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A Family of Random Trees with Random
Edge Lengths*

David Aldous, Jim Pitman
Department of Statistics, University of California, Berkeley, California, 94720-3860

Received October 16, 1998; accepted 7 May 1999

ABSTRACT: We introduce a family of probability distributions on the space of trees with I
labeled vertices and possibly extra unlabeled vertices of degree 3, whose edges have positive
real lengths. Formulas for distributions of quantities such as degree sequence, shape, and total
length are derived. An interpretation is given in terms of sampling from the inhomogeneous
continuum random tree of Aldous and Pitman (1998). © 1999 John Wiley & Sons, Inc. Random
Struct. Alg., 15, 176–195, 1999

Key Words: continuum tree; enumeration; random tree; spanning tree; weighted tree; Cayley’s
multinomial expansion

1. INTRODUCTION

A discrete tree is a finite tree in the usual sense of graph theory: n vertices connected
by n− 1 undirected edges. A tree with edge lengths is a discrete tree in which each
edge is assigned a strictly positive real number, which we interpret as the length of
the edge. Such trees are often called weighted trees, but we wish to emphasize our
interpretation of the weights as edge lengths. The study of the properties of random
discrete trees, which for uniform models of randomness amounts to enumerations
of various sets of trees, is a classical topic [5, 11, 13, 14]. Probability models for
random trees with edge lengths arise in two specific settings.

*Research supported in part by NSF grants DMS 96-22859 and 97-03961.
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A FAMILY OF RANDOM TREES 177

(a) Minimum spanning trees and Steiner trees on random points in d-dimensional
space; here the edge-lengths are ordinary Euclidean lengths [9, 10, 22].

(b) Genealogical trees representing ancestry of individuals in a species, or phy-
logenetic trees representing evolutionary relationships between species; here the
edge-lengths represent times between divergence of lineages [12, 23].

Another model for such trees is to start from a model of random discrete trees
and assign i.i.d. edge lengths [8]. The purpose of this paper is to describe a new
model of random trees with edge lengths. This model arises from the study of the
asymptotic sizes and shapes of spanning subtrees in a model for random discrete
trees studied in [16, 19, and 20]. The model is parametrized by a vector �ci� of vertex
weights. A rough interpretation of ci is the relative propensity of vertex i to have
incident edges. Varying these parameters will vary the typical shape of realized trees.

The model is defined in Theorem 1. Section 3.2 shows how it arises as a limit of a
natural model for random discrete trees. Our emphasis is on obtaining explicit dis-
tributional formulas for quantities associated with the random tree. But we also note
(Section 7) an interpretation of our model in terms of the inhomogeneous continuum
random tree (ICRT) introduced in [3] as the key to analysis of a certain continuous-
space Markov process. This interpretation provides additional motivation for study-
ing the model, but is not essential for understanding the results of this paper.

2. OVERVIEW OF RESULTS

To state our results we first need some notation for spaces of trees. For a finite set
F let TF be the set of discrete trees whose vertex set consists of labeled vertices F ,
called hubs and perhaps extra unlabeled vertices of degree exactly 3, called junctions.
Given t ∈ TF for some finite set F , write E�t� for its set of edges. Write Dit for the
degree of i in t. If Dit = 1 call i a leaf of t. Assigning a vector l x= �le; e ∈ E�t��
of strictly positive real lengths to the edges of a tree t in TF gives a tree with edge-
lengths, say s, with shape(s) = t and lengths(s) = l. Write TF for the set of such trees
with edge-lengths. Let �n� x= �1; 2; : : : ; n�. Figure 1 shows an element s of T�8� with
eight hubs, six leaves, and two junctions. In such a diagram the location of vertices
in the plane is arbitrary subject to the shape of the tree and its edge lengths.

The subject of this paper is the distribution on T�I� defined in Theorem 1. For
I = 2; 3; : : : let

C x= {c x= �c1; c2; : : : ; cI�x I ≥ 2; ci ≥ 0 for each 1 ≤ i ≤ I}:
The distribution is parametrized by c ∈ C.

Theorem 1. For each c = �c1; : : : ; cI� ∈ C, the following formula defines a probabil-
ity distribution for a random T�I�-valued tree Sc:

P
(
shape�Sc� = t; lengths�Sc� ∈ �l; l+ dl�)

=
( I∏
i=1

c
Dit−1
i

)
�s + c� exp�− 1

2 s
2 − sc�dl;

t ∈ T�I�; l ∈ �0;∞�E�t�; (1)

where l x= �le; e ∈ E�t��, s x=∑e∈E�t� le; and c x=∑I
i=1 ci.
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Fig. 1.

The right side of (1) specifies the density of some positive measure on T�I�, but
it is not a priori obvious that the measure has total mass 1; that is the content
of Theorem 1. For instance, if I = 2 the tree Sc has a single edge, whose length
has probability density function s → �s + c� exp�− 1

2 s
2 − sc� where c x= c1 + c2. In

this case a simple integration verifies this is a probability density. In Section 3.2 we
give a discrete approximation argument which shows how (1) arises. The proof of
Theorem 1 is completed in Section 4.4.

The reason we restrict junction degrees to be 3 is that this property holds auto-
matically in the limit of the discrete approximations. We do not know whether there
are analogously well-behaved families of probability measures on sets of trees with
edge-lengths without this restriction.

Call (1) the basic formula. Note that we allow ci = 0, in which case we interpret
00 = 1. Then (1) implies

if ci = 0 then vertex i is a leaf in Sc: (2)

We choose the symbol S for this type of random tree with edge-lengths partly by
analogy with Steiner trees (which also have the feature of extra degree-3 vertices),
and partly because we will later interpret S as a spanning subtree within an ICRT.

