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Abstract Risk assessment is a systematic process for integrating professional judgments
about relevant risk factors, their relative significance and probable adverse
conditions and/or events leading to identification of auditable activities (IIA,
1995, SIAS No. 9). Internal auditors utilize risk measures to allocate critical
audit resources to compliance, operational, or financial activities within the
organization (Colbert, 1995). In information rich environments, risk assessment
involves recognizing patterns in the data, such as complex data anomalies and
discrepancies, that perhaps conceal one or more error or hazard conditions (e.g.
Coakley and Brown, 1996; Bedard and Biggs, 1991; Libby, 1985). This research
investigates whether neural networks can help enhance auditors’ risk assess-
ments. Neural networks, an emerging artificial intelligence technology, are a
powerful non-linear optimization and pattern recognition tool (Haykin, 1994;
Bishop, 1995). Several successful, real-world business neural network appli-
cation decision aids have already been built (Burger and Traver, 1996). Neural
network modeling may prove invaluable in directing internal auditor attention
to those aspects of financial, operating, and compliance data most informative
of high-risk audit areas, thus enhancing audit efficiency and effectiveness. This
paper defines risk in an internal auditing context, describes contemporary
approaches to performing risk assessments, provides an overview of the back-
propagation neural network architecture, outlines the methodology adopted for
conducting this research project including a Delphi study and comparison with
statistical approaches, and presents preliminary results, which indicate that
internal auditors could benefit from using neural network technology for
assessing risk. Copyright  1999 John Wiley & Sons, Ltd.
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BACKGROUND AND MOTIVATION

Risk assessment represents a critical aspect of
internal audit planning. As a systematic process

* Correspondence to: Andrew D. Bailey, Jr, Depart-
ment of Accounting, University of Illinois at Urbana-
Champaign, 1206 South Sixth Street, Champaign, IL
61820, USA

CCC 1055-615X/99/030159-22$17.50
Copyright  1999 John Wiley & Sons, Ltd.

International Journal of Intelligent Systems in Accounting, Finance & Management

Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 159–180 (1999)

for the identification and analysis of relevant
risks threatening the achievement of an entity’s
objectives, risk assessment is helpful for
assessing and integrating professional judg-
ments about probable adverse conditions
and/or events (COSO, 1992). The process of
risk assessment includes identification of audit-
able activities, identification of relevant risk fac-
tors, and determination of their relative signifi-



cance (IIA, 1995, SIAS No. 9). An efficient and
effective audit program is responsive to risk
assessment, and is designed to ensure that pro-
per controls are in operation that minimize
or eliminate risk and exposure (Sawyer and
Dittenhofer, 1996).

Risk assessment in auditing involves pattern
recognition because an unexpected deviation
or variation is symptomatic of risk. Significant
deviations, error distributions, or anomalous
data and discrepancies indicate underlying risk
(Brown and Solomon, 1990, 1991; Libby, 1985;
Bedard and Biggs, 1991). Unfortunately, the
internal auditor works in data-rich environ-
ments where the sheer volume of data encoun-
tered renders the risk-assessment process over-
whelming and unmanageable (Hackenbrack,
1992). It is in such contexts that neural network
technology can assist in directing the auditor’s
hypothesis generation and search process to
those aspects of financial, operating, and com-
pliance data that are most informative about
error or hazard conditions (Coakley and Brown,
1996; Bedard and Biggs, 1991).

Neural network technology represents an
ensemble of powerful techniques that can be
used for modeling, forecasting, signal pro-
cessing, and pattern recognition (Chen, 1996).
Over the last decade, neural networks have
been used in diverse advanced applications
such as defense systems, process control, oil
and gas exploration, character and speech rec-
ognition, industrial inspection, and antibody
detection (Coleman, 1991; Ward Systems
Group, 1993). Real-world business applications
currently exist for credit authorization screen-
ing, corporate loan portfolio risk evaluation,
and fraud detection (American Express, Chase
Manhattan, Mellon Bank, First USA Bank),
mortgage risk assessment (J.P. Morgan), finan-
cial and economic forecasting (Merrill Lynch,
Salomon Brothers, Citibank, World Bank),
tracking stock market movements and futures
trading (LBS Capital Management, Gerber Baby
Foods), data mining and target marketing
(Veratex Corporation, Spiegel), and bankruptcy
prediction (Trippi and Turban, 1996; Burger
and Traver, 1996; Deboeck, 1994). In all these
and other real-world business applications,
neural network technologies appear to have
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significantly outperformed conventional techno-
logies both in terms of cost savings as well as
improved quality and productivity (cf. Green
and Choi, 1997). The power of neural networks
derives from their ability to model nonlinear
relationships and their robustness in dealing
with noisy and incomplete data commonly
found in real-life situations (Tam, 1994). Given
this new technology’s impressive track record
and future promise, it is not surprising that
applications of neural network modeling in
business, including the auditing domain, have
been vigorously championed (Coakley and
Brown, 1996; Massaad and Winkler, 1995;
Doherty, 1993; Garceau and Foltin, 1995;
Coderre, 1993; Zarowin, 1995; Hansen and
Messier, 1991).

