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Abstract

A general formulation is presented for continuum scalimgits of stochastic span-
ning trees. A spanning tree is expressed in this limit throagconsistent collection of
subtrees, which includes a tree for every finite set of emdpan R?. Tightness of the
distribution, asy — 0, is established for the following two-dimensional exanspléhe
uniformly random spanning tree @2, the minimal spanning tree @iZ? (with random
edge lengths), and the Euclidean minimal spanning tree aisséh process of points in
R? with densityé—2. In each case, sample trees are proven to have the followoppp
ties, with probability one with respect to any of the limgimeasures: i) there is a single
route to infinity (as was known far > 0), ii) the tree branches are given by curves which
are regular in the sense of Holder continuity, iii) the lmiaes are also rough, in the sense
that their Hausdorff dimension exceeds one, iv) there isidom dense subset B, of
dimension strictly between one and two, on the complemewhith (and only there) the
spanning subtrees are unique with continuous dependentieea@ndpoints, v) branch-
ing occurs at countably many pointsIit?, and vi) the branching numbers are uniformly
bounded. The results include tightness for the loop eramedom walk (LERW) in two
dimensions. The proofs proceed through the derivation alesiovariant power bounds
on the probabilities of repeated crossings of annuli.
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1. Introduction

For various systems of many degrees of freedom, extra insigl be derived by com-
bining methods of discrete mathematics with consideratinapired by the continuum limit
picture (see e.g.[]1] Z] 8 @ 5]). The relation between thdiouum and the discrete per-
spectives is through thecaling limit In this limit the scale on which the system’s defining
microscopiovariables can be distinguished is sent to zero, while foglspt on features man-
ifested on anacroscopic scaleThe first task addressed in this work is a general formulatio
of the continuum limit for stochastic spanning trees. Thistexce of limit measures (which
may depend on the choice of subsequence) is then establ@htbdee examples of spanning
trees, all in two dimensions. The arguments makes use ofdhergl criteria developed for
random systems of curves in Ref] [6]. We also derive someclsasiple properties of the
spanning trees in the scaling limit.

1.a Three spanning tree processes

Following are the three examples of random spanning treeghoch we focus in this
work. In each case, the tree connects a set of sit&$ imith typical nearest neighbor distance
)< 1.

UST (Uniformly Random Spanning Tree
The vertices to be connected are the sites of the regulasdaft?, and the spanning
tree is drawruniformly at randonfrom the set of spanning trees whose edges connect
nearest neighbors in the lattice.

MST (Minimal Spanning Tree
The graph is again the regular latti&®*, with edges connecting nearest neighbors. The
lengthsassociated with the edges are determinedddi/numberswhich are indepen-
dent identically distributed continuous random variablEse spanning tree is the one
that minimizes theotal edge lengtlti.e. the sum of the call numbers).

EST (Euclidean (Minimal) Spanning Trge
The vertices of the graph are given by a homogeneous Poissaegs with density
572. We let every pair of vertices be connected by an edge whosgHés the usual
Euclidean distance. The spanning tree is the one that naesrthe total edge length.
It may be noted that this spanning tree forms a subgraph o¥henoi graph of the
Poisson process. (In the Voronoi graph, a pair of verticdsked by an edge if and
only if there is a point irflR? whose two closest vertices form the given pair.)

It is unclear whether our analysis can be extended to a fauddel, the uniformly
random spanning tree on the Voronoi graph of a Poisson poatiegs. Such an extension



would require a better understanding of random walks on thesBn-Voronoi graph (see the
remark at the end of this introduction).

The scaling limitd§ — 0, can be taken either in fixed finite regions, c R<, or in
conjunction with the infinite volume limih _~ R¢. The analysis of the volume dependence
is made easier by the monotonicity structure which is disedsere in Sectiqgi 4. It is known
that for fixeds > 0 the limit A~ R¢ exists for the spanning trees considered here with either
the free (F) or the wired (W) boundary conditions. Furthememan any finite dimension the
limits coincide for these two boundary conditions refsd,[,[I0[IL[ T2]. The limiting graph,
I's(w) (with w representing the randomness inherent in the model), willdeeof cycles but
in general it need not be connected and may instead turn dnet &borestof infinite trees.

In our analysis of the spanning trees we use the fact thatcdueype drawn with the help
of rather efficient algorithms, employing two processesdiependent interest. The paths of
UST obey the statistics of tHeop-erased random walit ERW) [[4, 3], while those of MST
are related to thevasion-percolation proceq§T]. Through the former correspondence our
results return information on the scaling limit(s) (alondpsequences) of the two dimensional
LERW, which has the same distribution as the path from a peeséned origin to infinity
along the spanning tree (UST).

The relations mentioned above were already employed tolgitgdn the question of
unicity of the spanning tree. Through the relation with teRW it was shown that for UST
the infinite-volume limit a.s. consists of a single tree/ iK 4 but of infinitely many trees if
d > 4, and that in any dimension a.s. each tree has a single tapal@mnd (i.e., a single route
to infinity) [[1, B,[9]. As Benjamini and Schramm have obserggivate communication) the
situation ind = 4 is noteworthy in that in the scaling limit (= 0) there will typically be
infinitely many trees, while there is only one tree as long as0.

Less is proven about MST and EST in general, but it is kndwh [I¥[12] (see also

[[T]) that ind = 2 dimensiond’s(w) (atd > 0) a.s. consists of a single tree with a single
topological end. Regarding the upper critical dimensiba,dituation is less clear. We think it
is possible that the dimension at which the spanning treeplsaced by a forest ié. = 8 for
MST and EST with non-zero short-distance cutéft> 0, while the dimension at which the
change occurs for scaling limits of these models (d.e=, 0) is d. = 6. The heuristics behind
the first statement are discussed in rgfd. [Ip, 16] in a contéevant for MST, and essentially
the same heuristics should apply to EST. The conjectureetnimg the scaling limit is based
on the analysis of percolation clusters above the uppécariimension, discussed ip J17].

1.b Statement of the main results
LetI's(w) be the infinite-volume limit of either one of the three spagniree processes

(UST, MST, or EST) inR%, with the “short-distance cutoffs. It is an interesting question
how to describe the spanning tree/forest in terms which eemaaningful in the scaling limit
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where the set of vertices becomes denskinThe approach we take is to describe it through
the collection, denoted below b¥;(w), of all the subtrees spanning finite sets of vertices. The
benefits are:

i. the terminology makes sense even in the lifnit 0;

ii. by focusing on the connecting curves and finite subtreesaan see the tree’s “fractal
structure”, which emerges in its clearest form in the scgliimit;

iii. the approach can, in principle, be applied in any dimens

In two dimensions one could alternatively represent thesipg tree through iteuter
contour, i.e. the line separating it from the dual tree. The formalabf the scaling limit in
terms of such a random “Peano curve” was recently suggegtBemjaminiet al. [B]. Outer
contours also play a fundamental role in the broader clasamafom cluster models, which
includes UST as a limiting casé&(— 0). The analysis of such contours played an important
role in physicists’ derivation of the exact values for @dtiexponentd[18§, 19]. (Though not yet
rigorously proven, such predictions appear to be correeteRt extensions and applications
are discussed in [R0].) Let us add, therefore, that our arsiyplies constructive results also
for scaling limits of the outer contours of the spanningdrseidied here.

Thus, we describe a spanning tree/forest by means of thectloalection of all the
subtrees connecting finite collections of sites. In disicgsghe infinite volume limit it is
convenient to formulate the curves and trees in the onetpompactificatiorR? of R¢, which
we identify (via the stereographic projection) with tid&imensional unit sphere. Since this
may result in the blurring of the distinction between a spagriree and a spanning forest,
we shall formulate the difference in Definitign JL.1 below. r@erminology is built up in the
following way (a more complete discussion of the terms iggiin Section 2).

1. Acurve in Rd is, for us, an equivalence class of continuous functionsiftbe unit
interval intoR¢, modulo monotone reparametrizations. Extending this is:

2. Atree immersed inR¢ is an equivalence class of continuous functions from anpef t
standard reference trees (see Section 2),ftolt will be represented by the symbol
TN (zy, ..., zx), wherez,, ... ,zy € R? are the endpoints of the tree. A subscript
0 may be added to indicate that the tree corresponds to a matielvghort distance
cutoff, and a parameter may be added to indicate the random nature of the object.

Remark: To avoid confusion let us alert the reader that for lack antgrand our reluctance
to coin non-intuitive ones, our terminology may brush agaastablished usage. Thus, the
continuous function defining an immersed tree need not bertille, and the intersections
which occur need not be transversal, i.e., the function neeble an immersion in the standard
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sense. This notion is natural for our discussion of the sgdimit, since the trees may have
branches which only appear to intersect, when viewed ondhle &f the continuum, without

there being an intersection on the fine scale.
\X3 | 5
|
24 ES |_|
S i
31 &, % -
J
] T

Figure 1: A spanning tree on 40 x 10 grid with free boundary conditions. Highlighted is the sekt
T®(zy,...,z4). The diagram on the left shows a reference trabat can be used to parametriz&" (see

Section{P.b).

3. The space of all trees immersedHf with N endpoints is denoted here I5y"). Note
that the restriction of a tree iIf™) to R? may be a forest, if its branches pass through
infinity. The spacess™) are introduced explicitly in Sectidn 2 along with a metric in
which the distance between two immersed trees reflectsgtratture as objects based
on curves. The distance between curves is defined there stwih@&urves (or trees)
are close if they shadow each other in a metridRSrwhich shrinks at infinity. Thus
convergence isN) means in essence convergence within bounded subsifs of

4. The symbolF™) will denote a collection of immersed trees with external vertices
which forms a closed subset 8f). The space of all such closed collection$$".
(Under the induced Hausdorff metric it forms a complete aphsable metric space. )

Finally, we are ready to present our full description of arspag tree or forest as a
closed collection of finite trees graded by

Definition 1.1 1. A spanning foresor a graph(, with vertices inR? (d fixed at a value
which should be clear from the context), is represented byadeyl collectionF =
{FWMN} xs1 where:

i. foreachN < oo, the collectionF™) includes a spanning treE™) (x4, ... x,) €
SW) for eachN-tuple of vertices of ;



ii. the collection is_inclusiven the sense that for any treg ¢ F) (with some
1 < N < ), all the subtrees of are also found in the suitable elements of the
collection;

iii. for any two treesT; € F™) andT, € F™2)| there is a tree inF which contains
(in the natural sense) botlh, and7T; and has no external vertices beyond those
appearing in the two subtrees.

The symbol we use for the space of all such collectiofk igt forms a closed subset
of the product spack y~;Q2®) which we take here with the product topology.]

2. A spanning foresf is said to consist of a single spanning traeR? if every path
T (z,y) € F® with finite end-pointsr,y € R? stays within some finite region
of R%. [Equivalently (by ii): for every2 < N < oo, each of the immersed trees
TNz, ..., 2,) € F™N with finite external sitegzy,...,zx} C R? is contained
in some finite region dR?. )

3. The spanning foresk is said to be quasilocaf for any bounded region c R? all the
trees of F whose external vertices lie it are contained within some bounded domain
A(F,A) C RY

The probability distribution of UST, MST, and EST, with thieost distance cutoff as
discussed earlier, correspond to probability measuygs#F) on (2 (in the appropriate dimen-
sion). Statements concerning the scaling limits addresisslifor the measuregs(d.F), for
0 = 0, — 0. Needless to say, the existence of scaling limits even adaitgble subsequences
is a priori not obvious since the spaces discussed here are not evdly lmmapact. E.g.,
the tree branches may, in the limit, cease to be describgbtritves. Furthermore, in the
continuum limit even the most elementary features couldbg br appear to be lost: distinct
branches may fuse, giving the appearance of loops (fromdhgnuum perspective), a tree
may turn into a forest, and multiple paths may open to infiNig the stretching to infinity
of some of the connecting paths). In general, concepts wdrietobvious or proven for finite
graphs need to be re-examined.

Our main results may naturally be grouped in two parts. kofig is the first.

Theorem 1.1 In d = 2 dimensions, the following is valid for each of the spannneg fpro-
cesses presented above (UST and MSIZnand EST of density 2 onR?):

i. (Existence of limit points)rhe collection of measurgg (dF) with0 < ¢ < 1 is tight;
every sequence afs tending to0 includes a subsequenég — 0 along which the
measuresus, (dF) converge, in the sense of weak convergence for measureson th
product spaceX v QM) to a limit u(d.F).



For any of the limiting measureg;-almost every spanning foregt(w) has the following
properties:

ii. (Locality and basic structurefy(w) is quasi-local and describes a single spanning tree
onRR?,

iii. (Regularity)The branches of all the trees jA(w) are random curve€ with Hausdorff
dimensions bounded above,

dimy C < dua , (1.1)

whered,,., < 2 is non-random. Furthermore, for any < 1/2 all the curves inR?
can be simultaneously parametrized by functigf(g)( 0 < ¢ < 1) which are Hdlder
continuous of ordet, i.e., each satisfying

l9(t) — g()| < Kalw) (L4 |g&)] + gt")?) |t —t|* for aIIO§t<t’§(1 )
1.2

with the continuity modulus:, (w) common to all the branches of treesiw).

iv. (Roughnesshimost surely, all the curve€ (€ 7 (w)) are non-rectifiable, and satisfy
also the opposite bound:

dimy C > duin (1.3)

with a non-randomt,;, > 1. In particular, no branch can be parametrizedlder
continuously with an exponent less th@f,;,)

The convergence asserted for the measusesneans that

[oFmsar) [ (1.4)

for all bounded continuous functions which depend onF only through %) for some
N < oo (for inclusive collections, the above is equivalent to piting dependence on all
{FO, .., F™), This statement may also be expressed by saying that thaoupling
that is a sequence of probability measysg®n 2 x 2 whose marginal distributions satisfy

pn(dF, Q) = ps,(dF), P, dF) = p(dF), (1.5)
with

/ min {1, dist(F™, FON) ) p, (dF, dF) — 0, (1.6)

QxQ



wheredist (-, -) is the Hausdorff distance between closed subsef’of based on the metric
defined on this space of trees in Secfipn 2.

