
Recursive Reconstruction on Periodic Trees

Elchanan Mossel
Hebrew University of Jerusalem

February 21, 2007

Abstract

A periodic tree Tn consists of full n-level copies of a finite tree T . The tree Tn

is labeled by random bits. The root label is chosen randomly, and the probability
of two adjacent vertices to have the same label is 1− ε. This model simulates noisy
propagation of a bit from the root, and has significance both in communication
theory and in biology. Our aim is to find an algorithm which decides for every set
of values of the boundary bits of T , if the root is more probable to be 0 or 1. We
want to use this algorithm recursively to reconstruct the value of the root of Tn

with a probability bounded away from 1/2 for all n. In this paper we find for all
T , the values of ε for which such a reconstruction is possible. We then compare
the ε values for recursive and non-recursive algorithms. Finally, we discuss some
problems concerning generalizations of this model.

1 Introduction and Main Results

Given a finite rooted tree T , having all d leaves at the same level h, we construct
recursively a sequence of periodic trees Tn. Set T1 = T , and construct Tn from Tn−1

by replacing each of the leaves of Tn−1 with a copy of T . A different method for
constructing Tn is to take the n-level d-regular tree and replace each occurrence of the
1-level d-regular tree with the tree T . We call Tn the n-period of T .

On the vertices of the tree Tn, we have a random labeling by bits. The bit on
the root is chosen to be 0 or 1 with probability 1/2 each. For all edges e = (v1, v2)
the probability that the bit assigned to v1 is equal to the bit assigned to v2 is 1 − ε,
independently for all edges, where ε ≤ 1/2 is fixed. We call this labeling the ε-labeling.

.

�
�@

@

!!!!!aaaaa

�
�@

@

!!!!!

aaaaa

�
�

�
�

�
�

.

........................
.

.

........................
.

.

........................
.

..
........................

..
........................

..
........................

TT = T 21

Figure 1: The first two periods of a tree T

1

This model has several interpretations. In communication theory, one may consider
each of the edges as an independent symmetric channel. In biology, one may say that
there is some binary property each child inherits from its parent independently for
all children. This model is also an example of an Ising model on Tn with constant
interaction strength and one of two given Gibbs measures (cf. Lyons [10]).

A Reconstruction Algorithm A for a finite tree T having l leaves, is an algorithm
that for given values of the bits on the boundary of T , computes a value for the root
of T . Thus, A is a function, A : {0, 1}l → {0, 1}. Note that the same reconstruction
algorithm may apply to all trees having l leaves. We denote by r(T,A) the probability
that A computes the value of the root of T correctly. For a tree T having all d leaves
at the same level h, we say that the bit reconstruction problem is solvable for ε, if there
exist a δ > 0 and algorithms An, such that,

r(Tn,An) ≥ 1/2 + δ

for all n.
Kamae (unpublished, see Higuchi [9]) has shown that when Tn is the n-level d-

regular tree, the reconstruction problem is solvable if 1 − 2ε > d−1/2. Bleher, Ruiz
and Zagrebnov ([2]) have shown that the reconstruction problem for the regular tree is
unsolvable if 1 − 2ε ≤ d−1/2. Subsequently, Evans, Kenyon, Peres and Schulman ([4])
studied the same problem for general trees and proved a similar bound involving the
branching number of the tree. In the current setting, where T is a tree having all d
leaves at the same level h, their result shows that the reconstruction problem is solvable
if ε < εc, and unsolvable if ε > εc, where,

εc = (1 − d−
1

2h)/2. (1)

For a more detailed history of this problem see [4].
For a finite tree, when ε is known, the algorithm which achieves the best recon-

struction probability is the Maximum-Likelihood Algorithm. When ε is small and all
the internal vertices have an odd number of children, this algorithm coincides with the
Parsimony Algorithm - so called in Mathematical Biology (see [7]), or the Recursive
Majority Algorithm - so called in the theory of computation. This algorithm has the
following recursive description: Starting at the boundary, it assigns to each vertex the
bit which is the majority of the bits assigned to the children of that vertex. This algo-
rithm has some advantages over the maximum-likelihood algorithm, as the exact value
of ε is not needed for the algorithm. Moreover, computationally, it has a very simple
recursive description. These advantages have made this algorithm popular in biology.
When ε is not small, the algorithm is not optimal. This motivates us to check how well
recursive reconstruction algorithms behave.

Definitions 1.1:

1. Let A : {0, 1}d → {0, 1} be a reconstruction algorithm. We construct the periods
of A, An : {0, 1}dn → {0, 1}, as follows: We set A1 = A, and construct Ak from
Ak−1 by:

Ak(σ1, . . . , σdk) = A
(

Ak−1(σ1, . . . , σdk−1), . . . ,Ak−1(σ(d−1)dk−1+1, . . . , σdk)
)

(2)

Thus, when T is a tree having all d leaves at the same level h, An is a recon-
struction algorithm for Tn, with the following recursive description: Starting at

2

the boundary, for each copy of T , we replace the labels σ = (σ1, . . . , σd) on the
boundary of T by a label A(σ) on the root of T , which is the output of the
computation of A on σ.

