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Among control problems for mobile robots, point-to-point stabilization is the most
challenging since it does not admit designs with smooth static state feedback laws.
Stabilization strategies for mobile robots, and nonholonomic systems generally, are
smooth, time-varying or nonsmooth, time-invariant. Time-varying control strategies
are designed with umdamped linear oscillators but their fixed structure offer limited
flexibility in control design. The central theme of this paper lies in use of nonlinear
oscillators for mobile robot control. Large numbers of qualitatively different control
strategies can be designed using nonlinear oscillators since stiffness and damping can
be functions of robot states. We demonstrate by designing two fundamentally differ-
ent controllers for two-wheeled mobile robot using two variants of a particular
nonlinear oscillator. First controller is dynamic and generates smooth control action.
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Second controller is almost-smooth and time-invariant. While first controller guaran-
tees global asymptotic stability for any desired posture of robot, second controller is
stable, and converges robot from almost any posture to desired posture. The only gap
in posture space is unstable equilibrium manifold of measure zero. For both control
strategies we mathematically establish stability and convergence of mobile robot to
desired posture. Simulation results support theoretical claims. Q 1999 John Wiley & Sons,

Inc.

1. INTRODUCTION

As a bench-mark problem for nonholonomic sys-
tems, mobile robot control has been quite popular in
the scientific community. Among the control prob-
lems, the problem of point-to-point stabilization is
particularly interesting due to the nonexistence of a
smooth stabilizing static state feedback law. This
negative result is a consequence of a theorem by
Brockett.1 In agreement with Brockett’s1 result, pri-
marily two types of stabilizing controllers have been
developed for nonholonomic systems, namely,
smooth time-varying controllers and nonsmooth
time-invariant controllers. A hybrid combination of
the two controllers have also been proposed. A
summary of the developments in mobile robot con-
trol, and nonholonomic systems in general, can be
found in review articles.2

Explicit time-varying control laws for the feed-
back stabilization of a mobile robot was first pro-
posed by Samson.3 Several studies have been car-
ried out thereafter on smooth time-varying control
of nonholonomic systems. These include general
existence results4 and explicit time-periodic feed-
back laws for a particular class of nonlinear sys-
tems.5 Dynamic controllers, which are a special case
of smooth time-varying controllers, have also been
proposed.6 Smooth time-varying controllers typi-
cally suffer from slow rates of convergence7,8 and
faster convergence can be achieved through the de-
sign of nonsmooth controllers. The existence of a
piecewise smooth stabilizing controller for nonholo-
nomic systems was shown by Sussman9 but the
work on such control methods was initiated by
Bloch, McClamroch, and Reyhanoglu.10 Piecewise
smooth controllers with exponential convergence
were subsequently developed for mobile robots.11

In a different approach to constructing piecewise
smooth controllers,12,13 a nonsmooth state transfor-
mation was used and a smooth time-invariant con-
troller was designed in the transformed coordinates.
The feedback law in the original coordinates is,
however, discontinuous. Discontinuous controllers
based on sliding modes have also been proposed,14,15

but such controllers sometimes lead to chattering.

Hybrid controllers, proposed for nonholonomic sys-
tems, are based on switchings at discrete-time in-
stants between various low level continuous-time
controllers. Such controllers have been proposed by
a few authors.16,17

In this article we introduce a new method for
the design of feedback control strategies for mobile
robots. The central theme lies in the use of nonlinear
oscillators that offer flexibility in control design.
Undamped linear oscillators5 have been widely used
in time-varying control of mobile robots and non-
holonomic systems but they offer limited flexibility
due to their fixed structure. A large number of
variations are possible using nonlinear oscillators
since their stiffness and damping can be functions
of the mobile robot states. In this article we use two
nonlinear oscillators with the same structure to de-
sign two fundamentally different control strategies
for the two-wheeled mobile robot. The oscillator
frequency is constant in the first controller while it
is a function of the mobile robot states in the second
design. As different from control designs with linear
oscillators, the oscillator states in both our con-
trollers converge to the origin along with the states
of the mobile robot. This is a result of physically
motivated control designs where the oscillator states
are chosen to be the states of the mobile robot.