The proof of Theorer 1].1 utilizes the theory developed fstesys of random curves in
ref. [B]. The bulk of the analysis consists of the derivatibthe required criteria, which need
to be verified by model specific arguments. The criteria arhtuacale invariant bounds on
crossing probabilities, which are presented in the Sef}ion

We believe that the limiting measupeof Theoren{ 1]1 does not depend on the choice of
the subsequendg, so that for each of the three processes there is a uniquaegtaiit. We
further suspect that MST and EST share a common scaling lbraged on the accumulated
evidence that the associated critical percolation mode&siralistinguishable in this limit,
but that the limit for UST is different. UST can be presenteatarresponding to the critical
Fortuin-Kasteleyn random cluster model (related toghstate Potts spin models) with — 0
along the critical line[[21[ 24 8], while MST is related tatimal percolation, corresponding
to @ = 1. The predicted values of characteristic exponents charntrev (L3, [[9,[2ZR]),
although it should be said that the exact relation of the egpts of MST with percolation is
not completely clear (to us).

The second set of results describes topological propestise spanning trees which
emerge in the scaling limit. To state the results we need dartteer terminology.

Definition 1.2 For a graded collection of tree& € (2 which describes a single spanning tree
inRY:

1. A pointz € R? is said to be a point of uniquengsé F'® does not include a non-
constant curve which starts and endscat

2. The tree is said to have a single route to infiriftjor any » > 0 there isR(r, F) <

oo such thatF® does not contain a curve spanned by two vertices outsideahe b
B(0; R(r, F)) which passes througB(0; r) [i.e., oo is a point of uniqueness foF].

3. F branchesat » ¢ R? (andz is called a branching poinbf ) if F includes a tree
element for whichr is a vertex of degree at least three, and the branches meating
are non-degenerate in the sense that they do not collapseitdsy(i.e., the curves are
non-constant).

4. F exhibits pinchingat z € R? if 7 includes a curve which passes througlwice
without terminating there.

It is easy to show (Lemmp_8.1) that& represents a single spanning treeRih and
x1,...,xy are distinct points of uniqueness, thenncludes exactly one subtree with external
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verticesn = {x1,...,zn}, and the correspondirg™y) (viewed as a tree-valued function of
N-tuples inRY) is continuous at).

We prove the following in the scaling limit.

Theorem 1.2 (Properties of the scaling limitsl.et ;.(dF) be a scaling limit of the measures
is (on Q) discussed in Theorem 1..1. Theralmost surely:

i. The spanning treg-(w) has a single route to infinity;

ii. almost everyr € R?, in the sense of Lebesgue measure, is a point of uniqueness fo
F(w);

iii. the set of exceptional points, of non-uniquenessA@w), is dense iR?, and its dimen-
sion satisfies

2 > dimy{r € R?| zis not a point of uniqueness f&(w)} > 1; (1.7)

iv. there exists a (non-random) integey so that all non-degenerate trees f(w) (in the
sense that no branches are collapsed to points) have ontliggsiof degree less than
(see Definitiorf 8]1);

v. the collection of branching points is countable.

The above assertions follow directly from the power boundi®se derivation is the
main technical part of this paper (and on which also Thedrelnrdsts). In the proof of
Theorem[I]2 we discuss also a related notion ofdbgreeand degree typeof F at a point
x € R? (Definition[821).

Let us mention that related results were recently presdatédiST by |. Benjamini[ZB],
in a work focused on the large scale features of that sparireegseen by “looking up” from
the lattice scale (while here we focus on the view seen “legkiown” from the continuum
scale). While the two works, which were carried out indeantly, differ in perspectives,
there are similarities between some of the questions cereidand in the means employed
for their study within the context of UST.

Remarks 1) In two dimensions each spanning tree process has a duai vgtalso a spanning
tree. Our results for one process imply similar results ierdual, even without the manifest
self-duality which is present in the case of MST and UST.

2) We expect it also to be true that in typical configuratiohsaaling limits of UST,
MST and EST in two dimensions there are no points of brancbiragyder greater than three,
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and no points of pinching. One may approach the proof of staterments through suitable
bounds on the characteristic exponents (see Seldtion 8gvenwhe analysis presented here
does not settle this issue. A different approach is beingesigd by O. Schramm [24], and
a partial result in this direction (for UST with a short dista “cutoff”) can also be found in

ref. [23].

3) An essential ingredient in the analysis of MST and EST ésféet that with positive
probability a given point is encircled on any given scale hyritical percolation cluster (see
the discussion after Lemnja p.4). For UST, the corresponfdicigis that Brownian motion
in the plane creates loops on all scales (see the proof of lafff). The extension of our
analysis to the fourth model mentioned earlier would bdifated by establishing that random
walks on the Poisson-Voronoi graph resemble Brownian motidhat respect, as stated in the
following conjecture (C). (Some further attention is neé® dealing with the two sources
of randomness: random spanning trees, in a random graph.)

Conjecture (C) Let G(w) be the random Poisson-Voronoi graph of density ond i 2
dimensions. For each € R? ands € (0, 1), letb, 4(¢) be the simple random walk process on
G(w) which starts at the vertex closestt@nd continues until the first exit from the annulus

Dys ={y €R* : sla| < |yl < s7'[al}.
Then there are somgs), r,(s) > 0 such that for all starting points withe| > 7,(s):

the trajectory ofb, ;(t) separates th
Prob . ' .
inner and outer boundaries db,,

e) >q(s) >0 . (1.8)

(The probability refers here to the double average corresjiog to a random walk on a ran-
dom graph.)

1.c Outline of the paper

The organization of the work is as follows. In Sectign 2 weddtice the space of
immersed trees. Sectidh 3 contains a summary of the pettiesalts from ref. [[6]. We
recall there two criteria for systems of random curves wigehmit to deduce regularity and
roughness statements, as those seen in Theorgm 1.1. Em@cetjuire certain scale-invariant
bounds on the probabilities of multiple traversals of anramd of lengthwise traversals of
rectangles, by curves in the given random family. The dgdatadmit a conformally invariant
formulation. The next two sections present some auxiliasplts: Sectior(]4 is dedicated to
the very useful free-wired bracketing principle, and Setf to preliminary results on the
crossing probabilities for annuli with various boundarnnditions. In Sectiorj]6 we verify
the regularity criterion, treating the three models seelyain each of the three cases the
proof makes use of a convenient algorithm for generatingrée The roughness criterion is
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verified in Sectiorf]7 by means of an argument which applied tbemodels discussed here.
In Section[B, the results of the previous sections are coecbior the proof of Theorenjs 1.1
andT.R, followed by some further comments on the geometygaifng limits. The discussion
of crossing exponents is supplemented in the Appendix byidgra quadratic lower bound
(A(k) > const. (k —1)?) for the rate of growth of the exponent associated with tlodability
of k-fold traversals.

2. Collections of immersed graphs

Following is the construction of the spac&8¥) on which we base the description of
spanning forests iR?. As is mentioned at the end of the section, the conceptssisclhere
may be extended to more general immersed graphs.

2.a Compactification aR?.

A convenient way to encompass in our discussion the infiraterae limit is to formu-
late our concepts with the Euclidean metric replaced by ibiauice functioni(u, v) defined
onR? x R? by

d(u,v) = ir;f/ds/(l%— 1z|?) , (2.1)

Y

where the infimum is over all continuous paths= z(-) joining v with v, andds denotes
integration with respect to arclength. The useful featuiethe metric are: i) in bounded
regions it is equivalent to the Euclidean metric, i) witspect to it R? is precompact. Adding
a point at infinity yields the compact spakéwhich is (via stereographic projection) isometric
to thed-dimensional unit sphere.

2.b The space of trees

For eachN < oo the space of immersed trees with external verticesS™), will
be constructed as a union patches each parametrized by a particular reference tree. This
parametrization is used to define an initial distance witgaoh patch. Next, the patches are
connected, or sewn together, through an identification eindary points, which typically
correspond to trees with some degeneracy. The spdcds then metrized through the impo-
sition of the triangle inequality.
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The caseV = 2 corresponds to curves, which can be defined as equivaleasses! of
continuous functiong : [0, 1] — R?, modulo (monotone) reparametrizations. The distance
between two curveg;; and(C,, is defined by

dist(Cy,Cz) = inf sup d(fi(¢1(t)), fa(¢2(1))) (2.2)
P1.62 te(0,1]
where f; and f, are particular parametrizations @f andC,, and the infimum is over the set
of all monotone (increasing or decreasing) continuoustfans from the unit interval onto
itself.

For two curves to be close di means that the corresponding curvesRihshadow
each other except possibly when they are far from the origithough a Cauchy sequence
of curves inR? may, in general, converge to a curve connecting two finiteggaihrough
infinity, no such curves occur in the scaling limits of the tdimensional models discussed
here. (Systems satisfying the conditibil with A(2) > 0 are easily seen to be quasi-local,
uniformly ind.) On the other hand, we do encounter curves which at one eraffrto infinity.

To extend this concept t& > 2, we replace the interval by a collection of reference
trees. Areference treer is a tree graph with finitely many vertices, labeled as extieon
internal, with the external vertices having degree one thadnhternal vertices having degrees
not less than three. The vertices are connected through Vtich are realized as linear
continua (intervals) of unit length. We denote By ) the number of external vertices. The
number of internal vertices cannot exce®dr) — 2, and thus there is a finite catalog of
topologically distinct reference trees for each givén< oco.

A reparametrizatiorof a reference treeis a continuous map : = — 7 which preserves
the sets of internal and external vertices and is monotoeg @rder preserving, though not
necessarily strictly monotone) on each link.

Definition 2.1 For a given reference tree, a_tree immersed ik indexed by is an equiv-
alence class of continuous maps = — R?, with two mapsf,, f» regarded as equivalent if
there are two reparametrizations, ¢, of 7 such thatf,; o ¢; = f5 o ¢».

The collection of immersed trees parametrizablerhig denoted bysS,, and the col-
lection of all immersed trees with a given numbé¥)(of external vertices is denoted by
SW™) = U, n(=nS;. Let us note that for each there are elements & for which one or
more branches have collapsed to a point (ifé.) is constant on a link). Such degenerate im-
mersed trees can be naturally parametrized by a smaller’trand we shall identify it, as an
element ofS®), with a point in the other collectioS,,. In this fashion, the se") may be
viewed as covered by a collection of patches, which are segether and form a connected
set.

For each reference tree(with at least two vertices), a metritist,. (77, 7) is given on
S, by a direct extension of ed. (2.2), in whigh(i = 1, 2) denote reparametrizationsafin
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this metricS. is a complete separable metric space, since it is a closegpaod, defined by
the incidence relations, of the space of(@lN (7) — 3)-tuples of continuous curves (given by
the links — some of which may be degenerate).

The distance thus defined within each patch yields in a nataaa metricdist (7}, 75)
on S™) | defined as the infimum of the lengths of paths connectingwiepbints through
finite collections of segments each staying within a singlelp. With this definitiors™) is a
complete separable metric space, and €3dl a closed subspace.

The spaces™) provide the basic building element for the space of tree gardiions.
As explained in Sectiofj 1, we denote @) the space of all closed subsets®f"), with the
Hausdorff metric, and b2 the subspace of the produt;~; 2" consisting of all spanning
forests in the sense of DefinitipnL.1. By constructi@ns a complete separable metric space.
The following is a useful notion.

Definition 2.2 Let F € Q be an inclusive collection of trees (see Definitior) 1.1) Whepre-
sents a single spanning tree for a graphif, and letT}, . .., T}, be a collection of trees iiF.
The trees are said to be microscopicalligjointif there exists a tre&” in F, parametrized as
f: 7 — R? which is non-degenerate in the sense that no links are pséd to points, and a
collection of vertex-disjoint subtrees, . . ., 7, of the reference tree so that the restriction of
f to eachr; is a parametrization of;.

Note that our choice of the collectiotS(w) guarantees that for > 0, microscopical
disjointness is equivalent to disjointness. In generakrasicopically disjoint subtrees are
limits of disjoint subtrees.

2.c Systems of immersed graphs

Let us note that the concepts discussed above have a natteakie®n to systems of
immersed graphs which need not be trees. Such a genealirasiy, in fact, be useful for the
description of the configurations of percolation modelsafiy dimension).