2. We say that the bit reconstruction problem is recursively solvable for ε (or T and
ε) if there exists a reconstruction algorithm A for T , such that

r(Tn,An) ≥ 1/2 + δ

for some δ > 0 and all n. In this case we say that A recursively solves the
reconstruction problem for ε (or T and ε).

In our main result we give the exact critical ε for recursive reconstruction and exhibit
the recursive algorithms which achieve this ε.

Theorem 1.2: Given a tree T having all d leaves at the same level h, the bit re-
construction problem is recursively solvable if and only if ε < εr, where εr is defined
by,

(
1

2
)d−1dd

2
e
(

d

dd
2e

)

(1 − 2εr)
h = 1. (3)

Moreover, the algorithms M : {0, 1}d → {0, 1} which recursively solve the reconstruction
problem for all ε < εr are those which assign to the root of T the value of the majority
of the leaves (when the number of 0 and 1 is equal, it may assign any value).

Note that both in (1) and in the Theorem 1.2 the exact shape of the tree T is unim-
portant, only the values of d and h play a role in both results. The result of Theorem
1.2 may be surprising at first sight. For example, let T be a tree having 200 stalks of
length 100, and T ′ be a tree having 100 stalks of length 100 and one stalk of length 99
with 100 children (see Figure (2)).

d dd

d dd

c c c

������

!!!!!
����

HHHH

aaaaa

PPPPPP

������
�

�

PPPPPP

����
�

��
�

�
@

@
Q

QQ
HHHH

Q
QQ

�
��

A
A

!!!!!
����

T T’

Figure 2: T and T’

By Theorem 1.2 both trees have the same critical ε for recursive reconstruction.
Moreover, in both trees the ‘best’ algorithm is a majority algorithm. For T it seems
reasonable, since the symmetry of the tree forces the algorithm to be symmetric. But
for T ′, the 100 children of the 99 stalk give us very good information on their parent,
but poor information on the root of the tree. It may seem strange that these 100 leaves
should get the same weight as the 100 other. We will return to this example after the
proof of Theorem 1.2.

3

It is clear that εr ≤ εc. However, we may try to approximate algorithms which
achieve εc by recursive algorithms which work on ‘large blocks’. More formally, it
follows easily from the definitions that (Tk)n = Tkn. For the subsequence {Tkn}∞n=1 we
may reconstruct the root using recursively a reconstruction algorithm for Tk. When we
take k → ∞, we obtain the following result:

Proposition 1.3: Given a tree T having all d leaves at the same level h, we denote by
εr(k) the critical ε for recursive solvability of Tk, and by εc the critical ε for which the
bit reconstruction problem is solvable for T . Then for all k,

εr(k) < εc (4)

and
lim

k→∞
εr(k) = εc. (5)

The structure of the paper is as follows: In Section 2 we prove Theorem 1.2 for the
special case where Tn is the n-level d-regular tree. In Section 3 we use local considera-
tions to prove the lower bound of Theorem 1.2, i.e, we prove that recursive reconstruction
is possible for ε < εr. In Section 4 we use a ‘domination lemma’ proven in [4], to prove
the upper bound, i.e, reconstruction is not possible for ε ≥ εr; complete the proof of
Theorem 1.2 and prove Proposition 1.3. In section 5 we show that the ‘domination
lemma’ can not be extended to more general cases, and discuss some remarks and open
problems.

2 Regular Trees

In this section we prove Theorem 1.2 in the special case where Tn is the n-level d-regular
tree. The proof of this case uses iteration of real functions, as in the classical theory of
extinction of branching processes (cf. Atherya and Ney [1], Chapter 1). Similar methods
also appear in a work on noisy computation by Evans ([6]).

We begin with some definitions which apply also to the more general (non-regular)
case. A basic tool for analyzing the behavior of an algorithm A, is the recursive function
of A, which measures how well A reconstructs the root of T , when we are not given the
original boundary bits, but those bits with some additional noise.

Definition 2.1: For a tree T the (ε, p)-labeling of T is the following labeling: First,
we label T by an ε-labeling. Then for the leaves of T only, we keep each label with
probability p, and take the complementary label with probability 1 − p, independently
for all leaves. For an algorithm A and a tree T , let Rε

A
(p) (or Rε

A,T (p)) be the probability
that A computes the root of T correctly, when the input to A is the bits on the boundary
of the (ε, p)-labeling of T .