The first controller presented in this article is a
dynamic controller. It generates smooth control ac-
tion and guarantees global asymptotic stability for
any desired posture of the mobile robot. The con-
troller uses the dynamics of a nonlinear oscillator to
prevent the robot from getting stuck at any point
other than the desired posture, and in this regard it
is functionally similar to existing time-periodic con-
trollers using linear oscillators. The nonlinear damp-
ing of the oscillator, however, makes our controller
qualitatively different from existing time-periodic
controllers. The second control design is quite dif-
ferent from existing control strategies for mobile
robots and nonholonomic systems. It generates al-
most-smooth18 time-invariant control action that can
asymptotically converge the robot from practically
any posture to the desired posture. The only excep-
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tion is an equilibrium manifold of measure zero
Ž .containing the desired posture from where the
robot cannot move. All points on this manifold
Ž .except the desired posture however, are rendered
unstable and therefore any posture arbitrarily close
to, but not exactly on, the manifold can be asymp-
totically converged to the desired posture. The con-
troller guarantees stability of the desired posture
and is simple in structure and easy to implement.
Both controllers can handle situations where the
robot has to turn more than 3608 between initial and
final configurations. Such maneuvers are needed in
factor automation to unwind tethers such as the
paint supply-line during spray painting or the cur-
rent cable during welding. In such situations, typi-
cally, the exact point of the turn is not important.

Although both controllers use structurally simi-
lar nonlinear oscillators, the resulting closed loop
systems are quite different. The first controller is
dynamic and the control action is smooth. In con-
trast, the control action of the second controller is
almost-smooth and time-invariant. The first con-
troller leads to global asymptotic stability of the
desired posture, while the second leaves a gap of
measure zero in the posture space from where the
robot cannot be converged to the desired posture.
The first controller uses the kinematics of the mobile
robot in standard form while the second controller
provides a means of generalization by using the
chained form.19 These differences demonstrate the
strengths and flexibility of the nonlinear oscillators
used. In the past nonlinear oscillators have not been
used for the control of nonholonomic systems and
in this article we show that they can be used in a
creative way for the control of mobile robots.

This article is organized as follows. Two kine-
matic models of the mobile robot are presented in
section 2. In section 3 we present the nonlinear
oscillators used for controller designs. The two con-
trollers are presented in sections 4 and 5. In these
sections we also establish the stability and conver-
gence of the closed loop system trajectories. Simula-
tion results are presented in section 6 and section 7
contains concluding remarks.

2. KINEMATICS OF A TWO-WHEELED
MOBILE ROBOT

The kinematics of a two-wheeled mobile robot,
shown in Figure 1, is given as

Ž .xscos u u 1a˙ 1

Figure 1. Diagram showing the initial and final configu-
rations of the mobile robot and defining the variables p
and d with respect to the initial and final configurations.

Ž .yssin u u 1b˙ 1

˙ Ž .usu 1c2

where, x and y denote the Cartesian coordinates of
the robot and u denotes the orientation of the robot
with respect to the positive x axis. u and u are the1 2
linear and angular velocities of the robot, they are
also the controls inputs.

In reference to Figure 1, it is assumed that x, y,
and u denote the current configuration of the robot,
and x , y , and u denote the desired configuration.d d d
Let L represent the straight line passing through the
coordinates x and y with the slope of u , and let Ld
represent the straight line passing through the coor-
dinates x and y with the slope of u . Let M andd d d
N denote the orthogonal projection of the point
Ž . Ž .x, y on L and x , y on L, respectively. If pd d d
denotes the distance between the points M and
Ž .x, y , and d denotes the distance between points N

Ž .and x, y , they can be expressed as follows,

1r22 2Ž . Ž .ps D x qD y sin gyud

sD y cos u yD x sin ud d Ž .2
1r22 2Ž . Ž .ds D x qD y cos gyu

sD x cos uqD y sin u

Ž .where D x and D y are defined as D xJ x yx andd
Ž .D yJ y yy , respectively. If we additionally de-d

Ž .fine DuJ u yu , then the kinematics of the robotd
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is transformed to the form,

Ž . Ž .psu sin Du 3a˙ 1

˙ Ž .dsyu 3b1

˙ Ž .Du syu 3c2

The task of converging the mobile robot from its
Ž .present coordinates x, y, u to the desired coordi-

Ž .nates x , y , u is equivalent to the task of con-d d d
Ž . Ž .verging the new variables p, d, Du to 0, 0, 0 .

