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Abstract

We consider the binomial random graphGn,p and determine a sharp threshold function
for the edge-Ramsey property

Gn,p → (C`1 , . . . , C`r )

for all `1, . . . , `r, where C` denotes the cycle of length `. As deterministic consequences
of our results, we prove the existence of sparse graphs having the above Ramsey
property as well as the existence of infinitely many critical graphs with respect to the
property above.

AMS subject classification code (1991): 05C55, 05C80, 05C38
Key words and phrases: Ramsey theory, random graphs, threshold functions, Szemerédi’s lemma,
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1 Introduction and Results

Ramsey properties of random graphs have been investigated only recently. The aim of
these investigations has been to find sharp thresholds for various Ramsey properties that
a random graph may satisfy. Let us concentrate here on the binomial model of random
graphs, the so-called Gn,p- or Gp-model. Thus, our random graph Gp = Gn,p has n vertices

∗Partially supported by CNPq (Proc. 300334/93–1 and ProTeM-CC-II Project ProComb). Part of this
work was done while this author was visiting Humboldt-Universität zu Berlin through PROBRAL project
number 026/95, a CAPES–DAAD exchange programme.
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and its edges are present independently with probability p. See Bollobás [1] for details
concerning random graphs and Graham, Rothschild, and Spencer [2] for Ramsey theory.

The thresholds for vertex-Ramsey properties, i.e., the case in which the vertices of the
random graph are coloured, were established by  Luczak, Ruciński, and Voigt [12]. The
case in which edges are coloured turned out to be rather more involved, but Rödl and
Ruciński [13, 14, 15] succeeded in settling this case quite recently as well. Now, the results
in [12, 13, 14, 15] cover the case of symmetric Ramsey properties, that is, the case in which
we seek a monochromatic copy of one given graph. Here we shall consider the asymmetric
case, namely, when we have one target graph for each colour. The threshold functions for
asymmetric Ramsey properties with respect to vertex colourings are determined in [10].
In this note we consider edge-Ramsey properties of Gp when the target graphs are cycles.

We need some definitions before we may proceed. For an integer n, we write [n]
for {1, . . . , n}. All logarithms in this note are with respect to base e. For a graph G, we
denote by V (G) and E(G) the sets of vertices and edges of G. The sizes of these sets
will be abbreviated by |G| = |V (G)| and e(G) = |E(G)|. The maximum 2-density of a
graph G is

m2(G) = max
{
e(J)− 1
|J | − 2

: J ⊆ G with |J | ≥ 3
}
.

We now recall the arrow notation for Ramsey properties. For two graphs F and H
and an integer r ≥ 2, we write F → (H)r to mean that in any colouring of the edges
of F with r colours there is a subgraph of F isomorphic to H whose edges are all coloured
by the same colour. Given r graphs H1, . . . ,Hr, we may generalize this definition by
letting F → (H1, . . . ,Hr) stand for the fact that, for any colouring of the edges of F with
colours 1, . . . , r, there is a colour i for which there is a copy of Hi in F whose edges are
all coloured with colour i.

Using this notation, the results of Rödl and Ruciński read as follows, where P 4 denotes
the path on four vertices.

Theorem 1 Let H be a graph containing a cycle or a P 4. Let β = 1/m2(H) and let r ≥ 2
be an integer. Then there exist constants b and B > 0 such that

(a) for p = p(n) ≤ bn−β we have

P [Gp → (H)r] = o(1),

(b) for p = p(n) ≥ Bn−β we have

P [Gp → (H)r] = 1− o(1).
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Now consider the problem of determining the threshold for the propertyGp → (H1, H2).
For graphs H1 and H2 with m2(H1) ≤ m2(H2), put

β = β(H1, H2) = min
{ |J | − 2 + 1/m2(H1)

e(J)
: J ⊆ H2 with e(J) ≥ 1

}
. (1)

Observe that β is not symmetric in H1 and H2 but depends to a larger extent on the denser
of the two graphs. The following theorem contains the so-called 1-statement corresponding
to the case in which H1 is the cycle C` and H2 is an arbitrary 2-balanced graph H
with m2(H) > m2(C`) = (`− 1)/(`− 2).

Theorem 2 Let ` ≥ 3 be a fixed integer, and let H be a 2-balanced graph with m2(H) =
(e(H)− 1)/(|H| − 2) > m2(C`) = (` − 1)/(` − 2). Then there is a constant B such that,
setting p = p(n) = Bn−β where

β = β(C`, H) =
|H| − 2 + 1/m2(C`)

e(H)
=
|H| − 1− 1/(`− 1)

e(H)
, (2)

we have
P
[
Gp → (C`, H)

]
= 1− o(1). (3)

In the result above, the condition that H should be 2-balanced and that m2(H) >
m2(C`) may be replaced by the condition that H should be strictly 2-balanced (i.e., the
maximum in the definition of m2(H) should be attained by H only) and that m2(H) ≥
m2(C`). The main lemma in the proof of Theorem 2, Lemma 17, concerns the number
of C`-free graphs on n vertices fulfilling some additional properties. This lemma is a
generalization of Lemma 11 from [8], which deals with the case ` = 3. Furthermore,
Lemma 17 may be used to unify the proofs of the results in [3] and [4]. However, the main
result from [7], which is similar in spirit, does not follow from Lemma 17.

The next theorem says that the exponent β in Theorem 2 is involved in the correspond-
ing 0-statement, thus establishing a sharp threshold for the property Gp → (C`, Ck).

Theorem 3 Let 3 ≤ k ≤ ` be integers, and let

β = β(C`, Ck) =
(k − 1)(`− 1)− 1

k(`− 1)
= 1− `

k(`− 1)
.

Then there exists a constant b > 0 such that, for p = p(n) = bn−β, we have

P
[
Gp → (C`, Ck)

]
= o(1).

We shall also sketch the proof of the following generalized version of Theorem 2.
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Theorem 4 Let 3 ≤ `2 ≤ · · · ≤ `r (r ≥ 2) be integers, and suppose H is a 2-balanced graph
with m2(H) > m2(C`2). Let β = β(C`2 , H). Then there are constants B and κ > 0 such
that, for p = p(n) = Bn−β, almost every Gp satisfies the property that any subgraph G′ ⊆
Gp of Gp with e(G′) ≥ e(Gp)− κn1+1/(`2−1)/(log n)|H| is such that

G′ → (H,C`2 , . . . , C`r).

Similarly to the case of Theorem 2, the result above also holds if H is strictly 2-
balanced and m2(H) = m2(C`2). We further remark that the log-factor in the number of
edges that one is allowed to delete from Gp can be got rid of.

The following result is an immediate corollary to Theorems 3 and 4.

Corollary 5 Let 3 ≤ `1 ≤ · · · ≤ `r (r ≥ 2) be integers, and let β = β(C`2 , C`1). Then
there exist constants b and B > 0 such that

(a) for p = p(n) ≤ bn−β we have

P
[
Gp → (C`1 , . . . , C`r)

]
= o(1),

(b) for p = p(n) ≥ Bn−β we have

P
[
Gp → (C`1 , . . . , C`r)

]
= 1− o(1).

It would be interesting to determine the threshold functions for the properties Gp →
(H1, H2) for arbitrary graphs H1 and H2, or more generally for the analogous problem
when more than two graphs are involved. We formulate the following conjecture.

Conjecture 6 Let H1, H2 be graphs with m2(H1) ≤ m2(H2) and let β = β(H1, H2) be as
defined in (1). Then p = p(n) = n−β is a sharp threshold for the property Gp → (H1, H2).

Unfortunately, the techniques used in this note are by far not sufficient to yield a proof of
this more general case.

We now single out two deterministic consequences of our methods. Let integers t,
`2 ≥ 3 and a graph H be given. Let V`2,H,t be the class of graphs F with at most t vertices
satisfying |F | − β(C`2 , H)e(F ) < 1 + 1/(`2 − 1).

Corollary 7 For any fixed integers 3 ≤ `2 ≤ · · · ≤ `r (r ≥ 2) and t ≥ 1 and any 2-balanced
graph H with m2(H) > m2(C`2), there is a graph G that satisfies G → (H,C`2 , . . . , C`r)
and contains no member of V`2,H,t.
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An immediate consequence of the corollary above is that, for any 3 ≤ `1 ≤ · · · ≤ `r,
there are graphs G of girth `1 satisfying G→ (C`1 , . . . , C`r).

Our second deterministic result states that the r-tuple (C`1 , . . . , C`r) is Ramsey-infinite
for any `1, . . . , `r ≥ 3. A graph G is called Ramsey-critical , or simply critical , for an r-
tuple of graphs (Hi)1≤i≤r (r ≥ 2) if G→ (Hi)1≤i≤r but, for any proper subgraph G′ ⊂ G
of G, the relation G′ → (Hi)1≤i≤r fails. The r-tuple (Hi)1≤i≤r is called Ramsey-finite if the
class of all graphs that are critical for (Hi)1≤i≤r is finite and Ramsey-infinite otherwise.
If (Hi)1≤i≤r is Ramsey-finite then there clearly is a polynomial time algorithm that, given
a graph G, decides whether or not G→ (Hi)1≤i≤r holds.

Corollary 2 of [15] implies that the pair (H,H) is Ramsey-infinite for any graph H
containing a cycle, and  Luczak [11] showed that the pair (F,H) is Ramsey-infinite if F is
a forest and H contains a cycle. Our result is as follows.

Theorem 8 For any 3 ≤ `1 ≤ · · · ≤ `r (r ≥ 2), the r-tuple (C`i)1≤i≤r is Ramsey-infinite.

The organisation of this note is as follows. In Section 2 we give the proof of Theorem 2
and sketch the proof of Theorem 4. Theorem 3 is proved in Section 3. The deterministic
consequences are proved in Section 4.

2 The proofs of Theorems 2 and 4

We shall need a fair amount of preparation to prove Theorems 2 and 4. In Sections 2.1
and 2.2, we set out some well known lemmas and some preliminary results that we shall
need. In Section 2.3, we prove our crucial lemma, Lemma 17.

2.1 Basic tools

2.1.1 Janson’s inequality

Let E be a finite set. Let (Je)e∈E be a family of independent random indicator variables
indexed by E such that E(Je) = p for all e ∈ E. Suppose (Eα)α∈A is a family of subsets
of E. Let Iα =

∏
e∈Eα Je, and S =

∑
α∈A Iα. Thus, the random variable S counts how

many of the sets Eα (α ∈ A) have all its elements e ∈ Eα such that Je = 1. Let

∆ =
∑
α,β

E(IαIβ), (4)

where the sum extends over all ordered pairs (α, β) with α 6= β but Eα∩Eβ 6= ∅. Janson’s
inequality [5] is then the following.