Neural networks can do more than help
internal auditors cope with ‘information over-
load’. In the context of expanded definitions of
risk, performing risk assessment becomes a
non-trivial task that requires professional
experience and expertise. Considerable research
in cognitive science has shown that expertise
in any domain is gained only after undergoing
significant instruction, engaging in practical
applications, and through several years of
experience (Chi et al., 1988; Shanteau, 1988).
Presently, we expect that only seasoned internal
auditors with broad and varied professional
experience (‘experts’) will exhibit superior per-
formance on diagnostic tasks such as risk
assessment in audit planning. An important
aspect of professional experience is the superior
ability displayed in associative reasoning and
(error) pattern recognition (Massaad and
Winkler, 1995; Tubbs, 1992). Neural networks
act on data much as experienced experts act on
data, by detecting an existing, if often hidden,
underlying organization. Thus, neural network
technology can help knowledge transfer and
provide less experienced individuals with the
impounded expertise previously only attained
with a significant amount of training and
experience.

Neural network technology is based on the
premise that, given a set of input variables and
associated expert judgments, it is possible for
the neural network model to extract the essen-
tial input–output relation from a reasonably



large number of exemplars. We only need one
or more experts’ final assessments on a task,
and it is left to the network to infer the combin-
ing process used by the expert and build a
suitable model that mimics expert judgment
fairly well. Of course, as a ‘function mapping
device’, the neural network model is only as
good as the quality of the input–output associ-
ation pairs presented to it (cf. GIGO: ‘garbage
in, garbage out’ syndrome that is well known
in the computer science literature). Power’s
(1995) questioning of ‘assumed expertise’ is rel-
evant: in the absence of objective task perform-
ance measures, there is a natural tendency to
focus on and bolster the process of judgment.
Although this altered emphasis on process may
be viewed as an adequate rationalization, from
a modeling perspective, and in the context of
this study, the quality of expert performance
constitutes an upper bound for neural net-
work models.

While the knowledge–performance relation-
ship in auditing continues to be investigated by
cognitive scientists and judgment and decision-
making researchers (for reviews, see Arnold
and Sutton, 1997; Ashton and Ashton, 1995),
computer or cognitive modeling, including the
use of expert systems, remains a viable
approach to capturing expertise (Srivastava et
al., 1996; Van Dijk and Williams, 1990; Vas-
arhelyi, 1990). Cognitive modeling using
advanced technology and aimed at developing
decision aids is an inherently interdisciplinary
endeavor that draws from diverse disciplines
such as cognitive psychology, artificial intelli-
gence, management and computer science, and
statistics (Brown and Eining, 1997).
Cognitive/computer modeling utilizes ‘knowl-
edge engineering’ techniques (e.g. protocol
analysis) to capture the knowledge of one or
more experts in order to make decisions that
are comparable to experts in quality and
approach (see Vasarhelyi, 1995; Bailey et al.,
1989; Bouwman and Bradley, 1997). If the
design and implementation of decision aids is
grounded in theory and employs sound
methods, such systems may add to both devel-
opmental and empirical knowledge (Mock and
Vertinsky, 1985; Brown and Eining, 1997). By
undertaking such research, we hope to obtain
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insights into the actual process of risk assess-
ment and a perhaps better understanding of
the normative aspects of risk and its modeling
potential for improving decision quality.

The data for this research study consisted
of ‘real-world’ qualitative and quantitative risk
factor information about the academic/
administrative departments at the University of
Illinois at Chicago. We conducted a Delphi
study featuring experienced internal auditors
who used the risk factor information to assign
risk rankings for 141 departmental units. As
part of our modeling, these risk factor values
(inputs) along with the overall risk rank (target
or output) for each department, were fed into
three neural network vendor software packages
to ‘train’ and ‘test’ the models. Subsequently,
the risk rankings from the neural network mod-
els were compared with the Delphi rankings as
well as with statistical models. Our preliminary
analyses indicate that we were quite successful
in building neural network models that are
suitable for risk ranking applications in internal
audit settings. We should note that neural net-
work models are currently being used by the
Office of University Audits at the University of
Illinois to perform risk assessment and initial
results have been more than satisfactory. A
significant reason for carrying out this study
was to support the process of continuous
improvement at the University.

