
UC Davis
IDAV Publications

Title
Approximate Volume Rendering for Curvilinear and Unstructured Grids by Hardware-Assisted
Polyhedron Projection

Permalink
https://escholarship.org/uc/item/2pw5c4b1

Authors
Max, Nelson
Williams, Peter
Silva, Claudio T.

Publication Date
2000

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2pw5c4b1
https://escholarship.org
http://www.cdlib.org/

Approximate Volume Rendering for Curvilinear and Unstructured
Grids by Hardware-Assisted Polyhedron Projection

Nelson Max,1 Peter Williams,1 Claudio Silva2

1 Lawrence Livermore National Laboratory

2 AT&T Labs-Research

ABSTRACT: A hardware polygon rendering pipeline can be used with
hardware compositing to volume render arbitrary unstructured grids
composed of convex polyhedral cells. This technique is described,
together with the global sorting necessary for back-to-front compos-
iting, and the modifications that must be made to approximate cur-
vilinear cells, whose faces may not be planar. © 2000 John Wiley & Sons,
Inc. Int J Imaging Syst Technol, 11, 53–61, 2000

I. INTRODUCTION
There are many situations where it is useful to visualize, in a
two-dimensional (2D) image, a quantity like density or pressure that
varies within a 3D volume. Applications include medical data from
ultrasound, magnetic resonance imaging (MRI), or X-ray tomogra-
phy, seismic data, or data computed in numerical simulations in
mechanics, hydrodynamics, or aerodynamics. For volume rendering,
the quantity to be visualized is transformed into variations in the
color and opacity of a semitransparent glowing substance, and the
2D image is a view of this glowing volume. For the mathematics
behind this optical model, and other more sophisticated models, see
Max (1995).

The data from medical images or finite difference simulations are
defined at the vertices of a regular cubic or rectangular grid, which
makes volume rendering easier. However, measurements of real
world data may only be available at irregularly scattered locations.
Irregular finite elements may be needed to fit the shape of complex
objects or to concentrate small elements near a shock where pressure
varies rapidly. Therefore, it is useful to have volume rendering
algorithms that can accept arbitrary unstructured grids of convex
polyhedral elements. We concentrate on the zoo elements commonly
used in finite element grids, which have the topology (face-edge-
vertex connectivity), but not necessarily the face shapes of, a cube
(hexahedron), tetrahedron, triangular prism, or square pyramid. All
faces of such zoo elements are either triangles or quadrilaterals.

One method for volume rendering is to slice the volume by
equally spaced planes perpendicular to the viewing direction. The
color at each point (or pixel) in the 2D raster image is determined by
the colors and opacities in the slice planes, at points along a viewing
ray through the pixel. One can compute the final image by compos-
iting the slice planes in back-to-front order. To include the effect of

a new slice plane, multiply each old pixel color by the transparency
(one minus the opacitya) of the corresponding pixel in the new slice
plane, and then add the color contributed by the new slice pixel’s
glow. (See Eq. 1 of Section II.) In this way, the colors from the more
distant parts of the volume are partially hidden by the opacity in
front.

In a cubic grid volume, the slice planes will be at a slant for most
viewing directions, so the color and opacity at a slice plane pixel
must be interpolated from the eight nearest grid points. Hardware to
do this interpolation and compositing arithmetic is available on
current visualization workstations with 3D texture mapping (Cabral
et al., 1994). The flow of data is more coherent if the slices are taken
along the data planes, which are not usually perpendicular to the
view direction. Hardware to do this variant is available on PC cards
(Pfister et al., 1999).

To use these hardware techniques, one must resample an irreg-
ular grid into a cubic grid, which can greatly expand the amount of
data. An adaptive computational grid will have small cells in regions
where the scalar variable changes rapidly, e.g., near an airplane wing
or a shock, and much larger cells where the variable changes slowly
and/or smoothly. A cubic grid fine enough to capture the detail from
the small cells will waste many cubes inside the large cells. In
addition, the resampling takes time and may blur extreme values and
rapid variation. Below, we concentrate on methods that render the
irregular grid directly, without resampling.

Slicing an unstructured grid of polyhedral cells is possible using
software together with hardware. A slice plane intersects a cell in a
polygon, whose shape can be computed incrementally from the
corresponding polygon in the previous slice (Yagel et al., 1996). The
color and opacity can be interpolated in software from the cell
vertices to the slice polygon vertices. They can then be interpolated
across the slice polygon by standard polygon rendering and com-
positing hardware.

An alternative for software alone is to do the computation per
pixel, rather than per slice. The sample points in each slice plane that
affect an image pixel lie along a straight line, the viewing ray, so this
method is often called ray tracing. The color and opacity are inter-
polated at the sample points on the ray, and the compositing is
performed for the single pixel. Ray tracing is easy for a rectangular
grid, because the indices of the cell containing each sample on the
viewing ray can be directly computed from the geometry of the rayCorrespondence to:Nelson Max

© 2000 John Wiley & Sons, Inc.

and the data volume. For irregular grids, one must compute the
sequence of segments in which the ray intersects successive grid
cells (Garrity, 1990). Given the face through which a ray leaves one
cell, one can find the next cell it enters using data on the topological
connectivity of the grid. Then one determines the face through
which it exits that cell, and so forth. It is usually possible to compute
the color and transparency of a ray segment in a cell by analytic
integration, rather than by taking sample points (Williams and Max,
1992; Williams et al., 1998). The color of the image pixel for the ray
can be found by compositing the segments, rather than the slice
samples, saving computation if the cells are large.