Lemma 2.2: Let A be a reconstruction algorithm for T . Then:

r(Tn,An) = Rε
A

(n)(1),

where f (n) denotes the n-times composition of f with itself.

Proof: Immediate by induction. 2

Now we focus on the case where T is the 1-level d-regular tree. That is, Tn is the n-level
d-regular tree. In this case, as Lemma 2.3 shows, the interaction between ε and p in

4

Rε
A

(p) is simple. Moreover, as Lemma 2.4 shows, only majority algorithms should be
considered. From now on, we will denote by M majority algorithms, i.e, algorithms
which output the majority of the inputs (if the number of 0 and 1 in the input is equal,
we allow the output to be either 0 or 1).

Lemma 2.3: When T is the 1-level d-regular tree, for all algorithms A and for all p,

Rε
A(p) = R0

A((1 − ε)p + ε(1 − p)).

Proof: The right hand term expresses the probability that A will compute the root
correctly, when each of the boundary bits is identical to the root with probability (1 −
ε)p + ε(1 − p) independently. But this is also the left hand term. 2

Lemma 2.4: When T is the 1-level d-regular tree, for all algorithms A and for all
1 ≥ p ≥ 1/2

Rε
A(p) ≤ Rε

M(p), (6)

where M is any majority algorithm. In particular, the bit reconstruction problem is
recursively solvable if and only if M recursively solves the bit reconstruction problem.

Proof: The second claim follows from the first by Lemma 2.2 and Definition 1.1. In
order to prove the first claim, by Lemma 2.3, it is enough to show that

R0
A(p) ≤ R0

M(p)

for all p ≥ 1/2. Suppose that there are d0 values of 0 and d1 values of 1 on the boundary
of the 1-level d-regular tree with the p-labeling. If we denote the value of the root bit
by root, then

P[root = 0|d0, d1]

P[root = 1|d0, d1]
=

P[d0, d1|root = 0]

P[d0, d1|root = 1]
=

pd0(1 − p)d1

pd1(1 − p)d0
= (

p

1 − p
)d0−d1 .

Therefore, in order that R0
A

(p) will be maximal, we must set A = 0 whenever d0 > d1,
and A = 1 whenever d0 < d1. Moreover, when d0 = d1, we may set either A = 0 or
A = 1. 2

The proof of the Theorem 1.2 for 1-level d-regular trees is based on some properties
of the function f(p) = R0

M
(p) which will be derived using Russo’s Formula (cf. Grimmet

[8], Chapter 4). We define E = {0, 1}d. A function F on E is increasing if whenever
we change a bit value from 0 to 1 the value of the function increases. We denote by
Pp the probability measure on E which assigns each coordinate 1 with probability p
independently, and by Ep the corresponding expected value function. We have

Russo’s Formula: If F is increasing, then,

d

dp
Ep(F) =

d
∑

i=1

Ep[δiF],

where,

δi(F (x1, . . . , xd)) = F (x1, . . . , xi−1, 1, xi+1, . . . , xn) − F (x1, . . . , xi−1, 0, xi+1, . . . , xn).

5

Lemma 2.5: When T is the 1-level d-regular tree, Rε
M

(p) is an increasing concave
function on [1/2, 1]. The derivative of Rε

M
(p) at 1/2 satisfies:

dRε
M

dp
(
1

2
) = (1 − 2ε)(

1

2
)d−1dd

2
e
(

d

dd
2e

)

. (7)

Proof: Following Lemma 2.3, it is enough to show that f(p) = R0
M

(p) is an increasing
concave function on [1/2, 1], and that

df

dp
(
1

2
) = (

1

2
)d−1dd

2
e
(

d

dd
2e

)

. (8)

We begin by calculating the derivative of f using Russo’s formula. Consider the
space E = {0, 1}d, where we set 1 at the i-th coordinate if the i-th child of the 1-level
d-regular tree has the same label as the root, and set 0 in the i-th coordinate if the i-th
child and the root have different labels. In this model, the probability of each coordinate
to be 1 is p, independently for all coordinates. We denote by n0(x) the number of 0
coordinates of x, and by n1(x) the number of 1 coordinates. By definition,

f(p) = Pp[{x ∈ E : n1(x) > n0(x)}] + 1

2
Pp[{x ∈ E : n1(x) = n0(x)}].

Therefore, if we define,

F (x) =











1 if n1(x) > n0(x)
1/2 if n1(x) = n0(x)
0 if n1(x) < n0(x)

,

then f(p) = Ep(F). F is an increasing function on E. Thus, by Russo’s Formula and
the definition of F we have for odd d,

df

dp
(p) =

d + 1

2
Pp[{x ∈ E : |n1(x) − n0(x)| = 1}]

=
d + 1

2

(

d
d+1
2

)

(

p
d+1

2 (1 − p)
d−1

2 + p
d−1

2 (1 − p)
d+1

2

)