Lemma 9 For all 0 ≤ ε ≤ 1, writing µ = E(S), we have

P[S ≤ (1− ε)µ] ≤ exp
{
− 1

2(1 + ∆/µ)
ε2µ

}
. (5)
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2.1.2 Szemerédi’s lemma

The following notions will be needed in what follows. Let a graph J be fixed. In the
sequel we let V = V (J). Suppose 0 < η ≤ 1, D > 1, and 0 < p ≤ 1. We say that J is
(η,D, p)-upper-uniform if for all U , W ⊆ V with U ∩W = ∅ and |U |, |W | ≥ ηn, we have
eJ(U,W ) ≤ Dp|U ||W |. In the sequel, for any two disjoint non-empty sets U , W ⊆ V , let
the p-density of J between U and W be

dJ,p(U,W ) = eJ(U,W )/p|U ||W |.

Now suppose 0 < ε ≤ 1 is a real number, and U , W ⊆ V are two non-empty disjoint
sets of vertices of J . We say that the pair (U,W ) is (ε, J, p)-regular if for all U ′ ⊆ U ,
W ′ ⊆W with |U ′| ≥ ε|U | and |W ′| ≥ ε|W | we have

|dJ,p(U ′,W ′)− dJ,p(U,W )| ≤ ε.

We say that a partition P = (Vi)ki=0 of V = V (J) is (ε, k)-equitable if |V0| ≤ εn, and |V1| =
. . . = |Vk|. Also, we say that V0 is the exceptional class of P . When the value of ε is not
relevant, we refer to an (ε, k)-equitable partition as a k-equitable partition. Similarly, P is
an equitable partition of V if it is a k-equitable partition for some k. Finally, we say that an
(ε, k)-equitable partition P = (Vi)ki=0 of V is (ε, J, p)-regular if at most ε

(k
2

)
pairs (Vi, Vj)

with 1 ≤ i < j ≤ k are not (ε, J, p)-regular. We may now state an extension of Szemerédi’s
lemma [16] to subgraphs of (η,D, p)-upper-uniform graphs, observed independently by
Rödl and Kohayakawa [6].

Lemma 10 For any given ε > 0, k0 ≥ 1, and D > 1, there are constants η = η(ε, k0, D) >
0 and K0 = K0(ε, k0, D) ≥ k0 that depend only on ε, k0, and D such that any (η,D, p)-
upper-uniform graph J admits an (ε, J, p)-regular (ε, k)-equitable partition of its vertex set
with k0 ≤ k ≤ K0.

2.1.3 Nearly regular subgraphs

Let us introduce a piece of notation. Let a positive integer t be given. If U1, . . . , Ut ⊆ V (J)
are pairwise disjoint sets of vertices of a given graph J , we write J [U1, . . . , Ut] for the t-
partite subgraph of J naturally defined by the Ui (1 ≤ i ≤ t). Thus, J [U1, . . . , Ut] has
vertex set

⋃t
i=1 Ui and two of its vertices are adjacent in J [U1, . . . , Ut] if and only if they

are adjacent in J and, moreover, they belong to distinct Ui.
Now suppose we have real numbers 0 < p ≤ 1, 0 < ε ≤ 1, and 0 < γ0 ≤ 1. Let

also mi = |Ui| (1 ≤ i ≤ t), and write γij for the p-density dJ,p(Ui, Uj) for all distinct i
and j. Suppose the pair (Ui, Ui+1) is (ε, J, p)-regular and γi,i+1 ≥ γ0 for any 1 ≤ i < t.

We may now state our next lemma. In what follows, we write O1(x) for any term y
satisfying |y| ≤ x. We write ΓJ(x) for the J-neighbourhood of a vertex x ∈ V (J).
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Lemma 11 Let J and the sets Ui (1 ≤ i ≤ t) be as above. Suppose 0 < ε ≤ 1/5 and
put A = 4 + 1/γ0. Then there are sets Ūi ⊆ Ui with |Ūi| ≥ (1 − 4ε)mi for all 1 ≤ i ≤ t
such that, for all i, j ∈ [t] with |i− j| = 1 and any x ∈ Ūi, we have

dij(x) = |ΓJ(x) ∩ Ūj | = (1 +O1(Aε))γijpmj .

Lemma 11 above is very similar to Lemma 2 from [8] and Lemma 5 from [9], and hence
its proof is omitted.

2.1.4 Ramsey’s theorem

Here we give the following easy consequence of Ramsey’s theorem.

Lemma 12 Let graphs H1, . . . ,Hr (r ≥ 1) be given. Then there exist positive con-
stants c = c(H1, . . . ,Hr) > 0 and k0 = k0(H1, . . . ,Hr) for which the following holds.
If k ≥ k0 and Kk is given an arbitrary r-edge-colouring, then we necessarily have, for
some 1 ≤ i ≤ r, at least ck|Hi| monochromatic copies of Hi of colour i.

Proof. Let k0 = q and c = (1/r)q−maxi |Hi|, where

q = R(H1, . . . ,Hr) = min{n:Kn → (H1, . . . ,Hr)},

the Ramsey number for (H1, . . . ,Hr). Now let Kk with k ≥ k0 be given an arbitrary r-
edge-colouring. Then, each q-subset of the vertex set of Kk gives, for some i, a monochro-
matic copy of Hi of colour i. For some i, at least (1/r)

(k
q

)
of these q-subsets gives a

monochromatic Hi of colour i. Each such copy is counted at most
(k−|Hi|
q−|Hi|

)
times. The

number of such copies is, therefore, at least

1
r

(
k

q

)/(
k − |Hi|
q − |Hi|

)
=

1
r

(k)|Hi|
(q)|Hi|

≥ 1
r

(
k

q

)|Hi|
≥ ck|Hi|,

as required. 2

2.2 Preliminary lemmas

Throughout this section we fix an integer ` ≥ 3 and a graph H as in the statement of
Theorem 2. Moreover, here we shall always suppose that p = p(n) = Bn−β, where β is as
defined in (2) and B > 0 is some constant. We also sometimes write h for the order of our
graph H. For the sake of definiteness, we shall assume that V (Gp) = [n].

If H1 is a copy of H in Gp we say that H1 is isolated if it does not intersect any other
copy of H present in Gp on an edge. In other words, if we have E(H1) ∩ E(H2) = ∅ for
any other copy H2 of H in Gp.
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2.2.1 Isolated copies of H in Gp

Let us write T = T (Gp) for the number of isolated copies of H in Gp. Let h = |H|.
Using the fact that H is 2-balanced and that m2(C`) < m2(H), it is easy to see that
almost all copies of H in Gp are isolated but we shall not need this here. Let us write p0

for the expected number of (not necessarily isolated) copies of H in Gp that contain
some fixed edge e ∈

([n]
2

)
. Clearly, the expected number µH of copies of H in Gp

is |Aut(H)|−1(n)hpe(H), where Aut(H) denotes the automorphism group of H. A mo-
ment’s thought then shows that

p0 =
(n)he(H)
|Aut(H)|

(n
2

)pe(H) = (2 + o(1))
e(H)Be(H)

|Aut(H)|
n−1+1/(`−1). (6)

We now consider the following construction we shall use later. Let H = {H1, . . . ,HT }
be the set of isolated copies of H in Gp. We shall always write H̃ = H̃(Gp) for the spanning
subgraph of Gp whose edge set is the union of the edge sets of the Hi (1 ≤ i ≤ T ). Clearly,
we have e(H̃) = Te(H).

If we denote by p̃ the probability that a given edge e ∈
([n]

2

)
is contained in H̃ then p̃ =

(1 + o(1))p0 as almost all copies of H are isolated. In the sequel we shall only use p0,
which may be considered to be the edge probability of H̃.

Next we show that the edges of H̃ satisfy some negative correlation properties. For E ⊆([n]
2

)
, write E < E(H̃) if E ⊆ E(H̃) and all edges from E belong to different isolated copies

of H in Gp.

Lemma 13 For any set E ⊆
([n]

2

)
,

P[E < E(H̃)] ≤ p0
|E|.

Proof. Suppose E = {e1, . . . , ea} where a = |E|. Let I be the set of all a-tuples (H1, . . . ,Ha)
of H-subgraphs of Kn with ei ∈ E(Hi) for all 1 ≤ i ≤ a. Also, let J be the set of such
a-tuples (H1, . . . ,Ha) ∈ I with the Hi (1 ≤ i ≤ a) pairwise edge-disjoint. Finally, let Hi
be set of H-subgraphs of Kn that contain the edge ei (1 ≤ i ≤ a). Thus, in particular,
I = H1 × · · · × Ha. Then

P[E < E(H̃)] ≤
∑

(H1,...,Ha)∈J
P[H1 ⊆ Gp, . . . ,Ha ⊆ Gp]

=
∑

(H1,...,Ha)∈J
P[H1 ⊆ Gp] · · ·P[Ha ⊆ Gp]

≤
∑

(H1,...,Ha)∈I
P[H1 ⊆ Gp] · · ·P[Ha ⊆ Gp]
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=
∑

H1∈H1

P[H1 ⊆ Gp] · · ·
∑

Ha∈Ha
P[Ha ⊆ Gp]

= p0
a,

as required. 2

2.2.2 Upper-uniformity results for H̃

In this section we show that the edges of H̃ are fairly well distributed in the sense that H̃ is,
almost surely, locally sparse. Our first lemma implies that almost every H̃ is (η, 3e(H), p0)-
upper-uniform for any fixed 0 < η ≤ 1.

Lemma 14 Let ω = ω(n) → ∞ as n → ∞. Then, for almost every Gp, the graph H̃ =
H̃(Gp) is such that the following holds. Suppose U , W ⊆ V (H̃) with U ∩W = ∅ are such
that |U ||W | ≥ ωn2−1/(`−1). Then we have

e
H̃

(U,W ) ≤ 3e(H)p0|U ||W |. (7)

Proof. If a fixed pair (U,W ) with u = |U | and w = |W | does not satisfy (7) then there is
a set E ⊆ U ×W with E ⊆ E(H̃) and |E| = d3e(H)p0uwe. This implies the existence of
a set E′ ⊆ U ×W of size |E′| = d3p0uwe such that all edges from E′ belong to different
isolated copies of H in Gp. The probability of this event is by Lemma 13 at most(

uw

d3p0uwe

)
p0
d3p0uwe ≤

(
e
3

)3p0uw

.