The polyhedron projection algorithm can speed up this process
by compositing a whole cell at once, taking advantage of area
coherence within the cell faces. The projections of all the edges of
the cell divide the image plane into a number of polygonal regions
(Fig. 1). In each such region, all the viewing rays through image
pixels intersect the same two front and back planar faces, so the
thickness varies linearly. Therefore, if the colors and opacities for
the viewing rays through the region’s vertices are computed by
analytic integration, they can be interpolated and composited by
polygon rendering hardware. Details of this technique are given in
Section II.

The cells must be sorted in back-to-front order for this compos-
iting to be correct. Imagine a pile of cells on a table, being viewed
from far beneath the table. In this case, a back-to-front sort is top to
bottom. Cells are removed one by one from the top of the pile and
composited into the image. A cell can be safely removed only if it
can be lifted vertically without disturbing any other cells that lie on
top of it. This is because any cell on top should have been already
removed and composited, in order to be correctly affected by the
opacity of the current cell.

This is like the game of “pick up sticks.” The sticks are the cells,
and they may fall such that each stick is beneath another stick, and
no stick can be removed first. We call such a situation a visibility
cycle, because it must contain a periodic cycle of sticks, each
beneath the next in the cycle. In such a case, a back-to-front sort is

only possible if one or more of the cells is cut in two. Such problems
rarely occur in practical grids. But it is still a challenging problem to
compute a good sorting order efficiently. Before removing a cell, an
unsophisticated algorithm would test for overlap with every other
remaining cell. Therefore, the sorting time would grow as the square
of the number of cells, and be very slow for large grids. Section III
discusses more efficient ways of sorting the cells.

In the above discussion of unstructured grids, we have assumed
the cells are convex polyhedra with planar faces. This excludes
simulation data from curvilinear grids, which have a rectangular grid
topology, but are deformed to match curved geometry, such as the
wing of an airplane. Also, initially planar quadrilateral faces on a
finite element grid may become nonplanar as the grid deforms
during a simulation.

Such nonplanar quadrilateral faces cause problems with both the
cell projection and cell sorting algorithms. Figure 2 shows a view of
two hexahedra, in which a viewing ray enters cellA, exits through
a curved face into cellB, and then reenters cellA through the same
face. Here,A and B form a two-element visibility cycle and no
back-to-front sort is possible. The solution is to cut cellA into two
or more pieces, and the simplest way of doing this is to divide it into
tetrahedra. Each quadrilateral face of cellA will be divided by a
diagonal into two triangles. If cellB is also divided into tetrahedra,
it is important to choose a consistent diagonal for their common
face, so that there is no gap or overlap between the two approxi-
mated cells. Section IV describes how to do this. We only subdivide
cells intersected twice by a viewing ray, and project other cells as a
whole, even though they may have nonplanar faces. Cells containing
rendered contour surfaces, or discontinuities in the color or opacity,
may also be subdivided. Section V describes how we do this

Figure 2. A nonplanar face between cells A and B, approximated by
triangles S and T.

Figure 1. Image plane projection of a prism.

54 Vol. 11, 53–61 (2000)

view-dependent subdivision into tetrahedra. It gives only an approx-
imation to the correct volume rendering for curved finite elements,
but can be achieved efficiently using current hardware.

II. POLYHEDRON PROJECTION
To project a polyhedron is to compute its color and opacity contri-
butions to all viewing rays that intersect it, and composite them onto
the accumulating image. Consider the convex polyhedronP 5
ABCDEFwhose projection on the image plane is shown in Figure
1. The projected edges divide the image plane into five polygonal
regions for hardware rendering and compositing: trianglesABG,
BCG, andDEF, and quadrilateralsAGED andGCFE.

Several authors have considered such subdivisions for hardware
rendering. Shirley and Tuchman (1990) constructed the four planar
subdivision topologies that can arise from projecting a tetrahedron.
Wilhelms and Van Gelder (1991) used a plane sweep algorithm to
construct the subdivision for any projection of a cube. In our system,
we construct a winged-edge (Baumgart, 1972; O’Rourke, 1995)
subdivision structure for the projection of an arbitrary polyhedronP.
We add the projected edges ofP one by one to this structure, by
moving along a new edge and finding its intersections with existing
edges. A new vertex is created at each intersection (unless it coin-
cides with an existing vertex) and the winged-edge structure is
modified, perhaps further dividing one of the existing polygons in
two.

Each polygonQ in the final subdivision of the image plane lies
in the projection of one front face and one back face ofP. If the
viewing rays are parallel, for a viewpoint at infinity, the thickness of
P, i.e., the length of the viewing ray segment inP, varies linearly
over Q. (For perspective, we still assume it varies linearly overQ,
which is a good approximation for small or distant cells.) The
thickness is zero at profile vertices like vertexA in Figure 1, and can
be computed from the geometry ofP and of the viewing ray at
nonprofile vertices likeE, and projected edge intersections likeG.

In Shirley and Tuchman (1990) and Wilhelms and Van Gelder
(1991), the opacities along the rays through the vertices of a screen
polygon Q are interpolated linearly (or bilinearly) by the graphics
hardware. However, we will analyze the opacity effects below and
show that the opacity is a nonlinear function of the thickness.

The volume opacity in volume rendering actually represents the
extinction coefficientt, which expresses the infinitesimal fractional
decrease in radiance (or light intensity)I , per unit infinitesimal
length ds along a viewing ray (Max, 1995). Thus, the intensity
satisfies the differential equation

dI~s!

ds
5 2t~s!I ~s!,

or

dI~s!

I ~s!
5 2t~s! ds.