=
d + 1

2

(

d
d+1
2

)

(p(1 − p))
d−1

2 , (9)

and for even d,

df

dp
(p) =

d

2
Pp[{x ∈ E : n1(x) = n0(x)}] + d + 2

4
Pp[{x ∈ E : |n1(x) − n0(x)| = 2}]

=
d

2

(

d
d
2

)

p
d

2 (1 − p)
d

2 +
d + 2

4

(

d
d+2
2

)

(

p
d+2

2 (1 − p)
d−2

2 + p
d−2

2 (1 − p)
d+2

2

)

=
d

4

(

d
d
2

)

(p(1 − p))
d−2

2 . (10)

Since the derivatives in (9) and (10) are positive, the function f is increasing in [1/2, 1].
Since the function p(1 − p) is decreasing in [1/2, 1], both (9) and (10) are decreasing in
[1/2, 1] and therefore f is concave in [1/2, 1]. (8) follows directly from (9) and (10). 2

6

Proposition 2.6: For the 1-level d-regular tree the reconstruction problem is recur-
sively solvable if and only if ε < εr, where εr is given by

(
1

2
)d−1dd

2
e
(

d

dd
2e

)

(1 − 2εr) = 1.

Moreover, majority algorithms recursively solve the reconstruction problem for all ε <
εr.

Proof: By Lemma 2.4 we should only consider majority algorithms M. By Lemma
2.5 the function Rε

M
(p) is increasing and concave in [1/2, 1]. Since this function is

increasing, the sequence {Rε
M

(n)(1)}∞n=1 is decreasing, and therefore has a limit:

lε = lim
n→∞

Rε
M

(n)(1).

The problem would be recursively solvable if and only if lε > 1/2. Since Rε
M

(p) is
increasing, lε = max{t ∈ [1/2, 1] : Rε

M
(t) = t}. Since Rε

M
(1/2) = f(1/2) = 1/2,

Rε
M

(1) < 1, and Rε
M

(p) is concave in [1/2, 1], lε > 1/2 if and only if

dRε
M

dp
(
1

2
) > 1,

and the claim follows from Lemma 2.5. 2

3 The Lower Bound

In the next two sections we prove Theorem 1.2 in the general case. In these sections we
fix T to be a finite tree having all d leaves at same level h, and we consider the periods
of T , Tn. In the general case, (6) in Lemma 2.4 does not hold, and in order to prove
that majority algorithms recursively solve the reconstruction problem for all ε < εr,
a different approach is needed. We start by analyzing the derivative of the majority
algorithm at the point 1/2.

Lemma 3.1: For majority algorithms:

dRε
M

dp
(
1

2
) = (

1

2
)d−1dd

2
e
(

d

dd
2e

)

(1 − 2ε)h. (11)

For any other algorithm A,

dRε
A

dp
(
1

2
) = CA(1 − 2ε)h, (12)

where CA is a constant such that,

CA < (
1

2
)d−1dd

2
e
(

d

dd
2e

)

.

Proof: We define two auxiliary functions: Rε
0(p, σ) and Rε

1(p, σ), where Rε
0(p, σ) is the

probability that the root-value of the (ε, p)-labeling of T is 0, when the labeling of the

7

boundary bits is σ. Rε
1(p, σ) is defined similarly. Let P ε(p, σ) be the probability that

the boundary of the (ε, p)-labeling of T is σ. It is clear that:

Rε
A(p) =

∑

σ

P ε(p, σ)Rε
A(σ)(p, σ). (13)

Differentiation of (13) generates:

dRε
A

dp
(p) =

∑

σ

dP ε

dp
(p, σ)Rε

A(σ)(p, σ) +
∑

σ

P ε(p, σ)
dRε

A(σ)

dp
(p, σ).

At the point p = 1/2, P ε(1/2, σ) = 2−d and Rε
A(σ)(1/2, σ) = 1/2 for all σ. Therefore

we get:
dRε

A

dp
(
1

2
) =

1

2

∑

σ

dP ε

dp
(
1

2
, σ) +

1

2d

∑

σ

dRε
A(σ)

dp
(
1

2
, σ).