As there are at most 22n choices for the sets U and W , the lemma follows from the fact
that 3p0uw/n→∞ as n→∞ (cf. (6)). 2

Our next lemma concerns the number of H̃-edges between sets U and W smaller than
the ones considered in Lemma 14, and hence may be thought of as a more local condition
on the sparseness of H̃. To state our lemma concisely, we introduce a definition. Let J
be a graph on n vertices and suppose C ≥ 1 and ` ≥ 1 are given. We say that J is locally
(p0, C, `)-upper-uniform if for all pairs (U,W ) of disjoint sets of vertices U , W ⊆ V (J)
satisfying

|U | ≤ |W | ≤ d0|U | ≤ d0
`−2, (8)

where d0 = p0n, we have
eJ(U,W ) ≤ C|W |. (9)

Lemma 15 Almost every Gp is such that H̃ = H̃(Gp) is locally (p0, 2`e(H), `)-upper
uniform.
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Proof. The probability that a fixed pair (U,W ) of disjoint sets of vertices with u = |U |
and w = |W | does not satisfy (9) can be bounded similarly as in the proof of Lemma 14
by (

uw

d2`we

)
p0
d2`we ≤

(
eu
2`
p0

)2`w

.

Observe that, for pairs (U,W ) as in (8), we have u ≤ (p0n)`−3 ≤ An(`−3)/(`−1) for
some constant A = A(H,B) > 0. Moreover, we have u ≤ w = o(n) as n → ∞, and
hence

(n
u

)(n
w

)
≤
(n
w

)2. Therefore, the expected number of pairs (U,W ) satisfying (8) but
not (9) is at most

bn/2c∑
w=1

w

(
n

w

)2 (
eu
2`
p0

)2`w

≤
bn/2c∑
w=1

w

(
n1/` e

1+1/`

2`
An(`−3)/(`−1)p0

)2`w

= o(1)

(cf. (6)) and the lemma follows from Markov’s inequality. 2

2.2.3 The distribution of isolated copies of H in Gp

In this section we prove a simple lemma concerning the existence of a large number of
isolated copies of H in Gp when p is as given in Theorem 2. In fact, for technical reasons,
we shall need to look at the existence of such copies of H with each of their vertices taken
from specified subsets of vertices of Gp.

Label the vertices of H by v1, . . . , vh where h = |H|. Suppose W1, . . . ,Wh are pairwise
disjoint subsets of vertices of Gp. Put W = (Wi)hi=1. Here we are interested in the
number Z = ZW(Gp) of injections ι:V (H) → V (Gp) taking vi into Wi for all 1 ≤ i ≤ h,
and such that ι(vi)ι(vj) ∈ E(Gp) whenever vivj ∈ E(H). We shall refer to such maps ι
as W-embeddings of H in Gp. Moreover, we say that the subgraph of Gp with vertex
set ι(V (H)) and edge set {ι(vi)ι(vj): vivj ∈ E(H)} is the image im ι of ι.

Finally, let us define Y = YW(Gp) to be the number of W-embeddings ι of H in Gp
with im ι an isolated H-subgraph of Gp.

Lemma 16 Suppose B > 0 is a constant and β is as defined in (2). Then, for p = Bn−β,
almost every Gp has the following property. For any vector W = (Wi)hi=1 of pairwise
disjoint sets Wi ⊆ [n] (1 ≤ i ≤ h), each of cardinality at least n/ log n, we have Y =
YW(Gp) ≥ (1/2)E(ZW).

Proof. Define U to be the set of all graphs that can be written as a union of two copies
of H intersecting in at least one edge, not including H itself. Let then X = X(Gp) count
the number of graphs from U present in Gp. We first aim at bounding X. From m2(C`) <
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m2(H) it is easy to see that β > 1/m2(H). Let δ = β−1/m2(H) > 0. As H is 2-balanced
we have that for any proper subgraph J of H containing at least one edge

|H| − |J |
e(H)− e(J)

≤ 1
m2(H)

= β − δ.

Therefore, writing
∑
K2⊆J⊂H for the sum over all proper subgraphs J ⊂ H containing at

least one edge, we have

E(X) =
∑
U∈U

(n)|U |
|Aut(U)|

pe(U)

= O

( ∑
K2⊆J⊂H

n2|H|−|J |p2e(H)−e(J)
)

= O

( ∑
K2⊆J⊂H

n2|H|−|J |−β(2e(H)−e(J))
)

= O
(
n|H|−βe(H)−δ(e(H)−e(J))

)
= O(n1+1/(`−1)−δ(e(H)−e(J))).

Next we use Janson’s inequality (5) to show that ZW is with high probability not too
small. So fix W = (Wi)hi=1 and let (Hα:α ∈ A) be the family of all graphs which are
isomorphic to H and whose vertex set can be written as {v1, . . . , vh} with vi ∈ Wi for
all 1 ≤ i ≤ h. Thus |A| = |W1| . . . |Wh| ≥ (n/ log n)h, and the random variable S defined
in Section 2.1.1 coincides with ZW. We have that

E(ZW) ≥
(

n

log n

)|H|
Be(H)n−βe(H) = Be(H)n1+1/(`−1)−|H| log logn/ logn.

By Markov’s inequality we have that X = o(E(ZW)) almost surely and therefore also ∆ ≤
2X = o(E(ZW)) where ∆ is as defined in (4). Then Janson’s inequality implies that

P
[
ZW ≤

3
4
E(ZW)

]
≤ exp

(
− 1

33
E(ZW)

)
≤ exp(−n1+1/`),

if n is large enough. On the other hand, there are at most 2hn choices for W. Thus
for almost every Gp we have ZW ≥ (3/4)E(ZW) for every W. Furthermore we almost
surely have that X ≤ E(ZW)/8 and therefore also YW(Gp) ≥ ZW − 2X ≥ E(ZW)/2 for
every W, almost surely, as required. 2

11



2.3 The key counting lemma

Throughout this section, ` ≥ 3 is a fixed integer and V = (V1, . . . , V`) is a fixed vector of
pairwise disjoint sets V1, . . . , V`, all of the same cardinality, say m.

In this section we shall be interested in counting certain graphs F whose vertex set
is V (F ) =

⋃`
i=1 Vi and all whose edges join vertices in consecutive classes Vi. More

precisely, if e is an edge of F , then its two endpoints will belong to Vi−1 and Vi, respectively,
for some 1 ≤ i ≤ `. Here and below, the indices of the sets Vi will be taken modulo `. For
conciseness, given V = (Vi)`i=1, let us say that a graph F as described above is a V-graph.
To define the precise subclass of V-graphs F that we shall be interested in, however, we
need to introduce some more parameters and definitions.

Let 0 < ε ≤ 1, B̄ > 0, 0 < γ0 ≤ 1, C ≥ 1, and D ≥ 1 be real numbers and let T̄ be a
positive integer. We shall write

Fm(ε, B̄, γ0, C,D; V, T̄ )

for the set of V-graphs F satisfying conditions (i)–(iv) given below.

(i) The graph F has T̄ edges.
(ii) The graph F is such that all the pairs (Vi−1, Vi) (1 ≤ i ≤ `) are (ε, F, p̄)-regular,

where p̄ = p̄(m) = B̄m−1+1/(`−1).
(iii) The p̄-density γi−1,i = dF,p̄(Vi−1, Vi) of F between the sets Vi−1 and Vi is such that,

for all 1 ≤ i ≤ `, we have
γ0 ≤ γi−1,i ≤ D. (10)

(iv) For all U ⊆ Vi−1 and W ⊆ Vi (2 ≤ i < `) with

|U | ≤ |W | ≤ d̄|U | ≤ d̄`−2, (11)

where d̄ = p̄m, we have
eF (U,W ) ≤ C|W |. (12)

Let us now define the class

F ′m(ε, B̄, γ0, C,D; V, T̄ ) ⊆ Fm(ε, B̄, γ0, C,D; V, T̄ )

as the class of graphs F ∈ Fm(ε, B̄, γ0, C,D; V, T̄ ) that do not contain a copy of C` as
a subgraph. Our aim in this section is to estimate the cardinality f ′m(ε, B̄, γ0, C,D; T̄ )
of F ′m(ε, B̄, γ0, C,D; V, T̄ ) from above.

Lemma 17 Let an integer ` ≥ 3 be fixed, and let constants 0 < α ≤ 1, 0 < γ0 ≤ 1,
C ≥ 1, and D ≥ 1 be given. Then there are constants 0 < ε ≤ 1, B̄0 > 0, and m0 that
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depend only on `, α, γ0, C, and D such that, for all integers m ≥ m0 and T̄ ≥ 1 and real
numbers B̄ ≥ B̄0, we have

f ′m(ε, B̄, γ0, C,D; T̄ ) ≤ αT̄
(

(`+ 2)m2

T̄

)
. (13)

The proof of Lemma 17 is based on a technical lemma, Lemma 18, that we now
describe. Let a constant 0 < δ ≤ 1 be given, and suppose we have real numbers 0 < ε ≤ 1,
0 < γ0 ≤ 1, B̄, C, D ≥ 1, and an integer T̄ ≥ 1. Let

F ∈ Fm(ε, B̄, γ0, C,D; V, T̄ )

be fixed. Lemma 18 will concern the (` − 1)-partite subgraph Ḟ = F [V1, . . . , V`−1] of F
induced by the vertex classes V1, . . . , V`−1. Suppose y1, . . . , yj−1 ∈ V1 are j − 1 given
vertices of V1, where 1 ≤ j ≤ δm/2. Let

U1 = V1 \ {y1, . . . , yj−1} (14)

and

U`−1 = V`−1 \
j−1⋃
q=1

Γ̇(`−2)
F (yq), (15)

where Γ̇(`−2)
F denotes the (` − 2)-fold iteration of Γ̇F = ΓḞ . Suppose |U`−1| ≥ δm. Our

technical lemma tells us that then, provided ε is small enough, most vertices in U1 are
‘good’, in the sense that their (`− 2)nd Ḟ -neighbourhood within U`−1 is large.

Lemma 18 Let 0 < δ ≤ 1, 0 < γ0 ≤ 1, B̄ > 0, C ≥ 1, and D ≥ 1 be given.
Then if 0 < ε ≤ min{δ/4, γ0/(8γ0 + 2)}, and m and T̄ are integers, any graph F ∈
Fm(ε, B̄, γ0, C,D; V, T̄ ) is such that at least (1− δ)|U1| vertices y ∈ U1 satisfy∣∣∣Γ̇(`−2)

F (y) ∩ U`−1

∣∣∣ ≥ 2−`+2 γ
`−2
0

C`−3
δd̄`−2, (16)

where d̄ = p̄m.

Proof of Lemma 17. Let `, α, γ0, C, and D as in the statement of our lemma be given.
Let us define the constants

δ = min{1/2, (α`D2−5D)8/γ0},
ε = min{δ/4, γ0/(8γ0 + 2)},

B̄0 =

(
4C`−3

2−`+2γ`−1
0 δ

)1/(`−1)

,

m0 =
(

3
2
DB̄0

)(`−1)/(`−2)

.
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Our aim is to show that ε, B̄0 and m0 given above will do in Lemma 17. Thus, let
integers m ≥ m0 and T̄ and a real B̄ ≥ B̄0 be given. We have to show that (13) holds.
We estimate f ′m(ε, B̄, γ0, C,D; T̄ ) from above by estimating the number of ways we may
‘generate’ an element from F ′m(ε, B̄, γ0, C,D; V, T̄ ).