For the more general system of random graphs one shouldt tbgezonstruction in the
previous subsection, omitting the requirement that th@ligavhich provided the reference
index sets be connected and free of loops. The concepts which wouldhergkzed through
this modification include:

i. S) — representing, in the modified definition, the space of gsaipimersed ifR?
with IV external vertices;

i. QW) — the space of closed subsetsf").
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With this modificationF = {]—"(N)}Nzl € XNzl(Z(M represents a collection ainmersed
graphs to which the notions oinclusiveconfiguration andjuasilocalconfiguration, intro-
duced in Definitiorj T]1, also apply.

3. Criteria for regularity and roughness

Our proof of Theorenfi I}1 employs the regularity and rougbmeseria developed for
systems of random curves in rdf] [6]. Following is a summdrye pertinent results. We add
here also a brief discussion of the behavior of the critenden conformal invariance. The
criteria were derived in the context of a system of randomresiin a finite volume, which in
the terminology used in the present work can be presenteullaw$.

Definition 3.1 A system of random curves with a short-distance cudtffgiven by a collec-

tion, {1 (dF®)}o<s<s,..., Of probability measures of2® which provide the probability
distributions of random closed sets of polygonal curves gérametep indicates the order
of magnitude of the polygonal steps —in a sense which oudig tdear in the given model.

Remarks: 1) Motivation. This terminology is of interest mainly when there is some-con
sistency in the formulation of the probability measurestfor different values of. In the
examples considered here these represent scaled dowangeodia common process, i.e.,
they are related by dilations. The term “cutoff” anticipatbe possibility that the measures
/,Lff) (dF?) can be viewed as providing an approximate description obagss which is de-
fined fory = 0, or possibly some family of such processes whose approgsreat given by
different sequences with), — 0.

2) Notation. The random sets of curves will be denoted]éy) (w); and when it be deemed
unambiguous the entire system will be represente@ 3y, or justF. The probabilities eval-
uated with respect to;(-) will also be referred to aBrobs(-).

The possibility raised in Remark 1) requires that the famflyneasures either converge
to a limit or at least have accumulation pointsdas+ 0. Thus the first question is one of
compactness. A key issue here is whether the curves satisiy sniform regularity estimates.
A useful tool for the derivation of an affirmative answer is tieneral result of ref[]J[6] which
permits to deduce Holder continuity bounds (valid simmdtausly for all curves of a typical
configurationFéQ) (w) in a given compact subset &) from estimates on the probability of
multiple traversals of a spherical shell. The requiredneste is formulated as a hypothesis
which needs to be verified by model-specific arguments.

3.a Regularity criterion
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Denoting the shells by
D(z;r,R)={yeR?|r <|y—a| <R}, (3.1)

andD(r, R) = D(0;r, R), the required property is stated as follows.

(H1) A system of random curves is said to satisfy the hypothdsig there is a sequence of
exponents
MEk)— o0 (3.2)

k—o0

such that for eaclk < oo and eachs > 0 the crossing probabilities of spherical shells
with radii0 < r < R < 1 satisfy

R

D(z; 7, R) is traversed by; vertex-disjoint
Prob(;( (x;r, R) is trav ¥ vertex-disjoi ) < K(k.s) <r

Ak)—s
. — 3.3
segments of a curve 171—5(2) (w) ) (3:3)

uniformly in o < 6,(r, s), with some constank’(k, s) < co.

It may be noted thai(1) < d — 1, unless the collection of curves is a.s. empty. The
implication ofH1 is that with probability one all the curves of the random cgufation within
a compact seh c R? are uniformly equicontinuous, with a bound that is randorvituose
distribution does not deteriorate as— 0. To formulate the result precisely, call a family of
random variables; stochastically boundeasd — 0 if

lim  sup Prob5<|/€5(w)| > u) =0 (3.4)
U0 0<§<,

for somed, > 0. A family of random variableg; is calledstochastically bounded away from

zerq if the family (x5)~! is stochastically bounded.

Theorem 3.1 (Regularity and scaling limi{]6]).Let 7®) be a system of random curves in a
compact region\ C R?, with short-distance cutoff, and let {/,Lff)} be the associated family
of probability measures of2®. If the system satisfies hypothestl then all the curves
Ce ]—"éz) (w) can be parametrized (through an explicit algorithm) by fiiwres f : [0,1] — A
such that for each curve, for ald < ¢; < t, < 1, and for every > 0

[F(t2) = f(t2)] < keslw) gldiam(C)) ™+ [t — ] T (3.5)

with a family of random variables. ;(w) (common to al € ]-"f) (w)) which stays stochas-
tically bounded a9 — 0. The second factor depends on the curve’s diameter thrdugh t
function

A1)

g(r) = a0 i (36)
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Moreover, there is a sequenég — 0 for which the scaling limit

lim p? (dF?) = p®@(dF?) (3.7)

n—oo

exists, in the sense of (weak) convergence of measur€s2an The limit is supported on
curves with

dimy(C) < d—A\(2), (3.8)

whose parametrization (obtained with the algorithm memgiabove) satisfieg (3.5) —i.e., it
is Holder continuous with any exponent less thafi — A(1)].

Remark Although the above theorem was formulated for compact ¢sbse R?, the proof
requires only that\ is a compact metric space whose Minkowski (box) dimensiat rmost
d. (The Holder continuity condition is to be interpretedenrhs of the corresponding metric.)
In the present work we shall apply it to the Riemann sphere.

Note that for any spanning tree process
A1) =0 (3.9

since each point is connected to infinity. However, we wié feat for UST, MST, and EST,
the criterionH1 is satisfied orR?, with

A2) > 0 (3.10)

and (k) growing at least quadratically with

3.b Roughness criterion

The criterion to be verified in order to prove roughness coresimultaneous traversals
of cylinders. We refer by this term to the solid body, not ilsibdary; i.e., &ylinderof length
L and width? in R is a set congruent td x B, where! is an interval of length’, andB a
(d—1)-dimensional ball of diametet A collection of set§ A, } is regarded awell-separated
if the distance of each seft; to the others is at least twice the diameterigf Following is the
hypothesis which is relevant for the study of the scalingtlim

(H2*) A system of random curves is said here to satisfy the hypisié¢®* if there exist
constantss > 1, p < 1 and K < oo such that for every finite collection of well-
separated cylindersl, ... , A;, of widths/; and lengths ¢, (i = 1,...,k)

each4; is traversed (“lengthwise”)

lim Prob . < Kph. 3.11
o0 O 5( by a curve inF” (w) ) = 2 (3.11)
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The asterisk oi2* marks a minor modification of the conditidt2 formulated in Ref.[[6],
for which the bound on the probability is required to hold &ilré < min; ¢;. The pertinent
result (which incorporates the comment made below) is:

Theorem 3.2 (Roughness,[[6])Assume that a system of random curVé%’ satisfiesH2*.

Then any measure® obtained as a scaling limié — 0 of the measureg!” on Q@ is
supported on configurations containing only curves with sthrff dimension satisfying

dlmHC 2 dmin (312)

with some non-random,,;, > 1, which depends on the parametergH8*.

Remark: Roughness in a random system of curvé@ is expressed also on intermediate
scales, and it does not require any assumption on the egéstanscaling limits. The full
conditionH2 permits to conclude lower bounds on the tortuosity of thevesirwhich are
simultaneously valid on all scales. L&f(C, ¢) be the smallest number of segments in all the
subdivisions of the curvé into segments of diameters ¢. The hypothesi$i2 implies the
existence of somé,.;, > 1 such that for any fixed > 0, s > d,,;i,, and compach C R¢, the
random variables

/%577“7/\;5(&)) = inf I M(C, ﬁ) (313)

CE]—‘;?/)\(&)): diam(C)>r

stay stochastically bounded away from zeroj as 0. In particular, the minimal number of

steps of size) needed in order to advance distaricexceeds: (L/§)°. This complements
Theoren{3]1, since under the conditipn](3.5), the randomavias

(A=2OF= Ar(c, o) (3.14)

remain stochastically bounded @&s+ 0. The general result if][6] which implies both rough-
ness statements is a lower bound ondhpacityof curves inF ff).

One may note that the slightly simpler conditid@* implies that any scaling limit obeys
the full H2, and thus Theorein 3.2 follows from the statement derivedfir[@].

For the systems considered here we shall establish thelgisiti2 in Section[J .

3.¢c H1 under conformal maps

In discussing infinite systems it is convenient for us to vigvas covered by two
patches: the balB(R) = {z € R? | |z| < R}, with some radius? > 1, and the set
where|z| > 1/R. The inversionz — z/|z|*) maps the second patch bijectively onto the
compact regiorB(R). The metric defined by {3.1) which we useBfis invariant under this
inversion, and so are the topologies we defined earlier tosfiaces of curves, trees, and their
collections. It is useful to know th&i1 is also stable under inversion:

18



Lemma 3.3 If a system of random curves @ satisfies the hypothesttl, then so does the
system obtained under the inversion, with the exponentseztiby not more than a factor
of 2. Furthermore, if in the original system the probabilitiessimultaneous: crossings of
pairs of disjoint annuli are also bounded by the productsheftorresponding power bounds,
then after the inversioHh1 continues to hold with the original exponents:).

Proof:  We need to estimate in powers (@f/ R) the crossing probability in the pre-image
of the system of curves in an annuliXz;r, R). The pre-image of any spherical shell is a
set bounded by two spheres (which may degenerate to hypesl# the boundary of the
spherical shell meets the origin). Let us denote the distéatween the two spheres Bs
and their radii ag; < 7. We need to distinguish now between two cases:

1) if the shell does not include the origin then the pre-imafy®(z; r, R) is compact —
one of the spheres encloses the other,

2) otherwise(r < |z| < R), neither of the two spheres contains the other, and the pre-
image of D(x; r, R) is the unbounded set formed by the intersection of theirimxte

In case (1), the probability df traversals in the pre-image &f(z; r, R) is smaller than
the probability for the annulus whose inner boundary is thalker of the two spheres and
whose outer radius i& = 7, + B. Since the system satisfied this probability is bounded
from above byK (k, £) (7 /R)**®)~ for anye > 0 (see eq.[(3]3)).

The ratio(7, /R) may be related t¢r/R) using the invariance of the cross-rafia —
29) (23— 24) /(21 — 23) (22 — 24)] Of the four points at which the surface bf(z; r, R) intersects
the line throughO andz. We find:

(2r)(2R) _ (271)(27>)
(R+r)? (27 + B)(2f,— B) (3.15)

It follows that
2= g < (3.16)

R fl +B — R
Thus, for such a spherical shell, the image of the systemreeswnder inversion still satisfies
Eq. (3-B) with the original exponents and constakitg, ) = 4**) K (k, ¢).

In case (2), the invariance of the cross ratio yields:

@R (2R

(3.17)
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which implies

fl 2 7:1 TNQ T
(m) = <f1+B/2) <f2+B/2) s (3.18)

To bound the crossing probability if(x; r, R) we may look at two disjoint annuli in the pre-
image: one of inner radiug and outer radius; + B/2, concentric with the first ball, and the
other of inner radiug, and outer radius, + B/2 concentric with the second ball. Thl-
bound on the crossing probability within just the first aurswields for the image system the
upper boundy (k, ) (4r/R)*¥)/2=¢_ Under the stronger assumption we recover the full power
A(k). |

It may be interesting to note, though we shall not pursuegbist here, that the above
analysis allows us to deduce that under the stereograptjiegtion ofR¢ onto thed-dimensional
sphere, the Hypotheslidl lifts to conformally invariant bound$or the probabilities ofk
crossings between pairs of — 1)-dimensional spheres.

4. Free-wired bracketing

The free-wired bracketing principlés a useful monotonicity property of both uniform
and minimal random spanning trees, which allows one toeehs spanning tree on a portion
of a large or infinite graplz to the corresponding object defined in a subset. One of its
implications is the existence of the infinite-volume limwéth free as well as with wired
boundary conditions. We shall encounter other uses belavwhi$ section we shall briefly
recall this known principle and conclude with a new obseovatexpressed here as three-
wired factorization propertywhich will be used in the study of the crossing exponents.

Let G be a graph with finite coordination number whose set of vestis a locally finite
subsety c RY, and letA c R? be a closed subset with piecewise smooth boundary (the
reference to such sets is natural in our context, but it shioellclear that the main concepts are
not restricted to graphs immersedir). The subgraph of with free boundary conditionis
A, denoted byG¥, consists of the vertex s, = V' N A, with an edge between two vertices
if and only if there is such an edge @ Each edge it is assigned the length it had @

The “subgraph” ofG' with wired boundaryconditionsGY is defined similarly, except
that rather than simply deleting all the vertices outsid® pfthey are merged together into
one vertexJA, called the boundary. In the case of UST and MST, any edgehtithexisted
between a vertex € V, and a vertey ¢ V, becomes an edge betweemand the boundary
OA. For MST, the corresponding edge length is thatofy). (Note that inGY" there may be
more than one edge between a verteanddA so thatGY is really a multigraph. In the case
of MST, all but the shortest of the multiple edges joiningp OA may be discarded.) In the
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case of EST, the length of the (single) edge joining a vertexA with JA is set to equal the
Euclidean distance from to the geometric boundary of.

Denote the trees generated by a spanning tree proceSg amd G} by 't andT'},
respectively, with'}V'\ {0A} the graph obtained by deleting the special boundary vertex a
the edges linking to it. We slightly abuse the notation bymnefg to the restriction of the tree
I" to the subgraph spanned by the verticed iasI" N A.