However,
∑

σ

dP ε

dp
(p, σ) =

d

dp

(

∑

σ

P ε(p, σ)
)

=
d

dp
1 = 0,

and therefore
dRε

A

dp
(
1

2
) =

1

2d

∑

σ

dRε
A(σ)

dp
(
1

2
, σ). (14)

In order to evaluate (14), let (p1, . . . , pd) be a vector of probabilities, and consider for
a moment the following labeling of T . First, we label T by the ε-labeling. Then, only for
the leaves of T keep the i-th leaf label with probability pi, and take the complementary
label with probability 1− pi. We define Rε

b
(p1, . . . , pd, σ) to be the probability that the

root of this labeling is b when the boundary is σ. Using the chain rule we get:

dRε
b

dp
(
1

2
, σ) =

d
∑

i=1

∂Rε
b

∂pi
(
1

2
, . . . ,

1

2
, σ) (15)

for b ∈ {0,1}.
Rε

b
(1/2, . . . , 1/2, pi, 1/2, . . . , 1/2, σ) is the probability that the root-value is b, when

the i-th boundary bit is the same as the root with probability

1

2
+

1

2
(1 − 2ε)h(2pi − 1),

and all the other bits are i.i.d 0, 1 variables which are independent of the root. Therefore,

Rε
b(

1

2
, . . . ,

1

2
, pi,

1

2
, . . . ,

1

2
, σ) =

{

1
2 + (1−2ε)h(2pi−1)

2 if b = σi

1
2 − (1−2ε)h(2pi−1)

2 if b 6= σi

,

and,
∂Rε

b

∂pi
(
1

2
, . . . ,

1

2
, σ) =

{

+(1 − 2ε)h if b = σi

−(1 − 2ε)h if b 6= σi
. (16)

Substituting (16) into (15) gives:

dRε
b

dp
(
1

2
, σ) = (1 − 2ε)h

(

|{i : σi = b}| − |{i : σi 6= b}|
)

. (17)

8

Combining (17) with (14) gives:

dRε
A

dp
(
1

2
) =

(1 − 2ε)h

2d

∑

σ

(

|{i : σi = A(σ)}| − |{i : σi 6= A(σ)}|
)

. (18)

In order to prove (11), one should calculate the sum on the right of (18) for majority
algorithms. An elegant way to finesse this calculation is to observe that for majority
algorithms, the sum is a number which depends only on d. Since we already calculated
the derivative for h = 1 in Lemma 2.5, (11) follows.

The proof of (12) follows since the sum on the right of (18) does not depend on ε,
and is maximal when A is a majority algorithm. 2

Using Lemma 3.1 the proof of the lower bound is fairly easy. The derivative at 1/2 of
the majority recursive function determines the behavior of this function near 1/2. We
only have to make sure that this function behaves well far from 1/2:

Lemma 3.2: For all ε < 1/2 and all p ∈ (1/2, 1],

Rε
M(p) > 1/2.

Proof: Consider the following percolation model on the edges of T . For each edge
which is not connected to a leaf, set the edge open with probability 1 − 2ε (and closed
otherwise). For each edge which is connected to a leaf, set the edge open with probability
(1 − 2ε)(2p − 1) (and closed otherwise). Each edge is closed or open independently of
all other edges. We now consider the following random labeling. We always label two
vertices which share an open edge with the same bit (starting at the root). When
the edge connecting a parent and a child is closed, we choose the label of the child
randomly (0 and 1 with probability 1/2 each). Obviously, this gives the same labeling
as the (ε, p)-labeling.

Let C be the random set of leaves which are connected to the root in the percolation
model. We denote by N the random set of leaves. We note that |C| > d/2 with positive
probability, and on this event the majority algorithm computes the root correctly. On
N the number of bits which are the same as the root has the same distribution as the
number of bits which are different from the root. Therefore, on the event |C| ≤ d/2,
the probability that the majority algorithm will succeed is at least 1/2. Combining the
last two claims we get the lemma. 2

Proposition 3.3: For ε < εr, where εr is given in (3), majority algorithms solve the
recursive reconstruction problem.

Proof: Let M be a majority algorithm. We want to show that for ε < εr the sequence
{Rε

M

(n)(1)}∞n=1 is bounded away from 1/2. It is enough to show that that there exists
a δ > 1/2 such that for all p in [δ, 1],

Rε
M(p) ≥ δ. (19)

By Lemma 3.1, for ε < εr,
d

dp
Rε

M(
1

2
) > 1,

therefore, there exists δ1 > 1/2 such that for all p in (1/2, δ1),

Rε
M(p) ≥ p.

9

By Lemma 3.2
δ2 = min

[δ1,1]
Rε

M(p) > 1/2.

Taking δ = min{δ1, δ2} we get (19). 2

4 The Upper Bound

In this section we prove the upper bound of Theorem 1.2. The proof is based on a
‘domination lemma’ from Evans, Kenyon, Peres and Schulman ([4]), which compares
the general case to the case of regular trees discussed in Section 2.

Definition 4.1[[4]]: We say that a labeling on a tree T ′ dominates a labeling on a tree
T , if there exists a noisy channel ϕ, such that the distribution of the labeling at the
leaves of T with root-value Broot, equals ϕ applied to the distribution of the labeling at
leaves of T ′ with root-value Broot (for Broot = 0 and Broot = 1).