To obtain a second kinematic model, we begin
with the assumption that x , y , and u are all zero.d d d
If they are not zero, we can use a translation and
rotation of the coordinates to set them equal to zero.
Now consider the following state and control trans-
formation3 of the kinematic equations given by Eq.
Ž .1 ,

x su1

x sx cos uqy sin u2

x sx sin uyy cos u3 Ž .4
v su1 2

Ž .v su y x sin uyy cos u u2 1 2

Then, it can be easily verified that the transformed
kinematics takes the chained form,

Ž .x sv 5a˙1 1

Ž .x sv 5b˙2 2

Ž .x sx v 5c˙3 2 1

The task of converging the mobile robot from its
present coordinates to the desired coordinates is
now equivalent to the task of converging the vari-

Ž . Ž .ables x , x , x to 0, 0, 0 .1 2 3

3. A NONLINEAR OSCILLATOR FOR MOBILE
ROBOT CONTROL

In the past smooth time-varying controllers have
been designed for mobile robots and other nonholo-
nomic systems. These controllers use the undamped
linear oscillator,

z syv z1̇ 2 Ž .6
z sv z2̇ 1

The state of the oscillator is a sinusoidal function of
time and time-varying controllers use feedback
based on the states of the robot and the oscillator.

For the two-wheeled mobile robot, we use the
following nonlinear oscillator,20

2 2 Ž .z sym z z qz ynW yv z 7a1̇ 1 1 2 2

2 2 Ž .z sym z z qz ynW qv z 7b2̇ 2 1 2 1

where WG0 is a function of the states of the robot
and will be formulated later. Due to the state de-
pendent nature of the damping, the oscillator is

Ž .different from the linear oscillator in Eq. 6 . Also,
because W is not constant, it is different from the
Van der Pol oscillator. If z and z are transformed1 2
from Cartesian to polar coordinates, r and c , the
oscillator takes the form20

Ž 2 . Ž .rsmr nWyr 8a˙
˙ Ž .csv 8b

The controllers presented in the next two sections
are based on the nonlinear oscillator models given

Ž . Ž .by Eqs. 7 and 8 , respectively.

4. ASYMPTOTIC FEEDBACK
STABILIZATION STRATEGY

4.1. The Stabilizing Controller

In this section we use the nonlinear oscillator in Eq.
Ž .7 to design a stabilizing controller for the mobile

Ž .robot described by the kinematic model in Eq. 1 .
We propose the input u as1

Ž 2 2 .u smd d qh ynV qv n1 2 Ž . Ž .h 0 snV 0
2 2Ž .hsymh d qh ynV qv d˙

Ž .9

where m, n, and v are strictly positive controller
parameters, and V is a scalar function of the robot
states defined as

1 2 2Ž . Ž .Vs p qDu 102

Ž . Ž .Using Eq. 3b , it can be shown that Eq. 9 repre-
sents the nonlinear oscillator,

ḋsymcdyvh 2 2Ž . Ž .cJ d qh ynV 11
hsymchqv d˙
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The control input u is proposed in terms of u , and2 1
the controller parameter a, as follows,

Ž .u sp sinc Du u qaDu a)02 1

Ž .¡sin Du Ž .12if Du/0~Ž .sinc Du J Du¢
1 if Dus0

4.2. Asymptotic Stability

We first observe an important property of the
Ž .damping coefficient of the oscillator in Eq. 11 .

Lemma: The damping coefficient of the nonlinear oscil-
Ž .lator in Eq. 11 satisfies

Ž . 2 2 Ž .c t sd qh ynVG0 ; t 13

Ž . Ž . Ž . Ž .Proof: Using Eqs. 3a ] 3c , 11 , and 12 , the
Ž .derivative of c t can be shown to be

˙ ˙Ž .c t s2 ddq2hhynV˙ ˙
2 2 2 2 ˙Ž .Ž .sy2m d qh d qh ynV yn ppyDuu˙Ž .