Our emphasis is on obtaining explicit distributional formulas for quantities asso-
ciated with the random tree Sc. For t ∈ T�I� we shall consider the total edge length
L�t� x= ∑e∈E�t� le and the total excess degree D�t� x= ∑I

i=1�Dit − 1�. We shall give
explicit formulas for the distributions of

• L�Sc�: Corollary 9(i);

• D�Sc�: Proposition 10(ii);

• shape�Sc�: Proposition 7

and associated joint distributions. The derivations use an enumeration of trees in
T�I� by degree sequence, Proposition 8.

It is convenient to record here two elementary counting formulas involving the
total excess degree D�t�. Here # denotes cardinality.

#E�t� = 2I − 3−D�t�; (3)
#�unlabeled vertices of t� = I −D�t� − 2: (4)

Many natural questions involve the subtree of Sc spanned by some subset V of
two or more elements of �I�. Denote this subtree of Sc by S V

c . For example, the
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distance between i and j in Sc is the length of S
�i; j�

c : Whether or not k is on
the path from i to j is a question involving the shape of S

�i; j; k�
c , and so on. Let

hubs�S V
c � be the set of labeled vertices of S V

c . So hubs�S V
c � is a random set with

V ⊆ hubs�S V
c � ⊆ �I�. Given that hubs�S V

c � = H regard S V
c as a random element

of TH .
The distribution of S V

c is determined by the following theorem.

Theorem 2. For c ∈ C let Sc be a T�I�-valued random tree with the distribution
defined by (1). Let S V

c be the subtree of Sc spanned by some subset V of two or more
elements of �I�. Then for each H with V ⊆ H ⊆ �I� and each t ∈ TH such that t is
spanned by V :

P
(
hubs�S V

c � = H; shape�S V
c � = t; lengths�S V

c � ∈ �l; l+ dl�)
=
( ∏
h∈H

c
Dht−1
h

)
�s + cH� exp�− 1

2 s
2 − sc�dl; l ∈ �0;∞�E�t�; (5)

where l x= �le; e ∈ E�t��, s x=∑e∈E�t� le, cH x=
∑
h∈H ch, and c x= c�I�.

Call (5) the master formula. Note that for V = H = I the master formula reduces
to the basic formula. Though the master formula is in principle determined by the
basic formula via appropriate summations and integrations, these sums and integrals
are not easy to evaluate except in special cases. Rather, the master formula is
derived in Section 3.2 by a discrete approximation argument which parallels the
derivation of the basic formula.

To illustrate a consequence of the master formula, consider for j; k ∈ �I� the
distance Ljk�Sc� between vertices j and k in Sc. In Section 6 we obtain the following
remarkable formula:

Corollary 3. For distinct j; k ∈ �I� and s > 0 x
P
(
Ljk�Sc� > s

) = e−�1/2�s2−sc ∏
i∈�I�\�j; k�

�1+ cis�: (6)

That is to say, Ljk�Sc� has the same distribution as the minimum of I + 1 inde-
pendent random variables Wi; 0 ≤ i ≤ I where W0 has the Rayleigh distribution
P�W0 > s� = e−�1/2�s2

, while Wi has the exponential �ci� distribution P�Wi > s� =
e−cis for i ∈ �j; k� and the gamma �2; ci� distribution P�Wi > s� = e−cis�1+ cis� for
i /∈ �j; k�. It is only in the simplest case when cj = ck = 0 that we are able to give
a direct probabilistic derivation of this result. This derivation, given in Section 7.3,
is based on a construction of Sc related to the interpretation of this random tree as
a subtree of an ICRT.

3. DISCRETE TREES AND THE CONVERGENCE ARGUMENT

3.1. Inhomogeneous Random Discrete Trees

We quote two results about discrete trees. For a finite set A write #A for the
number of elements of A, and write UA for the set of all �#A�#A−2 discrete trees
with vertex-set A.
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Lemma 4. [16] Associated with each probability distribution p = �pa� on a finite set
A is a probability distribution on UA:

P�U = u� = ∏
a∈A

pDau−1
a ; u ∈ UA; (7)

where Dau is the degree of a in u.

Call U a p-tree. As discussed by Pitman [16], the fact that (7) defines a probability
distribution without any extra normalization constant amounts to Cayley’s multino-
mial expansion over trees. See [16, 18–20] for various applications of p-trees and
associated random forests.

Lemma 5. [16] Let U be a p-tree labeled by a finite set A. Let UF denote the subtree
of U spanning a subset F of A with #F ≥ 2. Then for every tree u labeled by a finite
subset V �u� of A, such that u is spanned by F :

P�UF = u� =
( ∏
v∈V �u�

p
Dvu−1
v

)( ∑
v∈V �u�

pv

)
: (8)

3.2. The Convergence Argument

We now show how the basic formula and the master formula follow from Lemmas
4 and 5 by discrete approximation.

Fix c = �c1; : : : ; cI� ∈ C and recall
∑
i ci = c. For sufficiently large n, define a

probability distribution p�n� on �n� by

p
�n�
i = max

(
ci/n

1/2; 1/n3/4); 1 ≤ i ≤ I
= qn; I + 1 ≤ i ≤ n; (9)

where qn = �1 −
∑I

1 p
�n�
i �/�n − I�. Let Un be the associated U�n�-valued random

p�n�-tree. Write s�Un� for the subtree of Un spanned by �I�. We regard s�Un� as
taking values in T̄�I�, where T̄�I� is defined like T�I� but with the condition that
unlabeled vertices have degree 3 replaced by the condition that unlabeled vertices
have degree 3 or more. Thus for each u ∈ U�n� the tree s�u� ∈ T̄�I� is defined as
follows. First, let s′�u� be the subtree of u spanned by �I�, regarded as an element
of UF where F with �I� ⊆ F ⊆ �n� is the set of all vertices of u which lie on the
path in u joining i and j for some i; j ∈ �I�. Let J be the set of all j ∈ �n� \ �I� such
that j is a vertex of degree 3 or more in s′�u�. Let s′′�u� be the tree in T̄�I�∪J , with
all labeled vertices, with an edge joining i to j of length m iff there is a path of m
edges of u from i to j via m− 1 vertices of degree 2 in s′�u�. Finally, let s�u� ∈ T̄�I�
be s′′�u� with all vertices in J delabeled.