Definition 4.2[[4]]: The disjoint tree, Dis(T), associated with a tree T , is a tree which
has the same set of root-leaf paths as T but in which these paths are disjoint. Every
root-leaf path in T , corresponds to a root-leaf path in Dis(T) of the same length. In
addition, the paths in Dis(T) are disjoint sharing only root only.

����
HHHH

�
�

@
@
�

�
A
A

�
�

A
A

�
�

A
A

Q
QQ

aaaaa�
��

�
�

��

!!!!!

�������

.T Dis(T)

Figure 3: A tree T with Dis(T)

For example, if T has all d leaves at the same level h, then in the ε-labeling of Dis(T)
there are d leaves each having the same label as the root with probability (1+(1−2ε)h)/2
independently. In the (ε, p)-labeling of Dis(T) there are d leaves each having the same
label as the root with probability (1 + (2p − 1)(1 − 2ε)h)/2 independently.

Lemma 4.3: Let T be a finite tree having all d leaves at the same level h, and T̃ be
the 1-level d-regular tree. Let A : {0, 1}d → {0, 1} be a reconstruction algorithm. Then
for all p:

Rε
A,Dis(T)(p) = R

1/2−1/2(1−2ε)h

A,T̃
(p).

Proof: Rε
A,Dis(T)(p) is the probability that A computes the root correctly when there

are d leaves each identical to the root with probability (1 + (2p − 1)(1 − 2ε)h)/2 inde-

pendently. But this is also R
1/2−1/2(1−2ε)h

A,T̃
(p). 2

The tool for comparing the easy case of Dis(T), and the general case is given in the
following lemma.

Lemma 4.4[Evans, Kenyon, Peres and Schulman [4]]: The (ε, p)-labeling on
Dis(T) dominates the (ε, p)-labeling on T .

10

For our purposes we need the following lemma which is an easy consequence of domi-
nation.

Lemma 4.5[[4]]: Let T be a tree having all d leaves at the same level h, then for all
ε < 1/2 and p ≥ 1/2,

max
A:{0,1}d→{0,1}

Rε
A,Dis(T)(p) ≥ max

A:{0,1}d→{0,1}
Rε

A,T (p) (20)

Remark 4.6: Note that by Lemma 4.3 and Lemma 2.4, for all ε < 1/2 and p ≥ 1/2,

max
A:{0,1}d→{0,1}

Rε
A,Dis(T)(p) = Rε

M,Dis(T)(p)

where M is a majority algorithm.

Proof of Theorem 1.2: We proved the lower bound in Proposition 3.3. In order
to prove the upper bound let A : {0, 1}d → {0, 1} be an algorithm which recursively
solves the reconstruction problem for 1/2 ≥ ε ≥ εr, where εr is given in (3). Then, the
sequence {Rε

A,T
(n)(1)}∞n=1 is bounded away from 1/2. If this sequence is not decreasing,

then there exists a p in (1/2, 1] such that

Rε
A,T (p) = p. (21)

If it is decreasing, it has a limit p in (1/2, 1] which satisfies (21). Let M : {0, 1}d → {0, 1}
be a majority algorithm. By Lemma 4.5 and Remark 4.6:

Rε
M,Dis(T)(p) ≥ Rε

A,T (p) = p (22)

But by Lemma 4.3 and Lemma 2.5, Rε
M,Dis(T)(p) is an increasing concave function on

[1/2, 1] with

Rε
M,Dis(T)(

1

2
) =

1

2

d

dp
Rε

M,Dis(T)(
1

2
) = (

1

2
)d−1dd

2
e
(

d

dd
2e

)

(1 − 2ε)h ≤ 1,

which contradicts (22).
In order to complete the proof, we must show that only majority algorithms recur-

sively solve the reconstruction problem for all ε < εr. Suppose that A : {0, 1}d → {0, 1}
is an algorithm which recursively solves the reconstruction problem for all ε < εr. We
denote Rε

A
= Rε

A,T . The argument above shows that for all ε < εr there exists a
pε ∈ (1/2, 1], such that Rε

A
(pε) = pε. Let p = lim sup pε. Since Rε

A
(q) is a polynomial

in ε and q, it is easy to see that, p = Rεr

A
(p). Therefore, by the first part of the proof

p = 1/2. (23)

We note that since for ε < εr, Rε
A

(1/2) = 1/2, and Rε
A

(pε) = pε, there exists a qε in

[1/2, pε] such that
dRε

A

dp (qε) = 1. But by (23) limε→εr
qε = 1/2, and therefore,

dRεr

A

dp (1/2) =
1. By Lemma 3.1 this implies that A is a majority algorithm. 2

Proof of Proposition 1.3: By Stirling’s formula:

lim
h→∞

(

(
1

2
)dh−1ddh

2
e
(

dh

ddh

2 e

)

)1/h
=

√
d

11

which implies (5). Given (5), the proof of (4) follows once we show that for every k ≥ 1
and l ≥ 2,

