
Some Design Principles for
Immune System Recognition

GENERAL CONSIDERATIONS

T he immune system functions to protect us from disease-causing organisms. In
order to perform this function the immune system must be able to recognize
a potentially large variety of pathogens. Recognition in the immune system is

performed on the basis of chemistry, and thus the immune system, rather than
recognizing whole organisms, recognizes foreign molecules, or antigens as they are
called by immunologists. The number of possible antigens is extremely large, and
the immune system has only finite resources to devote to antigen recognition. Thus,
devising efficient strategies for antigen recognition has been essential in the evolu-
tion of a functional immune system.

Our goal in this article is to elucidate some design principles for an immune
system that has to cope with recognizing a large number of antigens. Because
pathogens are living organisms, they too evolve. Thus, the task of the immune
system is to recognize pathogens even if they evolve into somewhat changed forms.
The signature of evolution in a pathogen is the change in some molecules; that is,
antigens can change in time due to mutation.

Here we consider two problems, one in which the antigens remain fixed during
the time of the immune response, and one in which the antigens change rapidly
enough for that change to occur during an immune response. Space does not permit
a thorough discussion of the multitude of facts and existing theoretical consider-
ations about the immune system. For an introduction to some of the material, we
refer the reader to a recent review [1].

Immune recognition involves a type of pattern recognition, and as such the
principles that we discuss have application to problems outside the realm of im-
munology. For example, some of the ideas that we present have found application
in computer security [2] and shape spaces, which are a key concept in the article,
appear also in morphometry [3] and computer vision [4].
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The immune system is a complex system that learns, remembers what it
has learned, and acts to protect us from a variety of pathogens. Here

we address the question of how the immune system is able to recognize
and learn about pathogens that can rapidly evolve and, hence, potentially

change so as to avoid immune recognition.
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DESIGN PRINCIPLES

I f one assumes that the number of
possible antigens is sufficiently large
that to a first approximation it is in-

finite, then one can immediately see
that the immune system needs to build
antigen detectors, called receptors by
immunologists, that are sloppy in the
sense that each detector must be able to
recognize multiple antigens. If each re-
ceptor were able to detect only one an-
tigen, as in the classical lock-and-key
paradigm that has been used for de-
cades to teach about the specificity of
the immune response, then the number
of detectors would need to equal the
number of possible antigens. No one
knows the number of possible antigens.
Antigens are frequently proteins or
parts of proteins. Proteins are strings of
amino acids, of which there are 20 pos-
sible types. A protein composed on 100
amino acids can then be made in 20100

≅10130 possible ways. The genome of a
pathogen such as a bacterium contains
a few thousand genes, each of which
encodes a protein. There are thousands
of different bacteria. Thus, it appears
obvious that it will be impossible to
build a specific detector for each pos-
sible foreign protein. This argument has
been greatly exaggerated, since the im-
mune system recognizes the shape of
molecules and not their sequence. But
still one should get the sense of the
enormity of the task of recognizing all
possible foreign molecules.

Thus, the first design principle is
that the immune system needs to use
“sloppy” detectors, each of which can,
in principle, recognize many objects. If
the immune system uses sloppy detec-
tors, how can it perform highly reliable
recognition?

The first attempts to develop a quan-
titative description of the immune sys-
tem date from the early 1970s. In the
following quarter of a century these
quantitative studies were extended both
through the use of analytical methods
and numerical simulations. As a result,
there now exists an extensive literature
that enables us to verify the conse-
quences of certain assumptions con-
cerning the functioning of the immune
system [1]. However, to many research-

ers it is now becoming clear that de-
tailed modeling and numerical simula-
tions have to be counterbalanced by a
more global perspective that looks at
the design of the immune system and
tries to recognize some quantitative ar-
guments for an efficient design. In this
article we shall discuss some design
arguments.

The major components of the im-
mune system are a subclass of white
blood cells, known as lymphocytes: B
lymphocytes, which secrete antibody
molecules, and T lymphocytes, one type
that secretes molecules that regulate
the B-cell response and another type
that secretes molecules that can kill vi-
rally infected cells.

The aspect of the immune system
that we examine here is a consequence
of the fundamental immunological
phenomenon that B cells responding to
an antigen mutate their immunoglobu-
lin (or antibody) genes. The proteins
formed under the direction of these
genes are the B cell’s antigen-binding
receptors when expressed on the cell
surface and are also the antibodies that
activated B cells secrete. The mutation
of immunoglobulin genes occurs in so-
matic cells, lymphocytes, and not in
germ cells, the sperm and eggs that
transmit genetic information from one
generation to another. Moreover, the
rate of mutation is greatly enhanced
over the usual mutation rate that is seen
in other proteins. For these reasons the
mutation process is called somatic hy-
permutation. By the process of somatic
hypermutation and the selection of “fit-
ter” variants, the immune system can
evolve. This gives rise to a type of im-
mune learning. Further, the population
of fitter variants is retained within an
animal for long periods, possibly for the
entire life of the organism. This imparts
to the immune system the property of
memory, which forms the physiological
basis underlying the observation that
we usually do not get many diseases,
such as measles, twice.