Ž 2 2 . Ž . 2 Ž .sy2m d qh c t qan Du 14

Now, let

t 2 2Ž . w Ž . Ž .xh t , t Jexp y2m d s qh s dsH
t

then, we can write

t 2Ž . Ž . Ž . Ž . Ž . Ž .c t sh t , 0 c 0 qan h t , t Du t dt 15H
0

Ž . 2Ž . Ž .Since h t, t )0, ; t, t , Du t G0, ;t , and c 0 s
2Ž . 2Ž . Ž . 2Ž .d 0 qh 0 ynV 0 sd 0 G0, we can conclude
Ž .c t G0 ; t. B

We are now ready to establish the asymptotic
stability of the mobile robot system under the con-

Ž . Ž .trol laws specified by Eqs. 9 and 12 . We first
show that the robot asymptotically converges to its
desired posture. We then show that the desired
posture is stable.

ŽTheorem 1 Asymptotic convergence to the desired
. Ž .posture : Under the control law given by Eqs. 9 and

Ž . Ž .12 , the mobile robot described by Eq. 3 converges

asymptotically from any initial posture to the desired
Ž .posture. Specifically, p, d, Du , h will remain bounded

Ž . Ž .and p, d, Du , h ª 0, 0, 0, 0 as tª`.

Proof: Consider a continuously differentiable func-
tion,

1 12 2 2 2Ž . Ž . Ž .V s p qDu q d qh 161 2 2

that is globally positive definite and radially un-
bounded. It is easy to verify that its derivative along
the trajectories of the closed loop system is

˙ 2 2 2Ž . Ž . Ž .V sya Du ym d qh c t 171

˙Ž .Since c t G0 ; t, V F0 ; t. This implies that V is1 1
a nonincreasing function that is bounded from be-
low by 0. Since V is positive definite and radially1

Ž .unbounded, the trajectories of p, d, Du , h are
bounded.

Since V is nonincreasing and bounded from1
below by 0, V converges to a limit as tª`. Since1

˙ ˙Ž . Ž .p, d, Du , h are functions of p, d, Du , h , as seen˙ ˙
Ž . Ž . Ž . Ž . Ž .from Eqs. 3a , 3c , 9 , 11 , and 12 , and

˙ ˙Ž . Ž .p, d, Du , h are bounded, p, d, Du , h are bounded.˙ ˙
Ž .Therefore, p, d, Du , h are uniformly continuous.

˙This implies V is uniformly continuous. Since V1 1
˙converges to a limit and V is uniformly continu-1

ous, we can conclude from Barbalat’s lemma21 that
V̇ ª0 as tª`.1

q 22 Ž .Let L be the positive limit set of p, d, Du , h .
Then it is invariant and satisfies the limiting condi-

˙tion V s0. Hence,1

q ˙Ž .L ; p , d , Du , h : V s0� 41

� Ž . 2 2 4s p , d , Du , h : Dus0, d qh s0

� Ž . Ž . 4 Ž .j p , d , Du , h : Dus0, c t s0 18

When d2 qh 2 s0, ds0, and hs0. From the defi-
Ž . Ž . Ž .nition of c t in Eq. 13 and V in Eq. 10 , this

implies ps0 and Dus0. Therefore, we have
Ž . Ž . Ž .p, d, Du , h s 0, 0, 0, 0 . When c t s0, the closed
loop system trajectories take the form,

ḋsyvh hsv d˙ Ž .19
˙ps0 Dusypvh˙
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The first two equations above can be obtained from
Ž . Ž .Eq. 11 , the third can be deduced from Eqs. 3a
Ž . Ž . Ž .and 9 , and the fourth from Eqs. 3c and 12 . Since

Du is identically zero, the fourth equation gives rise
to two possibilities, namely, ps0 and hs0. If
ps0, we have Vs0 since Dus0. From the defini-

Ž . Ž .tion of c t in Eq. 13 , we can then argue ds0 and
Ž . Ž .hs0. This implies p, d, Du , h s 0, 0, 0, 0 . If h is

identically zero, hs0 and the second equation˙
above leads to ds0. Since dshs0, we can estab-

Ž .lish from the definition of c t and V that
Ž . Ž . Ž .p, d, Du , h s 0, 0, 0, 0 . From Eq. 18 we can there-
fore conclude that

q ˙ q � 4L ; V s0 « L s 0� 41

Ž . Ž .This proves that p, d, Du , h ª 0, 0, 0, 0 , or specifi-
Ž . Ž .cally p, d, Du ª 0, 0, 0 as tª`. B

Remark: The above theorem establishes asymptotic
convergence of the mobile robot to its desired pos-
ture. However, it does not claim stability of the
closed loop system in the four-dimensional space

˙Ž . Ž .p, d, Du , h even though V in Eq. 18 is negative1
Ž .semidefinite. This is true since h 0 , which is set

according to the initial posture of the robot, cannot
be arbitrary. In the three-dimensional space of robot
postures, we can actually claim uniform stability of
the desired posture, as illustrated by the corollary
below.