Among academic researchers, the ability of
neural networks to make bankruptcy predic-
tions and detect management fraud successfully
has captured the lion’s share of research atten-
tion (e.g. Fanning and Cogger, 1998; Green and
Choi, 1997; Fanning et al., 1995; Fletcher and
Goss, 1993; Tam and Kiang, 1992; Odom and
Sharda, 1990; BarNiv and Hershbarger, 1990;
Bell et al., 1990), and almost no research exists
on using neural networks for risk assessment
in internal auditing (for a notable exception in
the context of external auditing, see Davis,
1996). Following the recommendation made by
Green and Choi (1997), we include qualitative
information in our broadened risk conceptualiz-
ation and neural network implementation and
thus extend research in this area. The findings
from this study indicate that internal auditors
could utilize neural networks to perform risk



rankings of auditable units. We are also able
to identify several fruitful lines of research that
would productively utilize this newly avail-
able technology.

The balance of this paper is as follows. The
next section defines risk in general and dis-
cusses current approaches to risk assessment.
The third section provides an overview of neu-
ral network architectures with special emphasis
on the Multi-Layer Perceptron (MLP) using
backpropagation. The fourth section describes
the quantitative and qualitative risk factor data
and their collection. The fifth section details
a Delphi study involving the participation of
experienced internal auditors. The sixth section
presents preliminary results. The seventh sec-
tion compares neural network models with tra-
ditional statistical models such as multiple lin-
ear regression and logistic regression. The final
section provides a summary discussion and
conclusion.

RISK ASSESSMENT IN INTERNAL
AUDITING

The Concept of Risk in Internal Auditing

Although risk arises in virtually all fields of
endeavor, each field appears to develop its own
unique ways of assessing and handling them.
There are basically two dimensions to risk: the
amount or severity of an unfavorable outcome
(magnitude), and the probability of occurrence
(frequency) (Moore, 1983). In this paper, we
adopt Shakespeare’s (1996, p. 4) definition of
risk as ‘the compound cost estimate of loss
frequency, loss severity (including public per-
ception of harm), and risk control measures’.
Fischhoff et al. (1983) suggest three decision-
making approaches to characterizing and meas-
uring risk: relying on professional judgments
of technical experts to devise solutions; search-
ing for historical precedents to guide future
decisions, i.e. bootstrapping; and employing
theory-based formal analysis for modeling
problems and calculating the best decision. We
will be primarily concerned with the use of
professional judgment as well as neural net-
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work modeling in addressing the issue of risk
assessment in internal auditing.

Internal auditors are concerned with the vari-
ous risks facing an organization. Organizational
risks include anything from lost market share,
environmental liabilities, customer dissatis-
faction, low employee morale, violation of laws
and regulations, to fraudulent financial
reporting (Colbert, 1995). In the context of these
broadly defined organizational risks, the
internal auditor evaluates the controls estab-
lished by management to assess their adequacy
in appropriately limiting the occurrence of
adverse conditions or mitigating their impact.
Paragraph 7 of SIAS No. 9 (IIA, 1995) enumer-
ates several risk factors that are relevant for
internal auditors.1 While some of these factors
are capable of quantification, others, such as
‘competency, adequacy, and integrity of person-
nel’, can at best elicit only subjective, qualitat-
ive judgments.

In addition to the risk of misstatements in
financial statements, Shakespeare (1996) enu-
merates other types of risks divided into five
categories that are more relevant to the internal
auditor (see Table 1). We use the risk categories
presented in Table 1 to justify the inclusion of
qualitative and quantitative risk factor input
variables in our risk-ranking models.

Contemporary Approaches to Risk
Assessment in Internal Auditing

Shakespeare (1996) defines the following six
steps in a risk assessment process: (1) develop
loss scenarios; (2) identify exposures and con-
trols; (3) define risk categories; (4) assess fre-
quency and severity of possible losses; (5)
develop risk control costs; and (6) rank
exposures. In step 1, with the objective of antici-

1For instance, risk factors include the ethical climate
and pressure on management to meet objectives;
competency, adequacy, and integrity of personnel;
financial and economic conditions; impact of cus-
tomers, suppliers, and government regulations; date
and result of previous audits; degree of computeriz-
ation; adequacy and effectiveness of the system of
internal control; management judgments and
accounting estimates; and geographical dispersion of
operations (partly based on Patton et al., 1982).