From a more general perspective,
somatic hypermutation is an attempt of
the immune system to counterbalance
the mutational activity of many patho-
gens. Recall that humans have a genera-

tion time of 20 years or so, while patho-

gens such as bacteria can have genera-

tion times as fast as 20 minutes. The

rapid generation times of pathogens al-

low them to mutate and evolve at rates

that are orders of magnitude faster than

human evolution. The immune system

can be viewed as an autonomous de-

fense system in which generation times

are fast (e.g., 6 to 7 hours) and in which

mutation rates are boosted, thus allow-

ing the immune system to evolve on a

time scale that may be comparable to

that of many pathogens.

Thus, a second design principle is

that rather than having a static set of

detectors for antigens, the immune sys-

tem mutates, or changes some of its re-

ceptors in response to changes in the

environment. Consequently, some re-

ceptors might be thought of as general-

ists that function as made, while others,

specialists, are created by mutation to

be highly specific for an encountered

antigen. A third design principle is to

retain for some long period of time the

B-cell population that can produce

these mutated, highly specific antibod-

ies. This population forms the basis of

immune memory and allows the im-

mune system to respond to pathogens

that it has previously seen with greater

specificity and greater efficiency.

Below, we will quantitatively exam-

ine the ability of the immune system to

recognize pathogens that mutate. We

present two arguments about the global

design of the immune system, which

take the effects of mutations into ac-

count in a quantitative way. In order to

do this we shall use the concept of

shape space as introduced by Perelson

and Oster [5]. A concise description of

shape space would essentially run as

follows: Take a particular type of anti-

body in the immune system (i.e., a par-

ticular clone of B cells) and specify the

geometrical, physical, and chemical

properties of the binding site by a se-
quence of real numbers s1, s2, s3, . . ., sn.
For example, s1, s2, s3 might measure
length, width, and height of the binding
site; s4 might give the electrostatic
charge; s5, s6, s7 might give the three
components of the electric dipole mo-
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ment; and so on. Shape space (to be
denoted by S) is the linear space of all
possible sequences s1, s2, . . . sn. Hence,
each type of antibody (or each clone of
B cells) is characterized by a specific
point in S, which for convenience we
will call its shape. An immune system
with antibodies of N different shapes
(i.e., consisting of N different clones of
B cells) can be represented by a cloud of
N representative points in shape space.

To be more specific we ask: What is a
typical number for n, the dimension of
shape space? What is the order of mag-
nitude of N, the diversity of the immune
system? Most estimates for N are of the
order 107 [6–8]. The number n was es-
timated in Ref. 5 on theoretical grounds
to be in the range 5 to 10. Recent analy-
ses of experimentally derived antigen-
antibody binding data suggest that the
dimension of shape space may, in fact,
be approximately 5 [9], a remarkably
small number that suggests that the
lock-key relation between antibody and
antigen is not as specific as one would
tend to think.

Since each receptor is sloppy, we can
view it as covering a portion of shape
space. Another design principle, on
which we shall not elaborate, is to make
a sufficiently large number of receptors,
each with a pseudo-random shape, so that
the ensemble of receptor shapes comes
close to fully covering shape space [5].

ANTIBODIES MUTATE

D uring an immune response many
antibody-producing cells (B cells)
will mutate their antigen-binding

receptor; roughly speaking, there will be
one mutation per cell division, as the
mutation rate is approximately 1013

per base pair per generation [10], and
about 700 base pairs make up the vari-
able part of an antibody molecule. As a
result, a clone of identical cells (repre-
sented by a single point in shape space)
will proliferate into a large number of
different points in shape space. In this
section we model this phenomenon by
Brownian motion or “diffusion” in
shape space.

In order to become more quantita-
tive let us assume that shape space is
Euclidean, that the biologically relevant

part of shape space,1 S, is an n-
dimensional sphere of radius R, and
that the representative points of the N
different antibody shapes diffuse
through the interior of this sphere, all
with the same diffusion coefficient, D.
The assumptions of a Euclidean shape
space and that mutation leads to isotro-
pic diffusion are both rather drastic. In
some related work, the shape of a mol-
ecule has been represented in Euclid-
ean space [11]. However, in other mod-
els that have proven useful, particularly
in simulations of large immune sys-
tems, shape has been represented by a
string of digits. In this case, shape space
becomes a hypercube if binary digits
are used, or it becomes a generalization
of the hypercube if a larger digit alpha-
bet is used [12]. Mutations that lead to
changes in the amino acids comprising
the antibody molecule can either lead
to small changes in structure, which
could adequately be represented by dif-
fusion in shape space, or, albeit with
lower frequency, lead to large changes
in structure, which would appear as a
type of long jump in a Euclidean shape
space that could not be represented
easily by diffusion. The best representa-
tion for shape space is unknown. Thus,
the calculations that follow are only a
first attempt at studying the effects of
mutation in shape space.