Integrating along a ray segment of lengthl ,

ln I ~l ! 2 ln I ~0! 5 2E
0

l

t~s! ds,

or, taking exponentials,

I ~l ! 5 I ~0!expS2E
0

l

t~s! dsD .

The quantity exp(2*0
l t(s)ds) represents the transparency of the

volume along the ray segment. Ift is constant inside the cell
volume, the transparency reduces to exp(2lt), which clearly varies
nonlinearly with l . Thus, correct volume rendering requires calcu-
lating an exponential for each pixel. If linear or bilinear interpolation
of vertex transparency is used instead, distracting Mach bands can
result (Stein et al., 1994).

Correct volume rendering is still possible in current hardware if
a texture map is available to get the exponential per pixel with a
table lookup. For constantt, the productlt is used as a 1D texture
coordinate. For varyingt, l andt are used as a 2D texture coordi-
nate pair.

Texture mapping was originally developed to enhance the ap-
parent detail of a polygonal model, without increasing the polygon
count. The additional detail is stored in a rectangular raster image,
which is addressed by two texture coordinates (u, v). These are
specified at the vertices of a polygon and interpolated in hardware
across the polygon in the same way as a color or depth value would
be. When the polygon is rendered, the texture at the interpolated
address is accessed and combined with the interpolated color and
opacity to determine the final effect on the image. Although the
texture map is rectangular, the textured polygon need not be. Its
image in the texture map is determined by the texture coordinates
specified at the polygon vertices, and in general will be a subset of
the texture map rectangle.

The OpenGL specifications (Segal and Akeley, 1998) are non-
committal on how vertex values should be interpolated across poly-
gons, but mention two possibilities: (a) divide the polygon into
triangles and interpolate linearly on each triangle (piecewise linear
interpolation), or (b) interpolate linearly along the polygon edges,
and then linearly across horizontal scan line segments between pairs
of edges (piecewise bilinear interpolation). Both of these methods
reduce to linear interpolation when the values specified at the
vertices are consistent with a single linear function. This is the case
for the thicknessl across an image plane subdivision polygonQ, but
not for the average glow color, to be discussed later.

For constantt, the vertex values oflt are scaled into the range
appropriate for an addressu into the 1D texture table. The texture
table must be preloaded at addressu with the quantity 1.2
exp(2u), because the OpenGL compositing Eq. (1) below usesa 5
1. 2 transparency. Care must be taken in scaling the address and
table size to get a substantial range of transparencies and to clamp
the address at the ends of its range, instead of letting it “wrap
around.” The outputa of the texture table is used in the compositing
equation

new_pixel_color5 a* polygon_color

1 ~1. 2 a!* old_pixel_color (1)

which multiplies the intensityold_pixel_colorof the cells compos-
ited so far by the appropriate per-pixel transparency 1.2 a 5
exp(2lt).

Think of the cell volume as filled with small opaque particles
glowing with color intensitypolygon_color(Max, 1995). Then the
transparency 1.2 a means that a viewing ray gets through with
probability 1. 2 a without hitting a particle, and therefore hits a

Vol. 11, 53–61 (2000) 55

particle with probabilitya, in which case it sees colorpolygon_
color. Thus, the above compositing formula includes the glow color
with the correct weight.

The glow color and extinction coefficient (often called opacity)
are usually specified by transfer functions of the scalar variable
being visualized. For now, assume that these transfer functions are
linear. If the scalar variable is constant within each cell, it is
appropriate to assume, as above, that the color and extinction coef-
ficient are constant in the cell. However, for linear elements, the
variable is specified at the element vertices, and interpolated across
the element, so the color and extinction coefficient must also be
interpolated. For tetrahedra, linear interpolation suffices. For other
element shapes, more complicated interpolation is required, using
the basis functions specified as part of the finite element model. For
example, trilinear interpolation would be used on cube-like ele-
ments. For the purposes of hardware volume rendering, it is neces-
sary to accept the interpolation scheme implemented in the graphics
hardware, even if it does not agree with that used in the finite
element simulation.

Assume that the extinction coefficientt has been specified at the
vertices of the polyhedronABCDEF in Figure 1, and is interpolated
across the faces by the polygon scan-conversion hardware. This will
give, for each viewing ray segment inP, a front-face valuetf and a
back-face valuetb. Assume further thatt is linearly interpolated
betweentf andtb along each ray segment. For a tetrahedron, this
scheme will agree with linear interpolation, but for a general cell, it
will not usually agree with the interpolation used in the finite
element simulation. For example, if the hardware uses the interpo-
lation method (b) above, it will correspond to a particular view-
dependent piecewise trilinear interpolation. Then

E
0

l

t~s! ds5 E
0

l Ss

l
tf 1 S1. 2

s

lDtbD ds

5
l 2

2l
tf 1 S l 2

l 2

2lDtb 5 l ~tf 1 tb!/2.

We can compute the averageta 5 (tf 1 tb)/ 2 at each vertex of
Q, scale it appropriately, and use it as a second texture coordinatev,
which the hardware will interpolate across the polygonQ. The first
texture coordinateu is a scaled version of the thicknessl . The 2D
texture map is loaded with 1.2 exp(2uv). Again, care must be
taken in the scaling. Because only the productlta is important, a
joint decision on scalingl andta can be taken for each polygonQ,
to make best use of the range of exponentials in the table.

