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The Relationship between Recall and Precision

Michael Buckland* and Fredric Gey
School of Library and Information Studies, University of Caiifornia, Berkeley, Berkeley, CA 94720

Empirical studies of retrieval performance have
shown a tendency for Precision to decline as
Recall increases. This article examines the nature
of the relationship between Precision and Recall.
The relationships between Recall and the number
of documents retrieved, between Precision and
the number of documents retrieved, and between
Precision and Recall are described in the context of
different assumptions about retrieval performance.
It is demonstrated that a tradeoff between Recall
and Precision is unavoidable whenever retrieval
performance is consistently better than retrieval at
random. More generally, for the Precision-Recall
trade-off to be avoided as the total number of docu-
ments retrieved increases, retrieval performance
must be equal to or better than overall retrieval
performance up to that point. Examination of the
mathematical relationship between Precision and
Recall shows that a quadratic Recall curve can
resemble empirical Recall-Precision behavior if
transformed into a tangent parabola. With very
large databases and/or systems with limited retrieval
capabilities there can be advantages to retrieval in
two stages: Initial retrieval emphasizing high Recall,
followed by more detailed searching of the initially
retrieved set, can be used to improve both Recall
and Precision simultaneously. Even so, a tradeoff
between Precision and Recall remains.

Introduction

When tests of the performance of retrieval systems
were first developed, an empirical tendency was noticed
for Recall (completeness of retrieval) and Precision (purity
of retrieval) to be inversely related: One might have high
Recall or high Precision, but not, it seemed, both at the same
time. There appeared to be a trade-off, even though having
high values of both at the same time would be preferable.
This article examines the nature of the relationship between
Precision and Recall and explains why a trade-off between
Precision and Recall is unavoidable under certain condi-
tions. The strategy of performing retrieval in two stages is
also considered because it offers a possibility of improving
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Recall and Precision simultaneously. Examination of the
relationship between Recall and Precision also leads to
the identification of a particular class of curves (tangent
parabolae) that resemble typical empirically found retrieval
results.

The relationship between Recall and Precision was de-
scribed by Cleverdon (1972), and later studied by Heine
(1973), Bookstein (1974), Robertson (1975), and more
recently by Gordon and Kochen (1989). In modeling Recall
and Precision, Heine, Robertson, and Gordon and Kochen
have assumed continuous functions for Precision and Re-
call, while Bookstein described Recall and Precision in
terms of a two-Poisson discrete model. Robertson (1975)
discussed the implications of thinking about Recall and
Precision as functions of other independent variables.

Definitions

The customary definitions of Precision and Recall are
based on the following traditional (albeit questionable)
assumptions:

(a) Binary relevance judgments, namely that every retriev-
able item is recognizably "Relevant" or recognizably
"Not relevant."

Hence, for every search result all retrievable items fall into
one and only one of four cells in a matrix defined by
the two distinctions: (i) Retrieved or Not Retrieved; and
(ii) Relevant or Not Relevant (See Table 1). Generality
is the proportion of documents in the entire document
collection that are judged to be relevant.

For any given retrieved set. Recall is the number of
retrieved Relevant items as a proportion of all Relevant
items, i.e., Nreinrei/f^rei- Recall is, therefore, a measure of
effectiveness in retrieving (or selecting) performance and
can be viewed as a measure of effectiveness in including
relevant items in the retrieved set. One-hundred percent
Recall can always be achieved by retrieving (examining) the
entire database, but this defeats the purpose of a retrieval
system. High Recall is not always needed, since people
commonly do not want all relevant items, often preferring
only one or a few relevant items. However, the ability to
achieve high Recall (100% or close to it) efficiently is
clearly desirable.

For any given retrieved set. Precision is the number of
retrieved Relevant items as a proportion of the number of
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TABLE I. Retrieval matrix.

Retrieved

Not Retrieved

TOTAL

Relevant

N—
ret fyet

Not Relevant

^r.t(^^

reicyel

TOTAL

^TT

retrieved items, i.e., Nreinrei/^rei- Precision is, therefore,
a measure of purity in retrieval performance, a measure
of effectiveness in excluding nonrelevant items from the
retrieved set. High Precision—like high Recall—is desir-
able. The ideal would be to achieve 100% on both at the
same time.

(b) Retrieval is seen as an expansive process: Searches are
(or can be) expanded to retrieve more and more items,
thereby increasing Recall.