Proposition 6. Fix t ∈ T�I� and l∗ = �l∗e; e ∈ E�t��. Let s x= ∑e∈E�t� l∗e . As n→ ∞
and l ranges over vectors of positive integers with n−1/2l→ l∗,

P
(
shape�s�Un�� = t; lengths�s�Un�� = l

)
(10)

=
(( I∏

i=1

c
Dit−1
i

)
�s + c�e−�1/2�s2−sc + o�1�

)
n−#E�t�/2: (11)
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Proof. For a given t ∈ T�I� and lengths l = �le; e ∈ E�t��, each unrooted tree
u labeled by �n� such that shape�s�u�� = t and length�s�u�� = l have the same
number of vertices in �n� \ �I�, say v which is given by v = ∑e le + 1 − I, and the
same number of junction vertices in �n� − �I�, say j. Since the number of such trees
u is

�n− I�v x= �n− I��n− I − 1� · · · �n− I − v + 1�
by application of Lemma 5, the probability in (10) equals

�n− I�v
[ I∏
i=1

(
p
�n�
i

)Dit−1
]
qv+jn

( I∑
i=1

p
�n�
i + vqn

)
: (12)

Let dI x=
∑I
i=1�Dit − 1�. Note that(

p
�n�
i

)Dit−1 = (cDit−1
i + o�1�)n−�Dit−1�/2:

In the limit regime with v ∼ s√n; (12) is asymptotically([ I∏
i=1

c
Dit−1
i

]�n− I�v
�n− I�v

(
1− c/√n)v+j(c + v/√n)+ o�1�)n−�dI+2j+1�/2:

By (3) and (4) we have dI + 2j + 1 = #E�t�. Since v + j ∼ s√n this expression is
asymptotically equivalent to that displayed in (11).

Proof of Theorems 1 and 2. The coefficient of n−#E�t�/2 on the right side of (11)
is (1). Since the left side of (11) is a probability measure, it easily follows that (1)
is the density of a measure with total mass µ ≤ 1, and that the property µ = 1 is
equivalent to

(i) P�s�Un� ∈ T̄�I� \ T�I�� → 0 and
(ii) �n−1/2l∗�s�Un��; n → ∞� is stochastically bounded above, and �n−1/2

l∗�s�Un��; n → ∞� is stochastically bounded below, where l∗�s� and l∗�s�
denote the longest and shortest edge-lengths of s.

It would be possible to verify (i) by modifying a similar argument in [6], and to
verify (ii) by estimating tails in (12)—but the details are messy. Instead, we give
an analytic verification that µ = 1 in Section 4.4. This establishes Theorem 1 along
with properties (i) and (ii). To prove Theorem 2, for V ⊂ �I� let sV �Un� be the
subtree of Un spanned by V . The argument above represents Sc as a weak limit
of s�Un� with rescaled edge-lengths, which implies that the spanning subtree S V

c
appears as the weak limit of sV �Un� with rescaled edge-lengths. Repeating the proof
of Proposition 6 for sV �Un� in place of s�Un� yields the following.

For each H with V ⊆ H ⊆ �I� and each t ∈ TH such that t is spanned by V ; for
each l∗ = �l∗e; e ∈ E�t�� with s =∑e l

∗
e , and each n−1/2l→ l∗:

P
(
hubs�sV �Un�� = H; shape�sV �Un�� = t; lengths�sV �Un�� = l

)
=
( ∏
h∈H

c
Dht−1
h �s + cH� exp

(− 1
2 s

2 − sc)+ o�1�)n−#E�t�/2:
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So to deduce the equality in (5) it suffices to show that no mass is lost in the limit,
i.e., to establish the analogs of (i) and (ii) for �sV �Un��. But these are immediate
consequences of (i) and (ii) for �s�Un��.

4. DISTRIBUTIONS ASSOCIATED WITH SS c

4.1. Distribution of the Shape

For m = 1; 2; : : : and x > 0 define

9m�x� x=
∫ ∞

0
sm−1e−�1/2�s

2−sx ds (13)

and note the recursion

9m+1�x� + x9m�x� = �m− 1�9m−1�x� �m > 1� (14)

obtained via integration by parts. The function 9m�x� is a variation of the repeated
integral of the error function, with well known expressions in terms of parabolic
cylinder functions or the confluent hypergeometric function [1, 7.2].

Proposition 7. If I ≥ 3 then for each t ∈ T�I� with m edges,

P
(
shape�Sc� = t

) = ( I∏
i=1

c
Dit−1
i

)
9m−1�c�
�m− 2�! :

Proof. Consider t ∈ T�I� with #E�t� = m. Recall L�t� x= ∑
e∈E�t� le denotes the

total edge length of t. By integration of (1) over all length vectors with total length s,

P
(
shape�Sc� = t; L�Sc� ∈ ds

) = ( I∏
i=1

c
Dit−1
i

)
sm−1

�m− 1�!�s + c�e
−�1/2�s2−sc ds (15)

(We write L�Sc� ∈ ds to mean L�Sc� ∈ �s; s + ds�.) Integrating out s and applying
(14) gives the stated formula.

4.2. Enumeration of Spanning Trees by Degree Sequence

We start with an enumeration which is the basis of all subsequent calculations.

