carver [44] for
a survey.

In the domain of programming language specification, considerable effort has been
devoted to execution of denotational semantics [5,45], continuation semantics [46], natural
semantics [1,47], structured operational semantics [48], and algebraic specifications of
various styles of semantics [2]. Publication quality rendering always has a high priority.

Dinesh andÜsküdarlı have used the ASF+SDF system to typeset and execute the various
semantics of the While language [7]. They report a different ambiguity in the book of Nielson
and Nielson from the two ambiguities reported in this paper. This shows that, depending on the
properties of the tool used for executing the semantics, different aspects of the specification
are found to be ambiguous.

A number of papers have been written to argue in favour or against the use of executable
specifications. Gravell and Henderson provide a recent overview of the discussion [49]. In the
context of specifying programming language semantics and translators, the view seems to be
somewhat in favour of getting some help from tools to execute specifications.

One report has been found in the literature, where HyperCard stacks are used to support
execution [50]. In recent work, Grundy [51] proposes a HTML package called ProofViews to
allow window inference style proofs to be browsed comfortably using Netscape. The idea is
attributed to Lamport [52].

7.1. Comparing LETOS, RML and Typol

The LETOS, RML and Typol meta-languages are similar in that they all represent an
operational semantics by configurations and relations over configurations. In principle, the
three systems work in the same fashion. When given an initial configuration (goal) a matching
rule is found, whose evaluation (proof) gives rise to subsidiary goals, which are matched in
turn. When all goals have been matched and evaluated, the process terminates. The three
systems differ in many of the details, as summarised in TableII .
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Table II. Differences between Letos, RML and Typol

Property Letos RML Typol

Target dependency

Target Miranda/Haskell C Prolog/Functional
Depends on target a lot not at all a little

Types

Typing strong strong strong, can be weakened
Polymorphic yes yes no
Overloading Miranda:no yes no

Haskell:yes

Axioms and inference rules

Labelled relations yes yes yes
Rules order department yes no yes
Premises order department no no Prolog: no

Functional: yes.
Assumptions yes none sequent calculus style
Side condition yes yes yes
Higher order function no no
Data flow in/out fixed fixed Prolog: decided by analysis

Functional: fixed

Expressions

Side effects no yes yes
Sets, comprehensions yes no no

Evaluation strategy

Backtracking no yes yes
Unification no yes Prolog: yes

Functional: no

Input

Abstract syntax Curried ADT Uncurried ADT Uncurried ADT + list arity
Parsing no no yes (Metal)

Output

Pretty printing yes no yes (Ppml)
Execution yes no yes
Animation no no yes
Debugging no no Prolog 4-port model

Intended application area

Operational semantics yes yes yes
Denotational semantics yes no no
Compilation schemes yes no yes
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• Target dependencyThe three meta-languages are compiled into different programming
languages. LETOS may be compiled into Miranda and subsequently into Haskell, Typol
may be compiled into Prolog or a functional notation based on attribute grammars [9].
RML is compiled into C. The choice of target language influences the properties of the
meta-language in the case of LETOS and Typol, but not in the case of RML.
• TypesAll three systems impose a strong typing discipline. Typol requires rules to be

accompanied by an explicit type judgement. A judgement is optional for LETOS and
RML, which will infer the correct judgement. Typol allows the typing to be weakened
by permitting all constructs in a language specification to be identified. LETOS and
RML support polymorphism, Typol does not. Overloading is supported by bounded
polymorphism in RML. LETOS supports overloading only if the target language is
Haskell. Typol does not support overloading.
• Axioms and inference rulesAll three systems permit relations to be named (using

different syntax to achieve this). Unlabelled relations are common in textbooks, but they
are not usable in the strongly typed meta-languages discussed here. In a proper logical
framework, rules and premises within an inference rule should be order independent.
This is the case in RML. In LETOS and Typol, the order of rules matters because the
order of clauses in the target languages matters. LETOS and Typol support assumptions,
RML does not. Assumptions may be encoded as part of the configurations in RML.
Side conditions are provided by all three systems. RML and LETOS do not impose
restrictions on the use of side conditions. LETOS is higher order, in that it permits
functions to be manipulated by functions and by rules; RML and Typol are first order.
None of the systems permit rules to be manipulated by rules. LETOS and RML make
a specific assumption about the order in which values are bound to variables. Typol is
more flexible in this respect, but only if the target language is Prolog.
• ExpressionsLETOS provides the standard notation for sets, including ZF-expressions.

It does not provide side-effects, which are supported by RML (ref expressions as in
SML) and Typol (global variables).
• Evaluation strategy LETOS does not permit backtracking at present, but a trivial

modification would allow it. RML and Typol support backtracking. LETOS and the
functional version of Typol are based on pure pattern matching, whereas RML and the
Prolog version of Typol support unification. The lack of unification means that it is a
laborious process to specify type inference in LETOS, because the unification must be
made explicit (see Peyton Jones [28], Chapter 8, for an example).
• Input RML has the most restricted system for representing an abstract syntax, because

it supports SML style uncurried constructors only. LETOS supports curried constructors
(which subsume uncurried constructors). Typol also provides list arity constructors.
Typol provides a concrete syntax facility and parsing (based on lex and yacc) via
the Metal language. LETOS and RML do not provide concrete syntax or parsing
facilities.
• Output RML provides no support for pretty printing, LETOS provides an effective but

inflexible pretty printing facility. Typol provides a powerful pretty printing facility in
the form of the Ppml language. Typol provides the standard Prolog 4-port model for
debugging, with a versatile user interface. RML and LETOS do not provide debugging
facilities apart from the ubiquitous edit-compile-go cycle. RML provides no tracing
of executions, LETOS provides a simple off-line rendering facility of derivation trees
using Netscape. Typol offers the user interaction with the proof process in a flexible
way.
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• Intended application area Both RML and Typol have been designed specifically
to work with an operational semantics. LETOS also supports denotational
semantics, although it does not support tracing the execution of a denotational
semantics.

8. CONCLUSIONS

LETOS is a small program that makes it possible to enter an operational semantics, to
render the specification using LATEX and to execute and trace the specification using Miranda.
Netscape can be used to browse derivation trees. The tool has been applied to a number of
languages and systems to demonstrate its usefulness. Owing to its relative simplicity, LETOS
should be considered a lightweight alternative to its more powerful brethren. In combination
with a state-of-the-art compiler, the execution times of LETOS specifications are competitive.
In combination with LATEX, the rendering facilities are of publication quality.

Applying the tool to the language While as described by Nielson and Nielson [3] has
revealed that their semantic specifications are not always well-typed. Invisible constructors
have been proposed in this paper as a method to represent disjoint unions without affecting
the conventional rendering. Labelled transition systems have been used to represent typed
relations. This amounts to introducing a certain amount of notational baggage in the semantic
specifications, in order to typecheck the specifications. It has been demonstrated that the
publication quality rendering of the same specifications does not have to suffer.

A purely human readable specification may be ambiguous and incomplete. A machine
readable specification does not afford such leniency. The successful use of a tool to render,
execute and trace a semantic specification requires the user to fully understand the subject
matter, in order to be able to resolve ambiguities and fill in missing detail. As such the use of
LETOS provides a stimulating method to explore one’s understanding of the subject matter.

LETOS issues a warning when a rule is not source-dependent. This helps writing
operational semantics that can be extended, without having to redo any of the proofs that
were done for the original system. This helps to create modular semantic specifications.
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