Table 1. Definitions developed for illustrative purposes for five risk categories. Adapted with permission
from Shakespeare (1996)

Risk category Definition Representative potential losses

Operational Risk association with equipment I Cost of modifying process
breakdowns, operator errors, product I Cost of corrections
quality, damage to facilities I Cost of plant repair, business

interruption
Fraud/criminal Risks derived from opportunities in system I Loss of funds

and processes for employees/non- I Recovery costs
employees to steal or commit other
fraudulent or criminal acts

Legal/professional Risks associated with becoming the target I Legal fees/court costs
of lawsuits because of actual or alleged I Diversion of management time and
actions attention

Image/marketing Risks associated with declining public and I Unwanted adverse attention and visibility
individual student perceptions as a result I Incremental costs to re-establish
of actions of the university image/reputation

Compliance Risks associated with failure to comply I Penalties/fines
with applicable laws and regulations I Increased regulatory scrutiny

pating possible adverse effects and designing
preventive controls, loss scenarios are
developed by experienced and knowledgeable
people familiar with the organization’s finan-
cial, operating, and compliance aspects, relying
on both historical precedent, ‘bootstrapping’
(Fischhoff et al., 1983), as well as professional
judgment (expert knowledge, imagination, and
experience). In step 2, these previously
developed loss scenarios prove very helpful in
determining exposures to risk and identifying
loss control measures. Risk category definition
is undertaken in step 3. In addition to labeling
different classes of risk, this includes ident-
ifying the responsible personnel within the
organization who may be used as a resource
in designing risk controls and estimating risk
control costs. In steps 4 and 5, when assessing
frequency and severity of possible losses, dollar
value and other ranges used should reflect
impact levels appropriate to the organization;
this consideration extends to the range of risk
control cost estimates as well. Finally, in step
6, using available information on the severity,
probability, and cost of installing preventive
controls, a risk ranking may be attempted. The
ranking and evaluation of identified risks
enables management to determine their signifi-
cance and optimize expenditures designed to
control risks.
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McNamee (1996) defines risk assessment as
a three-step process consisting of risk identifi-
cation (what the risks are), risk measurement
(how big are the risks), and risk prioritization
(which risks are the most important). He sug-
gests enumerating risk factors (see IIA, 1995,
SIAS 9) for ‘macro risk assessment’ and using
weighted or sorted matrices for ‘micro risk
assessments’. Macro risk assessment looks at
the risks facing the enterprise as a whole (major
goals, products, processes, issues, etc.), while
‘micro risk assessment’ concerns the internal
auditor’s audit program and testing strategy,
that is, which areas to audit and the extent and
detail needed to be applied.

The SAS No. 47 (AICPA, 1983) audit risk
model (AR = IR*CR*DR) is used in practice by
external auditors. However, its narrow focus
on financial statement misstatement risks makes
it inappropriate for use by internal auditors
whose concern extends broadly to organiza-
tional risks. Conceptually, however, it is poss-
ible to relate the fundamental ideas of inherent,
control, and detection risks to cover financial,
operational, compliance and other aspects of
an organization.

In the context of information systems audit-
ing, Gallegos et al. (1987) point out that auditors
have traditionally relied upon audit judgment
and intuition, dollar risk estimation using a



risk formula, identifying and weighting risk
attributes, and/or the use of computer software
packages (e.g. IST/RAMP, PANRISK,
ESTIMACS) to compute dollar risk. In their
evaluation of these methods, Gallegos et al.
(1987) first note that no current approach
guarantees the correct prediction of audit risk,
and second, that ‘ease of use’ is an important
characteristic that determines whether an
approach is used by practicing auditors. In
particular, they warn that if auditors do not
possess ‘a convenient, structured method’ they
will be tempted to revert to more informal but
readily available procedures such as intuition
and professional judgment.

Going by the professional literature in audit-
ing (e.g. Colbert, 1995; McNamee, 1996; Shakes-
peare, 1996), it appears that internal auditors
deal with a broader set of risks than do external
auditors, and consequently, must adopt a risk
assessment methodology that is responsive to
their specific goals. Accordingly, the next sec-
tion outlines our approach in developing a risk
assessment model that is used for the study.