Proposition 8. For each 0 ≤ d ≤ I − 2 and each vector of non-negative integers
�di; 1 ≤ i ≤ I� with

∑
i di = d, let T �d1; : : : ; dI� be the set of trees t ∈ T�I� such that

Dit − 1 = di for all 1 ≤ i ≤ I. Then

#T �d1; : : : ; dI� =
(

d

d1; : : : ; dI

) �2I − d − 4�!
d!�I − d − 2�!2d−I+2: (16)
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Proof. According to Cayley’s multinomial theorem [7, 20, 21], for d = I − 2 the
multinomial coefficient in (16) is the number of trees labeled by �I� in which the
excess degree of vertex i is di for each i ∈ �I�. For a tree t ∈ T �d1; : : : ; dI� let u
be the number of unlabeled vertices of t. By (4), u = I − d − 2. Let T̂ �d1; : : : ; dI�
be the set of all trees labeled by �I + u� in which vertex i has excess degree di
for 1 ≤ i ≤ I and vertex I + j has excess degree 2 for 1 ≤ j ≤ u. By Cayley’s
multinomial theorem,

#T̂ �d1; : : : ; dI� =
(

d + 2u
d1; : : : ; dI; 2; : : : ; 2

)
= �2I − d − 4�!
d1! · · ·dI!2I−d−2 : (17)

Because the unlabeled vertices of a tree t ∈ T�I� are implicitly labeled by their
locations in t relative to the vertices in I, the delabeling map from T̂ �d1; : : : ; dI� to
T �d1; : : : ; dI� is u! to 1, and (16) follows by dividing both sides of (17) by u!.

Recall that for a tree t ∈ T�I�:

D�t� x=
I∑
i=1

�Dit − 1�

is the excess degree of t. The set of possible values of the excess degree is
�0; 1; : : : ; I − 2�. Sum (16) over all �di; 1 ≤ i ≤ I� with

∑
i di = d and use the

multinomial theorem to see that

#T�I� =
I−2∑
d=0

Id
�2I − d − 4�!2d−I+2

d!�I − d − 2�! ; (18)

where the dth term is the number of t ∈ T�I� with excess degree d.

4.3. Distribution of the Total Length

For a tree t with edge lengths l = �le� write

L�t� x= ∑
e∈E�t�

le

for the total edge-length of t. The density of L�Sc� induced by (1) will now be
derived. It will be checked in the next section that this density integrates to 1 for
all choices of I and c. This constitutes a proof of Theorem 1, as the only point in
doubt is the value of a normalization constant. Let �di; 1 ≤ i ≤ I� be non-negative
integers with

∑
i di = d ≤ I − 2. (15) and Proposition 8 imply that for s > 0:

P
(
Di�Sc� − 1 = di; 1 ≤ i ≤ IyL�Sc� ∈ ds

)
/ds

=
(

d

d1; : : : ; dI

)( I∏
i=1

c
Dit−1
i

)
1

�I − 2�!
(
I − 2
d

)
× 2d−I+2s2I−d−4�s + c�e−�1/2�s2−sc: (19)
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The multinomial theorem gives

P
(
D�Sc� = d;L�Sc� ∈ ds

)
/ds

= c
d2d−I+2

�I − 2�!
(
I − 2
d

)
s2I−4−d�s + c�e−�1/2�s2−sc: (20)

Note that this joint distribution depends only on I and c x=∑I
i=1 ci. Now sum over

d to deduce the formula for the density of L�Sc� stated in part (i) of the follow-
ing corollary of Theorem 1. The remaining parts of the corollary then follow easily.
The corollary shows how to construct a random tree Sc with the distribution de-
fined by the basic formula by a five step process from more elementary ingredients.
For instance, for modest values of I it would be quite feasible to simulate Sc by
computer using this construction.

Corollary 9. For I ≥ 2 and c x= �c1; : : : ; cI� with ci ≥ 0 and
∑
i ci = c:

(i) the density of L�Sc� at s > 0 is

P
(
L�Sc� ∈ ds

)
/ds = 1

�I − 2�!
(
s

2

)I−2

�s + 2c�I−2�s + c�e−�1/2�s2−scy (21)

(ii) the law of D�Sc� given L�Sc� = s is binomial �I − 2; 2c/�s + 2c��:

P
(
D�Sc� = d �L�Sc� = s

) = (I − 2
d

)(
2c

s + 2c

)d( s

s + 2c

)I−2−d
y (22)

(iii) for c > 0, given L�Sc� = s and D�Sc� = d, the joint law of the �Di�Sc� −
1; 1 ≤ i ≤ I� is multinomial with parameters d and �ci/c; 1 ≤ i ≤ I�;

(iv) given L�Sc� = s and Di − 1 = di for 1 ≤ i ≤ I, the shape of Sc is picked
uniformly at random from the set T �d1; : : : ; dI� of all trees in TI with the
given excess degree sequence, as enumerated in (16);

(v) given L�Sc� = s and that the shape of Sc equals t with m x= 2I − 3− d edges,
the m segment lengths of Sc are distributed as the spacings between m − 1
independent uniform �0; s� variables.

From (3) and (ii) above, for the number #E�Sc� of edges of Sc, we find that the
distribution of #E�Sc� − I + 1 given L�Sc� = s is binomial �I − 2; s/�s + 2c�. Also,
(ii) and (iii) combine to show that

the conditional distribution of �I − 2 −DyDi; i ∈ �I�� given L�Sc� = s is
multinomial with parameters I − 2 and �s/�s + 2c�y 2ci/�s + 2c�; i ∈ �I��.

Several further implications of the corollary are spelled out in the following sections.