Ž .Corollary Stability of the desired posture : Consider
Ž . Ž . Ž .the dynamics of p, d, Du governed by Eqs. 3 , 9 ,

Ž . Ž . Ž .and 12 . The desired posture p, d, Du s 0, 0, 0 is a
uniformly stable equilibrium point.

Ž . Ž .Proof: First, p, d, Du s 0, 0, 0 is an equilibrium
Ž Ž . Ž . Ž .. Ž . Ž .because if p 0 , d 0 , Du 0 s 0, 0, 0 , then h 0 s0

Ž Ž . Ž . Ž . Ž .. Ž .and p t , d t , Du t , h t s 0, 0, 0, 0 ; tG0. Next
' 5 Ž .for any e)0, choose ds2er nq2 . Then, p 0 ,

Ž . Ž .5d 0 , Du 0 Fd implies

1 1
2 2 2 2Ž . w Ž . Ž .x w Ž . Ž .xV 0 s p 0 qDu 0 q d 0 qh 01 2 2

1
2 2w Ž . Ž .xs p 0 qDu 0

2

1 n
2 2 2Ž . Ž Ž . Ž ..q d 0 q p 0 qDu 0

2 2

nq2
2 Ž .F d 20ž /4

and ; tG0,

2Ž . Ž . Ž .p t , d t , Du t

2 Ž . 2 Ž . 2 Ž .sp t qd t qDu t

2 Ž . 2 Ž . 2 Ž . 2 Ž .Fp t qd t qh t qDu t

nq2
2 2Ž . Ž . Ž .s2V t F2V 0 F d se 211 1 4

The stability of the desired posture is concluded
5 Ž . Ž . Ž .5from p t , d t , Du t Fe ; tG0.

5. ALMOST SMOOTH TIME-INVARIANT
FEEDBACK CONTROL STRATEGY

5.1. Transformation of Variables

In this section we use the nonlinear oscillator in Eq.
Ž . 188 to design a time invariant and almost-smooth
controller for the mobile robot. We begin with the

Ž .robot model in Eq. 5 but we transform the state
and control variables for the purpose of controller
design. By treating the variables x and x in Eq.1 2
Ž .5 as Cartesian coordinates, we transform them into
polar coordinates r and c as follows,

x sr cos c1 Ž .rG0 22
x sr sin c2

Ž . Ž .The inverse transformation from r, c ª x , x1 2
Ž .given by Eq. 22 is defined everywhere. The for-

ward transformation is however undefined at the
Ž . Ž .point x , x s 0, 0 , where rs0. At all other1 2

points, the forward transformation is defined as

2 2'rs x qx1 2

Ž .x r/0 232
csarctan

x1

Ž . Ž .By differentiating Eq. 22 and using Eq. 5 , we get

˙v sx sr cos cyr sin cc˙ ˙1 1 Ž .24
˙v sx sr sin cqr cos cc˙ ˙2 2
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Ž . Ž . Ž .Substitution of Eqs. 22 and 24 into Eq. 5c results
in

h Jr sin c cos c1˙Ž . Ž .x sh r , c rqh r , c c˙ ˙3 1 2 2 2h Jyr sin c2

Ž .25

Ž .Now, we transform x in Eq. 5 into a new vari-3
able, which we denote by b , using the relation,

r 2r
bsx y h drs x y sin c cos cH3 1 3ž /20

1
Ž .s x y x x 263 1 2ž /2

In the transformed coordinates, the kinematics of
the robot takes the form,

Ž .rsw 27a˙ 1

˙ Ž .csw 27b2

r 2

˙ Ž .bsy w 27c22

Ž .where Eq. 27c was obtained by differentiating Eq.
Ž . Ž .26 and substituting Eq. 25 . The convergence of
the mobile robot to its desired posture now refers to
the convergence of r and b to zero. Indeed, from

Ž . Ž . Ž . Ž . Ž .Eqs. 23 and 26 , r, b s 0, 0 implies x , x , x1 2 3
Ž .s 0, 0, 0 .