In order to generate a graph F from F ′m(ε, B̄, γ0, C,D; V, T̄ ), we first choose T̄1 =
eF (V1, V`) and T̄`−1 = eF (V`−1, V`). Later on we shall sum over all possible values of T̄1

and T̄`−1. Observe that for i ∈ {1, `} we have

γ0B̄m
1+1/(`−1) ≤ T̄i = dF,p̄(Vi, V`)p̄m2 ≤ DB̄m1+1/(`−1). (17)

Put T̄0 = T̄ − T̄1 − T̄`−1. Next we fix Ḟ = F [V1, . . . , V`−1], for which we have not more
than

((`−2)m2

T̄0

)
possibilities. By Lemma 11 for t = 3, we know that for any choice of the

edges of F incident to V` there have to be sets V̄i ⊆ Vi (i ∈ {1, ` − 1, `}) such that for
any x ∈ V̄` and any i ∈ {1, `− 1} we have

di(x) = |ΓF (x) ∩ V̄i| = (1 +O1(Aε))
T̄i

p̄|V`||Vi|
p̄|Vi| = (1 +O1(Aε))

T̄i
m
, (18)

where A = 4 + 1/γ0. Call the F -edges in V̄` × V̄i (i ∈ {1, ` − 1}) regular edges and the
remaining F -edges between V` and Vi irregular edges. For i ∈ {1, `− 1}, denote by T̄ (irr)

i

the number of irregular edges incident to Vi. Summing up we have that, for given T̄0

and T̄
(irr)
i , there are at most (

(`− 2)m2

T̄0

)(
m2

T̄
(irr)
1

)(
m2

T̄
(irr)
`−1

)
(19)

ways of choosing the set of edges of F , except for the regular edges incident to V`.
Now we have to bound the number of choices for the regular edges. Let us first

choose the degree sequences (di(x))x∈V` of the vertices in V`, where di(x) = |ΓF (x) ∩ V̄i|
for i ∈ {1, ` − 1}. For a vertex x ∈ V̄` we may assume by (17), (18) and the definition of
m0 that

dmin :=
1
2
γ0B̄m

1/(`−1) ≤ di(x) ≤ m. (20)

Let us now fix a vertex x in V̄`, and let us say that a set Y ⊆ V1 of size dmin ≤ d′ = |Y | ≤ m
is good if |Γ̇(`−2)

F (Y ) ∩ V`−1| ≥ (1− δ)m. The idea is that if we choose a good set Y to be
the neighbourhood of x within V1, then the number of vertices in V`−1 that are allowed to
be adjacent to x in F is very small, namely, at most δm, since we are supposed to generate
a C`-free graph F . Now, if a d′-set Y ⊆ V1 as above is not good then, for any ordering
y1, y2, . . . , yd′ of the vertices of Y , there are at least d′/2 indices i with∣∣∣∣Γ̇(`−2)

F (yi) \
i−1⋃
q=1

Γ̇(`−2)
F (yq)

∣∣∣∣ < (1− δ)m
d′/2

≤ 2−`+2 γ
`−2
0

C`−3
δd̄`−2,
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where the last inequality follows from the definition of B̄0 and (20). For these indices i,
by Lemma 18, there are only δm choices for yi once y1, . . . , yi−1 are chosen. Therefore the
number of bad sets Y of size dmin ≤ d′ ≤ m is at most(

d′

dd′/2e

)
δd
′/2m

d′

d′!
≤ 2d

′
δdmin/2ed

′
(
m

d′

)
.

If the neighbourhood ΓF (x) ∩ V1 of the vertex x ∈ V̄` in V1 is good then, since C` 6⊆ F ,
there are only

( δm
d`−1(x)

)
≤ δd`−1(x)

( m
d`−1(x)

)
choices for the neighbourhood ΓF (x)∩V`−1 of x

within V`−1. On the other hand, if ΓF (x)∩ V1 happens to be bad, then trivially there are
at most

( m
d`−1(x)

)
choices for this neighbourhood. Therefore there are at most(

m

d1(x)

)
δd`−1(x)

(
m

d`−1(x)

)
+ δdmin/223d1(x)

(
m

d1(x)

)(
m

d`−1(x)

)

≤ δdmin/223d1(x)+1

(
m

d1(x)

)(
m

d`−1(x)

)

ways of choosing the regular edges incident to our vertex x ∈ V̄`.
Let us write

∑′
T̄ for the sum over all partitions T̄0 + T̄1 + T̄`−1 = T̄ of T̄ , and sim-

ilarly
∑′
T̄1

and
∑′
T̄`−1

for the sums over all partitions T̄ (irr)
1 + d1 + . . . + dm = T̄1 of T̄1

and T̄
(irr)
`−1 + d′1 + . . . + d′m = T̄`−1 of T̄`−1. Let us also write

∑
V̄`

for the sum over all
possible choices of V̄`. Then, recalling the bound (19), we see that f ′m(ε, B̄, γ0, C,D; T̄ ) is
at most

∑′
T̄

∑′
T̄1

∑′
T̄`−1

∑
V̄`

(
(`− 2)m2

T̄0

)(
m2

T̄
(irr)
1

)(
m2

T̄
(irr)
`−1

)

×δ|V̄`|dmin/2
m∏
j=1

(
23dj+1

(
m

dj

)(
m

d′j

))

≤ δmdmin/423T̄1+2m

(
(`+ 2)m2

T̄

)
≤ αT̄

(
(`+ 2)m2

T̄

)
,

where we apply Vandermonde’s identity and the fact that, trivially, there are at most 2m

choices for V̄` to deduce the first inequality and we use (17), (20), that T̄ ≤ `DB̄m1+1/(`−1),
and the definition of δ to deduce the second inequality. 2

Proof of Lemma 18. Let ε, B̄, γ0, C, D, and T̄ be as in the statement of our lemma. Fix
a graph F ∈ Fm(ε, B̄, γ0, C,D; V, T̄ ) and let us consider Ḟ = F [V1, . . . , V`−1]. Recall (14)
and (15) and put Ui = Vi for all 2 ≤ i ≤ ` − 2. The first step is to apply Lemma 11

15



with t = ` − 1 to get rid of vertices of small degree. We obtain sets Ūi ⊆ Ui (1 ≤ i < `)
with

|Ūi| ≥ (1− 4ε)|Ui| ≥ (1− δ)|Ui| (21)

for all 1 ≤ i < `, and such that, for all 2 ≤ i < ` and all x ∈ Ūi−1, we have

di−1,i(x) = |ΓF (x) ∩ Ūi|

≥
(

1−
(

4γ0 + 1
γ0

)
ε

)
dF,p̄(Ui−1, Ui)p̄|Ui|

≥ (γ0/2)p̄|Ui|. (22)

In the case ` = 3 we are already finished if we let i = 2 in (22). If ` > 3 we use property (iv)
of F to prove the following assertion by induction on i.

Claim 1 For any y ∈ Ū1 and any 2 ≤ i ≤ `− 2, we have∣∣∣Γ̇(i−1)
F (y) ∩ Ūi

∣∣∣ ≥ 2−i+1 γ
i−1
0

Ci−2
d̄i−1.

The claim for i = 2 is just (22). For 2 < i ≤ `− 2, let U ⊆ Γ̇(i−2)
F (y)∩ Ūi−1 be a set of size

d2−i+2γi−2
0 C−i+3d̄i−2e. Assume that W = ΓF (U) ∩ Ūi has less than 2−i+1γi−1

0 C−i+2d̄i−1

elements. Because |U | ≤ d̄`−3, we may apply (12) to yield

eF (U,W ) ≤ C|W | < γ0d̄

2
|U |.

Because d̄ = p̄|Ui| for i ≤ ` − 2 this is a contradiction to (22), and hence the claim is
proven.

Finally, using the fact that p̄|U`−1| ≥ p̄δm = δd̄, the same expansion argument implies
that for any y ∈ Ū1 we have∣∣∣Γ̇(`−2)

F (y) ∩ Ū`−1

∣∣∣ ≥ 2−`+2 γ
`−2
0

C`−3
δd̄`−2. (23)

We have thus shown that any y ∈ Ū1 is such that (16) holds. Since by (21) we have |Ū1| ≥
(1− δ)|U1|, the proof of the lemma is finished. 2

2.4 Proof of Theorem 2

Proof of Theorem 2. Let ` and H be as in the statement of the theorem. We shall start
by defining some constants. Let first k0 and c be the constants from Lemma 12 applied
to the triple (C`, H,K2). Set C = 2`e(H), D = 3e(H),

γ0 = min{1, c2−h−1/e(H)}, (24)
α = min{1, γ0/(`+ 2)}, (25)
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where h = |H| as usual. Apply Lemma 17 to the set of constants `, α, γ0, C and D
to obtain the constants ε, B̄0, and m0 whose existence is guaranteed by that lemma.
Clearly, we may and shall assume that ε ≤ min{1/2, 2c}. Finally, let K0 = K0(ε, k0, D)
and η = η(ε, k0, D) be the constants from Lemma 10 and set

B = B`,H = B = |Aut(H)|K0B̄0. (26)

In the remaining of the proof, we shall show that this choice of B = B`,H will do. Recall
that we consider p = p(n) = Bn−β, where β is as given by (2). In the sequel we shall also
use p0 and (6).

As before, let H̃ = H̃(G) be the spanning subgraph of G with edge set E(H̃) =⋃
1≤i≤T E(Hi), where H1, . . . ,HT are the isolated copies of H in G. Let us now define G =
Gn to be the family of graphs G of order n satisfying properties (a)–(c) below.

(a) H̃(G) is (η,D, p0)-upper-uniform.
(b) If W = (Wi)hi=1 is a vector of pairwise disjoint subsets of vertices of G with |Wi| ≥

n/ log n for all 1 ≤ i ≤ h, then YW = YW(G) ≥ (1/2)|W1| . . . |Wh|pe(H), where YW

is as defined in Section 2.2.3.
(c) For any vector V = (Vi)`i=1 of pairwise disjoint m-subsets of vertices of G, where

n/2K0 ≤ m ≤ n/k0, if a V-graph F (cf. Section 2.3) with E(F ) < E(H̃(G))
is such that all pairs (Vi−1, Vi) with 1 ≤ i ≤ ` are (ε, F, p0)-regular and sat-
isfy dF,p0(Vi−1, Vi) ≥ γ0, then F contains a copy of C`.

The proof of Theorem 2 will be finished if we establish the following two claims.

Claim 2 Almost every Gp belongs to G.

Claim 3 Every member G of G satisfies G→ (C`, H) provided n is large enough.