Now suppose A is a “new” antigen,
that is, an antigen to which no antibod-
ies bind with an accurate fit. The mean-
ing of the loose phrase “accurate fit”
can be made more precise as follows. If
(the representative point of) an antigen
is situated less than distance «1 from
(the representative point of) an anti-
body, we shall assume that the antigen
can be efficiently bound by the anti-
body. In other words, around each an-
tibody we imagine a small sphere (an «1

sphere), and each antigen inside any of
the different «1 spheres will be easily
recognized and, under most circum-
stances, rapidly annihilated. Note that
here by the term “antibody” we mean
the shape of its binding site, and the
same for “antigen.” So the fact that A is
a new antigen encountered by the im-
mune system means that A “lands” out-
side of all the «1 spheres that cover

much, but not all, of shape space and
that make S look a bit like Swiss cheese.
The B cells that mutate and hence move
in shape space are those that are
“stimulated” by the antigen. We assume
stimulation involves weaker recognition
than efficient antigen elimination, that
is, that B cells within an «2 sphere of the
antigen are stimulated by it. In immu-
nology the relative distances in shape
space are measured in terms of the af-
finity of the interaction between anti-
gen and antibody. Hence, we are as-
suming that affinities above some low
threshold are sufficient to stimulate a B
cell, but that higher affinity B cells are
needed to efficiently eliminate the anti-
gen. The higher the affinity, the more
efficient the elimination up to some
point. For those readers who know
chemistry, the affinity of an antibody is
the name given by immunologists to the
equilibrium binding constant between
the antibody and antigen. Antibodies
can either be free or be bound to the
antigen. At equilibrium the higher the
affinity, the larger the fraction of anti-
bodies bound to the antigen. Put an-
other way, the higher the affinity, the
greater the fraction of antibodies that
are engaged in fighting the antigen. At
some point, enough antibodies are en-
gaged in the fight that higher affinity
contributes little more to the success of
the response.

When a random antigen is injected
into a mouse, it tends to stimulate
about 1014 to 1015 of all B cells [6–8].
This suggests that the volume of an «2

sphere is of the order of 1014 to 1015 of
the volume of shape space. Further, the
total number of B cells in a mouse is
about 108. Thus, on average a random
antigen would be expected to stimulate
103 to 104 B cells. The total number of
different types of B cells is about 107,
suggesting that, on average, there are
about 10 B cells of any given type in the
B cell repertoire before immune learn-
ing takes place. If there are 10 copies of
a B cell with a particular receptor speci-
ficity, then, of the 103 to 104 B cells
stimulated, one expects 102 to 103 dif-
ferent types to be stimulated. Thus, on
average, any antigen should simulta-
neously fall into 100 to 1000 «2 spheres,
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and it would be extremely unlikely to
avoid falling into any «2 sphere.

W e view the process of somatic
hypermutation and the subse-
quent selection of higher affin-

ity variants as a process that allows the
immune system to convert low-affinity
antibodies, which can recognize an an-
tigen, into high-affinity antibodies,
which can more efficiently remove an
antigen. In a sense the immune system
converts “generalist” antibodies, which
are good at recognizing many potential
pathogens, into “specialists,” which
deal with particular pathogens effi-
ciently. These specialist B cells that se-
crete high-affinity antibodies are re-
tained and form part of the memory of
the immune system. Because of limited
resources the immune system cannot
start with enough specialists to recog-
nize every possible pathogen with high
affinity—remember the immune sys-
tem needs to deal with novel patho-
gens, some of which have never before
appeared in all of evolutionary history.

Having introduced the idea of «

spheres, we can estimate the size of D
relative to «. During an immune re-
sponse, B cells that recognize the anti-
gen, that is, that are within the «2

sphere, may diffuse and improve their
ability to recognize the antigen. If we
assume that during the time of an im-
mune response, which we call TR, B
cells that barely recognize the antigen
improve so that they are very good at
recognizing the antigen, then they
would have diffused a distance of nearly
« = «2 1 «1 in time TR. In general, the
average distance, x, that a B cell diffuses
in an n-dimensional Euclidean space in
time t is given by

x2 = 2nDt . (1)

Thus, if a B cell diffuses a distance « in
time TR, we have

D = «2/2nTR . (2)

As we know, most common infections
last a week or two, and this is a reflec-
tion of the time for a typical immune

response. Assuming that the immune
system “learns” during this period of
time, it should take on the order of 2
weeks for a B cell to diffuse the distance
«. Letting TR = 2 weeks and assuming
the dimension of shape space to be n =
5, then D ≈ 0.05/«2/ week11.