5.2. The Feedback Control Strategy

The feedback control strategy for the kinematic
Ž .model of Eq. 27 is proposed as

Ž 2 2 2 . Ž .w sar s b yr 281

Ž .w sgb 292

where, it is assumed that

Ž . Ž .r 0 /0 30

and where a, g , and s are positive controller pa-
rameters, chosen according to the relation,

Ž 2 . Ž .gs2 a 1qs 31

The actual controls for the robot, v and v defined1 2
Ž .in Eq. 5 , are related to the control variables w and1

Ž . Ž .w in Eq. 27 via Eq. 24 . The control inputs for the2
asymptotic convergence of the states of the robot
are therefore proposed as

w Ž 2 2 2 . xr a s b yr cos cygb sin c if r)0v s1 ½ 0 if rs0
Ž .32a

w Ž 2 2 2 . xr a s b yr sin cqgb cos c if r)0v s2 ½ 0 if rs0
Ž .32b

Ž .The controller proposed in Eq. 32 cannot stabilize
the states of the system to the origin from points

Ž . Ž . Ž .where r 0 s0, or x 0 sx 0 s0. Nevertheless,1 2
system states arbitrarily close to, but not exactly on,
the manifold of equilibria rs0 can be asymptoti-
cally converged to the equilibrium state—this is
explained in the next remark, and proved in sec-
tion 5.3

Ž .Remark: The assumption in Eq. 30 is reasonable
Ž .since r 0 cannot be exactly equal to zero. For the

Ž . Ž .system defined by Eqs. 27a and 28 , it is apparent
that rs0 is an unstable equilibrium manifold for

Ž .b/0. Therefore the assumption in Eq. 30 ensures
that the system trajectories do not remain stuck at
this unstable equilibrium manifold.

Ž . Ž .Remark: The controller in Eq. 32 is i defined
3 Ž . Ževerywhere on R , ii smooth on the open and

. 3 � 4 3 Ž .dense subset R _ rs0 of R , and iii continuous
at rs0. Therefore they are almost-smooth18 func-
tions of the states of the mobile robot. Other con-
trollers12,13 using nonsmooth transformation do not

Ž .satisfy the third condition. The controller in Eq. 32
Ž .is also time-invariant as seen from Eqs. 23 and

Ž .26 .

5.3. Stability and Convergence

In this section we establish that the mobile robot
Ž . Ž .converges to its desired posture x , x , x s 0, 0, 01 2 3
Ž .from every posture satisfying Eq. 30 for the control

Ž .inputs defined by Eq. 32 . To this end we establish
Ž . Ž .r, b ª 0, 0 for the control inputs defined by Eqs.
Ž . Ž .28 and 29 . We also show in this section that the

Ž . Ž .desired posture x , x , x s 0, 0, 0 is stable.1 2 3
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ŽTheorem 2 Asymptotic convergence to the desired
. Ž .posture : Under the control law given by Eqs. 28 and

Ž . Ž .29 , the mobile robot described by Eq. 27 converges
Ž .asymptotically from any initial posture satisfying r 0 /

Ž . Ž .0, to the desired posture. Specifically r, b ª 0, 0 as
tª`.

Ž . Ž . Ž .Proof: Substituting Eqs. 28 and 29 into Eq. 27 ,
Ž .the dynamics of r, b is seen to be

Ž 2 2 2 . Ž .rsar s b yr 33a˙
g

2˙ Ž .bsy r b 33bž /2

Ž .It is apparent from Eq. 33a that rs0 represents a
set of unstable equilibria for any fixed b/0. There-

Ž . Ž .fore, unless r, b s 0, 0 , the robot cannot practi-
cally stay at rs0. Let us therefore assume that
Ž . Ž . Ž .r 0 /0 and show that r, b ª 0, 0 as tª`.