Risk Assessment Model

As technology and globalization become the
key drivers of business competitiveness, infor-
mation about outside influences and other
interconnected and interdependent entities
yields a host of qualitative information (e.g.
political/regulatory climate, innovation in the
marketplace, EDI partnerships, etc.). In the con-
text of a knowledge-based economy, the sig-
nificance of assets not valued easily or carried
on the books (e.g. reputation, information,
human skills and experience, etc.) is also
increasing. While consideration of these quali-
tative risk factors is critical, collecting infor-
mation on them is time and labor intensive.
Quantitative risk factor values are more readily
available and also contain relevant and
important risk information. For effective risk
assessment in internal auditing, both qualitative
and quantitative risk factors must figure promi-
nently in the evaluation of risks faced (cf. Green
and Choi, 1997; Ramamoorti and Hoey, 1998).
SIAS No. 9 (IIA, 1995) mentions several such
factors, e.g. dollars at risk, liquidity of assets,
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management competence and integrity, internal
control effectiveness, time since last audit, etc.
Accordingly, our risk assessment approach
involves a combination of the quantitative as
well as qualitative factors that underlie risk.
One of the issues to be dealt with subsequently
is the manner in which the quantitative risk
factor-based rankings and the qualitative risk
factor-based rankings are to be combined to
achieve the best results. Figure 1 is a conceptual
depiction of the risk assessment model adopted
for the study.

CONDENSED REVIEW OF NEURAL
NETWORKS

A neural network is a statistical information-
processing mechanism composed of numerous,
distributed processing units or nodes that per-
form simultaneous computations and com-
municate using adaptable interconnections
called ‘weights’ (Davis, 1996; Lippmann, 1987).
It resembles the brain in two respects: (1)
knowledge is acquired by the network through
a learning process, and (2) interneuron connec-
tion strengths known as synaptic weights are
used to store knowledge (Haykin, 1994, p. 2).
By mimicking the processing characteristics of
the brain, neural networks are able to achieve
knowledge representations based on the fast
retrieval of large amounts of information, and
the ability to recognize patterns based on
experience (Medsker et al., 1996). Further, their
adaptive nature, allowing them to ‘learn by
example’, makes them very useful in appli-
cation domains where the problem to be solved
is ill-structured or ill-understood but where
training data is available or can be made avail-
able (Hassoun, 1995). Neural networks operate
on numeric representations, use non-linear dif-
ferentiable functions, and have the capacity to
generalize and learn from noisy or incomplete
data (Swingler, 1996). Taken in combination,
these features make neural networks not only
a very distinct computing paradigm but also
very attractive for practical applications in a
variety of fields.



Figure 1 Conceptual overview of risk assessment model used in this study (risk factor input, neural network
processing, and risk ranking output).

Neural Network Architectures

Neural network architecture typically refers to
the design of neural networks, the number of
nodes in different layers and the pattern of
connectivity among them. Some well-known
neural network architectures are multi-layer
perceptrons, radial basis function networks,
recurrent networks, and self-organizing systems
such as the Kohonen self-organizing map, and
Grossberg’s adaptive resonance theory (Haykin,
1994). We limit the ensuing discussion to a
description of a multi-layer perceptron that
uses backpropagation. (For more detailed
accounts of the biological foundations of neural
computing architectures and the relevance of
neural network technology to accounting and
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auditing, see Massaad and Winkler, 1995;
Davis, 1996; and Green and Choi, 1997).

Multi-layer Perceptron

The following description of a multi-layer per-
ceptron is based on Swingler (1996). The math-
ematical model of an MLP (see box below for
a formal description) consists of a set of sensory
units that constitute the input layer (X1. . .X1),
one or more hidden layers of computation
nodes (h1. . .hm), and an output layer of compu-
tation nodes (Y1. . .Yn). The units in the hidden
layer link the inputs to the outputs. The hidden
units play an important role: they extract the
most useful features from the input vector and



use them to predict values on the output vector.
Each unit has an associated activation flowing
into it from the units in the previous layer;
these activation values are multiplied by the
strength of the associated weight, which may
be positive or negative. Because input flows
from numerous inputs into each one in the
next layer, these products must be summed
and passed through a transfer function that
‘squashes’ the summed inputs into a [0, 1]
range. Finally, there may also exist a ‘bias’ term
typically set to one, that connects to all units
except the input layer and whose function is
to draw the inputs to the hidden and output
units into the correct range for the squashing
function to work smoothly. Figure 2 shows a
multi-layer perceptron.