Alternative assumptions are possible: One might use de-
grees of relevance, and one might prefer to iterate searches,
using relevance feedback. However, this study examines
Recall and Precision in traditional terms. For an introduc-
tion to this area see Lancaster (1979). For a recent overview
of retrieval evaluation see Harman (1992).

Recair

In order to understand the relationships between Recall
and Precision, it is important and useful to understand
the theoretical behavior of these measures under various
assumptions. If we know how well (or how poorly) Re-
call and Precision can behave in theory, we can evaluate
actual retrieval systems in practice in the light of these
limits. In Figure 1, we display four theoretical cases of
Recall performance. For ease of illustration, we assume
that 100 items are relevant in a retrievable set of 1000, a
relatively rich case of one-tenth of the retrievable items
being relevant. The fraction of the collection which is
relevant, G = Nrei/^mi, is the parameter. Generality, the
probability that a document in the collection is relevant. In
our illustration, we have used the arbitrary case G = 0.1.

For the ideal case of perfect retrieval we have the
characteristic that all relevant documents are retrieved be-
fore the first nonrelevant document. In the figure, the first
100 documents retrieved would all be relevant, leading
to a steeply rising straight line hitting a maximum (of
100 relevant documents, I.O Recall) when the first 10%
of documents have been retrieved. Since, at that point,
all relevant documents have already been retrieved. Recall
must remain 1.0 while any or all remaining documents are
retrieved. In all cases, the slope of perfect retrieval (with
respect to proportion of documents retrieved t) is 1/G, the
inverse of the Generality, until all relevant documents have
been obtained.

Choosing documents (or document .surrogates) randomly
from a database would mean that the next item retrieved
is as likely as any other document to be relevant. In other

words, the next 10 retrieved items would, in our example,
on average, contain one relevant document (10%). Thus,
for random retrieval, plotting successive values of Recall
yields a straight line from the origin to the upper right
corner of the figure.

On a graph of the Recall curve using cardinal numbers
of Recall (e.g., 0-100) and for Number of documents
retrieved (e.g., 0-1000) the slope of the Recall curve
for random retrieval is determined by the Generality (if
100 out of 1000 documents are relevant, the generality
is 100/1000 = 0.1, and the slope of the Recall curve for
random retrieval is 0.1). If the axis and abscissa have both
been normalized to the interval [0,1], then the angle of the
random retrieval line is invariably 45°.

One can imagine another ideal limit, that of perverse
retrieval, in which all of the nonreievant items are retrieved
before the first relevant one. In this example, until 90% of
the documents have been retrieved, the next document will
always be nonrelevant, and the numerator of the Recall
equation is zero, and hence. Recall remains zero until
no more irrelevant documents remain, at which time the
system has no choice but to retrieve relevant items. At
this point, system behavior becomes like that of perfect
retrieval. Recall rises straight and rapidly to the upper
right position where all documents have been retrieved, and
Recall reaches 1.0. Again, the slope of this last part of the
curve is the inverse of the Generality.

In all cases, therefore. Recall performance is bounded
by the parallelogram defined by perfect and perverse
retrieval. Note also that since Recall is a cumulative
process—retrieved documents are never unretrieved—the
Recall curve must start at the origin, must end in the top
right corner, and can only move to the right or diagonally
upward toward the right. Further, to be worthwhile.
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FIG. 1. Recall under various retrieval assumptions.
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a retrieval system should perform better than random
retrieval, but, realistically, is unlikely to perform perfectly.
Therefore, we should expect the Recall curve of any real
information system to lie in the shaded triangle that denotes
better-than-random retrievai but less-than-perfect Recall
performance. Figure 1 contains two examples of curves
reflecting what we cali "realistic retrieval."'

This yields a family of parabotae for all values of oi
between 1 and 1/G. An "ordinary parabolic Recall," plotted
in Figure 1, which satisfies these conditions, as well as the
constraint that R{t) ^ 1, is

R{t) = L9l - 0.9t^

Mathematics of the Recall Curve

So far, we have concentrated on verbal and graphical
descriptions of Recall. We can also consider what shape
we should expect realistic Recall curves to be. The formal
constraints are that such curves must go from the origin to
the top right comer, must remain within the region defined
as feasible (the shaded region in Fig. 1), and we should
expect retrieval performance to be best at the beginning of
the search and to deteriorate as the search is expanded.