The computation oftf andtb for a vertex ofQ depends on the
type of the vertex. At profile vertices likeA in Figure 1, which
belongs to both a front-facing and a back-facing polygon,tf 5 tb 5
tA, the value specified atA. For intersection vertices likeG, tf is
linearly interpolated in software along edgeEB and tb is linearly
interpolated along edgeAC. For a nonprofile vertex likeE on the
front of P, tf 5 tE, and tb is (piecewise) linearly or bilinearly
interpolated in software from the values at verticesA, C, F, andD.
Nonprofile vertices on the back ofP are treated similarly.

The glow colors can be interpolated similarly, using software to
computepolygon_coloras the average of the front and back glow
colors at the vertices ofQ and then shading hardware to interpolate
it across the polygonQ. However, if both the color and extinction
coefficient are interpolated linearly across a ray segment inP, the

term a*polygon_colorin Eq. (1) will not give the correct color for
the glowing particle optical model. To see this, suppose the glow
color is red at the front of the ray segment and green at the back, and
the extinction coefficient is a substantially large constant, so that the
viewing ray usually hits a particle before travelling very far into the
volume. Then the average color will be yellow, but the correct color
contributed by the ray segment will be closer to red, because most
viewing rays will not get past the red particles. This is equivalent to
saying that the opacity of the red region mostly obscures the green
region.

Williams and Max (1992) and Williams et al. (1998) show that
the correct color can be found by an analytic integral, but its
calculation is beyond the per-pixel capabilities of current hardware
rendering pipelines. For hardware rendering, we approximate the
correct color at every pixel by computing it analytically in software
at the nonprofile vertices likeE andG in Figure 1, and dividing it
by a to get thepolygon_colorappropriate for use in the compositing
Eq. (1). At the profile vertices, we just setpolygon_colorto the glow
color specified at that vertex. Then we use the hardware procedures
described above. This at least partially accounts for the effects of
extinction on the color and does produce the correcta.

III. SORTING
The polyhedron projection method for volume rendering requires a
back-to-front visibility sort of the cells, such that if cellA partially
obscures cellB from the viewpointV, thenB comes beforeA in the
sorted list, so that the compositing formula (Eq. 1) correctly ac-
counts for the effect of cellA’s opacity on the visibility of cellB. In
this section, we discuss various algorithms to produce such a visi-
bility sort.

The simplest case is when the grid covers a convex volume with
convex polyhedral cells, and comes equipped with an adjacency
structure telling, for each face of a cell, which cell, if any, is on the
other side of that face. This adjacency structure can be interpreted as
a graph, with a node for every cell and an edge for every pair of cells
A and B sharing a common faceF. Given a viewpointV for the
current view, this graph is turned into a directed graph, whose edge
directions depend on the position of the viewpointV. The edge
between cellsA andB is directed fromA to B if V is onB’s side of
the plane of their common faceF, so thatB obscuresA, and from
B to A otherwise. Thus, in the example of the sticks on the table, the
directed edges point down, toward the viewpoint below the table.

We basically do a topological sort of this directed graph, taking
timeO(n), wheren is the number of cells. Actually, the sorting time
also depends on the number of edges in the directed graph, which is
the number of faces in the grid. For the zoo elements we are
considering, each cell has at most six faces, so their total number is
alsoO(n).

For the topological sort, we first do a pass through all the cells,
counting the number of incoming directed edges. Cells with count
zero do not obscure any other cells and are placed on a queue to be
projected. We then remove cells one by one from this queue. For
each outgoing directed edge, we decrement the count for the cell at
the other end of the edge; if its count becomes zero, we put it on the
queue. We then project the cell just removed (or put it next on the
sorted list for later projection). This algorithm terminates when the
queue becomes empty. At this point, if any cells remain unprojected,
they must be involved in a visibility cycle, and some must be
subdivided.

One nice feature of this sorting method is that if the geometry
does not change between views, the adjacency graph and the plane

56 Vol. 11, 53–61 (2000)

equations for the faces can be reused. Only the directions of the
edges in the adjacency graph need to be revised for a new viewpoint
V, by evaluating the plane equation of each faceF atV and using the
sign of the result to set the edge direction in the graph.

Edelsbrunner (1989) has proved that for a Delaunay tetrahedral-
ization of a set of scattered data points, no visibility cycles are
possible. A tetrahedronA connecting four of the data points belongs
to the Delaunay tetrahedralization only if its circumscribing sphere
contains no other data points. Delaunay tetrahedralizations are often
used for finite element simulations. They always define a convex
grid of convex cells, filling in the convex hull of the data points.
Edelsbrunner’s proof is based on the power distance of the view-
point V to the tetrahedronA, defined to bed2 2 r2, whered is the
distance fromV to the center ofA and r is the radius of its
circumscribing sphere. A decreasing sort on this power distance is a
visibility sort for a Delaunay tetrahedralization, as can be proved
using simple analytic geometry and the condition above on the
circumscribing spheres. This power sort is believed to be a good
approximate sort for other tetrahedral data sets. Although the time
for sorting based on the power distance key is theoreticallyO(n log
n), it is in practice competitive with the topological sort, because it
does not need to store and access the adjacency structure.

The topological sort works for a convex grid because any time a
cell A obscures part of cellB from viewpointV, there is a viewing
ray leaving cellA and reaching cellB after crossing a sequence of
interior faces of the grid, all represented by edges in the graph. Thus
the directed graph forcesB to be projected beforeA. This is not true
if the grid contains cavities or concavities. Then a viewing ray could
exit across an exterior face with no directed edge, and then enter the
grid again across another exterior face, so that the sequence of
directed edges fromA to B is broken.