4.4. Checking the Constant of Integration

Writing fI; c�s� for the right side of (21), it suffices to verify that for fixed c ≥ 0:∫ ∞
0
fI; c�s�ds = 1; 2 ≤ I <∞: (23)
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But for 0 ≤ z < 1 we can compute

∞∑
I=0

zI
∫ ∞

0
fI+2; c�s�ds =

∫ ∞
0

∞∑
I=0

zI

I!

(
s

2

)I
�s + 2c�I�s + c�e−�1/2�s2−sc ds

=
∫ ∞

0
�s + c� exp

(−�1− z�( 1
2 s

2 + sc))ds = 1
1− z

and (23) follows.

4.5. Distribution of the Excess Degree

Corollary 9 specified the distribution of the length of Sc and the conditional law
of the excess degrees Di�Sc� given the length. Integrating out the length yields
the two formulas stated in the following proposition, which can also be deduced
from Propositions 8 and 7. Recall that D�Sc� x=

∑I
i=1Di�Sc� and that this number

determines both the number of edges of Sc and the number of unlabeled vertices
of Sc via (3) and (4). The distribution of either of these numbers can be read from
that of D�Sc�.

Proposition 10. Let I ≥ 3.

(i) For each 0 ≤ d ≤ I − 2, and each vector of non-negative integers �di; 1 ≤ i ≤ I�
with

∑
i di = d,

P
(
Di�Sc� − 1 = di; 1 ≤ i ≤ I)
=
(

d

d1; : : : ; dI

)�2I − d − 4�2d−I+2

d!�I − d − 2�! 92I−d−4�c�
I∏
i=i
c
di
i y

(ii)

P
(
D�Sc� = d

) = �2I − d − 4�2d−I+2

d!�I − d − 2�! cd 92I−d−4�c�; 0 ≤ d ≤ I − 2: (24)

Note the implication of (ii) that the distribution of D�Sc� depends only on the
sum c of the components of c. The consequence of (ii), that the right side of (24)
sums to 1 as d ranges from 0 to I − 2, can also be checked using (14).

4.6. A Coincidence in Distribution

There is a remarkable coincidence between the distribution of D�Sc� displayed in
Proposition 10, and a distribution derived from sampling the excursion intervals of
a Brownian motion B x= �Bt; 0 ≤ t ≤ 1�. Let �Lt; t ≥ 0� be the usual local time
process of B at 0. Let Kn be the number of equivalence classes of the random par-
tition of �n� defined by the random equivalence relation i ∼ j iff there is no zero
of B between times Ui and Uj , where the Ui are i.i.d. uniform �0; 1� random vari-
ables independent of B. As observed in [17], L1 = limn→∞Kn/

√
2n almost surely.

It can be deduced from results of [15, 17] that for each n = 2; 3; : : : the conditional
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distribution of Kn given L1 = c is identical to the distribution of D�Sc� + 1 as de-
termined by (24) for any c = �c1; : : : ; cI� with I = n + 1 and

∑I
i=1 ci = c. Due to

results of [4], this distribution of Kn given L1 = c can also be interpreted as the
distribution of number of components of the partition of �n� generated as follows:
first construct a Brownian CRT, then pick n points X1; : : : ;Xn uniformly at random
from the mass measure of the CRT, and partition �n� by the random equivalence
relation i ∼ j iff the path from Xi to Xj in the CRT contains no point of a Poisson
process of rate c per unit length on the skeleton of the tree. As explained in Sec-
tion 7, the subtree of the Brownian CRT spanned by Xi; 1 ≤ i ≤ n is a copy of Sc
for c a vector of zeros of length n. These observations can be developed to give an
essentially combinatorial proof of the coincidence in distribution between Kn given
L1 = c and D�Sc� + 1 for c = �c1; : : : ; cI� with I = n+ 1, but the argument is tricky
and will not be attempted here.

5. SCALING AND LIMITING CASES OF c

5.1. Some Specific Limits

For a tree s with edge-lengths �le� and for 0 < a < ∞ write a ⊗ s for the tree
whose edge-lengths are �ale�. In this section we shall see that in several limit cases
rescaled edge-lengths become i.i.d. with exponential distribution.

Case 1. Consider c = �c1; : : : ; cI� = �α; 0; 0; : : : ; 0�. Write starI for the discrete
tree in which each vertex 2 ≤ i ≤ I is connected to vertex 1 by an edge. Then as
α→∞ there is the convergence in distribution

α⊗ Sc
d→ starI�with independent exponential(1) edge-lengths�: (25)

To see why, the basic formula implies

P
(
shape�Sc� = starI; lengths�Sc� ∈ �l; l+ dl�)/dl = αI−2�α+ s� exp

(− 1
2 s

2 − sα)
where s =∑e le. Multiplying edge-lengths by α gives

P
(
shape�Sc� = starI; α× lengths�Sc� ∈ �l; l+ dl�)/dl

=
(

1+ s

α2

)
exp

(
− s2

2α2 − s
)
:

As α→∞ this density tends to e−s, which is the joint density of I − 1 i.i.d. expo-
nential (1) variables �ηe; e ∈ E�starI��.