Tangent Parabolic Recall

Not all parabolae satisfying the criteria I ^ ai ^ l/G
and 02 = \ - a\ also satisfy the constraint that R(t) ^ 1.
For example, one might wish to find a parabola which
is tangent to perfect Recall at the origin. This criterion,
considered by Gordon and Kochen, means that "the first
document retrieved is relevant." The unique parabola which
also satisfies this criteria is

Rit) = lOf - 9t^

Parabolic Recall

Gordon and Kochen (1989) discussed various forms of
realistic Recall curves, notably parabolic and logarithmic
curves. The mathematics is simplified if we set (as Gordon
and Kochen did) t = x/N^ot to transform the horizontal
axis to the range 0 and L The proportion of total documents
retrieved then becomes c

In particular, parabolic Recall would postulate that the
Recall curve would be a quadratic equation'

R'ix) = = Rit) =

constrained to lie within the triangle bounded by perfect
retrieval and random retrieval. Since Recall at the origin is
zero (no documents have been retrieved),

R(t = 0) = ao = 0

Since we always have Recall :^ 1, and since Recall must
be 1 when all documents have been retrieved.

or

R{t = \) = I =

= \ -

+

Finalty, because of the constraint that the slope is between
1 and N,o,/Nret = I/G, we find:

1 < R'it = 0) = 2a2t + fli = ai < —
G

' In order to minimize confusion about distinctions of scale, from this
point forward, scales will be displayed and slope computations made
in terms of (— proportion of total documents retrieved. If slopes were
computed with respect to J:—absolute number of documents retrieved,
they would be different. Finally, all reference to the absolute scales will
be dropped from the equations. However, the equations used for Recall
and Precision are correct, even though expressed in the proportional scale.

However, if we plot (Fig. 2) this "simple tangent
parabola" and examine its values, we find it violates the
constraint that Recall must (by definition) remain less than
or equal to 1.0. The parabola rises rapidly and attains
the value 1.0 after less than 13% of the documents have
been retrieved.^ The parabola then rises to a maximum
value of 2.71 before descending to 1.0 when all documents
have been retrieved. Thus, it seems that if one accept
the assumption that the first retrieved document must
be relevant (i.e., that the parabola is tangent to perfect
retrieval at the origin), then one must reject quadratic Recall
behavior as unrealistic.

It there a way out of this dilemma? To explore this
we can turn to analytic geometry and try to see if a
nonlinear transformation can supply us with a parabolic
curve which would have 0 ^ R{t) ^ 1.0, its first derivative
R'it) > 0 (i.e.. Recall is monotonically increasing), and its
first derivative at the origin equal to the slope of perfect
retrieval, i.e., ^'(0) = 1/G. One such transformation is

r* = (1 - 2G) t^ + 2G t

which maps pairs (^ R) into pairs (r", /?*). Since the trans-
formation is quadratic, the resulting transformed equation is
also quadratic. We call this case tangent parabolic Recall,
and it is plotted in Figures 1 and 2.

This paraboia is but one of a family of tangent quadratic
curves which can be drawn to pass through the origin and
peak incident to a point along the perfect retrieval curve
between t = G and t = 1.0, yielding a piecewise Recall
curve. This satisfies the condition that 100% Recall might
be attained before all documents have been retrieved.

"It was similar behavior (although of a different family of parabolae)
which led Gordon and Kochen to reject a parabolic model of recall. One
can, of course, utilize a piecewise definition (as Gordon and Kochen
have), modeling with the parabola where R{t) ^ 1 and R(t) = t for the
remainder of the recall curve.
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FIG. 2. Parabolic Recall under various assumptions.

Precision

Corresponding values for Precision in the cases of Ran-
dom, Perfect, and Perverse retrieval are plotted in Figure 3.

With random retrieval, the probability of the next
retrieved item being relevant will reflect the overall
proportion of relevant items in the retrievable set, the
Generality. Hence, in this hypothetical case where 100 out
of 1000 items are relevant. Precision will be tend to be a flat
horizontal line at 10%, however, many items are retrieved.

Perfect Retrieval

Precision for Tangent Parabolic Recall

Random Retrieval

Perverse Retrieval

0,0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Proporlion of documents retrieved -1

U-, I , , , I I ^ , - , ,_J

0 100 200 300 400 500 600 700 800 900 1000
Number of documents retrieved

FIG. 3. Precision under various retrieval assumptions.

With perfect retrieval, all retrieved items within the
first 100 items retrieved, will, by definition, be relevant.
Hence, within that range. Precision will be always be
1.0, a horizontal straight line. If retrieval were to be
continued after these 100 items, than all additional retrieved
items would necessarily be nonrclcvant. After the first
100 items, while Recall remains at 1.0, Precision declines
hyperbolically to the limit of G = O.I when the entire
retrievable set has been retrieved.