The bracketing principle can be stated as:
T'VA{0A} = TNA =T}, (4.1)

whereA < B means that the set of edges of the random gr&hstochastically dominated
by the set of edges d@#, and where it should be noted that both the free and the wivaddbary
conditions onA decouplethat region from the rest of the graph.

The stochastic domination can be expressed through thieegesof a coupling between
the two tree processes (in a sense analogous to that seerfIdigyjin which a.s. all the edges
of A are also contained i®. For MST, the coupling is provided by constructing spanning
trees simultaneously 0@ andGY using the same call numbers (Sectjpn 6.b), and for EST
by using the same Poisson points (Secfion 6.c). For UST diogup known to exist, though
a correspondingly simple explicit coupling remains unknow

The bracketing principle implies in particular that thetrietion of the tred}’ to a fixed
“window” A, is monotonedncreasingin A, for A > A,, and that the similar restriction &f;
is monotonedecreasing Thus one derives the well-known fact that the infinite vodulimit
exists for both free and wired boundary conditions (separatand that the limits

FW : FW

Mw) = lim r(w) (4.2)
are independent of the sequence of volumes. The convergentéhe pointwise sense for
all three models under consideration here, provided theetsddr the different regiong,,
are coupled in an appropriate way. For UST the free-wiredkatng principle appeared
implicitly in [f], and was stated and derived explicitly iB][ For MST and EST it appears
in [[3, [Z8]. Itis natural, however, to view it within the cext of similar principles which
have long been known in related areas; including the eadyngie of the Dirichlet-Neumann
bracketing for the Laplacian (viewed as a quadratic forna)tae more closely related example
of the free-wired bracketing for th@-state Potts models (discussed > 1 in [P7, [2T]).

We shall now add to the collection of monotonicity tools drestuseful observation.
Consider the effect of subdividing a connected region byriasa which splits it into two sets
C and D, for which we then set the boundary conditions so that thengusurface acts (in
the natural sense) as a free boundarydaceind as a wired boundary f@p. In the interior of
C' the introduction of the free boundary along the cut only eglea the spanning tree config-
uration. Within D the wired boundary along the cut diminishes the configunatibfollows
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that the original random spanning tree may be monotonicaliypled with either of the two
separate spanning tree processes. We say that the systéme RAY factorization propertyf

a simultaneous coupling of all these processes can be cBogbat the two separate trees in
C andD are independent.

Lemma 4.1 (F/W factorization property)On an arbitrary finite graph, or a finite region in
case of EST, each of the spanning trees considered here -MUSIT,and EST, has the free-
wired factorization property. I.e., the three tree proeesis. p, I'f, andT'}} can be realized
on a single probability space so that:

i. TL and TV are independent spanning trees (with the indicated boundanditions
along the separating surface),

ii. within the interior of C, I'f. dominated", and

iii. within the interior of D, T'}} is dominated by

Proof:  The existence of such a coupling follows by model specificiargnts. For MST
and EST the argument is most direct, since the spanningdréetérmined by the specified
call numbers in the case of MST, or specified locations of thiatp in the case of EST, and
the specified boundary conditions. For those two cases, -Wef&ctorization property is a
direct implication of the F-W bracketing principle and tmelépendence of the distributions
of the variables relevant for the regioisand D.

Another argument is needed for UST. As a starting point, \We tacoupling between
the restriction of the full tred’,p to D, and the “subtreeT!. Sincel'c p dominates
'Y, the two measures may be coupled monotonically, so thahdjié) holds. To construct
the coupling with the other component’, we note that the conditional distribution
of I'cup, conditioned on its restriction t®, is just the distribution of UST iri’ with some
partially wired boundary conditions. (This is not true foSW, so the argument makes use of
the special structure of UST.) It follows that the condifbdistribution ofl"c,p within C' is
always dominated by%. It is therefore possible to extend the measure so thatdifigralso
hold. n

In the next section we shall see applications of the abovegrtp
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5. Crossing exponents

This section contains some general considerations regatiée probability of multiple
traversals of spherical shells, and the expona(#$ that appear ifH1.

While \(k) relates to the event that there is a curve with multiple éngss we find
it useful to extend the considerations to the events of pleltiraversals by disjoint curve
segments — without requiring those to be strung along a camenove. Thus, modifying
slightly the definition of\(k) givenin eq. [3]3), we lex*(k) be the supremum of all exponents
s such that, for all spherical shells with radik » < R < 1,

r

Pr0b5< D(z;r, R) is traversed by ) < K(k.s) (ﬁ)S 5.0)

microscopically disjoint curves iﬁFf) (w)

holds uniformly ind < §,(r, s) with some constank’(k, s). Since we relaxed here the condi-
tion seen in eq[(3.3), the exponents are related by

Ak) > M (k). (5.2)

The regularity assumptidd1 will be verified by establishing lower bounds an(k).

In our discussion we shall make use of the free-wired braafgtrinciple and the F/W
factorization property. The results of this section holddnoy random spanning tree model to
which these principles applies, regardless of the dimensio

5.a The exponents( k), v(k), and the geometric-decay property

In the study of the exponents it convenient to introduce tddittonal variants, which
correspond to the crossing probabilities with differentn@inations of boundary conditions.
The boundary conditions are indicated here in the supetsdfor example, the grap(ﬁ,f’,gv
is defined by placing oD(r, R) the free boundary conditions at and thewired boundary
conditions atR, i.e., deleting the vertices inside(r) and outside3(R), and adding a single
vertex to the graph representin@g(R).

Since traversing means reaching the boundary, or beyontt adjustment in the defi-
nition is needed at the free boundary. We do that by definingntary sites, and then saying
that a path along the edges@f ’}ZV traversesD(r, R) if it connects a vertex on the free bound-
ary atr with a vertex on the wired boundary &t In the case of the lattice models (UST and
MST), a vertexz in D(r, R) is said to lieon the free boundargf ij’,?’ atr if the original
graphG contains an edge joining to a vertex inside the balB(r). In the case of EST the
defining condition is that the Voronoi cell aftouches the Voronoi cell a#B(r), or equiva-
lently, that there exists a disc which interseBts-) and containg but no other vertex ofs.

The free boundary &k is defined analogously. Two traversals digoint, if they do not share
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free b.c/’

wired b.c.

Figure 2: The tree depicted here has= 3 disjoint crossings of the annulud(z;r, R) with free-wired
boundary conditions. Note that each point is connecteddaavired boundary by a unique path, while there are
many paths to the free boundary. The exponeiikts appear in bounds for the probability of sukkcrossing
events.

any vertices. (The alternative definition, based on edgeidisess would result in the same
exponents.)

We now define two new families of exponents which play an daxilrole. Leto (k) be
the supremum of al > 0 such that for every shelD(r, R)

I includes at least

Probs ( k disjoint traversals oD(r, R

) ) < K(k,s) (%) (5.3)

for § < d,(r, s), with some constank(k, s) which does not depend @n

Similarly, lety(k) be defined by the condition

o [T Tincludes at least r\*
r, T, < _ .
Probs ( k disjoint traversals oD(r, R) | — Kk, s) <R> (5-4)

interpreted as above (with independently defined congtantsq. (5.1) it is required that the
bound holds for both mixed boundary conditions.

All three families of crossing exponents are clearly nomeasing withk. We expect
that\(k) = A*(k) = ¢(k) = (k). Itis shown below that

(k) > k) > v([%b ; (5.5)

free-wired bracketing easily implies thatk) > ¢(k).

The desired statement* (k) — oo, will be derived by showing that in the UST, MST,
and EST models the crossing probabilities have the follgyggometric-decaproperty (ink)
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for shells of fixed aspect ratio: There exist constants0 ando > 1 so that

FW W, F . B
wr [Lri ] CONtains atleast ) _ ¢\t
Probs ( disjoint traversals oD(r, R) = ( R) (5.6)
holds for allR > or, provideds < 6,(r). This implies:
(k) > s(k—1), (5.7)

which suffices for our main purpose. However, note that[eq) @so implies more, since our
definition of the exponents left room for some prefactoes, it concerned only the asymptotic
behavior of the crossing probability @&/ — oo, at fixedk. In the appendix we show, by
an argument of more general applicability which uses therggnc-decay property, that the
actual rate of growth of the exponents is even higher, with

v(k) > Bk —1)* (5.8)

with somegs > 0.

5.b Comparison of the exponents

Lemma 5.1 X\*(k),v(k) > o(k).

Proof: Recall that\*(k) pertains to events involving a single tree containing rpidti
traversals of a spherical shéll(r, R). Imposing free boundary conditions on the inner and
outer boundaries of the shell is a monotone operation whiebgoves the traversals. Thus, the
first claim seems to be an immediate consequence of the hiragkeinciple (4.11). There is
however one scenario which requires a bit more attentiomeSaof the traversals (appearing
in the definition [G]1) of\*(%k)) may be realized by an edge which crosses the ani(usR)
without “stepping” on a point in it. In the Poisson-Voronaagh, the one case in which this
warrants some attention, this event can occur only if witheregionD(r, R), there is a disc
of diameter at leastk — r) which contains no Poisson points. The probability of thatds
greater than approximately <ot (R-"?/%* " Sych a correction term plays a negligible role
and does not interfere with our ability to conclude thatk) > ¢ (k).

The second claimy(k) > ¢(k), follows directly from the free-wired bracketing princi-
ple. [

Lemmab5.2 ¢(k) > ~([(k +1)/2]).
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Proof: AssumeFf’é7 containsk (or more) disjoint paths traversing(r, R). Label the
traversing curves such thdtconnects a point; on the free boundary atto a pointg; on the
free boundary af?. LetT be the subtree dfij spanned by the points, g1, ..., pr, q; it
consists of’y, ..., C, andk — 1 “joining paths”.

Divide D(r, R) into m subshells of aspect ratig?/r)'/™. Assume that the; lie in
the innermost, and thg in the outermost subshells — for UST and MST this happens with
certainty if§ < d,(r,m), and for EST the probability of it failing introduces a negile
correction which is exponentially small iiT?, as discussed above.

Figure 3:A subtree consisting df = 3 disjoint traversals anél — 1 = 2 joining curves.

Wiring both boundaries of a subshél; divides D(r, R) into an inner sheIJD;.n (with
free-wired boundary conditions), an outer shléfl“t (with wired-free boundary conditions),
and the middle (wired) subshéll;. It is possible to choosgsuch that each ab’! andD;?“t
contains at mostk —1) /2 of the joining paths iff". With this choice, the intersection @fwith
D‘j” consists of at leagk + 1) /2 disconnected subtrees, each of which contains at leastfone o
the pointg;, and hence a traversal bff'. Since wiring the middle shell only suppresses edges,
but eacty, remains connected to the wired boundaryf there argk + 1) /2 traversals of
D‘jn with free-wired boundary conditions. (It + 1)/2 is a half-integer, we may round up.)
By the same reasoning, there are at I¢ast 1)/2 paths traversing the outer shéf with
wired-free boundary conditions. Summing over the posgoigitions ofD;, and using the
independence of the tree processesXhand D, we find that for eack < ~([(k +1)/2])
(see the definition of (k) in (6.4)) we have

"2 includesk disjoint )

) < .
traversals oD (r, R) - (5-9)

PI‘Ob5 <

m [K(T(k+1)/2].5)] (%)S(H/ "

whereE; is a correction term of orde® (e~ (8=7)*/9%) " Sincem was arbitrary, it follows
thato(k) > +([(k + 1)/2]). .

IN
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5.c A telescopic bound

A very useful consequence of the F/W factorization propisreytelescopic bound of the
crossing probabilities, which is expressed in the follapiemma. It yields lower bounds on
the exponents(k) from bounds on the crossing probabilities of sphericallsiveith a fixed
aspect ratio.

Lemma 5.3 (Telescopic principleor each of the spanning trees considered here (UST, MST,
and EST), and in any dimension, the following is satisfiedafor r; < r, < -+ < r,,, and
any integerk

o . .
IEW containsk dISjOInt) < (5.10)

traversals ofD(rq, r,,)
-1 . . .
rEW  containsk disjoint D(rj,rj41) is crossed
< T5,Tj4+1 3Tyl . .
< ]I {Pmb5< traversals ofD(r;,7;1) ) * Pr0b5< by an edge il ">V )}

j=1 T1,"m

The analogous relations are also valid for the free-free #mel wired-free boundary condi-
tions.

Remark As mentioned before, the possibility of a “long edge” intnods a correction (the
second term on the right) whose effect on the exponentssiscuhere is negligible.

Proof: Consider the effect of subdividing a spherical stie{l-, R) by a sphere of radius
7, with the boundary conditions placed so that the cuttinfgseracts as a free boundary for
the outer shelD(7, R), and as a wired boundary for the inner shellr, 7) (so that we end
with free-wired boundary conditions on each subshell). &ssaw in Lemm#& 4] 1 there exist
a coupling between the spanning treelXr, R) and the product measure of the spanning
trees in the subshells, which is separately monotone intbedgions. On the outer subshell,
introducing the free boundary along the cut only enhancesctimfiguration. On the inner
subshell, introducing the wired boundary along the cut dishies the configuration; however,
even in the diminished spanning tree, each site remainsectech to the wired boundary. It
follows that every traversal d?(r, R) of the original configuration which contains at least one
vertex in each subshell is preserved as a traversal of bothells in the final configuration.
The independence of the two components, up to the correstich was mentioned explicitly
above, implies the statement for = 2. The rest is by induction. n

5.d Extension of the boundsdo= 0

Another important property of the exponents, which is valid great deal of generality,
is their “lower semicontinuity”, in the following sense.
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Theorem 5.4 Let {us(dF)} be a system of random trees with a short distance coOtoff
d < 1, for which some of the exponent§(k), A\(k) and~(k) > ¢(k) have strictly positive
values. Then the corresponding upper bounds, expresseguayiens [3.8),[(5]1)[(5.3), and
(B.4), continue to apply also at= 0 for any limiting measure:(-) = lims, o ps, (-) (With
respect to weak convergence of probability measure®)nTo be explicit: the above hold
with unchanged values of the exponehts), ... , though the optimal exponent values for
(até = 0) may be even greater.