Let B be the B cell receptor that is
nearest to antigen A in shape space. As
a result of the mutational diffusion of B
there is some probability that the «1

sphere around B will hit A at some later
time, leading to the generation of high-
affinity specialist antibodies that recog-
nize A and that can be retained in the
memory of the animal to prevent recur-
rence of the disease. We ask for the ex-
pected time (T0) for the generation of
these high-affinity antibodies under this
mechanism. A rough calculation, which
is reproduced in Appendix I, gives the
approximate result

DT0

«
2
1

≅ f S d

2«1
D. (3)

The function w(x) is given by

f~x! =
xn

n~n − 2!
−

x2

2~n − 2!
+

1

2n
, (4)

and the distance d, defined by

d = R H 2pn/2

nNG~n/2!
J1/n

, (5)

with G denoting the gamma function, is
the average center-to-center distance
between «1 spheres. Observe that both
DT0/«1

2 and d/2«1 are dimensionless
quantities. As d $ 2«1 (see Appendix I),
we are interested in the regime x $ 1.
Note that w(1) = 0 and that w increases
very rapidly for x > 1 (Fig. 1).

Obviously, the design of the immune
system should be such that the mean
time for learning about antigens and
generating high-affinity memory B cells,
T0, which is roughly the time of the im-
mune response, TR, should be smaller
than (and preferably even small as com-
pared to) the time the antigen needs to
proliferate sufficiently to cause disease.

Calling the latter time TA, this criterion
can be written in the form

T0 # TA. (6)

For antigens, such as bacteria, that
can proliferate rapidly, TA is probably
on the order of a few days. However, for
other antigens, such as a tumor cell,
that can potentially cause cancer, TA

may be on the order of months or years.
In the mouse, affinity maturation

takes places over the course of a few
weeks. Let us calculate, assuming T0 =
TR = 2 weeks, the relative volume of an
«1 sphere that needs to be attained in
order to generate high-affinity antibod-
ies. Recall that the diffusion process un-
derlying affinity maturation is assumed
to start in an «2 sphere of relative vol-
ume of approximately 1015. From
equation (2), with n = 5, we found that D
= 0.05«2 = 0.05(«2 1 «1)2. Using this in
equation (3),

S«2/R − «1/R

«1/R D2

T0 = 20f S d/R

2«1/RD.

For a B-cell repertoire of size N = 107,
the value estimated in mammals, and a
Euclidean shape space of dimension n =
5, that is, R5, one finds from equation
(5), d/R = 0.055. Substituting into the
above equation the value 0.055 for d/R,
T0 = 2 weeks, and «2/R = 1011, the value
needed so that the relative volume («2/

FIGURE 1

Figure 1. The function w(x) defined by
equation (4).
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R)n = 1015, and solving numerically, we
deduce that «1/R = 0.01. Finally, the
relative volume of the «1 sphere in R5,
(«1/R)5 = 10110, is very small compared
to the relative volume (1015) of an «2

sphere, and the total relative volume of
all N «1 spheres is only 0.001. This im-
plies that as the immune system en-
counters random antigens, only in 1 in
1000 cases will the response start with
high-affinity antibodies, that is, those
already within «1 of the antigen. How-
ever, after learning by somatic hyper-
mutation has occurred, the immune
system has the opportunity to retain
these high-affinity cells in memory, and
thus it routinely starts subsequent en-
counters with the same antigen with
high-affinity antibodies.

ANTIGENS ALSO MUTATE!
Many antigens will mutate in order to
escape immune detection (an example
is HIV, the virus that causes AIDS). In
view of the fact that B cells mutate in
order to better recognize these anti-
gens, one can wonder who will win this
biological arms race. In this section we
shall look at the design of the immune
system from this point of view. A rough
quantitative model should have the fol-
lowing features.

F irst, one should model what is
meant by mutation of the antigen.
We will assume that the shape sWA(t)

of the binding site of a “new” antigen A
at time t is a linear function of time

sWA~t! = sWA~0! + vWAt, (7)

that is, we assume that the shape of the
antigen runs through n-dimensional
shape space with a constant velocity vWA.
This assumption of a straight-line
movement of the antigen’s mutations
might not be too realistic; one might ac-
tually ask how the antigen “knows”
what a straight line is in shape space? A
more realistic model would be one in
which the antigen diffused, thus form-
ing a cloud or “quasi-species” in shape
space. However, the antigens that
moved too close to antibodies would be

quickly recognized and eliminated.
Thus, the population would, in effect,
move away from regions of high anti-
body density, and in the extreme case
one might envision this as straight-line
movement.