Proof of Claim 2. Lemma 14 implies that almost every G = Gp satisfies condition (a)
above, whereas Lemma 16 implies that almost every G = Gp satisfies (b). To prove that (c)
is almost surely true for G = Gp, we first want to argue that any F as in the statement
of (c) is an element of Fm(ε, B̄, γ0, C,D; V, T̄ ), where T̄ = e(F ) and B̄ = B̄m > 0 is
such that p0 = B̄m−1+1/(`−1). Note that by the choices of our constants we have B̄ =
p0m

1−1/(`−1) ≥ e(H)Be(H)/(|Aut(H)|K0) ≥ B̄0 (cf. (26)). Conditions (i) and (ii) in the
definition of F are clearly satisfied. Condition (iii) follows from the upper uniformity of H̃
(cf. (a)) and from the assumption on the density of the pairs (Vi−1, Vi). Finally, condi-
tion (iv) in the definition of F follows from Lemma 15. Now if any such F does not contain
a copy of C` then this implies that H̃ contains an element of F ′m(ε, B̄, γ0, C,D; V, T̄ ) for
some choice of m, T̄ , and V. The probability of this event is by Lemmas 13 and 17 at
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most

|F ′m(ε, B̄, γ0, C,D; V, T̄ )|p0
T̄ ≤ αT̄

(
(`+ 2)m2

T̄

)
p0
T̄

≤
(
α

e(`+ 2)m2

γ0`p0m2
p0

)T̄
≤

(
e
`

)T̄
. (27)

Summing (27) over all possible choices of m, T̄ , and V gives us an additional factor of at
most n32`n. Using the fact that T̄ is superlinear in n, we deduce by Markov’s inequality
that (c) holds for almost every Gp. This finishes the proof of Claim 2.

Proof of Claim 3. Let G ∈ G be fixed, and suppose G is given a blue-red edge-colouring
that contains no red H. Our aim is to show that then there is a blue copy of C` in our
graph G. Recall that G contains T isolated copies H1, . . . ,HT of H. Clearly, we may pick
one blue edge ei ∈ E(Hi) for each 1 ≤ i ≤ T . We shall prove that, however we choose
these T blue edges ei, we shall necessarily select the edges of a C` ⊆ G.

We start by letting J be the spanning subgraph of G with edge set E(J) = {ei: 1 ≤ i ≤
T}. From property (a) above, we know that H̃ is (η,D, p0)-upper-uniform, and hence so
is J . We may thus apply Lemma 10 to J and obtain an (ε, k)-equitable (ε, J, p0)-regular
partition Π = (Vi)ki=0 of V (J) with k0 ≤ k ≤ K0. Write m for the cardinality of the Vi
(1 ≤ i ≤ k).

We now consider a complete graph Kk on the vertex set [k], and consider the 3-edge-
colouring defined as follows: colour the edge ij with colour 3 if the pair (Vi, Vj) is not
(ε, J, p0)-regular; otherwise, colour the edge ij colour 1 if γij = dJ,p0(Vi, Vj) ≥ γ0, and
colour 2 if γij < γ0. We then apply Lemma 12 for the triple (C`, H,K2) to the 3-edge-
coloured complete graph Kk. For later convenience, for all i 6= j (i, j ∈ [k]), let us
colour the edges of G that join the classes Vi and Vj with the colour used to colour the
edge ij ∈ E(Kk). Note that we now have two colours associated to each edge of G.

Suppose first that there is a monochromatic copy of C` of colour 1 in our Kk. Let V =
(V1, . . . , V`) be the ` vertex classes corresponding to this copy of C` and let F be the
V-graph on

⋃`
i=1 Vi containing the J-edges between consecutive classes. By property (c)

we have that F contains a C`, and we are home.
We now observe that ourKk must contain fewer than ε

(k
2

)
≤ 2c

(k
2

)
< ck2 edges coloured

with colour 3, since the partition Π is (ε, J, p0)-regular. Therefore, we know by Lemma 12
that we may find at least ckh monochromatic copies of H of colour 2 in our Kk. We shall
see in the sequel that this leads us to a contradiction, and the proof of Claim 3 will be
finished.

Observe first that m ≥ n/2k ≥ n/ log n if n is large enough. In what follows, we may
and shall assume that m ≥ n/ log n. Therefore we may deduce from property (b) above
that each H-subgraph of Kk of colour 2 determines at least mhpe(H)/2 isolated copies
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of H in G. Clearly, distinct copies of H in Kk determine distinct isolated copies of H
in G. We may thus conclude that G contains at least

1
2
ckhmhpe(H) ≥ 1

2
ckh

(
n

2k

)h
pe(H) ≥ c2−h−1Be(H)n1+1/(`−1)

isolated copies of H, all edges of which are coloured with colour 2. Hence the number T ′

of edges of J that are coloured 2 satisfies

T ′ ≥ c2−h−1Be(H)n1+1/(`−1). (28)

However, we also have an upper bound for T ′, coming from the fact that this quantity
counts only edges of G that are coloured 2. Let us write

∑2
ij for the sum over all edges ij

of Kk that are coloured 2. Then, by the definition of the colouring of Kk, by (6), and
using that m ≤ n/k, we may conclude that

T ′ ≤
∑2

ij
dJ,p0(Vi, Vj)p0m

2 <

(
k

2

)
γ0p0m

2 ≤ γ0e(H)Be(H)n1+1/(`−1),

which, together with the definition of γ0 given in (24), contradicts (28).
This finishes the proof of Claim 3, and hence the proof of Theorem 2 is complete. 2

2.5 Sketch of the proof of Theorem 4

In this section we describe the alterations in the proof of Theorem 2 that yield a proof of
Theorem 4. We start by defining a new class G′ of graphs to replace G from the proof of
Theorem 2. In what follows, (a), (b), and (c) refer to conditions (a), (b), and (c) in the
definition of the class G.

Let us write (b′) for the statement we obtain from (b) by replacing the constant 1/2
in (b) by 1/3. Moreover, to stress the length of the cycle that is involved in statement (c),
let us write (c`) for that condition.

The n-vertex graphs that we put in the new class G′ are the ones that satisfy (a), (b′)
and (c`2) ∧ · · · ∧ (c`r). We now consider the following two claims.

Claim 4 There is a constant κ > 0 such that almost every Gp has the property that,
however we delete ≤ κn1+1/(`2−1)/(log n)|H| edges from Gp, we obtain a subgraph G′ of Gp
that belongs to G′.

Claim 5 Every member G′ of G′ satisfies G′ → (H,C`2 , . . . , C`r) provided n is large
enough.
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Proof of Claim 4. (Sketch) Condition (a) holds for any subgraph of Gp almost surely.
Condition (b′) may be made to hold almost surely by choosing κ > 0 sufficiently small.
We now consider condition (c`2) ∧ · · · ∧ (c`r). Let q ≥ `2 be be a fixed integer. We argue
that (cq) holds for every subgraph G′ of Gp as in the statement of our claim almost surely.
Let p′ = p′(n) = Bqn

−βq , where Bq = Bq,H is as given in (26) and βq = β(Cq, H). We
already know that (cq) holds for almost every Gp′ . Notice that, since we are now talking
about a random graph of different edge-probability, the value of p0 in (cq) is different from
the value of p0 in (c`).

Suppose for a contradiction that (cq) does not hold almost surely for every subgraph G′

of Gp as specified. We may generate the random graph Gp′ by first generating Gp, and
then randomly deleting edges from Gp with probability 1− p′/p. It is then easy to check
that our hypothesis on (cq) failing for Gp implies that (cq) does not hold almost surely
for Gp′ , which is a contradiction. The interested reader may find the missing details in
the proof of a closely related statement proved in [9] (see Lemma 19 in [9]). 2

Proof of Claim 5. (Sketch) Following the proof of Claim 3, we define graphs Ji (2 ≤ i ≤ r)
in a similar way: each isolated copy of H in Gp contains an edge of colour i for some 2 ≤
i ≤ r. Use these edges to define the graphs Ji. Now apply Lemma 10 simultaneously to
all the Ji to obtain a partition (Vj)kj=0 of V (Gp) that is ε-regular with respect to all the Ji
(2 ≤ i ≤ r).

We now encode the regularity/non-regularity and density of the pairs (Va, Vb) with
respect to Ji in an edge-coloured complete graph Kk. If a pair (Va, Vb) is not ε-regular
with respect to some Ji, we colour the edge ab of Kk colour r + 1 right away. Otherwise,
if (Va, Vb) is a ‘dense’ pair with respect to Ji, for some 2 ≤ i ≤ r, we colour ab ∈ E(Kk)
colour i. The remaining edges we colour with colour 1. We then apply Lemma 12 to the
(r + 1)-tuple of graphs (H,C`2 , . . . , C`r ,K2).

As in the proof of Theorem 2, if we find in our edge-coloured Kk a monochromatic
cycle C`i of colour i, for some 2 ≤ i ≤ r, then we are done by invoking statement (c`i).
The possibility that we shall find many edges of Kk coloured with colour r+ 1 is ruled by
the ε-regularity of our partition (Vj)kj=0 (here we need that ε is small enough). Finally,
the possibility that we shall find many monochromatic copies of H of colour 1 may be
ruled out as in the proof of Claim 3 (here we need that γ0 should be small enough). We
omit the details. 2

Theorem 4 is immediate from Claims 4 and 5.
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3 Proof of the 0-statement

Proof of Theorem 3. Since the case ` = k is contained in Theorem 1, we assume in the
sequel that ` > k. Similarly to [10] and [13], given a graph G, we define a hypergraph G =
G(G) whose hyperedges correspond to the `- and k-cycles of G. Let

E1 = E1(G) = {E(C):C is an `-cycle in G},
E2 = E2(G) = {E(C):C is a k-cycle in G}.

We put G = G(G) = E1 ∪ E2. We refer to the hyperedges in Ei as hyperedges of type i
(i ∈ {1, 2}).

If H is a subhypergraph of G = G(G), that is, if H ⊆ G, then we define the underlying
graph G(H) of H to be the subgraph of G spanned by

⋃
H. In other words, G(H) =

G[
⋃
H]. Moreover, if E ∈ G, then we write V (E) for V (G(E)), the set of vertices of G

incident to the edges in E. We now notice that G→ (C`, Ck) simply means that

(*) for every colouring of the hypervertices of G with two colours, blue and red, say,
there is either a blue hyperedge of type 1 or a red hyperedge of type 2.

A subhypergraph G0 ⊆ G of G is said to be critical with respect to property (*) if G0

fulfils (*) but if we remove any hyperedge of any type from G0 then the resulting hypergraph
fails to have (*). The following very simple but useful claim is similar to Claim 1 in the
proof of Theorem 2(a) in [10].

Claim 6 If G0 is critical with respect to (*) then for any hyperedge E of type i (i ∈ {1, 2})
and any hypervertex e ∈ E there exists a hyperedge F of type 3− i such that E ∩F = {e}.