Proof:  Itis convenientto carry out the argument using the coudlmgpulation of conver-
gence, as in eqg[ (1.6) (with the distance function evaluagtaieen the finite volume config-
urations]—“,(\N)). Let us first note that for each given annulus, or sphericall sthe set of tree
configurations which satisfy the corresponding multiplessing condition forms a closed
subset of(2. Therefore its measure undgs would be upper semicontinuous, i.e., upward
jumps (as) — 0) are not excluded. Such discontinuities occur if the apjpnating configu-
rations exhibit curves which stretch and sgafr, R) in the limit. The probability of that can
be bounded by the crossing events of the arbitrarily namrsbells (or annuli)D(r+¢, R—¢).
This correction can be easily incorporated into the optatian parametes; the result being

that the upper bounds continue to hold with he 0 value of the exponents(k), ... , ¢(k).
u

6. Verification of H1 in two dimensions

We verify the regularity criteriom1 for the three models separately, by reducing it in
each case to a property of a well-studied random model. &b, for UST, we refer to
known properties of random walks, and for MST and EST to prigeeof two independent
percolation processes. Unlike the previous section, theudsion is now narrowed tb= 2.

6.a Uniformly random spanning tree

We find it useful to construct UST with the loop-erased randeatk algorithm ([IB]).
The current treestarts out consisting of a single vertex, called thet. The algorithm runs
loop-erased random walk (LERW), starting from any vertexijlihe current tree is reached.
At that point, the loop-erased trajectory is added to theerurtree. This process continues
until all vertices have been adjoined to the tree, whichemthniformly random, regardless of
the choices of the root and the starting points for the LERW’s

Lemma 6.1 Consider UST on an annulu3 = D(r, R = 3r) with any (e.g. free-free, free-
wired, or wired-free) boundary conditions, and [Etbe a connected subtree (of the appro-
priate graph for those boundary conditions) containingesdt one traversal of the annulus.
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Condition upon the edges 6fbeing contained in UST. Then except with probab#ity (uni-
formly iné < §,(r), with somex > 0 which does not depend eror T'), UST contains also a
choking surface, which is a collection of vertices that asarmected within the spanning tree
to T via paths that stay within the annulus (i.e. avoid the bouie$), and such that every
path crossing the annulus intersects the choking surface.

Proof:  To pick a random spanning tree conditioned to contain sormefsges (in this
case the edges df), we can contract the given edges, and take the remainingsddgm a
random spanning tree of the contracted graph. Since by g’ is connected, we can
implicitly contract the edges df by initializing the current tree to b€ and build up the rest
of the tree via loop-erased random walks. kdbe a point approximately at radi@s (i.e.,

far from both the inner and outer boundaries of the annulue).x;, = z, x5, 23, ... , x, be
the vertices which a random walk (unobstructedbwisits, up to and including the time that
either (1) it hits a boundary, or (2) its loop erasure makesragontractible loop, i.e. the loop-
erasure ofrq, ... ,z,_; together with the edgér,,_1, x,,) includes a Ioopﬁ winding around
the inner circle. Recall that we start with as the current tree. When we build the random
spanning tree containirg, the firstn “choices” that we make will be;, xo, ... , x,, in that
the choices of where to start the loop-erased trajectaiasthe random choices of where the
trajectories go are, are determinedby z,, ... ,z,. l.e., the first segment adjoined to the
current tree is the loop-erasureqf z,, . .. , xz;, wherex; is the first vertex from the sequence
already in the current tre€. The second segment adjoined to the tree is the loop erabure o
Tit1, Tiva, - - - , 25, Wherez; is the first vertex in the rest of the original RW sequence ithat
in the current tree at that point. We continue in this fashiboonstructing the tree requires
more choices (steps) after the firgtthen these are drawn from fresh coin flips.

Consider the random walk winding event described above that (2) occurs before
(1)), and letC' denote the set of vertices in the noncontractible cyéleWe claim thatC'
is contained in the current tree by step and comprises a choking surface. To see this,
note first that by planarity” meets every path connecting the inner and outer boundaries.
Secondly note that every loop that is erased in the congtruof the spanning tree by step
n — 1 must necessarily also be erased from the loop-erasure, of. , z,_;. (This takes a
moment’s thought, and the “cycle-popping” viewpoint of tHeRW construction ([1]3]) may
help.) Thus at step — 1 each vertex in the cyclé€' is either contained in the current tree or
the current loop-erased trajectory. In particular,(visited at a previous time step) is in the
current tree, since the cyclé intersects the crossing of the annulus containefl,iand the
portion of C' prior to this intersection will not be in the current loopaeed trajectory. When
the walk again reaches, at stepn, all the vertices in the current loop-erased trajectory are
added to the tree. Since the walk never visited either bayndach vertex irC' is connected
to the initial current tre€” via a path that avoids the boundaries.

It follows from a standard fact about Brownian motion thadrthis some positive num-
berp so that wheneves < 4,(r), with probability at leasp the loop-erased random walk

29



started from pointz, if it is unobstructed byl", will wind around the inner circle and in-
tersect itself before reaching either boundary. The dssefvllows by choosingy so that
37%=1-—p. [ |

Corollary 6.2 Let « be the exponent of Lemrpal6.1. UST has the geometric-decpgrro
(b-8) withs = «a on shells with mixed boundary conditions (free-wired oredlifree) and
aspect ratio3.

We remark that this corollary is essentially contained mphoof of part 2 of Theorem
2 of Benjamini’s article ([Z3]).

Proof: ~ We can construct the spanning tree on the spherical shefabtyng) LERW'’s along
each point on the free boundary, and only after all the frestary vertices are in the current
spanning tree, start the LERWS at other vertices. Suppasdhita LERW from some vertex
on the free boundary makes it to the wired boundary, makiagtth (¢ > 1) disjoint traversal
of the annulus. We can upper bounddby* the probability that eventually there ig&a+ 1)st
disjoint traversal: By Lemma 8.1, with probability at least 3= there is a choking surface
relative to the tree built so far. But the tree built so far basy £ connections to the wired
boundary, so each vertex on the choking surface is connextad wired boundary along one
of thesek connections. Ak + 1)st traversal disjoint from the previodgsraversals would add
a second path from the wired boundary to some vertex in theichsurface. =

Corollary 6.3 (H1 for UST)Forall & > 1,
yk+1) > y(k)+a (6.1)

with o > 0 as in Lemma 6] 1. In particulak1 holds for UST with

Ak) = X(k) = o(k) = S(k—1). 6.2)

Proof:  The first claim is an immediate consequence of Corollarly 6R2leemmd5]3; the
second claim also uses Leming 5.1 5.2. ]

6.b Minimal spanning tree

The arguments in this subsection are based on the relatisrebe MST and critical
Bernoulli percolation. We begin with the natural couplirgween the two processes.
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Let {u;} (indexed by the edgds= {z,y} in §Z¢) be a family of independent random
variables which are uniformly distributed ¢, 1]. These are theall numberswhich deter-
mine the edge lengths mentioned in the introduction; theyaaly give a coupling to Bernoulli
percolation for all parameter valugsi.e., a way to realize the models for differerd on the
same probability space. To realize Bernoulli percolatiomaf parameter valug € [0, 1], we
simply call an edgé p-occupied ifu, < p; then thep-occupied edges (and their associate
p-clustersp-paths, etc.) are a realization of densit{dernoulli percolation.

For given values of the call numbers, MST can be construatedlmunded regiof by
the followinginvasionprocess. Starting with any vertex as the root, the tree ghynalding
at each step the neighboring edge with the lowest call nurpbavided no loop (and no loop
through a wired boundary) is formed; if a loop would be formid edge is discarded. The
construction terminates when the tree spans all verticks.r@sult is the unique edge-length
minimizing spanning tree, regardless of the choice of tlag, rprovided that no two edges
were assigned the same call number.

Lemma 6.4 For MST on a finite graph, in any dimension and with any of theraary con-
ditions used here, if an eddeis vacant in a configuration, then almost surely its endint
are connected with each other (possibly through a wired ldawy) by ap = u,-path.

Proof: Construct the tree as described above, with one of the entdpoiis as the root.

With probability one, all edges other thahave call numbers different from,. If b is vacant,

then the subtree connects the root to the second endpointusing only edges with call
numbers less tham,. [

Denote byp. = p.(d) the Bernoulli percolation critical value (which fat = 2 is
p. = 1/2 [B]). It is an implication of the Russo-Seymour-Welsh thef?9, 30] that for
critical Bernoulli percolation idZ>

D(r,3r) is traversed

Probs ( by ap.-path

) < 370 (0<8<8,(r), (6.3)

with somea > 0. Bounding the probability of crossings by disjojptpaths by using the van
den Berg-Kesten inequalit/ [31] results in the geometgcay property that

(6.4)

Prob ( D(r,3r) is traversed by) < 3ok

at leastt disjointp.-paths

Since spatially separated events are independent, adplescgument analogous to Lemng 5.3
implies thatH1 holds for critical Bernoulli percolation in two dimensignsgith exponents

~vg (k) satisfying
ve(k) > ak > 0, (0<d<d,(r)). (6.5)
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Note that the probability of crossing events for Bernoudirgolation does not depend on the
boundary conditions placed dn(r, R).

The object is to bound the probability that MST containgaths traversing an annulus
in terms of related events in critical Bernoulli percolatid-or a given locally finite connected
graphG embedded in the plane, consider theal graphG*. Its vertices are the cells @f
(i.e., the connected components of the complemeReinf the union of the embedded edges
of G). There is a dual edge joining two dual vertices for each common edge in the boundar
of the corresponding two cells. In generéfi* = G, but note thatz* can be a multigraph.
In particular,6Z? can be drawn with vertex séZ* = ¢§Z> + (3, %), and each dual edge
b* = {z*,y*} is the perpendicular bisector of some edge {z,y}. The dual of the graph
Gng contains a single vertexB(r)* dual to the cell inside the free boundary-athich plays
the role of a wired boundary fa¥,;*. A row of vertices dual to the cells touching the wired-
in pointdB(R) plays the role of a free boundary for the dual. The analogessription holds

for G)";;", with the roles of the boundaries Atandr interchanged.

A dual bondb* is calledp-occupied wherb is p-vacant. In a potentially misleading
but not uncommon usage, the termgual-path,p-dual-cluster, etc. are taken here to mean
the corresponding objects on the dual graph. The vacanseafgdST on a graphs form
a random spanning tree model, which can be constructed asdvM&T with call numbers
Upx = 1— Up-.

The next lemma relates the crossings/yfr, R) by paths in MST to crossings of the
annulus by curves pieced together frpmpaths andg,.-dual paths. Define a.-semipathto
be a (oriented) curve consisting opadual pathC* and ap.-pathC~ such that there is a pair
of dual edge$ andb*, so thath* contains the last vertex ¢f", andb contains the first vertex
of C~ as an endpoint. We allow the special cases pf-path (i.e.C* is empty) or ap.-dual
path C~ is empty). We say a.-semipath traverses an annulaér, R), if it connects a (dual)
vertex on one boundary d?(r, R) with a vertex on the other boundary. Two semipaths are
disjointif no edge or dual edge of the one is the same or dual to an eddigabedge of the
other.

Lemma 6.5 Supposé&, . .. C are disjoint curves in a realization of MST with mixed (free-
wired or wired-free) boundary conditions dn(r, R) which traverseD(r, R), wherek > 2.
Then the corresponding realization of Bernoulli percadaticontainsk disjoint crossings of
the annulus by.-semipaths.

Proof:  To be specific, consider the case of free-wired boundaryitond (the other case
is analogous). Orient the curvésto run from the free boundary atto the wired boundary
atR. If C; is ap.-path, then tak€;” = C;, C;" = ). For eachi such thaC; is not ap.-path,
let b; be the last edge alorn@ with w,, > 1/2. The portion ofC; betweenb; and the wired
boundary forms a.-path, which we take to b€ . By Lemma[6.4 applied to the dual tree,
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"~ "“free b.c.

Figure 4:A p. semipath consists ofja-dual pathC* and ap.-pathC~ joined at a bond/dual bond pair.

the two endpoints o} are joined to each other byya-dual path, which must pass through
0B(r)* because it cannot cro€s. Thus each of the sectors of the annulus cut out by the set
of C;’s contains two of thesg.-dual paths, which may well intersect. To obtain a colletctio
of disjoint p.-semipathgC;",C;") , chooseC;" to be thep.-dual path joiningdB(r)* to the
endpoint ot} in the sector immediately counterclockwise frémn n

One consequence of the lemma is that for MST on an annuludfaiently large aspect
ratio, the probability of crossings decays geometricallyin

Corollary 6.6 Leta be the exponent defined for critical Bernoulli percolation(.3). For
everys < «/2, there existsn large enough so that MST has the geometric-decay property
(B-8) on annuliD(r, R = 3?™r).