Case 2. c = �c1; : : : ; cI� = �α; α; α; : : : ; α�. Write uI for the random tree with
edge-lengths obtained by first picking a discrete tree t ∈ U�I� uniformly from all
II−2 trees in U�I� and then making the edge-lengths be independent exponential
(1). Then

Iα⊗ Sc
d→uI as α→∞: (26)
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To see why, for t ∈ U�I� the basic formula implies

P
(
shape�Sc� = t; lengths�Sc� ∈ �l; l+ dl�)/dl = αI−2�Iα+ s� exp

(− 1
2 s

2 − sIα);
where s =∑e le. Multiplying edge-lengths by Iα gives

P
(
shape�Sc� = t; Iα× lengths�Sc� ∈ �l; l+ dl�)/dl

= 1
II−2

(
1+ s

I2α2

)
exp

(
− s2

2I2α2 − s
)

→ 1
II−2 e

−s

= P�shape�uI� = t; lengths�uI� ∈ �l; l+ dl��/dl:

Case 3. c = �c1; : : : ; cI� = �0; 0; 0; : : : ; 0�. By (2) and symmetry in the basic for-
mula, shape�Sc� is uniform on the subset T 0

�I� ⊂ T�I� of discrete trees in which each
labeled vertex has degree 1. It is well known (and a special case of Proposition 8)
that

#T 0
�I� =

�2I − 4�!
�I − 2�!2I−2 = �2I − 5� × �2I − 7� × · · · × 3× 1:

Using Corollary 9(i),

P
(
L�Sc� ∈ ds

)
/ds = 1

�I − 2�!
(
s2

2

)I−2

se−s
2/2:

It follows that L�Sc�/
√

2I
d→ 1 as I → ∞. From Corollary 9(v) and routine prop-

erties of spacings, for fixed k the joint distribution �le1
; : : : ; lek� of any k of the 2I

edge-lengths satisfies: as I →∞:

√
2I
(
le1
; : : : ; lek

) d→ independent exponential (1):

5.2. Limits of Degree Distributions

Recall that the excess degree D�Sc� is between 0 and I − 2. The next result, which
follows by routine arguments from the exact formulas in Corollary 9, indicates the
asymptotic regime in which the excess degree is between these extremes.

Corollary 11. Consider a sequence of vectors c = �c1; : : : ; cI�; c =
∑
i ci, such that

I →∞y c/
√

2I → α ∈ �0;∞�:

Then

(i) L�Sc�/
√

2I
p→√α2 + 1− α.
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(ii)
D�Sc�
I

p→ 2α√
α2 + 1+ α .

(iii) If also ci ∼ λ/
√

2I for some 0 ≤ λ ≤ ∞ then

Di�Sc� − 1
d→Poisson

(
λ√

α2 + 1+ α

)
interpreting the limit as ∞ when λ = ∞.

6. APPLICATIONS OF THE MASTER FORMULA

Throughout Section 6, c x= �c1; : : : ; cI� ∈ C is fixed and
∑
i ci = c.

By application of Proposition 8 and appropriate summations and integrations,
using the master formula in place of the basic formula, there is the following analog
of (19):

Proposition 12. Let V ⊆ �I� have #V ≥ 2. Let S V
c be the subtree of Sc spanned

by V . Then for each H with V ⊆ H ⊆ I, each possible excess degree sequence �dh; h ∈
H� of non-negative integers with

∑
h dh = d, where 0 ≤ d ≤ #H − 2, and each s > 0 x

P
(
hubs�S V

c � = H;Dh�S V
c � − 1 = dhfor h ∈ H;L�S V

c � ∈ ds�/ds

= s
2#H−4−d(∏

h∈H c
dh
h

) �s + cH�e−�1/2�s2−sc(∏
h∈H dh!

)�#H − d − 2�!2#H−d−2
: (27)

Proof of Corollary 3. It is enough to consider the case i = 1 and j = 2. When
V = �2�, the spanning subtree S

�2�
c consists of a path from vertex 1 to vertex 2

passing through some set A ⊆ �I� \ �2� of other vertices. So (27) gives

P
(
hubs�S �2�c � = �2� ∪A;L�S �2�c � ∈ ds

)
/ds = s#A5A�s + c1 + c2 + cA�e−�1/2�s

2−sc;

where 5A x=
∏
i∈A ci and cA x=

∑
i∈A ci. Summing over all A ⊆ �I� \ �2� gives a

formula for the density of L�S �2�c � at s which can be simplified by application of
the following elementary identities of polynomials in variables xb; b ∈ B applied to
B = �I� \ �2�: ∑

A⊆B

∏
a∈A

xa =
∏
b∈B
�1+ xb�y

∑
A⊆B

(∏
a∈A

xa

)(∑
b∈A

xb

)
=
(∑
a∈B

x2
a

1+ xa

) ∏
b∈B
�1+ xb�:

The result of this simpification is

P
(
L�S �2�c � ∈ ds

)
/ds =

(
s + c1 + c2 +

I∑
i=3

c2
i t

1+ cit
)
e−�1/2�s

2−sc
I∏
j=3

�1+ cjs�

= − d
ds

(
e−�1/2�s

2−sc
I∏
j=3

�1+ cjs�
)

(28)

which yields Corollary 3.
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As will be described in Section 7.4, there is some motivation for studying the
length of the subtree S

�k�
c when c1 = c2 = · · · = ck = 0 but ci > 0 for k < i ≤ I.

For k = 2 this is the special case c1 = c2 = 0 of Corollary 3. In principle we can
derive the length distribution from the master formula for general k. But the result
is complicated, so we record only the case k = 3. The subtree spanned by �1; 2; 3�
must have three edges meeting at a vertex of degree 3, which might be hub i for
some i > 3, or an unlabeled junction point. Applying the master formula to each
possibility yields the following conclusion:

Corollary 13. If c1 = c2 = c3 = 0 then

P
(
L
(
S �3�c

) ∈ ds)/ds = ∑
A⊆�I�\�3�

1
2 s

#A+15A�s + cA�2e−�1/2�s
2−sc;

where the Ath term equals P�hubs�S �3�c � = �3� ∪A; L�S �3�c � ∈ ds�/ds.

7. INTERPRETATION AS SPANNING SUBTREES IN THE ICRT

7.1. Some Abstract Theory

We first outline very briefly some abstract theory. Let v1; : : : ; vn be a uniform
random ordering of the vertices of some n-vertex random tree with edge-lengths.
For 2 ≤ k ≤ n let Rk be the subtree spanned by �v1; : : : ; vk�, with these ver-
tices relabeled as �1+; 2+; : : : ; k+� and other vertices unlabeled. Then the family
�Rky 2 ≤ k ≤ n� automatically has the following properties:

(i) The distribution of Rk is invariant under permutations of the labels
�1+; 2+; : : : ; k+�.