All curves reflect the fundamental relationship

or
Rit)G

which is how the hyperbolic descent occurs in perfect
Precision.

Correspondingly, with perverse retrieval, in the range
1-900 retrieved, all will be nonreievant and Precision
will remain at zero, a horizontal straight line from the
origin. After 900 items, the remainder are ail relevant and
Precision climbs monotonically to the limit of 10% when
every item has been retrieved.

For our example of (ordinary) parabolic retrieval, the
relationship between Precision and Recall is

P{t) =
(1.9/ -

= G(1.9 - 0.9f)

i.e.. Precision for parabolic Recall must be a straight
line. More generally, for any ordinary polynomial Recall
function of t. Precision will be a lower order polynomial
function of f. Since, for tangent parabolic Recall, both the
horizontal and vertical axes have undergone a nonlinear
transformation. Precision will remain a nonlinear function
of number of documents retrieved. Our impression is that
empirical data tend to be nonlinear and, if so, tangent
parabolic curves offer a better working model than ordinary
parabolic curves.

Again, for all possible retrieval results. Precision must
necessarily be within the region bounded by perfect Pre-
cision and perverse Precision. Further, for all retrieval
systems whose performance is better than Random retrieval,
Precision must be within the shaded region bounded by
perfect Precision and random Precision. Since all perfor-
mance lines for better-than-random performance must start
from the vertical axis above 10%, and must converge on
the limit of 10% when all 1000 items have been retrieved.
Precision, for all "realistic" retrieval systems, must tend to
be a downward sloping curve.

Precision versus Recali

We noted the empirical finding that Precision and Recall
appear, in practice, to be inversely related: improvement in
either tends to be associated with poorer performance of
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the other. This is unsatisfying and we need to ask whether
it is possible to evade this inconvenient pattern and how.

Since, in our hypothetical examples, Precision and Re-
call have both been plotted against a common scale, the
number {or proportion) of documents retrieved (Figs. 1
and 3), it is possible to plot Precision and Recall against
each other. Figure 4 is a graph of Precision versus Recall
showing a replotting of the examples given in Figures 1
and 3: Perfect retrieval. Random retrieval, Perverse re-
trieval, and the two examples of Realistic retrieval. Such
graphs can be drawn for any example of retrieval perfor-
mance we care to imagine.

A Practical Example: CACM Query 25

One question which might be raised is whether the
models introduced mirror actual retrieval. Figure 5 contains
three plots of actual retrieval behavior versus perfect re-
trieval for query number 25 from the well-known CACM
test document collection, described by Fox (1983) and
used in Buckley and Salton (1988) in term-weighting
experiments. The retrieval method utilizes the well-known
Cosine similarity measure from Ihe vector space model
of infonnation retrieval. As can be seen, both Recall and
Precision behavior for the query follow the general pattern
described by our "tangent parabolic recall" model; Fig. 5c,
which plots Precision versus Recall, shows jagged changes
of direction (slope) because of the discrete nature of actual
retrieval. In Figure 5d, the recall performances for all
52 CACM queries have been plotted and superimposed
on the same graph. This shows that they all fall within
boundaries we have defined as "realistic," i.e., iess-than-
perfect retrieval and better-than-random retrieval. Since
all recall points fall within the boundaries of perfect and
random retrieval, we can, for this collection, conclude that
the vector space retrieval model yields "realistic" retrieval
results as defined above.

CO

g
.'2 "1
1) °
it -.

Perfect Retrieval

Perverse Relrieval

0.0 0.1 0.2 0-3 0-4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

FIG. 4. Recall-Precision under various reuieval assumptions.

Consistency in Realistic Retrieval

Consistently realistic retrieval performance, defined as
retrieval performance consistently better at each point of
the recall curve than recourse to random selection, forms a
convex Recall curve always above the Random retrieval
line. In all such cases, when Precision versus Recall is
plotted, it forms a downward sloping curve and a trade-
off between Precision and Recall is entailed, as Gordon
and Kochen noted in 1989. This is the trade-off between
Precision and Recall that has been found empirically.