Proof: We will show that forr and R as described in the assertion,

EW

T 0T containgk disjoint 7\ 5k
nR L, < (= > <6<
Probs ( traversals ofD(r, R) - <R> forall k22, 0<0<0(r),
(6.6)

which clearly implies the claim.

Consider the case of free-wired boundary conditions. By io@if6.5, there corresponds
to a given collection of at least two tree crossigi = 1,..., k) a disjoint collection of
p.-semipathgC;t,C; ), joined ath;. Letn be the number of crossings where eitldelis a
p.-semipath, ob; lies in the inner annulu®™ = D(r, 3™r) or elseb; crosses the intermediate
boundary aB8™r. Then the semipaths containp.-paths traversing the outer annul»$"t =
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D(3™r, 3*™r) andk — n p.-dual paths traversing the inner annulus. We obtain

LW . L .
Proby ( I, containsk dISjOII’lt) < 3" Prob ( D" is traversed by at)

traversals ofD(r, R) — leastn disjointp.-paths

X Probyg (

S (k‘ + 1) 3—amk
< r )[<a/2—1/1og (R/7) K

D°is traversed by at leas
k — n disjointp.-dual paths

< , (6.7)

R
where we have used the independence of evenid"imnd D°“ gained from the decoupling
boundary conditions in the first line, inequalify {6.3),disal, and the telescopic principle for
Bernoulli percolation in the second line, afigh1) < e* in the last line. The assertion follows
by choosingR/r = 3*™ sufficiently large. n

The corollary implies that (k) > § & for £ > 2. The relation between the exponents
for MST and Bernoulli percolation can be tightened:

Lemma 6.7 For MST ondZ?, the exponents(k) satisfy
Y() > min [ys(n) + sk —n)] (k> 2). (6.8)

Proof:  Consider, again, MST with free-wired boundary conditiong¥(r, R). Subdivide
D(r,R) into M annuli D; of equal aspect ratioR/r)/*. By Lemma[6.p, any collection
of at least two disjoint traversal of D(r, R) by rf},gv gives rise to a collection of disjoint
traversals by,.-semipathg4C;", C;” ). Hence each of the annull, is traversed by a number;
of p.-paths and at leadt — n; p.-dual paths, with the possible exception of at mosainnuli
which meet one of the special edgegif b; crosses the boundary betwebnand D, ;, we
discard onlyD;.) Let A} (resp. Aj) denote the event thdd; is traversed by, disjoint
pe-paths (resp., by — n; disjointp.-dual paths). Then, by the FKG inequalities,

Prob(A; N AF) < Prob(A;) Prob(A") . (6.9)

Using this after summing over the possible positions oftthand using the independence of
spatially separated events as in the proof of Corollary @®ftain

I containsk disjoint Prob. [ Pl R) is traversed by
traversals oD (r, R) *\ atleastk p.-semipaths
A7k < r >(1—k/M) ming < [v8(n)+75 (k—n)]

IN

Prob5 (

<

R
Choosing)M sufficiently large proves the claim. n
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Corollary 6.8 (H1 for MST) For all & > 2,
y(k) > ak | (6.10)

wherea > 0 is the exponent defined for critical Bernoulli percolation ®.3). In particular,
H1 holds for MST with

A(k) 2 X'(k) = oK) > S(k—1). (6.11)

Proof:  Just combine Lemma 8.7 with (.5), and with the results of ire{5.]L an¢i 5| =

6.c Euclidean spanning tree

The proof ofH1 for EST follows the same general strategy as the proof for MSfe
previous subsection. The basic idea is to relate the tregepsoto a percolation process, in
this caseadropletpercolation (sometimes called continuum or lily-pad p&tion). There are
a few additional difficulties, related with the lack of sdifiality, and the fact that events in
disjoint, but neighboring regions need not be independaata consequence, the definition
of disjointnesdor dual traversals becomes more complicated, and thaaelate establish
between crossing events in EST and droplet percolationtisomight. But let us now turn to
the details.

In the introduction, we defined EST &? as the minimal spanning subtree of the com-
plete graph on a collection of Poisson points with densit}; with the edge length given by
Euclidean distance. In the droplet percolation model, #m@om objects of interest are the
connected clusters formed by discs of a fixed ragiuévherep is a parameter) centered on
the Poisson points. By construction, the Poisson procdssede coupling of EST to droplet
percolation with any parameter valge> 0.

A p-path is a simple polygonal curve whose straight line segsjein Poisson points
with distance less tha2pd. A p-clusteris a maximal set of points that can be joinediby
paths. As in the case of Bernoulli percolation, there is @calivaluep,. for the parameter. It
follows from the results of[[12] (see in particular the prodfTheorem 3.4 and Corollary 3.5
there) that for annuli of some fixed aspect ratio

<o (0<6<5,(r), (6.12)

Prob, ( D(r,or)is traversed)

by ap.-path

with somea > 0. Two p-paths or two paths in EST are regardedisgoint, if they share none
of their Poisson points. With this notion of disjointnessyaen den Berg-Kesten inequality

35



holds for the probability of multiple disjoing-crossings, and we obtain as in the case of
Bernoulli percolation the geometric-decay property

(6.13)

Pr0b5< D(r,or) is traversed by) < g-ak

at leastk disjointp.-paths

A telescopic argument as in Lemra]5.3 implies tHatholds for droplet percolation ifR?,
with exponentsyp (k) > ak.

One notable difference to Bernoulli percolation is thatpiied percolation is not self-
dual. Ap-dual cluster is a vacant space inside which a disc of radiwsin be moved without
touching any Poisson points. Avacant curve is a simple curve which keeps a distance of at
leastpd to all Poisson points. The results f[12] imply that

D(r,or) is traversed

Probs ( by ap.-vacant curve) < o (0 < <6o(r)), (6.14)

with somea™ > 0. (We have chosea large enough so that the samenay be used in(6.12)
and [6.I4).) From this, a geometric-decay property can heirdd for multiple crossing
events — if a van den Berg-Kesten inequality is available.orger to extend the van den
Berg-Kesten inequality from Bernoulli random variableghie present context, we define a
very strict notion of disjointness: Twp-vacant curves arspatially separatedif their pd-
neighborhoods are disjoint, i.e., if any pair of points oa tivo curves has distance at least
2pd. Then

(6.15)

Prob; ( D(r,or) is traversed by at least S) < gk

k spatially separatepl.-vacant curve

so thatH1 holds for vacant percolation with exponents(k) > ka*, whose value may differ
from the parameters for the droplet percolation modeliitsel

As mentioned in the introduction, EST is automatically agaph of the Poisson-
Voronoi graph [3R] with the natural Euclidean edge lengthican be constructed with the
invasion algorithm of the previous subsection, with anyteselas the root. An edge of the
Poisson-Voronoi graph will be callggtoccupiedf it joins a pair of Poisson points of distance
at mostpd, andp-vacantotherwise. Clearly, Lemmnia 6.4 continues to hold #8717 in place
of M ST, with §Z? replaced by the Poisson-Voronoi graph of densityyonR2, and Bernoulli
percolation replaced by droplet percolation.

For any random spanning tree model on a planar gfaplve can construct a dual tree
model on the dual grapfy*, as explained in the previous subsection. The dual of a Gwoiss
Voronoi graph inR? can be represented with the corners of the Poisson-Vorafisias dual
vertices, and the straight line segments of the cell boueslas dual edges. Adual path is
a simple polygonal curve consisting of the dualgpefacantedges inG*, i.e., of boundaries
of cells defined by Poisson points that are at least a distamtapart. (See the discussion
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of MST for the effect of free and wired boundaries.) Singe-a&lual path inG* is clearly a
pe-vacant curve, Lemma®.4 holds also for the dual of EST andntguercolation (in place of
MST and and Bernoulli percolation, respectively).

In accordance with the previous definition, we defing.aemipath(C*,C~) in the
Poisson-Voronoi graph of density? to be a (oriented) curve consisting opadual path in
G*, and ap.-pathC~ in G such that the last dual vertex 6f lies in the boundary of the cell
containing the first vertex af—. (We allow the same special cases as before.) Tightening the
previous definition, we say that twQ-semipaths ardisjointif they share no vertices or dual
vertices. Then Lemma .5 continues to hold for EST in pladd 8.

Although ap.-dual path inG* always defines @a.-vacant curve in the plane, and con-
versely, ap.-vacant curve can be deformed to run along the boundariesringi cells, the
notions of disjointness (gi.-dual paths inG*) and of spatial separation (pf-vacant curves
in the plane) are different, and our proof of Corolléry] 6.6 kabe changed accordingly:

Corollary 6.9 Leta, o*, ando be the parameters defined for droplet and vacant percolation
in (6-12) and [6.7}4). Fos < min(«, @*)/4, EST has the geometric-decay propefty](5.6) on
annuli D(r, R = o*™r) with a sufficiently large integera.

Proof: We will show that, forr and R as in the statement,
FW

W,F : i 2s|k/2]
Prob, ( I [T, ] containsk d|310|nt) < <r)

traversals ofD(r, R) R

7 forallk>2 0<d <,(r).

(6.16)

SubdivideD(r, R) into an inner annulu®™ = D(r, o™r) and an outer annulu§°! =
D(o™r, 0?™r), and consider the disjoint semipatt@s", ;") corresponding to thk traversals
of the annulus by the tree. As in the proof of Corollary] 6.6,al¢ainn crossings ofD°" by
pe-pathsC;” in the Poisson-Voronoi graph, akd- n crossingsD™ by p.-dual path<;".

By definition, eaclt;” is ap.-path for droplet percolation, and disjomtsemipaths lead
to disjointp.-paths. Similarly, each of the pat$ along the edges iG* can be parametrized
as a curve in the plane that keeps distance at jgadtom all Poisson points. The compli-
cation here is that thg.-vacant curve€;” need not be spatially separated according to our
definition given above even for disjoint semipaths. HowglgrLemma6.70 proved below,
we can use the way th@&" are confined to the sectors cut out/dfr, R) by the set of’;’s, to
find at least (k —n)/2] p.-vacant paths among tlgg 's which are spatially separated, except
possibly, for their first and last edges. (As usual, the pagyi of long edges introduces a
correction which is exponentially small &12.)

The proof is completed by using the independence of event®imnd D°" (with the
decoupling boundary conditions), and the geometric decapepties [(6.13) and (6.]L5) for
droplet and vacant percolation. n
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Lemma 6.10 Letb = {x,y} be an edge of EST with densiy?, and letP be ap.-dual path

in G* (the dual of the corresponding Poisson-Voronoi graph) wittihe critical parameter
value for droplet percolation. Assume that no edg® @ dual tob. Then the distance between
b and all non-terminal segments 6&fis at leastp.0 /2.

Figure 5:Two possible positions of an edge= {z, y} in the Poisson-Voronoi graph relative tp adual path
P containing the boundaries of the Voronoi cellsiadindy. The cells ofr andy meet the cell ofv at z*, which
is point onP closest ta.

Proof: The minimal distance betweénand the non-terminal segments Bfis realized

for a pair of points involving either an endpoint br the endpoint of a segment &f. In

the first case, we are done, sinBehas distance at leagtd from any Poisson point, and in
particular from the vertices andy. In the second case, the minimal distance is assumed
somewhere between a point biand a vertex* of G* on P. We need to find a lower bound
for the heighth of the triangleryz*. Assume, without loss of generality, that lies on the
common boundary of the Voronoi cells efandy with the cell of another point (otherwise,

the tree contains an edge that is closettdhanbd). In other words:* is the center of the
circle throughe, y, andw.

Both {z, w} and{y, w} have length at leagp.d, because” contains their duals. More-
over, one of them (sayz, w}) is longer tharb, because EST contains If the trianglezyw
has an obtuse angle gtthen{z, w} has length at leasy/4(p.6)? + ¢2 (wherel is the length
of b), so that the distance of to bothx andy exceeds half of that value. Sineglies on the
perpendicular bisector éf we see with the Pythagorean theorem that p 6.

If the trianglexyw has acute angles at botlandy, we slidex andy apart in such a way
that the line through: andy and their perpendicular bisector are preserved, untilehgths
of {z,y} and{x, w} coincide. While this increases the lengths of all sides ettiangleryw,
it can only decreask, since the intersection of the Voronoi cells:ofndy with the bisector
of b shrinks. Elementary geometric considerations show/thakceeds.0/2 (see Figuré]5).
|

Lemma[6.]7 and Corollary §.8 have to be modified as well:

38



Lemma 6.11 In the case of EST of density? onR?, the exponents(k) satisfy

(k) = min [yp(n) +7p(l(k —n)/2])]  (k=2). (6.17)

Corollary 6.12 (H1 for EST)For all k£ > 2,

(k) > min(a, o) {SJ : (6.18)
with o, o* > 0 as defined above. In particuldil holds for EST with
A 2 ) 2 0 > minasa®) S| (6.19)

Proof:  Combine Lemm@6.]11 with the general inequalities betweemxiponents of Lem-

mags[5.]l an{l 5.2. n

Remark In Corollary[6.IP and Lemmpa 611, the expressioh — n)/2| can be replaced
by 1 whenk —n =1.