εr(kl) > εr(k). (24)

Let A be the l-level recursive application of a majority algorithm on Tk to Tkl. It is
easy to see that A is not a majority algorithm on Tkl. Therefore, by Theorem 1.2 there
exists an ε < εr(kl) such that A fails to recursively solve the reconstruction problem for
Tkl and ε, which implies (24). 2

Remarks:

1. Theorem 1.2 gives the possible values of ε for which there is an algorithm A such
that the sequence r(Tn,An) is bounded away from 1/2 for all n. The proof can
be extended to the following model. Instead of taking Tn to be a sequence of
periods of a fixed T , fix d and h, and take Tn to be a sequence of trees such that,
Tn is constructed from the n-level d-regular tree by replacing each occurrence of
the 1-level d-regular tree with some tree T , having all d leaves at the same level
h. Here we may replace different copies of the 1-level d-regular tree with different
trees.

2. In Proposition 1.3, one may use Stirling’s formula to obtain that the sequence
{εr(k)}∞k=1 is a strictly increasing sequence.

3. The proof of Theorem 1.2 provides some intuition why in the example at the intro-
duction (see Figure 2) for both trees T and T ′ for all ε < εr the algorithms which
recursively solve the reconstruction problem are majority algorithms. For the tree
T it follows from the fact that different bits on the boundary are independent
given the root. The point is, that when ε is close to εr, after many iterations of
the recursive algorithm, the reconstructed bits are equal to the original label-bits
with probability close to 1/2, and are almost independent given the root in T ′ as
well as in T .

5 Discussion

In this section we discuss several natural generalizations of the model we introduced
in section 1. We first discuss models in which we replace the parent-child symmetric
binary channel with some other channel.

The main tool in the proof of the upper bound both in the analysis of the non-
recursive algorithms (by Evans et al [4]) and in the analysis of the recursive algorithms
is Lemma 4.4. Extensions of this lemma to other channels, would give upper bounds
for the corresponding trees.

We note first, that the notion of domination could be defined for any random labeling
on trees. From the data-processing lemma it follows that if a labeling on T ′ dominates
a labeling on T , then the mutual information between the root and the leaves in T ′ is
greater than the mutual information between the root and the leaves in T .

5.1 Example of Non-Domination

We give an example of a tree T and a channel M for which the mutual information
between all the boundary labels and the root label is positive, while the mutual infor-
mation between each of the labels on the boundary and the root-label is zero. Thus, in

12

this example the mutual information between the root and the leaves of T is positive,
while the mutual information between the root and the leaves of Dis(T) is 0. Therefore,
in this case Dis(T) does not dominate T .

Let the tree T be the ’Y tree’. It consists of 4 vertices: the root R, which has one
son C (the center of the tree), which in turn has two sons L1 and L2 (the leaves of the
tree).

Take M to be a Markov-chain on the 4 state-space Z2 × Z2. M has the following
transition matrix:

M(x, y) =

{

(r, x + r mod 2) with probability 1/2
(r, y + r mod 2) with probability 1/2

where r takes each of the values 0 and 1 with probability 1/2, and is independent of
anything else.

?
�

�
�

�	

@
@

@
@R

R

C

L1 L2

M

MM

Figure 4: The ’Y tree’ with the Markov chain M

Claim 1: The double iteration of M satisfies:

P[M(M(x, y)) = (z, w)] = 1/4,

for all x, y, z, w. Therefore, the mutual information between R and L1 (L2) is zero.
Proof: Immediate. 2

Claim 2: If the initial distribution on R gives positive probability to every label in
Z2 × Z2, then the mutual information between R and (L1, L2) is positive.

Proof: Assume that it is given that the label on L1 is (0, 0), and the label on L2 is
(0, 1). This could happen (and will happen with positive probability) only if the label
on C is (0, 1) or (1, 0). In any case, it would imply that the label on the root R cannot
be (0, 0). 2

Given the two claims, it is not surprising that for the Markov-chain M , the reconstruc-
tion problem solvability depends strongly on the exact shape of the tree. For example
we can show that:

Claim 3: Let T be the 2-level 1000-regular tree equipped with the Markov chain M .
The recursive reconstruction problem for T is solvable. For Dis(T) equipped with
Markov chain M , the reconstruction problem is not (recursively) solvable.