(ii) Rk is distributed as the subtree of Rk+1 spanned by �1+; 2+; : : : ; k+�.

Now suppose we are given an infinite family �Rky 2 ≤ k <∞� satisfying (i) and (ii),
and such that each vertex j+ is a leaf of Rk for k ≥ j. Under extra technical con-
ditions, [2] Theorem 3 asserts there exists a representing continuum random tree T .
Roughly, a realization of T is a tree with edge-lengths with an uncountable set of
leaves, and with a nonatomic probability measure µ on the leaves. One can there-
fore pick (conditionally on T and µ) independent leaves v1; v2; : : : with distribution
µ, and the “representation” is that

Rk is distributed as the subtree of T spanned by �v1; : : : ; vk�: (29)

To see the relevance of this abstract theory to our model, consider c = �c1; : : : ; cI�
where 0 ≤ I < ∞ and ci > 0 for 1 ≤ i ≤ I. For k ≥ 0 write c�+k� for the vector
obtained by appending k zero terms to c:(

c�+k�)
i
= ci; i ≤ I
= 0; I + 1 ≤ i ≤ I + k: (30)
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To avoid trivialities, suppose I + k ≥ 2. In the associated tree Sc�+k� relabel vertices
I + 1; : : : ; I + k as 1+; : : : ; k+. Write Rc

k for the subtree of Sc�+k� spanned by
�1+; : : : ; k+�. The vertices j+ are leaves by (2). The family �Rc

ky 2 ≤ k < ∞�
satisfies (i) because, by symmetry in the basic formula, the distribution of Sc�+k� is
invariant under permutations of the labels �1+; 2+; : : : ; k+�. Similarly, to check
(ii) it is enough to check Sc�+k� is distributed as the subtree of Sc�+k+1� spanned
by �1+; 2+; : : : ; k+�. This follows from the master formula, since the hubs of this
subtree are evidently �I� ∪ �1+; : : : ; k+�.

Thus by checking the technical conditions in [2] one could establish the existence
of a representing continuum random tree, say T̂ c. However, Aldous and Pitman [3]
give a more algorithmic construction (reviewed in Section 7.2) of an inhomogeneous
continuum random tree (ICRT), which we shall see (Proposition 14) is the same
object up to parametrization. As described in Section 7.4, the problem studied in
[3] motivates some difficult distributional questions concerning Sc.

7.2. The Line-Breaking Construction

This construction is from [3], Section 2. Fix ´ = �θ1; θ2; : : : ; θI� with 0 ≤ I < ∞,
with each θi > 0 such that

∑
i θ

2
i ≤ 1. Define a = 1−∑i θ

2
i . If a > 0 let ��Uj; Vj�;

1 ≤ j <∞� with 0 < U1 < U2 < · · · be the points of a Poisson point process of rate
a per unit area on the octant ��u; v�x 0 < v < u < ∞�. For each i ≥ 1 such that
θi > 0, let 0 < ξi; 1 < ξi; 2 < · · · be the points of a Poisson point process on �0;∞�
of rate θi per unit length. These are the “random” ingredients of our construction.
The construction is illustrated in Figures 2, 3, and 4. In outline, we cut the line

Fig. 2.
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Fig. 3.

�0;∞� into finite-length segments and reassemble the segments as “branches” of a
tree, where each point of the tree is labeled by some 0 ≤ x <∞, and then pass to
a completion. Here are the details.

Call each point Uj a 0-cutpoint, and say that Vj is the corresponding joinpoint.
Call each point ξi; j with θi > 0 and j ≥ 2 (note the 2) an i-cutpoint, and say
that ξi; 1 is the corresponding joinpoint. Note that there are (with probability 1, a
qualification in effect throughout the construction) only finitely many cutpoints in
any finite interval �0; x�, because for i ≥ 1 the mean number of i-cutpoints in that
interval equals θix− �1− exp�−θix�� ≤ θ2

i x
2. We may therefore order the cutpoints

as 0 < η1 < η2 < · · ·, where ηk→∞ as k→∞. Figure 2 illustrates the cutpoints,
with each ηk identified as some Uj or ξi; j .

Fig. 4.



192 ALDOUS AND PITMAN

We build the tree by starting with the branch �0; η1� and then, inductively on
k ≥ 1, attaching the branch �ηk;ηk+1� to the joinpoint η∗k corresponding to the
cutpoint ηk. Figure 3 illustrates the attachment of the first eight branches, using
the realization in Figure 2. The reader will find it helpful to work through the
construction in Figure 3: the sequence of attachments of branches is

�0;U1�; �V1;U2�; �V2; ξ1; 2�; �ξ1; 1; ξ4; 2�; �ξ4; 1;U3�;
�V3; ξ2; 2�; �ξ2; 1; ξ1; 3�; �ξ1; 1;U4�:

In [3] the emphasis was on continuing this construction over the infinite line
�0;∞� to yield a realization of an ICRT T´, but for the purposes of this paper
we need only consider finite numbers of branches. Given ´ and k ≥ 0, stop the
construction at the first cutpoint ηJ such that J ≥ max�1; k− 1� and such that the
interval �0; ηJ� contains each ξi; 1; 1 ≤ i ≤ I. This gives a tree with edge lengths,
as in Figure 3. For each 1 ≤ i ≤ I, relabel the point ξi; 1 as hub i. And for each
1 ≤ j ≤ J relabel point ηj−1 as leaf j+ (take η0 = 0). This yields a tree with edge-
lengths (see Figure 4) with I hubs and with some number J ≥ k of leaves j+ which
span the tree. Finally, define S̃´�+k� to be the subtree spanned by the hubs �I� and
the subset of leaves �1+; : : : ; k+�, and define S̃´ to be the subtree spanned by the
hubs �I� only.