7. Verification of H2

We shall now verify the roughness criterion. In contrastwite previous section, our
arguments here will rely mostly on the tree structure, sytrynand planarity. In particular,
the result of this section also applies to the uniform spagniee on the Poisson-Voronoi
graph. The main idea is seen in the following lemma.

Lemma 7.1 LetI'(w) be a random tree model di?, and letB be a rectangle in the plane.
Suppose that the distribution of the model is symmetric wadgoup of transformations in
the plane which is large enough so that some collecion . . , B, ofimages of3 under these
transformations can be positioned in such a way that anyectibn ofn curvesC; traversing
B; (i=1,...,n) forms aloop. Then

Prob ( B is traversed (in the long

1
direction) by a path i’ ) s 1= (7.1)

n
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Remark Ifthe model has the symmetries of the square lattitean be any sufficiently long
rectangle, and®; (i = 1, ..., 4) are the images @B under rotation byr /2 about a sufficiently
close lattice point. For the hexagonal and triangulardattive would use rotations ®yr/3
in the same way.

Proof: Since the random tree contains no loops, the probabilityaha3; are traversed
simultaneously must vanish. Thus, with probability oneeatst one of the3; fails to be
traversed. By our symmetry assumption, the probabilityadiuife has to be at least/n,
which proves eq[(7].1). |

The above observation will now be supplemented by a deaugipligument.

Lemma 7.2 Let I's(w) be one of the four spanning tree models®hdescribed in the in-
troduction, with cutoff parametet, and let{ A4,,... , Ay} be a collection of well separated
rectangles of common aspect ratio (length/width} 2. Then

— eachA, is traversed (“lengthwise”
(lsiI%Prob(;( g IS trav (‘lengthwi )) < o
—

by a curve inf\” (w) (7.2)

with p = 3/4. Furthermore, with some other valuesok 1, ando < oo, the above bound
on the probability applies for ah < min; ¢, (i.e., also the full hypothesld2 holds).

Proof: Let us consider first the case of the spanning tree&Z3n For each of thed;, we
pick a lattice pointz; outsideA;, but as close as possible to the midpoint of one of the long
sides. LetA; be the disc of radius?; aboutz,;. ThenA; containsA,. The discs are disjoint
since the separation betwedn and the other rectangles is larger ti2arf;. Introducing free
boundary conditions on th&; will only enhance the crossing probabilities, while dedowp

the crossing events in disjoint discs. We next check themagsans of Lemmd 7]1. Clearly,

in each ofA; the tree processes (with free boundary conditions) is symenender rotation

by 7/4 aboutz;. If § is small enoughq < % min ¢; will do), then the images aoft; under

the four rotations by multiples of /2 intersect in such a way that any simultaneous crossings
would form a loop. By Lemm 7.1 the crossing probabilities independenty bounded by
3/4. This implies both claims for the UST and the MST.

An additional consideration is needed for the models on thies®n-Voronoi graph.
One may take here = 2, chooser; to be the midpoint of a long side of;, and letA; be the
disc of radiusr¢; aboutz;. The the probability that each; is crossed by the restriction of the
tree toA; is bounded by3/4)*, by the same argument as above. However, a small correction
has to be added to allow for the possibility of an edge crgsdinand the boundary of ;. As
discussed in Sectidf 5, the probability of such a long edgebeadominated byge—4(7%/9)°,
with suitable constant$ < A, B < oo. The claim then easily follows also for that casem
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8. Conclusion

The scale invariant bounds derived in Sectifins 6 [&nd 7 will he used to prove the
two Theorems stated in the Introduction.

8.a Tightness, regularity, and roughness

The basic strategy for the proof of Theorgm 1.1 is to applyégelarity and roughness
results for random curves (Theoremg 3.1 @P 3.2, see S@pttorthe branches of the random
trees to obtain the tightness of the famfily, )}, and then use the structure of the spaces
QW) and2 to obtain tightness o{uf;N)} andus. The statement about the locality and basic
structure follows from the positivity ok(2).

Proof of Theorem[L.]:

Existence of limit pointsiWe verified thatF, f) satisfies the regularity criteriddl in R?
for each of the systems of curves along UST, MST, and EST ((2oies[6.8,[6.8, anfl 6.].2,
respectively). By Lemm§ 3.3, the corresponding bound ossing probabilities holds (with
the same exponents) also for the systenR8mwith the metricd(z, y) given by [Z]L). Theo-
rem[3.1 implies that the family of measur/e%) is tight, and that subsequential scaling limits
exist for the system of random curvgg?. Since forN > 2 the spaces™), constructed
by patching together spacés, are closed subspaces [¢f®) | *N=3 (see the discussion at the

end of Subsectiof] 2.a), the family of measupé@) on QW) is tight also for eachV > 2.
(There is nothing to show foN = 1.) Tightness of the measurgs on the product space
Q C Xn>12) now easily follows by an application of Tychonoff's theorem

The tightness described above guarantees the existenseqtiancé,, — 0 for which
the limitlim,, ... 15, () exists in the sense of weak convergence of measur¥s;,orf2"), as
described by eq[(T.4).

To see that a limiting configuration typically describesragi spanning tree iiR?, we
use that the exponent2) is positive by Corollarie§ 6.3, 8.8, afd §.12. FFor 0 andd > 0,
define the random variables,, (w) to be the radius of the smallest ball containing all treef wit
endpoints inB(r) , and letR, (w) be the corresponding variable in a scaling limit. Condition
H1 says that

PI‘Ob5 ( R&T <w)
r

so thatF; is uniformly quasilocain the sense thaks.,. is stochastically bounded as— 0.
Moreover, [8]1) also holds faR, (w) for any scaling limit of the system. In particulat;
almost every limiting configuratioff (w) is quasilocal, and represents a single tree spanning
R2.

> u) < K2, 5yu0@-9) 8.1)
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Regularity: Theorem[3]1 guarantees furthermore that for every 1/2, the curves in
the limiting objectF(w) can be parametrized, by functiop&) which are Holder continu-
ous (using the metric given by (R.1) @), with exponenty and a random prefactor whose
distribution depends o, that is,

d(g(t),9(t) < Ka(w)t =" 0<t,t'<1. (8.2)
Rewriting equation[(8]2) in terms of the original metricf we obtain

l9(t) — g(t)] < Kalw) 1+ g0 + [g()*) |t =] (8.3)

The last conclusion from Theorgim B.1 is thajd@lmost all configurations of any scal-
ing limit, all the curves have Hausdorff dimension at nibst A(2).

RoughnessSince]—"éz) also satisfies the roughness criterld®* by Lemma[7.R, The-
orem[3:R implies that the limiting measur” is supported on collections containing only
curves whose Hausdorff dimension is bounded below by s¢yne> 1, which depends on
the parameters iRl2*. In particular, curves in scaling limits cannot be paramet Holder
continuously with any exponent > d_: . This concludes the proof of the convergence, reg-

ularity, and roughness assertions of Theofer 1.1. ]

8.b Properties of scaling limits

The main tool for the proof of Theorem 1.2 is the fact that theting measure inherits
the power bounds associated with the exponents), as explained in Theorefn b.4. It is
convenient to employ here the following notion of degreeichitlassifies the local behavior
of a collection of trees near a given point R2.

Definition 8.1 The degre®f an immersed tree at a pointis given by

degr(z) = Y deg,(€), (8.4)
&f(@)=z

wheref : 7 — R?is a parametrization o’ which is non-constant on every link. Heteg, (€)
is the branching number of the reference treat ¢ if £ is a vertex ofr, and it is taken to be
if ¢ lies on a link ofr. For a collection of treesF immersed ifR?, the degree at is

degr(z) = sup sup degp(z). (8.5)
N TeFN)
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A more refined notion is that of the degree-tygfel” at , which is the multiset of the
summands in the above definition of degree. The notions imibiefia [L.2 can be expressed
in terms of degree-type. For instance, a point of uniquereesse whose degree-type has
one part for every tre@ in F. A branching point is one with degree-type (for soimen F)
containing a part that is at least 3, and a pinching point eswith two parts at least 2.

One may note thateg -(z) = 1 implies thatz is a point of uniqueness. Such points are
also points of continuity, in the sense seen in the follovatagement.

Lemma 8.1 If F is a closed inclusive collection of trees representing g@lgrspanning tree
in R4, andn = {zy,... ,xx} is an N-tuple consisting of distinct points of uniqueness, then
F includes exactly one subtree, denoid’ (n), with the set of external vertices givensy

Moreover, if the external vertices of a sequence of tfgeg in S?V) satisfy

in (Rd)N, then
To— T™ () (8.7)

with respect to the metric o).

Proof: Assume thatF contains two trees]; and7; with external vertices given by.
SinceF represents a single spanning tree, there exists dt(earametrized ag : 7 — RY)
containing bothi; andTs;, with no external vertices beyond If T} # T5, then at least one of
the two trees (sa¥}) is parametrized undef by a proper subset of 7. Let¢ be an external
vertex of7 not contained inr;; clearlyx = f(&) is one of the pointsy,...,xy in 5. By
assumption, there exists a pofin 7, with f(¢) = x. SinceF is inclusive, it contains the
curve obtained by joining to £ in 7 and applyingf. This is the desired curve which starts
and ends at.

To see the continuity statement, note that the closednesgsimiplies that any limit of
a sequence of trees whose external vertices satisfy thenptisn (8.9) is certainly contained
in F, and has external vertices The uniqueness result implies the claim. n

The dimension of the set of the points of degfeean be estimated in terms of the
exponents\*(k).

Lemma 8.2 Letu(dF) be a probability measure dn describing a random collection of trees
in R4, and assume it satisfies the power-boupd] (5.1), on the pitityatf multiple disjoint
crossings of annuli, with a family of exponentgk). For each realizationF, let

A(F) = {z eR? | degx(z) >k} . (8.8)
Then:
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i. For u-almost everyF the Hausdorff dimensions dff, (F) satisfy

dimy A(F) < (d— X (R), | (8.9)
in particular
A*(k) > 0 = Ag(F) is of zero Lebesgue measure (8.10)
i.
N(k)>d = Ai(F) = 0for u-almost everyr, i.e., (8.11)
xs;g degr(z) < k, p-almostsurely

Proof: For R > 0, we denote byA, z(F) the set of all points: € R? such that for all
r € (0, R) the tree configuratiogF exhibits at least: microscopically disjoint traversals of
D(z,r, R). The definition of the degree implies

A(F) ¢ | Ar(F) (8.12)
1>R>0
where it suffices to také? = 277, j = 1,2,.... By translation invariance (ok*(k) and

dimy), and the fact that the Hausdorff dimension of a countableruaf sets of dimension
< v does not exceed, it suffices to show that for any giveR < 1

dimy A g(F)N[0,1]* < d— X (k) . (8.13)

Let now N (k, r, R; F) be the number of balls of radiusneeded to coved,, z(F) N [0, 1)¢.
Covering the unit square bynst.r~¢ balls of radius-, we see that for any < \*(k), the
expectation value satisfies

E(N(k,r, R; F)) < const.(R,s)r*®. (8.14)

By Chebysheff’s inequality, the random variabtés* N (k, r, R) are stochastically bounded
uniformly in . Equation [[8.1]3) readily follows.

In cased — \*(k) < 0, the above covering argument implies that the set is almwstys
empty. [

We shall now use the above observations to complete the pifoibfe second set of
results stated in the introduction.
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Proof of Theorem[I.2:

Singly connected to infinityLet 7 (w) be a scaling limit of one of the three random
tree models considered here (UST, MST, or EST). Note tha&t wWas not singly connected
to infinity, then, with positive probability, it would contatwo microscopically disjoint paths
traversing annulD(r, R) with arbitrary large aspect ratio. This contradicts thespositivity
of A*(2).

Points of uniqueness and exceptional poinBoints of degree one are automatically
points of uniqueness. Thus, the claim that Lebesgue-alafigsbints are points of uniqueness
is implied by the condition\*(2) > 0, through Lemm& 8] 2 witlk = 2. This also shows that
the set of exceptional points has dimension less than two.

To see that exceptional points are dense, it is instructiveonsider the dual model,
which in two dimensions is also a spanning tree. Any intepioint of a curve in a scaling
limit of the dual tree model is a point of non-uniqueness fa@ briginal spanning tree. In
two dimensions, the exponent$k) are shared by the model and its dual for all the models
discussed here (because the graghl” is dual to(G*)";"), even in the absence of the self-
duality exhibited by UST and MST so that the dual models atds®es the hypothesidl
andH2*. That makes the roughness assertjor] (1.3) of Theprgm llitaiple also to the dual
models, and hence almost surely the dimension of each doad @ustrictly larger than one.
Also, since a scaling limit of the dual model is a single spagtree, the set of interior points
of its curves is clearly dense IR?.

Countable number of branching pointdn order to establish that the collection of
branching points is countable, it suffices to show that fergy > 0 there are only countably
many points at which branching occurs with three or more ¢ras extending to a distance
greater thake. (The collection of branching points is a countable uniorswth sets, with
e = 27".) We shall refer to such points Asanching points of scale. As a further reduction,
we note that it suffices to prove that in any finite region, ¢ree typically only finitely many
such points. Thus, the countability is implied by part (itlo¢ following claim.