More generally we can relax the assumption that re-
trieval performance is consistently realistic. What if, for
example, retrieval performance started well, deteriorated to
worse than random, then improved? During the latter im-
provement, might Precision and Recall improve together?
Graphs can be plotted of Precision versus Recall for any
imaginable retrieval performance. Examination of such
graphs for various hypothetical cases shows that the ex-
pected trade-off does not occur under some circumstances.
The condition to be met, for the Precision-Recall trade-off
to be avoided, is that, as the total number of documents
retrieved increases, retrieval performance must be equal
to or better than overall retrieval performance up to that
point. This condition is always met with perverse retrieval
and with any retrieval perfonnance that had been con-
sistently worse than random retrieval. That this should
be the condition for avoiding a Precision-Recall trade-
off is also explicable in terms of the basic mathematics
involved: Recall is, by definition, a cumulative measure
of the search performance up to any given point. Preci-
sion, likewise, is ordinarily defined cumulatively, as the
proportion of documents that are relevant among the total
number of documents retrieved thus far. This proportion
will not decline (i.e., constitute a trade-off) if, as the number
of retrieved documents increases, stable (or improving)
retrieval performance were to maintain (or increase) the
ratio of relevant to nonrelevant documents. (An actual
example of temporary remission of the trade-off is indicated
by arrows in Fig. 5a and c). Neither better-than-random
nor an improvement in retrieval performance constitutes
a sufficient condition for the trade-off to be avoided.

Two-Stage Retrieval—High Recall
Followed by High Precision

The flexibility permitted by increasingly affordable in-
formation technology suggests an approach to mitigating
or avoiding the trade-off between Precision and Recall.
We now examine a two-stage retrieval strategy whereby
two searches are performed: An initial search emphasizing
high Recall, then a second search of the retrieved subset
seeking to improve Precision within that subset, as pro-
posed, for example, by Porter (1983), and being explored
by Buckland et al. (1992).

To repeat the same search on the initially retrieved sub-
set would be pointless, since the same results would be
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expected. A second search on the subset would only make
sense if it were different. A different search is likely to
be both feasible and desirable for at least two reasons:

(a) Technical considerations. Experimental retrieval tech-
niques, such as vector space matching or relevance
feedback are simply not yet available on large existing
bibliographic services, which are not easily modified.
The newer retrieval techniques can be provided on
workstations, at least experimentally or for occasional
use on an exception basis. Next generation techniques
have generally been tested on databases of modest size.
They may not scale up well to larger files, but their use
on downloaded subsets should not be difficult.

(b) Predictive power. We agree with the view of Belkin
and Croft (1987) that retrieval is essentially a matter
of selection by matching, whether by full or partial
matching, of a search statement with representations
of items. This is consistent with Wilson's view of
bibliographic searching, whether manual or online, as
being concerned with "fitting the description" (Wilson
1968). The searcher has some more or less well-
formulated notion in mind of what is wanted and

seeks to find one, a few, or all available items that
match ("fit") that notion more or less well. There is
a description implicit in retrieval, which can be made
explicit only imperfectly.

Existing online retrieval systems vary in their ability
to express and handle complex descriptions. Even where
considerable expressive powers are provided, studies of
the use of online retrieval systems consistently reveal
that little of the system's capability for handling com-
plex descriptions is used. Even simple Boolean statements
get surprisingly little use. A searcher actually interested
in English-language descriptions of industrial activity in
Dresden, Germany, in the i930s is quite likely to start
with a drastically simplified search statement such as FIND
SUBJECT DRESDEN.

In the case of online library catalogs, even systems
with relatively expressive search capabilities, not all of the
features of the retrievable items can be searched. Sometimes
one can search (or limit a search) by language, for example,
but rarely, if ever, by country of publication or a variety of
other fields in standard bibliographic records.

o

500 1000 1500 2000

Number of Documents

2500 SOO 1000 1500 2000

Number ol Documents

(b)

2500

1.0

(c)

500 1000 1500 2000

Number of Documents

2500 3000

FIG. 5. (a) CACM query 25: Actual Recall versus Perfect Recall, (b) CACM query 25: Actual Precision versus Perfect Precision, (c) CACM
query 25: Recall-Precision versus Perfect Recall-Precision, (d) CACM collection, all queries: Actual Recall.
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Since searching is a predictive activity, we can note that
there are two approaches to achieving better predictions.
One is to use stronger predictors, i.e., search statements
that are more reliable at retrieving what is wanted. Another
is to use additional clues that cumulatively improve search
success. Typically, there is considerable scope for the
use of additional clues since in existing bibliographic
systems: (i) not all the descriptive data can be searched;
(ii) complex search capability (when provided) is little
used; and (iii) actual search statements tend to simplify
drastically the description that is implicit or explicit in the
users mind—even though the fitting of that description is
the purpose of retrieval. The downloading, indexing, and
searching of retrieved subsets provides, at least in principle,
the ability to use a more complete match to what the
user wants; preferably in English, published around 1930,
currently conveniently available, and so on in accordance
with the invoked or assumed preferences of the user.