We now need to define some constants. Set

α = k − 2− β(k − 1) =
k − `
k(`− 1)

. (29)

Observe that
−1 < α < 0. (30)

Furthermore, let

δ = min
{
−α, 1

`− 1
, 1− β

}
, (31)

and notice that then 0 < δ < 1 +α. Indeed, the first inequality follows from the definition
of β and (30), and the second follows from 1− β < 1 + α.

Now assume that G is a graph and that G0 ⊆ G(G) is critical with respect to (*). As
in [10], we will use Claim 6 in order to look for a subhypergraph H of G0 whose underlying
graph G(H) is dense.
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We shall give a procedure, Procedure Hypertree, that will build a subhypergraph
of G0 that may contain some hypercycles, but will generally have a ‘hypertree structure’.
Any hypergraph that may be produced by this procedure will be said to be an alter-
nating hypertree. The key observation concerning hypertrees is that the number of those
alternating hypertrees whose underlying graph is not dense is small.

Let us now describe Procedure Hypertree.

Procedure Hypertree
Input: a hypergraph G0 = E1 ∪ E2 critical with respect to (*)
Output: a triple (m,Hm, Im) where Hm = {E0, . . . , Em} ⊆ G0

and Im ⊆ [m]× {1, 2}
〈main body〉

Thus, the input to Procedure Hypertree is a subhypergraph G0 of G(G), for some
graph G, with G0 critical with respect to (*). Its output is a triple (m,Hm, Im), where m
is an integer, Hm = {E0, . . . , Em} is a subhypergraph of G0, and Im ⊆ [m] × {1, 2} is a
certain set indicating the degeneracies present in Hm. Loosely speaking, the set Im says
how far Hm is from being a ‘genuine’ hypertree.

Below we shall show that (†) either the set Im is large and hence the underlying graph
of Hm is dense, or else Im is small and the number of alternating hypertrees with such
a small set of degeneracies is small. As an illustration, we mention that if Hm has no
degeneracies at all, thenHm is uniquely determined up to isomorphism, as is the underlying
graph G(Hm) ofHm, regardless of the input hypergraph G0. Assertion (†) above will imply
that Gp, with p = p(n) = bn−β and sufficiently small b, almost surely does not contain a
copy of the underlying graph of any alternating hypertree. This assertion will establish
Theorem 3.

The main body of Procedure Hypertree is given in Figure 1.

〈main body〉 ≡ begin i := 0; pick E0 ∈ E2 arbitrarily ; H0 := {E0};
(1) rank and direct the edges in E0;

I0 := ∅; A0 := ∅;
repeat 〈extend current hypertree〉
until |G(Hi)| − βe(G(Hi)) ≤ −1/500 or i ≥ log n

end

Figure 1: Main body of Procedure Hypertree

Thus, Procedure Hypertree starts by setting up a hypergraph H0 = {E0} containing
a single hyperedge that corresponds to a k-cycle of G, and then goes into an iterative
process. Before we go on to detail this iterative procedure, we need to explain what is
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meant in line (1) in 〈main body〉. The hypervertices of the hypertree will be ranked with
ranks starting from 1. Every time we add a new hypervertex to our hypertree, it gets a
rank that is by one larger than that of its predecessor. As the hyperedges correspond to
cycles in G, we can first direct the edges of a new hyperedge in a cyclic order and then
rank the edges following the same order. For simplicity, we shall not make this directing
and ranking procedure explict.

We now turn to the iterative procedure. This process will create sequences H0 ⊆ H1 ⊆
· · · and I0 ⊆ I1 ⊆ · · · that will eventually produce the desired output (m,Hm, Im). For
all 0 ≤ i ≤ m, we shall have Hi = {E0, . . . , Ei} and Ii ⊆ [i]×{1, 2}. In the ith iteration we
add the hyperedge Ei to Hi−1 and we may add one of the pairs (i, 1) or (i, 2) to Ii−1. The
latter addition to the set of degeneracies happens if Ei intersects Hi−1 ‘substantially’. The
procedure will also need to construct a sequence A0, A1, . . . of sets of edges, with Ai ⊆

⋃
Hi

for all 0 ≤ i ≤ m. The edges in Ai are said to be the assets of Hi.
The general iterative step is as follows.

〈extend current hypertree〉 ≡
if there is F ∈ E2 such that F 6⊆

⋃
Hi and |V (F ) ∩ V (G(Hi))| ≥ 2

then 〈add F to Hi〉
else 〈look for and add a type 1 hyperedge to Hi〉

When we try to extend our current hypertree Hi, if it so happens that there is a
type 2 hyperedge F ‘for free’ (that is, as specified in the if condition of 〈extend current
hypertree〉), then we take it and add it to Hi. The idea here is that this addition will
increase the density of the underlying graph of the current hypertree.

〈add F to Hi〉 ≡ i := i+ 1; Ei := F ; Hi := Hi−1 ∪ {Ei};
rank and direct the edges in Ei \

⋃
Hi−1;

Ii := Ii−1 ∪ {(i, 1)}; Ai := ∅

If such a ‘free’ type 2 hyperedge F does not exist, then we have to do some more work,
which we describe in two stages:

〈look for and add a type 1 hyperedge to Hi〉 ≡ 〈stage I 〉; 〈stage II 〉

In 〈stage I 〉 we look for and add a type 1 hyperedge to our current hypertree Hi.
This will, unfortunately, decrease the density of the current underlying graph. Therefore,
in 〈stage II 〉, we try to add as many type 2 hyperedges to our hypertree as possible;
these hyperedges all ‘hang’ on hypervertices that were added to the hypertree by the
addition of the type 1 hyperedge. These hypervertices are the ‘assets’ that we acquired
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with the addition of the type 1 hyperedge. One may think of the process of adding type 2
hyperedges in 〈stage II 〉 as a process of turning these assets into ‘cash’ (i.e., density). See
Figures 2 and 3.

〈stage I 〉 ≡ let f be the edge of smallest rank in
⋃
Hi

for which there is a hyperedge E ∈ E1 with E 6⊆
⋃
Hi;

{NB. The existence of the edge f above is proved in Claim 10.}
i := i+ 1;
pick Ei ∈ E1 with Ei 6⊆

⋃
Hi and f ∈ Ei;

Hi := Hi−1 ∪ {Ei};
rank the edges in Ei \

⋃
Hi−1 following the cyclic order of Ei = C`

given by the orientation of f , starting from the successor of f ;
suppose these edges are, in increasing order of rank, g1, . . . , ga;

if |V (Ei) ∩ V (G(Hi−1))| = 2 then Ii := Ii−1 else Ii := Ii−1 ∪ {(i, 2)};
(1) Ai := {g1, . . . , ga}; {NB. |Ai−1| = 0 and a = |Ai| = `− 1 if (i, 2) /∈ Ii}

Figure 2: Adding a type 1 hyperedge

〈stage II 〉 ≡ F := Ei; {NB. This is the `-cycle we have just added}
for j := 1 to a do

if gj ∈ Ai then begin
i := i+ 1; pick Ei ∈ E2 with Ei ∩ F = {gj};
Hi := Hi−1 ∪ {Ei};
rank and direct the edges in Ei \

⋃
Hi−1 following

the cyclic order of Ei = Ck given by the orientation of gj,
starting from the successor of gj ;

if |V (Ei) ∩ V (G(Hi−1))| = 2
then begin Ii := Ii−1; Ai := Ai−1 \ {gj} end
else begin Ii := Ii−1 ∪ {(i, 2)}; 〈compute Ai〉 end

end

Figure 3: Adding as many type 2 hyperedges as possible

In 〈stage II 〉, the computation of Ai requires a little care. Roughly speaking, if a
k-cycle Ei we add in 〈stage II 〉 contains a vertex w added to the underlying graph of the
current hypertree by the addition of the `-cycle in 〈stage I 〉, then we have to consider an
asset g ∈ Ai−1 incident to w no longer an asset. In this case we say that g was spoiled
by Ei. See Figure 4.

The integer m = |Hm| − 1 ≤ log n returned by Procedure Hypertree is the length
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〈compute Ai〉 ≡ A′i := Ai−1 \ {gj};
for p := j + 1 to a do

if the head wp of gp belongs to V (Ei) then A′i := A′i \ {gp};
{NB. In this case we say that Ei spoiled gp}

Ai := A′i

Figure 4: Computing Ai

of Hm. Our alternating hypertree Hm is said to be degenerate at level i if (i, 1) or (i, 2) ∈
Im.

Let f(i) = |G(Hi)| − βe(G(Hi)) = |G(Hi)| − β|
⋃
Hi|. Then, for p = p(n) = n−β, the

expected number of copies of G(Hi) in Gp is O(nf(i)). In the series of claims given below,
we investigate the effect of the degeneracies on the behaviour of the function f .

For brevity, let ai = |Ai| (0 ≤ i ≤ m). In the sequel, it will be important that Hi
may have a non-zero number of assets only from the point in which we have just added a
type 1 hyperedge up to the point in which we have cashed all available assets in the for
loop in 〈stage II 〉. In other words, ai > 0 can only occur between line (1) in 〈stage I 〉 and
the end of 〈stage II 〉. In particular, a0 = am = 0.

Claim 7 For all 1 ≤ i ≤ m, if (i, 1), (i, 2) 6∈ Ii then f(i) + αai = f(i− 1) + αai−1.

Proof. Consider first the case in which Ei is of type 1. Then ai−1 = 0 and moreover ai =
` − 1, since (i, 2) /∈ Ii (cf. the remark in line (1) of 〈stage I 〉). Therefore Ei contributes
exactly `− 2 new vertices and exaclty `− 1 new edges to Hi−1. Hence,

f(i) + αai = f(i− 1) + `− 2− β(`− 1) + (k − 2− β(k − 1))(`− 1)
= f(i− 1) + (k − 1)(`− 1)− 1− βk(`− 1)
= f(i− 1) + αai−1.

If Ei is of type 2 then ai = ai−1 − 1 and

f(i) + αai = f(i− 1) + (k − 2)− β(k − 1) + α(ai−1 − 1)
= f(i− 1) + αai−1,

as required.

Claim 8 For all 1 ≤ i ≤ m, if (i, 1) ∈ Ii then f(i) + αai ≤ f(i− 1) + αai−1 − δ.
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Proof. Let H ⊆ Ck be the graph with vertex set V (Ei) ∩ V (G(Hi−1)) and edge set Ei ∩⋃
Hi−1, that is, H is the intersection of (V (Ei), Ei) and G(Hi−1). Clearly, H is a disjoint

union of paths. Moreover, G(Hi) has k − |H| new vertices and k − e(H) new edges.
Therefore, by |H| ≥ e(H) + 1, |H| ≥ 2, and β ≤ 1, and by the definitions of α and δ
(cf. (29) and (31)), we have

f(i) = f(i− 1) + k − |H| − β(k − e(H))
≤ f(i− 1) + k − 2− β(k − 1)
≤ f(i− 1)− δ,

which implies the claim, since ai−1 = ai = 0.