The topological sort can be extended to cover these more general
cases by adding directed edges between two boundary cells (those
with exterior faces) whenever there is a viewing ray crossing them
both. If there areb boundary cells, there can be up toO(b2) such
extra directed edges added to the graph. Using this fact, it is possible
to implement a topological sorting technique that takesO(n 1 b2)
time. Silva et al. (1998) show how to improve the running time to an
output-sensitive bound ofO((b 1 I)log2 b 1 n), where I is the
number of crossings among edges of the exterior faces.

In a more recent paper along these lines, Comba et al. (1999)
propose the faster BSP-XMPVO technique based on constructing a
binary space partition (BSP) tree on the set of exterior faces of the
mesh. Each node of the BSP tree corresponds implicitly to a convex
region of space, bounded by planes. Each internal node of the BSP
tree stores the plane of one of the exterior faces, which divides the
node’s region, and the set of exterior faces, into subsets for its two
child nodes. The tree is constructed recursively, dividing by these
planes until the interior of each leaf node’s region contains no
exterior faces. Then, given a new viewpoint, the tree can be used to
find a visibility sort of the exterior faces as follows. Starting at the
root node, evaluate the plane equation for the current internal node
at the viewpointV. Then (a) recursively proceed to the child whose
region does not contain the viewpoint, (b) list the exterior faces(s) in
the current plane, and (c) recursively proceed to the other child.
Comba et al. (1999) combined this sort of the exterior faces with the
topological sort of the cells to give a correct global sort. As with the
topological sort, the BSP tree is unchanged if only the viewpoint
moves.

Unfortunately, there may be some partially projected cells that
arise as a complication in the method of merging the BSP tree sort

with the topological sort. The numberp of these is usually very
small, in the range of 0.1–0.3% of the total number of cells. Each of
thesep cells must be tested for possible occlusion with each of the
b boundary cells. Thus, once the BSP tree has been constructed, the
sorting time for a new viewpoint isO(n 1 bp). We used this
BSP-XMPVO sort in the work described in Section V.

A related approach is to separately sort the boundary cells.
Williams (1992) has shown that an approximateO(f log f) sort of
the f cells with front-facing exterior faces can be combined with the
traversal of the directed graph to give an approximate sort for
nonconvex grids.

A final approach is to fill the space between a grid and its convex
hull with e extra convex cells, which are used only for sorting and
are not rendered. Then the topological sort applies and takes time
O(n 1 e). We are exploring this approach. Our goal is to keep the
numbere of extra cells small and to generate them efficiently. We
also hope not to introduce extra visibility cycles, although our
current BSP-based scheme may do so.

Even the brute forceO(n2) visibility sort of n cells can be made
more efficient by reducing the constant in front ofn2. The step that
is repeatedO(n2) times is the test to see whether cellA can obscure
part of cellB from a viewpointV. This same test is used to add the
extra directed edges discussed above, between exterior cells. It is
also used in the BSP-XMPVO algorithm (Comba et al., 1999) to test
each of thep partially projected cells to see whether it is obscured
by any of theb boundary cells.

To make this test more efficient, Newell et al. (1972) divided it
into a sequence of simpler tests, any one of which may determine
thatA does not obscureB. They are ordered in increasing difficulty,
so that the easy tests may answer the question before the more
difficult ones need be applied. One such scheme is to precompute a
bounding box for each cell, i.e., to determine its extent along thex,
y, andz directions, assuming the viewing direction is along thez
axis. Then the tests in order are:

1. Thez extent ofB is in front of thez extent ofA.
2. Thex extents ofA andB do not overlap on the image plane.
3. They extents ofA andB do not overlap on the image plane.
4. All vertices of B lie in front of the plane of one of the

front-facing faces ofA.
5. All vertices of A lie in back of the plane of one of the

back-facing faces ofB.

If bounding spheres are prepared for each cell, these tests can be
replaced or supplemented by the following:

19. The cones from the viewpoint to the bounding spheres of
cells A andB are disjoint.

29. The bounding sphere forA is disjoint from and lies behind
the bounding sphere forB.

If none of these tests eliminates the possibility ofA obscuringB,
Newell (1974) proposed a definitive search for a separating plane
between the cells, using linear programming. Stein et al. (1994; see
Williams et al., 1998, for a correction) instead searched for an
intersection between the projections of an edge ofA and edge ofB.
The ray through such an intersection will pass through both cells and
can be used to determine which cell is in front. If no such ray can be
found, the projections ofA and B are disjoint andA cannot
obscureB.

Vol. 11, 53–61 (2000) 57

The overlaps discovered in the above tests can be organized into
a directed graph and used in the topological sort. Alternatively, they
can be organized into the sorting algorithm of Newell (1974) and
colleagues (1972) described below.

A straightforward use of the above tests would apply at least the
first test for every ordered pair of cells. However, there are ways to
eliminate large collections of pairs from consideration. Newell’s
algorithm starts with an initialO(n log n) back-to-front sort of the
cells, using thez of their farthest vertex. Using the first sequence of
tests above, the farthest cellA is taken from the list and tested with
the other cells in order. As soon as a cellB is found that satisfies
condition 1, we know that the search for obscured cells can be
terminated early. If no obscured cell is discovered,A is removed
form the list and projected. If an obscured cellB is discovered, it is
moved to the head of the list and tests begin with it instead. This can
destroy thez sort needed for the early termination of the testing.
Therefore, we must keep track of the position in the list after which
this order is still undisturbed and early termination remains valid.

If there is a visibility cycle, the above process could lead to an
infinite loop, in which the same cells are moved repeatedly to the
head of the list. Therefore, the first time a cell is moved, it is marked
as moved. If it is about to be moved a second time, we know it is
involved in a cycle, and must be subdivided.