Ž .Consider the state space X in r, b to be Xs
Ž . �Ž . 4X jX , X s 0, 0 , X s r, b : r)0 . In this0 q 0 q

ˆspace, define the Lyapunov function V in the fol-
Ž .lowing way. Pick cG0 and let c, 0 be a point on

Ž .the r axis in the r, sb half plane, as shown in
Figure 2a. Draw a circle that is symmetric about the

ˆŽ . Ž .r axis and passes through 0, 0 and c, 0 . Let V be
ˆdefined such that its level set Vsc is the circle, i.e.,

2 2ˆ ˆV V
2 2 Ž .s ry qs b 34ž / ž /2 2

Ž .Figure 2. a Circle in the r-sb plane defining the Lya-
ˆ Ž .punov function V, b Phase portraits in the r-sb plane

Ž .showing the convergence of r and b to 0, 0 .

ˆ ˆ Ž . Ž .Clearly, VG0 in X and Vs0 implies r, b s 0, 0 .
ˆ ˆ5Ž .5Furthermore, if r, b ª`, Vª`. Therefore, V is

positive definite and radically unbounded. Note,
ˆhowever, when rs0, V is only defined for bs0
ˆ 2 ˆ 2 2 2Ž . Ž . Ž .since Eq. 34 becomes Vr2 s Vr2 qs b . This
ˆis not a problem since V is defined in the set X.

ˆBefore we calculate the derivative of V we
Ž .rewrite Eq. 34 in the following two forms,

2 ˆ 2 2 Ž .r yrVsys b 35a

2 ˆ 2 2 2 Ž .2 r yrVsr ys b 35b

Ž .Differentiating Eq. 35a with respect to time, substi-
Ž . Ž .tuting Eqs. 33 and 35b , and rearranging terms

yields

˙ 2ˆ ˆ ˙rVs2 rryrVq2s bb˙ ˙
2 ˆ 2 2 2 2 2 2Ž .Ž .sa 2 r yrV s b yr ygs r b

22 2 2 2 2 2Ž . Ž .sya s b yr ygs r b 36

˙̂Hence rV is negative definite in X and is equal to
ˆŽ . Ž .zero at r, b s 0, 0 . Since V is positive definite

˙̂and radially unbounded in X, and V is negative
Ž Ž .. Ž ..definite in X, we conclude that for all r 0 , b 0

ˆ Ž . Ž .gX, Vª0 as tª`. This implies that r, b ª 0, 0
as tª`. B

Discussion: It is interesting to examine the phase por-
traits in X. This will give an alternative graphical expla-

Ž . Ž .nation of the convergence of r, b to 0, 0 . From Eq.
Ž .33 , we get

Ž 2 2 2 .dr 2 a s b yr
sy

db g rb

Let us choose asgr4 for simplicity. Then, manipula-
tion of the above equation leads to

2 Ž 2 2 . Ž .r q s b ykb s0 37

where k is a constant of integration. For each value of k ,
Ž . Ž .Eq. 37 gives one orbit of the r, b dynamics in the

phase plane. These orbits are half circles in X and are
shown in Figure 2b. Clearly, all the trajectories converge

Ž . Ž .to r, b s 0, 0 as tª`.
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Remark: The above theorem establishes asymptotic
convergence of the mobile robot to its desired pos-

Ž . Ž . Ž . Ž .ture r, b s 0, 0 or x , x , x s 0, 0, 0 . It does1 2 3
not claim stability of the desired posture even

ˆ ˆŽ .though V in Eq. 36 is negative definite because V
was defined in the subset X, XsX jX , X s0 q 0
Ž . �Ž . 40, 0 , X s r, b : r)0 , of the posture space. Inq
the complete space of robot postures, we claim
stability of the desired posture with the help of the
corollary below.

Ž .Corollary Stability of the desired posture : Consider
Ž .the dynamics of the mobile robot described by Eqs. 5

Ž . Ž . Ž .and 32 . The robot posture x , x , x s 0, 0, 0 is a1 2 3
uniformly stable equilibrium point.

Proof: Define the Lyapunov function candidate,

2x x1 2X 2 2 Ž .V sx qx q x y 381 2 3ž /2

X X Ž .Clearly V G0 and V s0 implies x , x , x s1 2 3
Ž . X0, 0, 0 . Therefore V is globally positive definite.