Claim 9 For all 1 ≤ i ≤ m, if (i, 2) ∈ Ii then f(i) + αai ≤ f(i− 1) + αai−1 − δ.

Proof. Consider first the case in which Ei is of type 1. Let H ⊆ C` be the intersection of
the two graphs (V (Ei), Ei) and G(Hi−1). Then ai = `− e(H) and

f(i) + αai = f(i− 1) + `− |H| − β(`− e(H)) + α(`− e(H))
= f(i− 1) + (`− e(H))(k − 1− kβ) + e(H)− |H|

= f(i− 1) +
`− e(H)
`− 1

+ e(H)− |H|. (32)

If e(H) ≥ 2 then we conclude from |H| ≥ e(H) + 1 that (`− e(H))/(`− 1) + e(H)− |H| ≤
−1/(` − 1) ≤ −δ (cf. (31)). If e(H) = 1 then |H| ≥ 3 and thus (` − e(H))/(` − 1) +
e(H) − |H| ≤ −δ. Because of ai−1 = 0 we have that (32) is in both cases at most
f(i− 1) + αai−1 − δ.

Let now Ei be of type 2 and letH ⊆ Ck be the intersection of the two graphs (V (Ei), Ei)
and G(Hi−1). We first deduce from the fact that gj is an asset before we add Ei, that is,
gj ∈ Ai−1, that H 6= Ck. Indeed, let Ei′ be the hyperedge of type 1 that Ei is attached
to; i.e., Ei ∩ Ei′ = {gj}. Because of the if condition in 〈extend current hypertree〉, the
hyperedge Ei is disjoint from

⋃
Hi′−1. Let w be the head of gj . Then if Ei ⊆

⋃
Hi−1, the

vertex w must be incident to some edge in
⋃
Hi−1 \

⋃
Hi′ . This means that gj was spoiled

before, i.e., gj /∈ Ai−1, which is a contradiction. Hence H 6= Ck.
Let b be such that ai = ai−1 − b. Observe that b ≥ 1. If Ei spoils an edge gh then

the head wh of gh is isolated in H. Indeed, Ei contains no edge from
⋃
Hi′−1, no edge

from Ei′ incident to wh, and, since gh has not been spoiled before, wh is incident to no
edge in

⋃
Hi−1 \

⋃
Hi′ . Therefore, there does not exist any edge in Ei ∩

⋃
Hi−1 incident

to wh. Hence wh is indeed isolated in H. Setting J := H \ {wf : gf is spoiled byEi} we get
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that |H| = |J |+ b− 1. Moreover,

f(i) + αai

= f(i− 1) + k − |J | − (b− 1)− β(k − e(J)) + α(ai−1 − b)
= f(i− 1) + αai−1 − (b− 1)(α+ 1) + k − |J | − β(k − e(J))− α
≤ f(i− 1) + αai−1 − (b− 1)(α+ 1) + (e(J)− |J |+ 1) + (e(J)− 1)(β − 1).

The three last terms are non-positive. If b ≥ 2 then the first term is smaller than −δ
because of δ < 1 + α. If b = 1 then J is a proper subgraph of Ei = Ck with J 6= K2 and
therefore either e(J) > 1 or |J | > e(J) + 1 = 2 implying that one of the two last terms is
smaller or equal than −δ, and the claim is proven.

Claim 10 The edge f as specified in 〈stage I 〉 always exists.

Proof. Assume that Procedure Hypertree gets stuck at the beginning of 〈stage I 〉 at
iteration i because the edge f as specified does not exist. Our aim is to reach a contra-
diction.

Let Gi = G(Hi) be the underlying graph of Hi, so that Gi is spanned by its edge
set E(Gi) =

⋃
Hi. We start with the following assertion.

(**) For both q ∈ {1, 2}, if e ∈ E ⊆ E(Gi) and E ∈ Eq, then there exists a hyperedge F ∈
E3−q such that e ∈ F ⊆ E(Gi) and moreover E ∩ F = {e}.

Let us prove assertion (**). Suppose first that q = 1. Then Claim 6 gives a hyperedge F ∈
E2 with E ∩ F = {e}. The if condition in 〈extend current hypertree〉 implies that F ⊆⋃
Hi = E(Gi), as required. If q = 2, then Claim 6 gives F ∈ E1 with E ∩ F = {e}. Since

we did not find an edge f as specified on the first line of 〈stage I 〉, we must have F ⊆⋃
Hi = E(Gi). Assertion (**) is proved.

An immediate corollary to (**) is the following assertion.

(‡) Every edge e of Gi is contained in an `-cycle C1 and in a k-cycle C2 with E(Cq) ∈ Eq
(q ∈ {1, 2}) and E(C1) ∩ E(C2) = {e}.

In particular, we have the following observation.
(i) The minimal degree of Gi is at least 3.

Let us now consider the simpler case in which k ≥ 4. Because of ` > k, it is easily seen
that β(C`, Ck) ≥ β(C5, C4) = 11/16. On the other hand, by (i), we have e(Gi) ≥ (3/2)|Gi|
and therefore in this case we have

f(i) = |Gi| − βe(Gi) ≤ |Gi|
(

1− 3
2
× 11

16

)
≤ − 1

500
.
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We have thus reached a contradiction, since this implies that Procedure Hypertree
should have stopped with m = i.

We now turn to the case k = 3. We shall have to argue more carefully here. We
introduce some notation in order to avoid repetition. Suppose x1, x2, and x3 are three
vertices of Gi. We shall write T (x1, x2, x3) when these vertices induce a triangle in Gi
and moreover {x1x2, x2x3, x1x3} ∈ E2. Similarly, if x1, . . . , x` define, in this order, an
`-cycle C` of Gi and furthermore E(C`) ∈ E1, then we shall write C(x1, . . . , x`).

Let A(x1x2, T (x1, x2, x3)) stand for the application of (**) to the edge x1x2 and
the type 2 hyperedge corresponding to {x1, x2, x3}. Thus A(x1x2, T (x1, x2, x3)) gives
us the existence of vertices y3, . . . , y` ∈ V (Gi) \ {x1, x2} with y3 6= x3 6= y` and such
that C(x1, x2, y3, . . . , y`). Similarly, let A(x1x2, C(x1, . . . , x`)) stand for the correspond-
ing statement guaranteeing the existence of a vertex y3 ∈ V (Gi) \ {x1, x2, x3, x`} with
T (x1, x2, y3). Now we prove in a couple of steps that Gi has large density.
(ii) A vertex of degree 3 in Gi is only adjacent to vertices of degree at least 4.

To prove the assertion above, assume that there are two vertices of degree 3, say, x and
y, that are adjacent in Gi. By (‡), we have a vertex z such that T (x, y, z). We now argue
as follows.

(a) A(xy, T (x, y, z)) gives 2 distinct vertices v and w /∈ {x, y, z} with C(v, x, y, w, . . .).
(b) A(yz, T (x, y, z)) gives C(w, y, z, . . .), since d(y) = 3.
(c) A(wy,C(w, y, z, . . .)) gives T (w, y, x), since d(x) = d(y) = 3.

However, T (w, y, x) implies that v = w, which is a contradiction. Assertion (ii) is proved.

(iii) Every vertex of Gi has a neighbour of degree at least 4.

Indeed, let x be a vertex of Gi, and let y be a neighbour of x. Then, by (‡), there exists
a vertex z with T (x, y, z). By (ii), either y or z has degree at least 4, and (iii) is proven.

Consider first the case ` ≥ 5. Denote by a and b the number of vertices of de-
gree exactly 3 and at least 4 in Gi, respectively. Assertions (ii) and (iii) imply that∑
d(v)≥4 d(v) ≥ 3a+ b. Therefore

2e(Gi)
|Gi|

≥ max
{

3a+ 4b
a+ b

,
6a+ b

a+ b

}
≥ min

x≥0
max{4− x, 1 + 5x} =

7
2
.

Using β(C`, C3) ≥ β(C5, C3) = 7/12 we have that

f(i) = |Gi| − βe(Gi) ≤ |Gi|
(

1− 7
12
× 7

4

)
≤ − 1

500
.

In the sequel we assume that ` = 4.
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(iv) Every vertex of degree 3 in Gi has a neighbour of degree at least 5.

Assume to the contrary that there is a vertex v ∈ V (Gi) of degree 3 with neighbours x,
y, and z all having degree 4. Recalling (‡), we may assume without loss of generality
that T (v, x, y) and T (v, y, z). Now we argue as follows.

(a) Since d(v) = 3, we have that A(vy, T (v, y, z)) gives a vertex w ∈ V (Gi) \ {v, x, y, z}
such that C(w, x, v, y).

(b) A(vy, T (v, x, y)) similarly gives a vertex w′ ∈ V (Gi)\{v, x, y, z} such that C(w′, z, v, y).
However, d(y) = 4, and hence w = w′.

(c) Since d(v) = 3, we have that A(vz, C(w, y, v, z)) gives that T (v, z, x).
(d) A(yz, T (v, y, z)) gives either C(y, z, x, w) or else C(y, z, w, x).

We reach a contradiction analysing the two possibilities in (d) separately. If C(y, z, x, w),
considerA(xw,C(y, z, x, w)) to get T (x,w, v). But then vw ∈ E(Gi), contradicting d(v)=3.
On the other hand, if C(y, z, w, x), consider A(xw,C(x, y, z, w)) to deduce T (x,w, v) again.
Therefore assertion (iv) is proved.

We now estimate the density of Gi from below. Let a and b denote the number of
vertices of degree 3 and 4 in Gi, respectively, and let c be the number of vertices of degree
at least 5. By (ii) and (iii) we have that

∑
d(v)≥4 d(v) ≥ 3a + b + c. Assertions (iii) and

(iv) imply that
∑
d(v)≥5 d(v) ≥ a+ c. Therefore we have

2e(Gi)
|Gi|

≥ max
{

3a+ 4b+ 5c
a+ b+ c

,
6a+ b+ c

a+ b+ c
,
4a+ 4b+ c

a+ b+ c

}
.

Setting x = a/(a+ b+ c) and y = c/(a+ b+ c), this implies

2e(Gi)
|Gi|

≥ min
x,y≥0

max{4− x+ y, 1 + 5x, 4− 3y} =
83
23
,

as one may easily check. Furthermore β(C4, C3) = 5/9. Thus

f(i) = |Gi| − βe(Gi) ≤ |Gi|
(

1− 83
46
× 5

9

)
≤ − 1

500
,

and Claim 10 is proven.