Another way of eliminating pairs of cells from occlusion testing,
which is compatible with the early termination method above, is
reported by Williams et al. (1998). Divide the image plane into
windows and prepare a farthest-z-sorted list of the cells overlapping
each window. Then for a candidate cellA, we need only check the
lists for those windows that cellA overlaps.

IV. SUBDIVIDING ZOO ELEMENTS INTO
CONSISTENT TETRAHEDRA
The above sorting and projection algorithms both assume the cells
are convex polyhedra. However, as mentioned at the end of the
Introduction, deformed grids often have nonplanar quadrilateral
faces. As shown in Figure 2, a problem face is a quadrilateral that
does not project in a one-to-one way when approximated by subdi-
vision into two triangles. This causes a visibility cycle due to the
nonconvex cellA. Our solution is to subdivide nonconvex problem
cells likeA into tetrahedra, which have only planar triangular faces.
When doing this subdivision, it is important to choose consistent
diagonals on any shared quadrilateral face, in order to avoid a gap or
overlap between the cells on either side of the face. A method for
such subdivision was developed for a more specific purpose by
Nielson and Sung (1997). Here is a simplification of their method,
which we discovered independently, for the problem of subdividing
some or all of the zoo elements in a grid into tetrahedra using
consistent diagonals on the quadrilateral faces.

We assume a linear order on the set of vertices, which would
arise from the assignment of a different integer index to each vertex.
In practice, vertices are referenced by such indices in order to avoid
repeating coordinates and data for vertices shared by several cells.
Using this linear order, our decision rule chooses the diagonal for
each quadrilateral that starts from its smallest vertex. Because this
decision involves only the four vertices of the quadrilateral, it is
taken the same way for two adjacent cells that share a quadrilateral
face, thus assuring consistency without the use of any mesh con-
nectivity pointers. Below, we show that this choice of diagonals is
consistent with a tetrahedral subdivision of each pyramid-, prism-,
or cube-like cell.

A pyramid can be divided into two tetrahedra by the plane
through either diagonal of the quadrilateral base and the vertex
opposite the base, so the diagonal from the smallest base vertex will
work.

A triangular prism will have a unique smallest vertexL in the
linear order and the two quadrilateral faces that shareL will have
diagonals starting atL. The plane through these two diagonals
divides the prism into a tetrahedron and a pyramid. As above, the
pyramid can be divided using a diagonal of its quadrilateral base, so
we get three consistent tetrahedra in all.

For the cube shown in Figure 3, assume that vertexA is the
smallest in the linear order. Then the three quadrilaterals meeting at
this vertex will have diagonals starting there (Fig. 3). We are not
assuming anything about the order of the other seven vertices, so we
must show that each of the eight possible sets of choices for the
diagonals of the remaining three faces produces a configuration that
can be divided into consistent tetrahedra. For each such set of
diagonals, count the number that have the vertexG farthest fromA
as one of their endpoints. If the number is zero, then the three
diagonals in this set plus the three diagonals already shown in Figure
2 are the six edges of a central tetrahedron. When this tetrahedron is
removed, four other tetrahedra remain, making a total of five.

If there is at least one diagonal with vertexG as an endpoint, then
this diagonal, together with the parallel face diagonal starting at
vertexA, defines a quadrilateral slice, dividing the hexahedron into
two triangular prisms. For example, if the diagonalDG is present,
the slice is quadrilateralADGF. Because vertexA is the smallest
vertex of the hexahedron, the decision rule is applied to choose
diagonalAG for this slice quadrilateral. Then, as shown above, each
prism can be divided into three consistent tetrahedra, making six
tetrahedra in all.

The above proof contradicts part of the report by Guy and
Crawfis (1997). The cube in Figure 3 is oriented the same as that in
Figure 3 of Guy and Crawfis (1997). The three diagonals shown in
Figure 3 correspond to a zero bit for the first, third, and fifth rows of
Table 1 in Guy and Crawfis (1997). Therefore, the eight sets of
choices discussed above correspond to six bit codes 0x0y0z, where
x, y, and z can be either 0 or 1. In Table 2 of Guy and Crawfis

Figure 3. A cube with three face diagonals from vertex A.

58 Vol. 11, 53–61 (2000)

(1997), cases 010001 and 010100 are listed as subdividable into two
prisms. However, it is claimed that the two prisms are forced to have
inconsistent diagonals across their common quadrilateral face. The
above proof shows that diagonalAG (corresponding to 1-to-7) is a
consistent diagonal for this slicing quadrilateral.

V. VIEW-DEPENDENT SUBDIVISION
Subdividing all hexahedral elements in a grid completely into tet-
rahedra could multiply the number of cells by as much as six,
prolonging sorting and projection. For example, the hexahedron
shown in Figure 4a divides the image plane into five quadrilaterals
and two triangles, giving seven polygons with a total of 41 vertices
(counting repetitions, as would be necessary in OpenGL polygon
calls). Now, suppose this cell is subdivided into the six tetrahedra
(Fig. 4b). Four of these tetrahedra require four triangles for hardware
rendering and two require three, giving 22 polygons with a total of
66 vertices. Although OpenGL triangle fans can reduce the latter
vertex count, the basic polygon and geometry overhead is signifi-

cantly larger for the subdivided case. The rasterization effort is also
higher because most pixels in the projection of the original hexahe-
dron are covered by at least three of these triangles; those in the
projection of quadrilateralACGE are covered by four.