What difference might two-stage retrieval make? In
Figure 6, we examine an arbitrary, high-Recall retrieval
result, S, in a hypothetical realistic (i.e., better-than-random
but less-than-perfect) retrieval system, shown as Recall
curve D. Within this subset, the line for Perfect retrieval (B)
would remain the same, but the line for Random retrieval
within the selected subset would necessarily be steeper (A')
because it is limited to this selected subset.

If, as suggested above, additional search techniques
and/or use of a broader range of clues were to result
in more effective retrieval (within the subset) than had
been the case in the original search, then the result would
be better discrimination between relevant and nonrelevant
items (or a better ranking by degree of relevance) as shown
by line D', running above and/or to the left of D. Within
the subset, since retrieval performance remains equal to or
better than random (now line A'), the trade-off between
Precision and Recall will necessarily remain. However,
since Precision is the ratio of retrieved relevant items to
all retrieved items, to the extent to which line D' is to the
left of line D, Precision is improved without loss of Recall.
Likewise, to the extent to which line D' is above line D,
Recall has been improved without loss of Precision. Using
the fundamental relationship between Precision and Recall
introduced above.

rt/ \ " \-^t'' ret

P{x) =

we find, for example, at points T and T' that x = rir <
X = nr and R = rj = rr, and hence, Pinj) > Pinn)-
Moreover, since for points T and T", x = nj = nv and
R = rr > rj", then P{nr) > Pinr"). More generally, we
can conclude that if secondary retrieval from a subset
can result in a shift in the retrieval curve from line D to
line D'—in the direction of the arrow—then the effect is to
achieve the desired simultaneous improvement in Precision
and Recall. Nevertheless, a trade-off between Precision and
Recall remains,

An additional comment can be made on the relationship
between the secondary search (line D' in Fig. 6) and the

3.O0O
Number of documents retiieved

FIG. 6. Recall for two-stage retrieval.

original search (line D). Because the secondary search is,
we have assumed, a better ordering of the items within the
subset S, the marginal retrieval performance—the prob-
ability that the next item retrieved will be relevant—of
the secondary search (line D') is superior to the marginal
retrieval performance of the original search (line D) near
the origin, but inferior as the subset becomes fully retrieved
(as shown by the flattening of line D' relative to D as they
both approach point S). It does not follow that the sec-
ondary search ceases to be preferable to the original search
at this stage, because the cumulative retrieval performance
of the secondary search dominates: it is always superior
to the original search. Instead, the decreasing marginal
performance of the secondary search indicates an increasing
likelihood that, if additional relevant items are wanted, the
optimal point for conducting a fresh search on a larger or
supplementary subset (or on the entire database) has been
reached.

Summary

Recall and Precision and, in particular, Recall-Precision
plots, have been used for many years to characterize
document retrieval performance. In this article, the rela-
tionship between Recall and Precision has been approached
conceptually to delineate the theoretical limits to retrieval
performance in terms of "benchmark" retrieval behaviors.
It has been shown that there is a definable region for
all feasible retrieval results. For all cases of consistently
better-than-random retrieval, Recall curves tend to follow
an increasing curve rising from the origin, and a trade-
off between Precision and Recall is inherent, not just an
inconvenient empirical finding. More generally, a trade-
off between Precision and Recall is entailed unless, as the
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total number of documents retrieved increases, retrieval
performance is equal to or better than overall retrieval
performance thus far.

There is a fundamental relationship between Precision
and Recall which, for a given model of Recall, constrains
the behavior of Precision. In particular, if Recall is modeled
by a polynomial function of proportion of documents
retrieved, then Precision is modeled by a lower order
polynomial function of the same variable.

The quadratic model of Recall has been examined and
refined. We have demonstrated a simple geometric trans-
formation which can produce quadratic Recall and satisfies
tangency to perfect retrieval at the origin and yields rea-
sonable looking Recall-Precision tradeoffs.

Two-stage, or, more generally, multistage retrieval pro-
cedures, whereby a retrieved set is used for a subsequent,
more detailed search, is likely to achieve the goal of
improving both Precision and Recall simultaneously even
though the trade-off between them cannot be avoided.
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