Claim 11 Let (m,Hm, Im) be the output of Procedure Hypertree. Then the following
assertions hold:

(a) f(m) ≤ f(0) = 1 + 1/(`− 1) ≤ 3/2, m ≤ log n+ `, and

|Im| ≤ M := `+
⌈
f(0) + 1/500

δ

⌉
− 1. (33)
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(b) Either (i) m ≥ log n or else (ii) f(m) ≤ −1/500.

Proof. (a) The inequality for f(m) follows easily from Claims 7, 8, and 9, and the fact
that a0 = am = 0. Suppose now that m ≥ log n. Then, letting i be the largest integer
strictly smaller than log n, we see that m ≤ i + ` < log n + `, as required. To see (33),
suppose for a contradiction that |Im| ≥M + 1. This time let i be the maximal integer not
greater than m for which ai = 0. Then m ≤ i+ `, and hence |Ii| = |Im ∩ ([i]× {1, 2})| ≥
M+1−` ≥ d(f(0)+1/500)/δe. Observing that a0 = am = 0, we have, applying Claims 7,
8, and 9, that

f(i) ≤ f(0)− δ
⌈
f(0) + 1/500

δ

⌉
≤ − 1

500
.

However, this shows that Procedure Hypertree should have stopped after the ith itera-
tion (see Figure 1), which is a contradiction.

Assertion (b) follows trivially from the until condition in 〈main body〉. This finishes
the proof of Claim 11.

The heart of the proof of Theorem 3 is Claim 13 below. Loosely speaking, the idea
is as follows. If Gp → (C`, Ck), then G(Gp) contains a subhypergraph G0 critical with
respect to (*). We may then feed this hypergraph G0 into Procedure Hypertree, and
obtain a hypertree Hm ⊆ G0 satisfying the conditions given in Claim 11. Using these
conditions, we show in Claim 13 that a.e. Gp does not contain the underlying graph G(Hm)
of Hm if p = p(n) = bn−β and b is small enough. However, this is a contradiction, since
clearly G(Hm) ⊆ Gp. We shall have thus proved Theorem 3.

To detail the argument sketched above, we need to introduce some definitions. Fix a
graph G on n vertices such that G→ (C`, Ck). Consider all possible choices for G0 ⊆ G(G),
the (*)-critical subhypergraph of G(G). Recall that Procedure Hypertree is a non-
deterministic procedure, and, for each G0 as above, consider all sequences H0 ⊆ H1 ⊆ · · ·
that may be generated by Procedure Hypertree. Now, for each i ≥ 0, let F(i) be the
set of all hypergraphs Hi that may be obtained in the process described above, letting the
graph G vary over all graphs G′ with vertex set [n] and satisfying G′ → (C`, Ck).

For each i ≥ 0, let G(i) be the family of all graphs, up to isomorphism, that are
underlying graphs of the hypergraphs Hi in F(i). Now recall that each Hi ∈ F(i) has an
associated set of degeneracies Ii = Ii(Hi) ⊆ [i] × {1, 2}. For all 0 ≤ j ≤ i, let G(i, j) be
the collection of all graphs G ∈ G(i) that are underlying graphs of hypergraphs Hi ∈ F(i)
with j degeneracies, that is, with |Ii(Hi)| = j. Finally, let G≤(m, d) =

⋃
G(i, j), where

the union is taken over all 0 ≤ i ≤ m and 0 ≤ j ≤ d.
The crucial lemma in the proof of Claim 13 is as follows.

Claim 12 (i) For all 0 ≤ j ≤ i, we have |G(i, j)| ≤ ij(i`)j`.

(ii) For all m ≥ 1 and 0 ≤ d ≤ m, we have |G≤(m, d)| ≤ (m+ 1)md+1(m`)`(d+1).
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Proof. (i) For a hypergraphHi in F(i), let Ji(Hi) ⊆ [i] be the set of integers j for whichHi
is degenerate at level j. In other words, j ∈ Ji(Hi) if and only if one of (j, 1), (j, 2) belongs
to Ii(Hi). For a set J ⊆ [i], let G(i, J) be the set of all graphs G ∈ G(i, |J |) that are
underlying graphs of Hi ∈ F(i) with Ji(Hi) = J . For simplicity, put g(i, j) = |G(i, j)|
and g(i, J) = |G(i, J)|.

Let us first fix J ⊆ [i] and estimate g(i, J). We claim that

g(i, J) ≤
{
g(i− 1, J) if i /∈ J
g(i− 1, J \ {i})(i`)` if i ∈ J ,

(34)

where, as usual, (a)b = a(a − 1) · · · (a − b + 1). Let us first suppose that i /∈ J . Let G ∈
G(i, J), and suppose that G = G(Hi) with Ji(Hi) = J . Since i /∈ J , the ranks of the
elements of the ith hyperedge Ei of Hi are uniquely determined once Hi−1 = Hi \ {Ei}
is given. At this point it is crucial that in Procedure Hypertree, when adding a non-
degenerate hyperedge to our current hypertree, we choose the hypervertex with lowest
rank to ‘hang’ our new hyperedge on. A moment’s thought now shows that we have thus
implicitly defined an injection G(i, J) ↪→ G(i−1, J), since here we are dealing with graphs
up to isomorphism.

Suppose now that i ∈ J . Let G, Hi, and Ei be as before. Then the number of ways we
can choose the cycle C of G that corresponds to the hyperedge Ei can be bounded very
generously by (i`)`. Indeed, the underlying graph G(Hi−1) of Hi−1 = Hi−1 \ {Ei} has at
most i` vertices, and to define C it suffices to select its vertices from V (G(Hi−1)). This
completes the proof of (34).

By induction, we may deduce from (34) that g(i, J) ≤ {(i`)`}|J |, since g(i, ∅) ≤ 1 for
any i ≥ 0. Therefore

g(i, j) = |G(i, j)| =
∣∣∣ ⋃
J⊆[i]

G(i, J)
∣∣∣ ≤ (i

j

)
{(i`)`}j ≤ ij(i`)j`,

completing the proof of (i). Assertion (ii) follows easily from (i), since

|G≤(m, d)| ≤
m∑
i=0

d∑
j=0

g(i, j) ≤
m∑
i=0

d∑
j=0

ij(i`)j` ≤
m∑
i=0

{i(i`)`}d+1 ≤ (m+ 1)md+1(m`)`(d+1),

as required.

In the sequel, we apply Claim 12(ii) for m = O(log n) and d = O(1). Our claim tells
us that, in this case, G≤(m, d) has polylogarithmic size only.

Before stating our last claim, we need to introduce a piece of notation. Below, we shall
write G̃≤(m, d) for the family of graphs G ∈ G≤(m, d) that are isomorphic to underlying
graphs G(Hm) of outputs Hm of Procedure Hypertree.

31



Claim 13 Put p = p(n) = e−2n−β, m′ = blog n + `c, and let M be as in (33). Then the
expected number of subgraphs of Gp that are isomorphic to members of G̃≤(m′,M) is o(1).

Proof. An element G of G̃≤(m′,M) corresponds to an output Hm of Procedure Hy-
pertree, and hence the assertions in Claim 11 hold for Hm. In particular, we may
write G̃≤(m′,M) = G̃(i)

≤ (m′,M) ∪ G̃(ii)
≤ (m′,M), where the elements G in G̃(i)

≤ (m′,M)

correspond to Hm satisfying Claim 11(b)(i), and similarly to G̃(ii)
≤ (m′,M).

We now claim that the expected number of subgraphs of Gp that are isomorphic to
members of G̃(i)

≤ (m′,M) is o(1). Fix G ∈ G̃(i)
≤ (m′,M). Writing #{G ⊆ Gp} for the

number of subgraphs of Gp isomorphic to G, we have

E(#{G ⊆ Gp}) ≤
(

1
e2

)e(G)

n|G|−βe(G) ≤
(

1
e2

)logn

nf(0) ≤ n−1/2.

Our claim then follows as |G̃(i)
≤ (m′,M)| is, by Claim 12, only polylogarithmic in n.

Similarly, we claim that the expected number of subgraphs of Gp that are isomorphic
to members of G̃(ii)

≤ (m′,M) is o(1). Indeed, for any G ∈ G̃(ii)
≤ (m′,M), we have

E(#{G ⊆ Gp}) ≤ n|G|−βe(G) ≤ n−1/500,

but again |G̃(ii)
≤ (m′,M)| is only polylogarithmic in n. This finishes the proof of Claim 13.

To finish the proof of Theorem 3, it suffices to recall that, by Claim 11, the event Gp →
(C`, Ck) implies that Gp contains a subgraph isomorphic to an element of G̃≤(m′,M),
where m′ and M are as in Claim 13. 2

4 Deterministic consequences

Proof of Corollary 7. Let β = β(C`2 , H). Let B and κ be the constants from Theorem 4
for `2, . . . , `r and H. Let

ε = min{1 + 1/(`2 − 1)− |F |+ β(C`2 , H)e(F )},

where the minimum is taken over all graphs F ∈ V`2,H,t. Then ε > 0 and the expected
number of copies of graphs from V`2,H,t in Gp, where p = Bn−β, is O(n1+1/(`2−1)−ε).
Therefore, by Markov’s inequality, the number of copies of graphs from V`2,H,t is almost
surely at most κn1+1/(`2−1)/(log n)|H|. If Gp is a random graph having this property and
fulfilling the statement of Theorem 4 then we define a graph G by removing one edge from
every copy of a graph of V`2,H,t in Gp. The graph G has the required properties. 2
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Proof of Theorem 8. We show that for any t there exists a graph on more than t ver-
tices which is critical for (C`i)1≤i≤r. Let B and β = β(C`2 , C`1) be the constants from
Corollary 5. Let T = {F : |F | ≤ t and |F | − βe(F ) ≤ −1/500}. For p = Bn−β, almost
all graphs Gp do not contain any graphs from T . Furthermore Gp → (C`1 , . . . , C`r) al-
most surely by Corollary 5. Therefore there exists a graph H on n ≥ t vertices with
H → (C`1 , . . . , C`r) and not containing any graph from T as a subgraph. Assume that
there exists a subgraph K of H on t vertices such that K → (C`1 , . . . , C`r). Hence in
particular K → (C`1 , C`2). Let K be the hypergraph with hyperedges being the `1-and `2-
cycles of K. Let K0 be a critical subgraph of K with respect to property (*) from Section 3.
We now run Procedure Hypertree on the input K0 but where we exit the repeat-loop
in 〈main body〉 only if |G(Hi)| − βe(G(Hi)) ≤ −1/500 thus possibly creating hypertrees
that are of length more than log t. It follows easily from the proof of the 0-statement
(cf., e.g., Claim 11) that the output Hm is such that its underlying graph G(Hm) is in T ,
contradicting the fact that H is T -free. It follows that some subgraph of H containing
more than t vertices is critical for (C`i)1≤i≤r. 2
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