From the point of view of antigen
survival, straight-line mutations are the
fastest way to get away from the vicinity
of some antibody, hence the Darwinian
model of evolution would suggest that
the antigen indeed knows what
straight-line mutation is. There are in-
teresting examples, such as the malaria
parasite and trypanosomes, the parasite
that causes African sleeping sickness, in
which the organisms have the ability to
change their surface proteins, the anti-
gens that the immune system uses to
recognize these organisms. In the case
of trypanosomes, there are a set of
genes that code for more than 100 dif-
ferent coat proteins, only one of which
is expressed in large amounts on the
surface of a trypanosome at a given
time. The coat proteins are recognized
by the immune system and hence act as
antigens. Once a population of trypano-
somes expressing mainly antigen A is
detected by the immune system, the A
variants are killed, and other variants
grow out. The population of trypano-
somes expressing antigen A is thus re-
placed by parasites expressing antigen
B. When antigen B is detected, a popu-
lation expressing antigen C arises and
so forth. The order of appearance of
variants is to a large extent genetically
programmed (for a review of this inter-
esting example see [13]), and the popu-
lation appears to be escaping at con-
stant velocity along some path. Whether
the path in shape space is actually
straight is not known since the shapes
of proteins A, B, C, and so on, as per-
ceived by the immune system have not
been elucidated.

Second, we need an equation that
describes the proliferation of antibody-
producing cells and their diffusion in
shape space due to antibody gene mu-
tation. Here we restrict our attention to
clones that have sensed the presence of
the antigen and are stimulated into pro-
liferation. Let b(sW,t)denote the density in
shape space of B cells with shape sW at

time t that have been stimulated by the
antigen. Previous modeling by Segel
and Perelson [11] has considered how
this density changes in a model that
neglects somatic mutation. Here, this
density changes as a result of three
processes:

(1) Stimulated B cells proliferate at per
capita rate c(sW,t). The function c(sW,t)
is not known very well. While the
affinity of interaction between the
antigen and the B-cell receptor may
play a role in the degree of activa-
tion of the B cell, to a first approxi-
mation it seems reasonable to as-
sume all stimulated cells divide at
the same constant rate c. Thus,

c ~sW, t! = c. (8)

(2) Stimulated B cells die, which is rep-
resented by a term 1d(sW,t)b(sW,t).
Within germinal centers, the loca-
tion in the body in which most so-
matic mutation occurs, dividing B
cells appear to be programmed to
die [14]. However, they are rescued
from death in an affinity-dependent
fashion [14]. Thus, cells that mutate
to be closer in shape space to the
antigen are preferentially spared
from death. We model this by
assuming

d~sW, t! ≅ d̂ − f ~|sW − sWA~t!|!, (9)

where d̂ is a constant and the func-
tion f increases when the distance |sW
1 sWA(t)| in shape space between the
particular B cell and the antigen
decreases.

(3) Stimulated B cells mutate; this leads
to a term +D nb, where D is the dif-
fusion coefficient and n , the
Laplace operator.

Collecting these results, one obtains
the equation

­b

­t
= DDb + $ f ~|sW −sWA|! − d0%b, (10)

where d0 : d̂ 1 c.
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Note that we have neglected a source
of new B cells created from the bone
marrow. Over the short times of a hunt
for antigen we assume that the de novo
generation of new B cells provides a
negligible contribution to the popula-
tion density in shape space.

Our procedure is now as follows (the
details of the calculation can be found
in Appendix II). First, one writes the so-
lution of equation (10), subject to the
proper initial and boundary conditions,
as a path integral. Second, one evalu-
ates the path integral approximately
with the method of Laplace. This pro-
cedure gives the leading term in the as-
ymptotic expansion of b in the limit D
→ 0. It also leads to the exact result in
the case in which the function {f(|sW 1 sWA|
1 d0} is quadratic in the deviation from
the classical trajectory. In the present
case, the method can be expected to
yield a fair approximation to the exact
solution of equation (10). In this way,
we find an approximate expression for
the time development of the function
b(sW,t). From this we calculate the num-
ber, NB(t), of B cells with receptors, the
shapes of which are located inside a
sphere of radius «1 around the point
that represents the shape of the antigen,
at time t:

NB~t! =
2pn/2

nG~n/2!
«1

nb~sWA~t!, t!,

(11)

where the asymptotic behavior of
b(sWA(t),t) is given by

b~sWA~t!, t! ≅ ~constant! exp FHf ~0! − d0

−
vA

2

4DJtG; (12)

as shown in Appendix II.
When immune responses to molecu-

lar antigens, such as proteins, are stud-
ied, it is usually found that by the time
high-affinity antibodies are generated
the antigen has been eliminated. How-
ever, if the antigen is a pathogen that
grows, and especially one that mutates,
it may be very important to generate
high-affinity antibodies. In the case of
HIV infection, high-affinity antibodies

are not generated, and the antigen is
not eliminated. Thus, it is of interest to
estimate the life expectancy, T0, of a
growing antigen when we assume that
the antigen will be eliminated only if NB

exceeds some critical number N0, so

NB~T0! = N0. (13)

If one pursues this calculation in de-
tail (cf. equation (II.20)) one finds two
regimes:

I. A regime in which the parameter val-
ues are such that

p0 ≡ f ~0! − d0 >
vA

2

4D
, (14)

where p0 is the net proliferation rate
of the best antigen-recognizing B
cell. In this case the function NB(t)
increases exponentially with time
for large values of t. Hence equation
(12) will have a solution, and the an-
tigen will be eliminated after some
time T0.

II. A regime of parameter values such
that

p0 <
vA

2

4D
. (15)

In this case, the function NB(t) will de-
crease exponentially for large values of
t. Hence, unless the antigen is detected
after a short time, it will escape elimi-
nation in the long run.

T he rates of proliferation and death
of somatically mutating B cells
have been measured. The cells can

divide every 6 to 7 hours [15], that is, the
population can double, say, every 7
hours, implying that c = ln 2/7 = 0.1
hour11 . 17 week11. If the best-fitting
B cells do not die, then p0 = 17 week11.
How rapidly an antigen mutates will de-
pend on the type of antigen. RNA vi-
ruses, such as HIV and influenza, mu-
tate rapidly, whereas DNA viruses, such
as polio, mutate slowly. Bacteria mutate
more slowly than viruses, and multicel-
lular parasites probably mutate their

surface antigens even more slowly. With

D = 0.05«2, we have vA
2/(4D) = 5(vA/«)2

week11. If an antigen took 1 week to

move sufficiently far in shape space that

an antibody that recognized it would no

longer be able to do so, then the dis-

tance it moved should be more than «,

the distance separating low- and high-

affinity antibodies in shape space. Let

us assume that movement of a distance

2« in a week would suffice for nonrec-

ognition. Then, vA . 2« and vA
2/(4D) =

20 week11. This is slightly greater than

p0, and we would predict that the or-

ganism would escape immune elimina-

tion. However, if it took more than a

week to mutate sufficiently to be unrec-

ognizable to the initial antibodies, then

the immune system should be able to

generate antibodies that keep up with

the movement of the organism in shape

space. Thus, rapid movement in shape

space is required to escape immune

elimination.

The immune system is not perfect,

but even in this day and age of miracle

drugs the immune system extends life

by allowing us to survive many infec-

tious diseases. Those who doubt this

can look to the example of people

whose immune systems fail, such as

those with AIDS. In this article we have

tried to elucidate some of the design

principles underlying the recognition

abilities of the immune system. We

have argued that the immune system is

designed to be able to recognize an

enormously large variety of antigens.

This requires the use of generalist anti-

bodies. We then argued that by using

the process of somatic evolution the im-

mune system learns to improve its re-

sponses against pathogens and, in es-

sence, creates specialists that can deal

more effectively with particular anti-

genic challenges. Last, we have pre-

sented calculations that suggest that the

somatic evolution of B cells also endows

the immune system with the capability

of defending against organisms that

evolve during the course of infection,

but such protection has its limits and

fails when organisms evolve extremely

rapidly.
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APPENDIX I

I n order to calculate T, the mean time
that passes until the new antigen A
comes within the «1 sphere around

the mutating B cell B, we note that one
might as well keep B fixed and endow A
with a diffusional movement, with dif-
fusion coefficient D. In Ref. 16 one finds
a discussion of the function T(rW), which
is defined as the mean time till A—when
located at position rW at time 0—hits
the «1 sphere around B for the first time.
It is shown there that this function is
a solution of the partial differential
equation

DT = −
1

D
, (I.1)

where n denotes the Laplace operator.
Because the system has spherical sym-
metry the solution must be a function
T(r) of the radial coordinate r; hence the
equation becomes

S d2

dr2
+

n − 1

r

d

drD T~r! = −
1

D
.