Ž . Ž . Ž . Ž . Ž .Using Eqs. 5c , 22 , 26 , 31 , and 32 , the deriva-
tive of V X can be computed as

˙XV sx x qx x˙ ˙2 1 2 2

x x x x1 2 1 2q x y x y x y x˙ ˙ ˙3 3 2 1ž / ž /2 2 2

b
Ž . Ž .s x v qx v q x v yx v1 1 2 2 2 1 1 22

g
2 2 2 2 2 2Ž .sar s b yr y r b

2

2 Ž 2 2 .syar r qb

Ž .F0 39

Ž . Ž .The uniform stability of x , x , x s 0, 0, 0 fol-1 2 3
˙Xlows from the negative semidefiniteness of V . B

Remark: The two control strategies presented in this
article use the same nonlinear oscillator. The oscilla-
tor frequency of the first controller, denoted by v in

Ž . Ž .Eqs. 7 and 9 is a constant. For the controller
presented in this section, the frequency, denoted by
ċ , is a variable that converges to zero. This is

Ž . Ž .evident from Eqs. 8 and 29 and the fact that b

converges to zero. As a result, the phase of the
oscillator, c , converges to some value which is not
important.

6. SIMULATION RESULTS

Simulation results are presented here to demon-
strate the capability of the two controllers to con-
verge the mobile robot to different desired postures.
For the controller in section 4, the initial and final
coordinates of the robot are given in Table I, where
the units are meters and degrees. Case A represents
the parallel parking problem. The trajectory of the
robot for this case is shown in Figure 3A. In cases
B]D, the robot makes a 360, a 135, and a y1808
turn, respectively, between its initial and final con-
figurations. The trajectories of the robot for these
cases are shown in Figure 3B]D, respectively.

The initial and final configurations of the mo-
bile robot are interchanged for the almost-smooth
time-invariant controller in section 5. The simula-
tion results are shown in Figure 4A]D, respectively.

Ž .Of particular interest is Case A, where r 0 s0. This
Ž .violates the assumption in Eq. 30 . The problem is

remedied by assuming the initial orientation to be
0.018 instead of exactly zero. A comparison of Fig-
ures 3 and 4 indicate that the two controllers gener-
ate qualitatively different trajectories.

7. CONCLUSION

Undamped linear oscillators have been widely used
in the point-to-point control of mobile robots and
nonholonomic systems but they offer limited flexi-
bility due to their fixed structure. In contrast, a
large number of qualitatively different control
strategies can be designed using nonlinear oscilla-
tors, since their stiffness and damping can be func-

Table I. Initial and final configurations of the
mobile robot.

Ž . Ž .x y u x y ui i i d d d

Ž . Ž .Case A 0 0 0 0 1 0
Ž . Ž .Case B 0 0 0 1 1 360
Ž . Ž .Case C 0 0 0 y5 3 135
Ž . Ž .Case D 0 0 0 1 0 y180
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Figure 3. Mobile robot trajectories for the stabilizing dynamic controller in section 4.

tions of the robot states. In this article we use two
variants of a nonlinear oscillator to design two fun-
damentally different control strategies for a two-
wheeled mobile robot. The first controller is smooth
and dynamic and guarantees asymptotic stability
for any desired posture. The second strategy pro-
vides stability and asymptotically converges the
closed loop system trajectories from practically any
posture to the desired posture using almost-smooth
and time-invariant controls. It uses the chained-

form19 kinematic model and provides a means of
generalization to other nonholonomic systems. For
both controls strategies, we mathematically estab-
lish stability and convergence of the closed loop
system trajectories to the desired posture. We also
provide numerical simulations to demonstrate the
efficacy of the control strategies. An interesting fea-
ture of both strategies is their ability to handle
situations where the robot has to turn more than
3608 between initial and final postures. Such capa-
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Figure 4. Mobile robot trajectories for the almost-smooth time-invariant controller in
section 5.

bility will be useful for tethered mobile robots in
factory automation. In the past nonlinear oscillators
have not been used for the control of mobile robots
or nonholonomic systems and the results here sug-
gest that additional investigations should be made
for their applicability to higher order systems.

The first and second authors gratefully acknowledge
the support provided by the National Science Foun-
dation, NSF Grant Nos. CMS-9410157 and ECS-
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