Backpropagation Algorithm

A backpropagation network is a multi-layered,
feedforward neural network. Each unit in a
layer is connected in the forward direction to
every unit in the next layer (see Figure 2).
Within this network structure, the error back-
propagation algorithm (BP) is based on the

Structure of a multilayer perceptron: a formal description
(Partly based on lecture notes by Dr John Guiver (1997) at an advanced neural computing seminar)

A neuron is an information-processing unit (sometimes called a ‘processing element’ or PE) that is
fundamental to the operation of a neural network. A neuron contains a set of synapses or connecting
links, each of which is characterized by a weight of its own. Weights are connections of varying strength
which carry activation information between network units. A signal xj at the input of synapse j connected
to neuron k is multiplied by the synaptic weight wkj. There is also an activation function, a mathematical
function which takes the weighted activation values coming into a unit, sums them, and translates the
result to a position along a given scale, i.e. ‘squashes’ the summed value to within a given range (e.g.
typically using a sigmoid or a hyperbolic tangent function). Neural computing derives its power in a
deceptively simple way: the burden imposed by the overall processing task is shared among the massive
interconnections among the PEs which have adaptive parameters called ‘weights’. Neural computation
is thus based on the fundamental concepts of distributed, adaptive, and nonlinear computing
(NeuroDimension, Inc., 1995).

Using mathematical notation, let i, j, and k represent indices for the input, hidden, and output layers,
respectively. Further, let s denote the summation value of a processing element (PE), y the output
value of a PE, and f the transfer function at a PE. Then, at the jth PE in the output layer, we have:

Sj = OK
k=1

wjkyk

where yj = f(sj) and xi is the value of a PE in the input layer.
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error-correction learning rule popularized by
Rumelhart and McClelland (1986). Basically, the
error backpropagation process consists of two
passes through the different layers of the net-
work: a forward pass and a backward pass. In
the forward pass, an activity pattern (input
feature vector) is applied to the sensory nodes
of the network, and its effect propagates
through the network. During the forward pass
the synaptic weights of the network are all
fixed. During the backward pass, on the other
hand, the synaptic weights are all adjusted in
accordance with the error-correction rule: the
actual response of the network is subtracted
from a desired response to produce an error
signal which is then propagated backward
through the network, against the direction of
synaptic connections. The synaptic weights are
adjusted so as to make the actual response of
the network move closer to the desired
response. Error backpropagation is thus an
efficient way of calculating the derivative of a
function at the output of an MLP with respect
to internal variables; its two main uses are in
network training and doing sensitivity analysis
(Guiver, 1997).



Figure 2 Structure of a multi-layer perceptron

For this study, we used the backpropagation
algorithm featured in three neural network ven-
dor software packages: NeuroShell by the Ward
Systems Group in Frederick, MD, Predict by
NeuralWare, Inc., a Division of Aspen Techno-
logies, based in Pittsburgh, PA, and NeuroSolu-
tions by NeuroDimension, Inc., based in Gain-
esville, FL (Ward Systems Group, 1993;
NeuralWare, 1995; NeuroDimension, 1995).

RISK FACTOR DATA

The data for the study are from the Chicago
campus of the University of Illinois. In total,
there were 45 input variables, 26 qualitative
risk factors and 19 quantitative risk factors.
Table 2 presents the list of qualitative and quan-
titative risk factors used in this study.

Most of the quantitative data were already
available in a Spreadsheet format (Microsoft
Excel) compatible with vendor software
requirements. These data were downloaded
from the University Financial and Administrat-
ive System (UFAS). A considerable amount of
our data are qualitative in nature: these data
were obtained in assessments elicited from
experienced Office of University Audits staff in
connection with the implementation of an earl-
ier IIA product auditMASTERPLAN (Boritz,
1986). The quantitative risk factor values were
primarily dollar amounts (e.g. academic salary,
tuition and fees, etc.). The qualitative risk factor
values were elicited from audit staff using a
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pre-defined scale from 0 to 9 (0 = not applicable;
1 = lowest risk rating; 9 = highest risk rating).

DELPHI STUDY

Eliciting Expert Risk Rankings

To implement the backpropagation network
(i.e. to train the network) we must have ‘correct
answers’ as target output. We used the risk
rankings assigned to various academic/
administrative departments by experienced
auditors. These risk rankings are based on a
separate consideration of qualitative risk and
quantitative risk factors that apply to specific
academic/administrative departments.