(I.2)

This is now a second-order ordinary
differential equation, which needs two
boundary conditions in order to have a
unique solution. The first one is

T~«1! = 0, (I.3)

and it expresses the assumption that
when the antigen A is originally placed

at the surface of the «1 sphere around B
it will immediately be “killed” by B. The
other boundary condition

dT

dr
= 0 for r = R (I.4)

expresses the fact that the outer edge (r
= R) of the whole shape space, assumed
to be Euclidean, can be modeled as a
hard wall that will reflect the mutational
movement of the antigen. The solution
of equations (I.2) to (I.4) is

T~r! =
Rn

n~n − 2!D
~«1

2−n − r2−n! −
1

2nD
~r2

− «1
2!, (I.5)

as can be verified by substitution. Note
that if shape space is assumed to be Eu-
clidean, then the volume of shape space
is VnRn and of an «1 sphere Vn«1

n, where

Vn =
2pn/2

nG~n/2!
. (I.6)

If there are N «1 spheres in shape
space, their average center-to-center
distance, d, follows from Ndn = VnRn, so

d

R
= SVn

N D
1

n
. (I.7)

Hence, an antigen A that lands out-
side of all «1 spheres will have a distance
of the order

d

2
=

R

2 SVn

N D
1

n (I.8)

to the center of the nearest «1 sphere.
Although, on average, this point will si-
multaneously be in 100 to 1000 overlap-
ping «2 spheres, we calculate the time to
reach the nearest «1 sphere. Its expected
lifetime, T0, can be calculated from
equation (I.5) for r = d/2 and R = d/2.
We take R = d/2 because when this an-
tigen diffuses to a distance larger than
d/2 from the center of the original «1

sphere, another «1 sphere becomes its
nearest «1 sphere. One finds in this way

DT0 ≅
«1

2

n~n − 2! S d

2«1
Dn

+
«1

2

2n

−
1

2~n − 2! Sd

2D2

, (I.9)

which gives the approximate results of
equations (3) to (5).

APPENDIX II

I n this appendix we outline the ap-
proximate solution of equation (10)
under the initial condition

b~sW, 0! = d~sW − sBW!, (II.1)

where sBW denotes the position in shape
space of that B cell that is nearest to A at
time 0. The exact solution can be rep-
resented by a path integral of the form
[17]

b~sW, t! = *
sBW,0

sW,t
exp F−

1

4D *
0

t Sd sW

dt
D2

dt

+ *
0

t
$ f ~|sW − sAW~t!|!

− d0% dtG d @sW~t!#. (II.2)

An approximate evaluation of the path
integral proceeds as follows. We write
the integrand in the form

expF*
0

t
LdtG, where L $sW~t!% =

−
1

4D Sd sW

dt
D2

+ f ~|sW − sAW~t!|! − d0.

(II.3)

A rough approximation is to put

b~sW, t! ≅ C exp F*
0

t
L $s*W~t!%dtG,

(II.4)

where s*W(t) is the path through shape
space that makes the integral ∫t0 L {sW(t)}
dt as large as possible. This path must
pass through the initial and final posi-
tions, so s*W(0) = sBW, s*(t) = sW. Moreover, C
is a normalization constant that has to
be determined in a separate way; in this
article we shall not need its precise
value.
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The optimal path is a solution of the
Euler-Lagrange equations. Using the
fact that

­L

­si
=

­f

­si
;

­L

­ṡi
= −

ṡi

2D
;

d

dt

­L

­ṡi
= −

s̈i

2D
(II.5)

one finds

1

2D

d 2si

dt2
= −

­f

­si
. (II.6)

In these equations, i = 1, 2, . . . .n, cor-
responding to the different directions in
shape space; the dot denotes the deriva-
tive with respect to t, and the star on s*i
has been omitted because confusion is
unlikely. The Euler-Lagrange equations
(II.6) are formally identical with the
equations of motion in shape space of a
classical particle with a mass equal to
1/2D, moving in an external force field
with a potential equal to f (|sW 1 sAW(t)|).
The mechanical analogue will turn out
to be very useful, so we shall use the
corresponding terminology for a while.

W e want to find the classical tra-
jectory along which the particle
moves from position sBW at time

t = 0 to position sAW = sAW(0) + vAW t at time
t = t. While the particle approaches its
final position it has to climb up the po-
tential hill f (|sW 1 sAW(t)|), which is cen-
tered at the moving point sAW(t). It will
slow down during this process, losing
kinetic energy while gaining potential
energy. Hence, the early part of the
movement from sBW to sAW(t) will be rela-
tively fast, and the final part will be rela-
tively slow. The initial velocity has to be
picked in such a way that the whole tra-
jectory is completed in time t. As the
potential f (|sW 1 sAW(t)|) is repulsive [c.f.
the comments after eq. (8)] the move-
ment of the particle will be such that its
velocity at time t will be directed toward
some point on the line that connects
the position sAW(t) of the antigen at time
t and the aimed-for position sAW(t).
Obviously, the whole classical trajec-
tory sW(t) will be located in a two-
dimensional subspace of shape space:
the plane through the line sAW(0) + vAW t
and through sBW.