Claim: Let N.(F) be the number of points of branching of scalavithin the unit
cell A = [0,1]% Then
i. u(dF) - almost surely
N.(F) < o0, (8.15)
ii. for each integert such that\*(k) > 2 (= d)

A (k)—2
const.(k) [k 2

for all m > k/s* (whereProb is with respect to the measuig.
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Proof of Claim: Part (i) is of course implied by (ii). To prove (ii), let us pi&ion the
unit square into square cells of diametex ¢, with » determined by

m = k/r*. (8.17)

This choice of- guarantees that i¥’.(F) > m then in at least one of the cellShask,

or more, branching points of scate Now, if a given cell containg such points, then
F includes a subtree which within this cell hadranching points, with all branches
extending further thale — r > ¢ from the cell’s center.

This implies that the annulus concentric with the cell, visther radius- and outer
radiuse, is traversed by at least- 2 microscopically disjoint curves. (This topological
fact was employed in a vaguely related context by Burton agahi€ [3]3].) Adding our
bounds for the probabilities for such eventsifst.(k)(r /)" *) for each cell), we get

1 X (k)
Prob (N. > m) < — const.(k) (f) , (8.18)

r2 €

which leads directly to eq[ (8.]16). o

Non-random bound on the degree of branching poiftse absence of branching points

of arbitrary high degree is a direct consequencg*ok) — oo (k — oo) by Lemm&8]2 (ii).
|

Remark: We conjecture that the maximal branching number is actualy 3. From the
perspective of this work this is suggested by the countstwli the branching points, which
may be an indication that*(3) = 2 (= d). If \*(k) is also strictly monotone i, then
A*(4) > 2 (= d) and the suggested statement then follows by Lerhmja 8.2 (igweher,
neither of the two steps in this argument has been proven. aéethat both are consistent
with the exact predictions for UST, viewed as the- 0 limit of critical Potts models[[14, 19].

Appendix

A. Quadratic growth of crossing exponents

In Sectior{p it was established that the crossing exponghidor UST, MST, and EST,
grow at least linearly withk, ask — oo. We shall now prove that the growth is even faster:
quadratic ink. Our derivation extends the analysis of réf][17] where alamstatement was
proved for independent percolationdn= 2 dimensions. It was also suggested there (but not
proved) that the proper generalization, for dimensiénghere~(k) does not vanish, should
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bey = k%=1, The improved argument presented here yields such a lowerdofor all
dimensions! > 2.

Remark: It has been proposed for a number of related problems in tmeisions that ex-
ponents similar te (k) are giverexactlyby a quadratic polynomial ik [L8, [L9]. In particular,

the prediction for UST (viewed as thig = 0 critical Potts model) igk? — 1) /4. It would be

of interest to see mathematical methods capable of regpbrinh issues.

We start by deriving an upper bound on the exponents, usi@gpreng analogous to
that found in ref. [IJ7].

Lemma A.1 The actual rate of growth of (k) is not faster than ordek®(@-1 for UST. In
d = 2 dimensions, that applies also to MST and EST.

Proof:  We will show for each of the models that there exists a congtan oo so that for
all spherical shell®(r, R) (with 0 < r < R), and every integer,

I containsk disjoint

7N Bk @1
crossings oD (r, R) ) = <_> (0<d<0,(r,R)). (AL

Pl"Ob(; ( R

To prove this, we show that with sufficiently high probalyilibere are: crossing paths
which occur separately withikh disjoint conical sectors. The sectors may open at an angle of
the orderconst.k~ /(=1 (where the constant depends onlyd)nTo decouple the events, we
separate the different sectors by imposing the wired baynctanditions on the intra-sector
boundaries. For UST the lower bound follows now from theestant that with probability
at least(r/R)*/“"" (for some < o), a random walk, and hence also LERW, started at
a point at the center of the sector’s inner (reflecting) sphéboundary z| = r) will leave
the sector through its outer spherical boundagy & R). The statement can be derived by
a number of random walk techniques. kbt 2 dimensions a harmonic function argument
yields such a decay with = 1/2+o(r/R), i.e.,y(k) < k?/2. The calculation can be adapted
to higher dimensions, but instead of presenting it heredetuiline a qualitative argument.

The desired random walk estimate can be obtained by notaigwhenk > 1 the
region to be crossed looks like a narrow pencil, which may uledsided into a series of
O(kY@=D1og(R/r)) pairwise overlapping subregions of moderate aspect ritize random
walk makes it to the middle portion of the outer boundary of ohthe subregions, it is near
the center of the next subregion, and with probability badchaway from 0 will make it to the
middle portion of the outer boundary of the next subregiotheaat hitting the walls.

For MST and EST inl = 2 dimensions, we relate the claim to a crossing event in the
associated critical Bernoulli and droplet percolation eled CutD(r, R) into 2k sectors of
equal width. (In the case of EST the sectors need to be sepaogta gap of widtl2s.) It
was proved in[[39, 30] that the probability of findingacrossing (or a.-dual crossing) in a
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given sector is bounded below by/ R)°* with some3 > 0. Suppose that the configuration of
Bernoulli or droplet percolation hag-crossings ang.-dual crossings in alternating sectors.
(By independence of the sectors, this event occurs withahitity (r/R)ﬁ’“Q.)

We can construct the tree (MST or EST) associated with then(®#li or droplet) per-
colation model via the invasion process described in Suiogeg.b. If we start the invasion
from any point where thg.-crossing meets the boundaryrathen the invasion will reach the
outer wired boundary before crossing either of the flankindual crossings. Therefore the
tree contains a traversal for each of thg.-crossings, and these must be pairwise disjomt.

We proceed to derive a matching lower bound on the growthafeatee exponents.
Theorem A.2 Suppose a random tree modein d dimensions satisfies the free-wired brack-
eting principle

IY\{oA} = TNA =TI}, (A.2)

in a form which yields the telescopic principle with a nelg error, as in Lemm# 5|3, and
has the geometric decay property, in the form:

There exisy > 1 andt > 0, such that the random variabl&/ (r, o; w) representing
the number of disjoint crossings of the spherical stiélr, R = or) with free-wired
boundary conditions, has a finite moment generating functio

E5 (et J\/[(r,o;w)) < e!](cﬁt) (0 <0 < 50(7-)) (A3)

with somey(o,t) < oc.

Then there exist8 > 0 such that forR /r sufficiently large

FW ; B kd/(d=1)
pr0b5< W contains more ) < K (7“)

7 r < .
thank crossings ofD(r, R) (0< 6 <0,(r,8,k))

(A.4)

R

Remarks: i) Elementary considerations show that the conditijon](As3)mplied by the
geometric-decay hypothesis (5.6), which was derivedd{fer2) in Sectionb.

i)i) It ought to be clear from the proof that the argument d¢snextended to other
systems, in particular to independent percolation modadls more generally, to the Fortuin-
Kasteleyn random-cluster models with > 0 (of course the theorem stated here will be of
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interest only for critical states). For those systevg:, o; w) will refer to the maximal number
of crossings which can be realized disjointly in the configian w. The main adjustment
needed in the analysis is to replace the free-wired bragietinciple by a suitable decoupling
boundary condition which increases the state.(Far@ < 1 that is provided by the free b.c.,
whereas forl < @ that role is played by the wired b.c. Correspondingly, theuagption
made in the theorem should in each case refer to the statddtithe variablelM/ under the
corresponding b.c.

Proof:  For a givenk, let us subdivide the spherical shél(r, R) into concentric subshells
with a common aspect ratio:

D, = D(re™ VD ren®) - witha = b 1k~1/@-1 (A.5)

whereb > 0 is a parameter whose value will be specified below. By thes¢elgic principle,
the probability ofk disjoint traversals of)(r, R) is dominated (up to a negligible error) by
the product of probabilities of such traversals of they(R/r)/« | subshellsD,,, each taken
with the decoupling free-wired boundary conditions. Thassjs explained at the end of this
proof, it suffices to establish the following bound:

Claim: There are constants > 0 anda(b) > 0, wherea(b) is strictly positive
for small enouglb, so that with the above choice af

Fw _ o
['p;" contains more thah d|$jomt) < mee®k (A.6)

Probs ( traversals oD, = D(r,re®)

forall k > k,(b,0,d) and0 < § < d,(r, k).

Proof of Claim: We employ a covering of the sphere of radius= re¢*/? by balls
of radiusr, = ra/(20) (see Figurg]6), where is large enough so that the geometric
decay property A]3 holds. Note that even when the balls gpareded concentrically
by the factoro, they do not reach outside;. (This can be seen usirig< ¢* — x and
e® +x < e* (for x > 0) with z = a/2.) Thus, each path crossitg(r, re®) produces
a crossing from the surface of at least one ball in the covardphere concentric with
it, of radiusr,o. We shall estimate the probability that there are altogedhéeastk
(or more) such traversals.

By Lemma[A.B proved below (witk = r,/7), there exists a covering of the
sphere by balls of radius,,

7S ¢ U B(x;r,) ,

z€eEA

which can be partitioned intd = U, A;, in such a way that

B(z;0or,) N B(y;or,) = 0 whenever,y € A,z #y .
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The important fact is that the partition can be chosen sorthat m (o) depends only
ono and the dimension (and not ep or 7). The maximum number of balls in any of
the A;’s is bounded by

d—1
max #4; < a, (L) < a, (4b0) k for k > ko (b, 0, 6) (A.7)

To

providedk, is large enough so thayr < 2, i.e., sothavtr,/r < log?2.

Figure 6:Placement of a disjoint family of small shell®(z; r,,, or,) within a large shelD(r, R). Of the two
depicted crossings of the large shell, the left one givestdsa crossing of a little shell. In this picture, we have
chosen the aspect rato= 3. Four families of eight disjoint little shells each are neédo capture all crossings
of the big shells.

In each configuration, |€¥/; ; be the number of lines touching thih ball B(z;; r,)
in A; (see Figurd]6), and le¥/; = Zj M; ;. If there arek disjoint traversals oD,
then at least one af/; exceeds:/m. Thus:

more thank crossings = k
Probs < of D(r, re?) ) < Z;Prob(; <M, > E)

< ) e mE (e M), (A8)

L

=1

using in the last step Chebysheff’s inequality. By the fn@eed bracketing principle,
each of the variables/; ; is stochastically dominated by the corresponding crossing
numbersM/[/M of IV . We get, foreachi = 1,... ,m:

T0,0T0

By (¢ %0 M0) < By (¢5M5Y) = LB (7)< e thaen | (ag)
J
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where we used first the independence of events in disjoitissihee to the decoupling
boundary conditions, and then the geometric-decay assomgg. [A.B) and the bound
(A1) on the number of balls in the cover. Substituting ingdy (A.9) into (A.8) yields

more thark crossings) < e lt/m—o o) glo) (A.10)

Probs ( of D(r,re®)

The claim follows now by choosing and¢ so thatg(o, t) is finite, and adjusting the
parameteb, making it small enough so that

a(b) = t/m(c) — a, (4bo)* ' g(o,t) >0 . (A.11)
To make the best out of this argument, one should optimizednand¢, maximizing
b x a(b). o

The calculation yielding the assertion ep. (A.4) from tharal is (for b small enough
but independent of)

more thark disjoint L/d-1)
PI‘Ob(g ( L EW ) 6[—a(b)k+logm] bk log(R/7)]
traversals i,

< 6a(b)kz—logm (L
R

The floors give rise to the prefactéf(k, 3), which grows exponentially ik. [

)bxa(b)xkd/(d1)_b><10gm><k1/(d1)

Let us remark that the bound (A.8) makes use of a standardoghébh large deviations
estimates, known as Chernoff’s inequality (see ¢.d. [38dy. completeness, following is the
covering lemma used in the analysis.

Lemma A.3 (Covering lemma)letc < 1 ando > 0. The unit sphere can be covered with
balls of radiusc (indexed by a finite set of centers)

st c |JB(z.0), (A.12)

€A

which can be partitioned inte: subcollectionsd = | J* ; A; satisfying
B(z,o¢)N B(y,oc) = 0 ifz,ye A,z #y. (A.13)

Here,m depends ol and the dimension, and the number of balls needed for theiogve
bounded by

HA <a,ct?, (A.14)

wherea, depends only on the dimension.
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Proof:  Intwo dimensions, one reasonable choiceAads a set of evenly spaced points on
the unit circle. In higher dimensions, taketo be the set of points ind~'/2 Z¢ that are at
most distance/2 from the unit sphere. Every point of the unit sphere is witlistancec/2

of such a point. To boungtA, consider the spherical shell of inner radius- ¢ and outer
radiusl + c. This shell contains all cubes with side lengtti'/> centered about some point
in A. Its volume is bounded above B w, c (wherew, is the volume of the unit ball iiR?),

so the shell can contain at mastw, d%/? ¢'~¢ cubes. This proves the claim gaA.

By a similar argument we conclude that the number of lattmiats in a ball of radius
20c¢ is bounded above by a number which depends only om and the dimension. We
partition A into subsets!;, . . ., A,, so that any two points id,; have distance at least= 2o¢,
by induction onm. If m = 1, that is, if the distance between any two pointsdinis at least
s, choosed; = A. If m > 1, take any point and put it id,, — this may make some of the
other points ineligible for placement i4,,. Continue in any fashion until all the points are
either inA,,, or else ineligible. Each ineligible point has distances lgsns to some point in
A,,, SO there are at most — 1 other ineligible points at a distance of less tampplying
the inductive assumption completes the proof. n
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