Therefore, we subdivide only the cells intersected by a viewing
ray in more than one segment. We assume that the distortion is mild
enough so that this can happen only when the viewing ray intersects
a single curved face more than once.

For a cellA and a specific viewpointV, consider a quadrilateral
face F divided into two trianglesS and T by a diagonal from the
vertexL (Fig. 2). A viewing ray fromV can exitA throughS and
enterA again throughT, if and only if the outward normal toS has
a positive dot product with the vectorVL, the outward normal toT
has a negative dot product withVL, and bothV and the interior of
triangleS lie on the same side of the plane of triangleT. In this case,
we call F a problem face andA a problem cell. Our strategy is to
think of all quadrilateral faces as in principle already divided into
two triangles by the diagonal from their smallest vertex, but to
actually project as quadrilaterals the nonproblem faces.

The problem cellA described above is temporarily subdivided
into tetrahedra. However, the cellB on the opposite side ofF need
not necessarily be subdivided. Instead, the quadrilateral faceF of B
is temporarily replaced by the trianglesS andT for the purpose of
sorting and projection from the current viewpoint. IfB is later
determined to also be a problem cell, due to a different problem face,
the rest ofB can be subdivided consistently, as shown in Section IV
above.

We sort by the BSP-XMPVO algorithm of Comba et al. (1999).
All exterior nonplanar quadrilaterals are permanently subdivided
into triangles for use in constructing an accurate BSP tree during
preprocessing. For each new viewpoint, all cells are examined to
check whether they are problem cells. If they are, the temporary
changes discussed above are made. The visibility sort is then run on
the modified data structure.

We wanted our algorithm to handle Lagrangean meshes, which
can deform (change geometry) during a simulation and can even be
remeshed (change topology) when necessary to preserve numerical
accuracy. Thus, there are several things that can change when
interactively viewing a sequence of time steps in a simulation.
Listing in order of decreasing impact on the sorting and rendering
computation are (a) the mesh topology, (b) the mesh geometry, (c)
the viewpoint, (d) the scalar data to be visualized, and (e) the
transfer functions used to assign color and transparency to the scalar
data.

Our file format for storing the meshes does not include the
topological information necessary to build the adjacency graph. If
the mesh topology changes, we must search for the adjacent faces
and build the graph. If the geometry changes, we must recompute
the face plane equations and the BSP tree. If the viewpoint moves,
we must redetermine the directions of the edges in the adjacency
graph and determine which cells are problem cells. The problem
cells are subdivided into tetrahedra. Those that are no longer prob-
lems are restored to their original state. The BSP-XMPVO sort then
lists the cells in the correct order for compositing. If only the scalar
data or the transfer function changes, the sorted list can be reused in
the rendering.

We organized the data structure for the faces so that it can be
easily updated if a problem cell is subdivided. Each quadrilateral
face has two triangular subfaces, which are determined as soon as
the mesh topology is known. Each subface has room for its plane
equation, and for two cell pointers, to the two cells that share it

Figure 4. (a) Projection of a cube. (b) Cube divided into six tetrahe-
dra.

Vol. 11, 53–61 (2000) 59

(unless it is an exterior face, with only one such cell). If a problem
cell is subdivided into tetrahedra, these cell pointers are revised to
point to the new tetrahedra. The new tetrahedra have parent pointers
to the cell they subdivide, to help in rerouting the cell pointers when
a subdivided cell is restored to its original state. We keep the
subdivisions for the previous frame, and only add or delete the
subdivision of cells whose problem state changes.

The data structures for the faces of the original cells are stored in
two large linear arrays, one for triangles and one for quadrilaterals.
These arrays are accessed in order when the new viewpoint is
substituted into the plane equations to determine the graph edge
directions, and which cells must be subdivided. This increases cache
coherence.

The new tetrahedra for a subdivided cell and their new separating
faces, interior to the original cell, are stored together in a block of
memory to provide memory locality. There are four sizes of blocks,
containing two, three, five, or six tetrahedra, for the four subdivision
cases discussed in Section IV. These are allocated in four large
arrays, with lists of the used and unused blocks in each array. When
a cell no longer needs subdivision, its block is put in the unused list
and can be reused.

In addition to the sorting problem mentioned above, there are
other reasons to subdivide a cell into tetrahedra. If volume rendering
is combined with surface rendering of contour surfaces, the volume
cells must be subdivided by the contour surfaces for correct visibil-
ity sorting. As discussed in Williams et al. (1998), this is easier to do
for tetrahedra. All the contour surfaces intersecting a tetrahedron do
so along parallel planar slices, dividing the volume into parallel
slabs. Therefore, we also subdivide into tetrahedra all cells contain-
ing contour surfaces. Because a visibility sort of the slabs into which

a single tetrahedron is sliced is trivial, only the tetrahedra are placed
into the main visibility sort. The semitransparent contour surface
polygons are rendered in order between the slabs they separate.

A related situation occurs with nonlinear transfer functions,
which are necessary to accentuate ranges of the scalar variable of
particular interest in the visualization. We use piecewise linear
transfer functions for color and opacity, which are linear on the
ranges between successive breakpoint values of the scalar variable
being visualized but have discontinuities in the value and/or slope at
the breakpoints (Fig. 5). Because the hardware interpolation of color
and opacity is only a good approximation when the transfer func-
tions are linear, the cells must be subdivided along the contour
surfaces at the breakpoint values. Again, we do this by first dividing
the cells containing breakpoint values into tetrahedra, and then into
slabs across which the color and opacity vary linearly.