The mechanical problem can be
simplified even further by describing it
in a system of coordinates that moves
with a constant velocity vAW with respect
to the original coordinates. This means
that one writes

sW~t! = sAW~0! + vAWt + sW ~t!. (II.7)

The equation of motion (II.6) now
becomes

1

2D

d2si

dt2
= −

­f

­si
~i = 1, 2! (II.8)

where f is a function f (s) of the length s

of the vector sW . The solution of the last
equation should pass through sW (0) =
sW(0) 1 sAW(0) = sBW 1 sAW(0) at t = 0 and sW (t)
= sW(t) 1 sAW(0) 1vAW t = 0 at t = t. Because
of the spherical symmetry of f (s) the
trajectory sW (t) moves radially inwards,
along a straight line, from the original
value s = s0 ≡ |sBW 1 sAW(0)| to the origin.
This one-dimensional movement has a
conserved energy E, which is given by

E =
1

4D Sds

dtD2

+ f ~s!. (II.9)

The velocity is

ds

dt
= − =4D~E − f !, (II.10)

and, hence, the time to move from s0 to
0 is

t = *
0

s0 ds

=4D~E − f !
. (II.11)

The last equation fixes the value of E,
given t and s0. For a fixed value of s0

and long times t, the value of E will be
slightly larger than f (0); the limit t → `

corresponds to the limit E → f (0).
We now calculate the value of the

time integral of L for the most likely
path, which was denoted by s*W(t) in
equation (II.4) and by sW(t) in all subse-
quent equations. Substitution of equa-
tion (II.7) into equation (II.3) gives

L $sW ~t!% = −
1

4D HSdsW

dt
D2

+ 2vAW?
dsW

dt
+ vAW

2J
+ f ~s! − d0. (II.12)

Now integrate this over t from 0 to t.
There are two constant terms on the
right hand side; upon integration they
give a term

*
0

t S−d0 −
vA

2

4DD dt = − Sd0 +
vA

2

4DD t.

(II.13)

The second term gives upon integration

−
1

2D *
0

t
vAW?

dsW

dt
dt = −

1

2D
vAW?$sW ~t! − sW ~0!%

= −
1

2D
vAW?$sW~t! − vAWt

− sBW%. (II.14)

Note that we are especially interested in
the case where sW(t) = sAW(0) + vAW t, so for
this specific case the previous equation
simplifies to

−
1

2D * vAW?
dsW

dt
dt =

1

2D
vAW?$sBW − sAW~0!%.

(II.15)

The two remaining terms give, with
equation (II.9)

*
0

t Hf~s! −
1

4D Sds

dtD2Jdt = *
0

t
$2f ~s!

− E %dt. (II.16)

Using equation (II.10) this can also be
written as

*
0

s0
~2f − E !

ds

=4D~E − f !

=
E

=4D
*

0

s0 ds

=E − f

−
1

=D
*

0

s0
=E − fds. (II.17)

Recalling equation (II.11), the first term
on the right-hand side is seen to equal
Et. In the second term one may put E ≅
f (0), provided t is large, so one finds

*
0

t Hf ~s! −
1

4D Sds

dtD2Jdt ≅ f ~0!t

−
1

=D
*

0

s0
=f ~0! − f ~s!ds, ~t → `!.

(II.18)
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Collecting the results [equations (II.13),
(II.15), and (II.18), one finds the asymp-
totic formula

*
0

t
L$s*~t!%dt ≅ Hf ~0! − d0 −

v A
2

4DJt

+
vAW

2D
?$sBW − sAW~0!%

−
1

=D
*

0

s0

=f ~0! − f ~s!ds, ~t → `!.
(II.19)

For finite time it is straightforward to
give the exact expression by integration
of equation (II.11) once f (s) is known
explicitly.

Substituting equation (II.19) into
equation (II.4) one concludes that the t
→ ` behavior of b(sAW(t),t) is given by

b~sAW~t!, t! ≅ ~constant! exp FHf ~0! − d0

−
v A

2

4DJtG; (II.20)

the precise value of the constant

~constant! ≅ C exp F vAW

2D
?$sBW − sAW~0!%

−
1

4D *
0

s0
=f ~0! − f ~s!ds#

(II.21)

is only of quantitative significance be-
cause the expression (II.20) is domi-
nated by the exponential factor.

NOTES
1. Antibodies, which are molecules, can recognize only small objects. Thus, sizes on the order of

1 meter would be outside the biologically relevant part of shape space.
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