Three experienced auditors from the Univer-
sity of Illinois at Chicago participated in a
Delphi study designed to elicit risk rankings
for 141 academic/administrative departments.
The three Delphi participants, denoted by the
initials, M, J, and S, are intimately familiar with
the University of Illinois—Chicago environment
and we believed they were able to assess the
impact of the qualitative and quantitative risk
factors and arrive at a risk ranking on a scale
of 1 to 5 (with 1 = lowest risk ranking possible
and 5 = highest risk ranking possible) for each
department. The three authors presented the
Delphi study format to the auditor-participants
prior to the risk ranking exercise but no guid-
ance was provided on how to rank the depart-
ments.



Table 2. Quantitative and qualitative risk factors used as input variables in model

Input variables in qualitative database (26 variables)
1. Cash Risk 10. Unsolicited Interest 19. Computer Equipment
2. Other Assets Risk 11. Pronouncements 20. Sensitive Information
3. Number of Employees 12. Cash Amount 21. Purchase Relationships
4. Budget Size 13. Regulatory Impact 22. Audit Interval
5. Dollar Throughput 14. Special or Specific Risk 23. Audit Recommendations
6. Transaction Volume 15. Revolving Fund Accounts 24. External Audit
7. Last Audit 16. Grants and Contracts 25. Policies & Procedures
8. University Focus 17. Inventory 26. Management Quality
9. Solicited Interest 18. Business Administration

Input variables in quantitative database (19 variables)
1. Academic Salary 8. Sales and Service Revenue 16. Refunds and Discounts
2. Nonacademic Salary 9. Total Inventory Dollars 17. Cash Receipts
3. Wages 10. Cash/Over/Under 18. Cash Disbursements
4. Total Non-Payroll Expense 11. Lease Payments 19. Movable Equipment
5. Total Grants and Contract 12. State Budgeted Funds

Dollars 13. Local Budgeted Funds
6. Tuition and Fees 14. Total Gift Dollars
7. Miscellaneous and Interest 15. Student Financial Aid

Income

Each Delphi study participant was given a
laptop for entering data. The screen presented
a Microsoft Excel spreadsheet that listed all
the departments and their ratings on all the
quantitative risk factors. (Qualitative data were
provided in another session.) Each participant
then picked academic/administrative depart-
ments that could be given a risk ranking of 1
or 5 corresponding to the minimum and
maximum risk assignments. They then pro-
ceeded to assign rankings of 2, 3, or 4 to
each academic/administrative department, as
applicable. After this first round, the auditors
switched laptops so that each auditor had
access to another’s ranking (but not his or her
own ranking). With this additional information
about peer ranking, they again entered their
risk rankings for all 141 departments. The third
round provided each auditor with the rankings
of the other two participants.

Due to time constraints, risk ranking infor-
mation based on qualitative risk factor infor-
mation was separately collected from the Del-
phi participants by one of the research team
members during the following week. The gap
of one week between the elicitation of quanti-
tative- and qualitative factor-based risk rank-
ings had at least two effects. First, the Delphi
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participants did not suffer from the adverse
effects of fatigue on such a cognition-intensive
task. Second, the risk rankings based on the
qualitative risk factors were insulated from any
‘carryover effects’ (positive or negative
transfer).

One way to use the Delphi study risk ranking
data is to take a ‘grand average’ of all the final
rankings. Alternatively, different raters may be
weighted differentially. We conducted our
study using an unweighted (raw scores, i.e.
M = J = S = 0.333) and two weighted schemes
(single expert, i.e. M = 1, J = S = 0, and unequal
weighting, i.e. M = 0.6, J = S = 0.2, respectively).
From a modeling perspective, we found the
(0.6,0.2,0.2) weighting scheme to be the most
satisfactory. Because one of the Delphi study
participants was significantly more familiar
with the task performed, we employed an
unequal weighting scheme, with the weights
reflecting hierarchical rank and number of years
of experience. For the weighting scheme (0.6,
0.2, 0.2), this produces the following formula,
where R* represents the output vector of risk
rankings used for backpropagation training
purposes:

RM (0.6) + RS (0.2) + RJ (0.2) = R*



Table 3 Pairwise inter-judge correlations for Delphi
study participants

Quantitative risk factors Qualitative risk factors
(n = 141) (n = 141)

Pair Inter-judge Pair Inter-judge
correlation correlation

M & S 0.759 M & S 0.779
S & J 0.587 S & J 0.443
J & M 0.607 J & M 0.473

No theoretically correct weighting formula
exists. Professional judgment and model sensi-
tivity analyses are the only practical means of
choosing a functional weighting scheme.