Figure 6 shows the coolant velocity magnitude from a 12,936-
cell finite element simulation of coolant flow inside a component of
the French Super Phoenix nuclear reactor. It was produced for a new
viewpoint by the sorting and hardware polyhedron projection meth-
ods discussed here in 0.95 s on an SGI O2 with one 180-MHz R5000
CPU, after the adjacency graph and BSP tree were built in 4.92 s.

VI. FUTURE WORK
We plan to integrate the cell slicing by contour surfaces or transfer
function breakpoints into our current sorting and compositing
scheme. This could be done by subdividing the sliced cells into
tetrahedra and revising the directed adjacency graph to account for
this additional subdivision. However, unlike the situation for prob-
lem cells, this subdivision is not required for the visibility sort. Thus,
if there is no change in topology, geometry, or viewpoint, it should

Figure 5. Breakpoints A, B, C, D, E, F, and G in a piecewise linear transfer function. Note the discontinuities at breakpoints A and B, placed
to emphasize a particular range of values.

60 Vol. 11, 53–61 (2000)

be more efficient to use the main visibility sort and a separate small
visibility sort for the tetrahedra within such a subdivided cell.

We have optimized the algorithm to subdivide cells only when
necessary in order to simplify the job of the hardware rendering
pipeline. But we have introduced more complicated data structures
that put more burden on the CPU. In addition, it takes time to
determine the subdivision of the image plane by the projected edges
of the zoo elements. We hope to parallelize some of this work on the
multiple CPUs of our visualization engine. In particular, when the
BSP-XMPVO sort is executed, it can produce layers of cells, which
are all known not to obscure each other. Multiple CPUs could
independently divide these cells into polygons and insert the poly-
gons into the rendering pipeline in any order, synchronizing only
when each layer is complete.

ACKNOWLEDGMENTS
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under con-
tract number W-7405-ENG-48 and was specifically supported by the
Accelerated Strategic Computing Initiative. The paper was im-
proved by comments and suggestions of the reviewers.

REFERENCES

B. Baumgart, Winged-edge polyhedron representation, Technical Report
STAN-CS-320, Computer Science Department, Stanford University, 1972.

B. Cabral, N. Cam, and J. Foran, Accelerated volume rendering and tomo-
graphic reconstruction using texture mapping hardware, Proc 1994 Symp on
Volume Visualization, 1994, pp. 91–98.

J. Comba, J. Klosowski, N. Max, J. Mitchell, C. Silva, and P. Williams, Fast
polyhedral cell sorting for interactive rendering of unstructured grids, Proc
Eurographics ’99, Computer Graphics Forum 18 (1999), pp. C-369–376.

H. Edelsbrunner, An acyclicity theorem in cell complexes in d dimensions,
Proc ACM Symp on Computational Geometry, 1989, pp. 145–151.

M. Garrity, Raytracing irregular volume data, Computer Graphics 24 (No-
vember, 1990), pp. 35–40.

A. Guy and R. Crawfis, Efficient subdivision of finite-element datasets into
consistent tetrahedra, Proc IEEE Visualization ’97, 1997, pp. 213–219.

N. Max, Optical models for direct volume rendering, IEEE Trans Visual
Computer Graphics 1 (1995), 99–108.

M. Newell, The utilization of procedure models in digital image synthesis,
PhD thesis, University of Utah, Report UTEC-CSc-76-218, 1974.

M. Newell, R. Newell, and T. Sancha, Solution to the hidden surface
problem, Proc ACM National Conf, 1972, pp. 443–450.

G. Nielson and J. Sung, Interval volume tetrahedralization, Proc IEEE
Visualization ’97, 1997, pp. 221–228.

J. O’Rourke, Computational geometry in C, Cambridge University Press,
Cambridge, England, 1995.

H. Pfister, J. Hardenberg, J. Knittel, H. Lauer, and L. Seiler, The volume-pro
real-time ray casting system, Computer Graphics Proc, Annual Conf Series,
1999, pp. 251–260.

M. Segal and K. Akeley, The OpenGL graphics system: A specification,
http://www.opengl.org/Documentation/Specs.html (1998).

P. Shirley and A. Tuchman, A polyhedral approximation to direct scalar
volume rendering, Computer Graphics 24 (November, 1990), 63–70.

C. Silva, J. Mitchell, and P. Williams, An exact interactive time visibility
ordering algorithm for polyhedral cell complexes, Proc 1998 Symp on
Volume Visualization, 1998, pp. 87–94.

C. Stein, B. Becker, and N. Max, Sorting and hardware assisted rendering for
volume visualization, Proc 1994 Symp on Volume Visualization, 1994, pp.
83–90.

J. Wilhelms and A. Van Gelder, A coherent projection approach for direct
volume rendering, Computer Graphics, 25 (July, 1991), 275–284.

P. Williams, Visibility ordered meshed polyhedra, ACM Trans Graphics 11
(1992), 103–126.

P. Williams and N. Max, A volume density optical model, Proc 1992
Workshop on Volume Visualization, 1992, pp. 61–68.

P. Williams, N. Max, and C. Stein, A high accuracy volume renderer for
unstructured data, IEEE Trans Visual Computer Graphics 4 (1998), 37–54.

R. Yagel, D. Reed, A. Law, P.-W. Shih, and N. Shareef, Hardware assisted
volume rendering of unstructured grids by incremental slicing, Proc 1996
Symp on Volume Visualization, 1996, pp. 55–62.

Figure 6. Volume rendering of coolant velocity magnitude in a nu-
clear reactor. (Reprinted from Williams et al., 1998, with permission.)

Vol. 11, 53–61 (2000) 61