Proof: The second statement follows from Claim 1. We denote the label values by
(x, y) ∈ Z2 ×Z2. In order to prove the first statement, it is enough to show that for the

13

1-level 1000-regular tree we have a recursive reconstruction algorithm for reconstructing
x+y mod 2 with probability greater than 0.99. An example of such a recursive algorithm
is the following algorithm. For each vertex v look at the 1000 values of x + y mod 2 for
the children of v. If there exists a value which appears more than 700 times, declare
the x + y mod 2 of v 0. Otherwise, declare it 1. 2

5.2 k-ary Channels

A more natural generalization of the binary symmetric channel, is given by the k-
ary symmetric channel in which there are k symbols, each transmitted correctly with
probability 1 − (k − 1)ε, and as any of the other symbols with probability ε (where
ε ≤ 1/k). Note that when k = 2 we have the (original) binary symmetric channel. When
k = 3, computer simulations indicate that in the ’Y tree’ above there is no domination
of Dis(T) over T , and therefore, the methods we have used cannot be generalized to
obtain the upper bound even in this case. However, unlike the example above, those
simulations suggest that for 3-ary channels the mutual information between the root
and the leaves of Dis(T) is greater than the mutual information in T .

Some of the remaining open questions concerning these generalizations are: How do
the critical ε values for recursive and non-recursive algorithms depend on the shape of
the tree? What are the values of these ε? As far as I know, even for regular trees the
last question is still open.

5.3 Other Generalizations

Another natural generalization is obtained if we allow our recursive algorithms on the
{0, 1} labeled periodic trees to have as output (and as input after the first level) a set
with more than two symbols. Obviously, if we allow an unbounded number of symbols
we are back at the case of non-recursive algorithms (since we can recursively ’transmit’
the boundary to the root). However, can we say that when the number of symbols
is bounded by some constant, the critical ε for recursive algorithms is always smaller
than for the non-recursive algorithms? Can we find these critical ε as a function of the
number of symbols? What are the algorithms which achieve these ε?

Finally, how can we extend Theorem 1.2 to non-periodic trees? One possible extension
is to use the same setting that was used in the paper by Evans et al ([4]). Take T
to be some infinite tree, and A an algorithm which for every h-level tree, computes a
root value from the boundary values. Then apply A recursively to the first kh levels
of T , and check if the reconstruction probability is bounded away from 1/2 as k → ∞.
However, in this setting the behavior of recursive algorithms as a function of the shape
of the tree may be complicated, as can be observed in the following example.

We look at the one level recursive majority algorithm, and consider the following
two trees. Take T to be the infinite 3-regular tree. By Theorem 1.2 the critical ε for T
is 1/6. Take T ′ to be an extension of T in which to each vertex we add k stalks, each a
copy of N. Even though T is a sub-tree of T ′, the critical ε for the one level recursive
majority algorithm for T ′ is smaller than for T , and as k → ∞ it tends to zero.

Acknowledgment. I am grateful to Yuval Peres for suggesting the problems and for
encouragement. I thank Yuval Peres and Eyal Rosenman for helpful discussions.

14

d

d

d

d

d

d

�
�

A
A

�
�

A
A

�
�

A
A

�
�

�
�

@
@

@
@

�
�A

A �
�A

A �
�A

A

�
�

�
�

@
@

@
@

�������

XXXXXXX

�� PP �� PP �� PP

T T’

Figure 5: The trees T and T’ for k=2

References

[1] Atherya, K. B. and Ney, P. E. (1972) Branching Processes, Springer-Verlag.

[2] Bleher, P. M., Ruiz, J. and Zagrebnov V. A. (1995) On the Purity of limiting Gibbs state
for the Ising model on the Bethe lattice, J. Stat. Phys 79, 473–482.

[3] Steel, M. and Charelston, M. (1995) Five surprising properties of parsimoniously colored
trees, Bull. of Math. Bio 57 No 2, 367–375.

[4] Evans, W., Kenyon, C., Peres, Y., and Schulman, L. J. (1997) Broadcasting on trees and
the Ising model, preprint.

[5] Evans, W. and Schulman, L. J (1993) Signal propagation, with application to a lower bound
on the depth of noisy formulas, Proceeding of the 34th Annual Symposium on Foundations
on computer Science, 594–603.

[6] Evans, W. (1994) Information Theory and Noisy Computation. PhD thesis, University of
California at Berkeley. Available by ftp at
ftp.icsi.berkeley.edu as file /pub/techreports/94/tr-94-057.ps

[7] Farris, J. S. (1973) On the use of parsimony criterion for inferring evolutionary trees, Syst.
Zool 22, 250–256.

[8] Gine, E., Grimmett, G. R. and Sallof-Coste, L. (1997) Lectures on probability theory and
statistics, Springer-Verlag.

[9] Higuchi, Y. (1977) Remarks on the limiting Gibbs state on a (d + 1)-tree, Publ. RIMS
Kyoto Univ 13, 335–348.

[10] Lyons, R. (1989) The ising Model and Percolation on Trees and Tree-Like Graphs, Com-
mun. Math. Phys 125, 337–352.

Elchanan Mossel

Department of Mathematics, Hebrew University, Jerusalem. mossel@math.huji.ac.il

15