7.3. Consistency of the ICRT and the Basic Formula

Proposition 14 shows that a rescaling of the line-breaking construction gives a ran-
dom tree with edge-lengths distributed according to the basic formula. The proof
uses a result from Camarri and Pitman [6] which exhibits the partial trees in the
line-breaking construction as limits of spanning subtrees of p-trees.

Proposition 14. Let c = �c1; : : : ; cI�, where 0 ≤ I <∞ and ci > 0 for each 1 ≤ i ≤
I. Set θ x= �1+∑i c

2
i �−1/2.

For any k ≥ 0 let S̃θc�+k� denote the random tree constructed as in the previous
section from parameters θi x= θci, and let Sc�+k� be the tree whose distribution is
specified by the basic formula for the vector c�+k� at (30). Then

Sc�+k�
d= θ⊗ S̃θc�+k�;

where ⊗ is the edge-scaling map from Section 5.

Equivalently, the continuum random tree T̂ c whose construction was outlined in
Section 7.1 does indeed exist and can be represented as T̂ c = θ⊗ T θc where T θc is
the ICRT T ´ of [3] for the vector ´ x= θc, with θi x= 0 for i > I.

Proof. Given c�+k� ∈ C, define p�n� as at (9) in terms of c�+k�. Write σn =√∑
i�p�n�i �2. So

σ2
n =

I∑
i=1

c2
i

n
+ o

(
1
n

)
+ �n− I�q2

n:
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Now �n− I�2q2
n = 1−∑I

i=1 p
�n�
i → 1 and so

σ2
n =

I∑
i=1

c2
i

n
+ o

(
1
n

)
+ 1
n
+ o

(
1
n

)
∼ 1
n

(
1+

I∑
i=1

c2
i

)
= 1
nθ2

and

p
�n�
i

σn
→ θci; 1 ≤ i ≤ Iy p

�n�
i

σn
→ 0; I + 1 ≤ i ≤ I + k:

Recall from Section 3.2 that Un is the random p�n�-tree and s�Un� is the subtree of
Un spanned by �I + k�. According to [6, Corollary 15]

σn ⊗ s�Un�
d→ S̃θc�+k�:

But Proposition 6 implies

n−1/2 ⊗ s�Un�
d→Sc�+k�:

Since n−1/2 ∼ θσn, the proposition follows.

Alternative Proof of a Special Case of Corollary 3. Suppose cj = ck = 0. By relabel-
ing, we can assume j = 1; k = 2. Given c, let θ x= �1+∑i c

2
i �−1/2 as in Proposition

14, and consider the line-breaking construction of S̃θc�+2�. The distance L̃12 be-
tween leaves 1+ and 2+ in S̃θc�+2� is just the position η1 of the first cutpoint in the
construction. So by construction

P�η1 > x� = exp
(− 1

2ax
2)∏

i

�1+ θix�e−θix;

where a = 1−∑i θ
2
i . By Proposition 14, L12

d= θL̃12. So

P�L12 > s� = P�η1 > s/θ� = exp
(
− as

2

2θ2

)∏
i

�1+ cis�e−cis: (31)

But

a

θ2 =
1−∑i�θci�2

θ2 = 1
θ2 −

∑
i

c2
i = 1

so (31) is consistent with (6).

Remark. As shown in [3], the line-breaking construction of the ICRT T ´ works not
only for finite ´ = �θ1; : : : ; θI� but also for infinite ´ = �θ1; θ2; : : :� with

∑
i θ

2
i ≤ 1.

While the combinatorial methods of this paper do not apply directly to the infinite
´, results in the infinite case can typically be deduced by approximation arguments
with finite ´. For instance, there are analogs of (6) and (28) in the infinite case with
finite sums and products replaced by infinite sums and products.
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7.4. Distributional Aspects of Eternal Additive Coalescents

Fix c ∈ C and 0 < λ <∞. For each k ≥ 2, create a Poisson (rate λ per unit length)
process of “cuts" along the edges of Sc�+k�. This creates a forest, and we can write

Yc; k�λ� = (Y c; k
i �λ�; i ≥ 1

)
for the vector of proportions of the k leaves �1+; : : : ; k+� in the different tree-
components, where the vector is written in decreasing order. It is shown in [3] that
as k→ ∞ there is a limit random vector Yc�λ�, which can also be obtained by a
construction involving cutting along the skeleton of the continuum random tree T̂ c.
The process �Yc�λ�; 0 < λ < ∞� arises in [3] as the solution to a certain problem
(“find all extreme versions of the additive coalescent”), but this solution is not very
explicit, and it would be desirable to understand the distribution of Yc�λ� for given
c and λ. In the special case c = 0 a description is given in [4], but the general case
seems intractible. Some partial information about the distribution can be obtained
as follows. For k ≥ 2 write

M
�k�
c �λ� = E

∑
i

(
Y c
i �λ�

)k
:

Then by (29) we can reinterpret M�k�c �λ� as the probability of the event that
�1+; : : : ; k+� are all in the same component of Sc�+k�. This event occurs if and
only if there are no cuts within the spanning tree of �1+; : : : ; k+�, and so

M
�k�
c �λ� = E exp

(
−λL

(
S
�+k�

c�+k�
))
;

where L�S �+k�c�+k�� is the length of the spanning tree of Sc�+k� spanned by �1+;
: : : ; k+�. This provides motivation for the study of L�S �+k�c�+k��, mentioned in Sec-
tion 6.
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