Statistical Analysis of Delphi Results

The risk rankings on a scale of 1 to 5 for each
participant (denoted by M, J and S) and across
all 141 departments was first correlated. Table 3
reports that inter-judge correlations pertaining
to risk ranking assessments made on quantita-
tive risk factors was on average, higher than
comparable correlations pertaining to qualitat-
ive factors.

Additional descriptive statistics about the
participants’ risk rankings are presented in
Table 4. Each Delphi participant assigned, on
average, significantly (p , 0.001, paired t-test)
higher risk rankings for the quantitative risk
factors.2 This finding is confirmed by the distri-

Table 4 Risk ranking sums, means, and modes for
Delphi study participants

Quantitative risk factors Qualitative risk factors
(n = 141) (n = 141)

S Mean Mode S Mean Mode
ranking ranking

M 381 2.7 2 M 267 1.9 1
S 502 3.6 5 S 333 2.4 2
J 429 3.0 3 J 304 2.2 1

2The paired two-sample t-test for means is appropri-
ate wherever a natural pairing of observations in
samples occurs, e.g. the Delphi participants first per-
formed risk rankings using quantitative risk factors
and subsequently, using qualitative risk factors.
While the test does not assume that both populations
from which the data sets are drawn have equal
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bution of modal values for each Delphi partici-
pant. For Delphi participant S, the quantitative
mode of 5 against the qualitative mode of 2
is particularly striking. Table 4 provides some
comfort and support for using a weighting
scheme rather than using raw risk rankings; in
forecasting, expert opinions gathered to make
predictions are typically weighted to reflect
their competence (e.g. Myung et al., 1996).

One reason for the significantly higher mean
rankings for quantitative risk factors could be
their salience: as noted before, most of the
quantitative risk factors appeared in their orig-
inal values (e.g. $1,200,000) as compared to the
qualitative risk factors which took on scaled
values (e.g. 0 to 9). It could be argued that raw
dollar amounts provide an indication of ‘size’
and larger size may frequently be regarded
as ‘material’ and therefore important for risk
assessment purposes. Qualitative risk factors,
being independent of size, do not furnish such
an information cue and may therefore, tend to
be discounted. Another reason could be that
internal auditors are more comfortable dealing
with hard, quantitative data that are typically
not subject to the same vagaries in interpret-
ation as soft, qualitative data. At this time, we
can only surmise that quantitative risk factors
were somehow more salient and therefore elic-
ited higher risk rankings although it is possible
that the variables selected for the qualitative
risk factors were not as important in conveying
‘riskiness’ as the quantitative risk factors were.

The pairwise correlation between the quali-
tative factor-based and quantitative factor-
based risk rankings for the Delphi study was
only r = 0.51, indicating no strong linear
relationship. This correlation value suggests
that the qualitative and quantitative risk factors
may be tapping into different dimensions of
risk and, therefore, need to be considered in
conjunction with each other in making an over-
all risk assessment. This observation raises
definitional issues about input risk factors and

variances (homoscedasticity assumption), it does
require that the two samples have the same number
of observations. The t-tests were performed using
a = 0.05 and df = 140; the means were found to be
significantly different in all cases.



output or organizational risk assessment that is
discussed later.

PRELIMINARY RESULTS

Variable Selection

Like stepwise regression techniques in statistics,
variable selection allows the neural network
model to retain variables having a high degree
of diagnosticity while discarding those that do
not have predictive power. Among the three
neural network software packages used, it
turned out that only two of them, NeuroShell
and NeuralWare (Predict), had specific variable
selection algorithms that automatically did ‘pre-
processing’ including the necessary variable
transformations and the elimination of input
variables with low predictive power. For back-
propagation models from these two packages,
the eventual number of variables selected to
construct the models were in the 7 to 18 range
out of a total possible number of 45 qualitative
and quantitative risk factors presented as input
variables (see Table 2).3

As discussed later, we made use of logistic
regression and multiple linear regression tech-
niques. The stepwise procedure was used in
both cases and was able to pick a small but
efficient set of predictor variables. Following
Breiman et al. (1984), we also used Classification
and Regression Trees (CARTS) to partition the
data set into thresholds that take the shape
of branches on a tree and where successive
refinements of the qualitative and quantitative
risk factors chosen can be readily seen. This
procedure effectively performs variable selec-
tion through ‘pruning of regression trees’, i.e.
the most important variables which have pre-
dictive power are chosen to partition the data

3With as many as 45 input variables, there was
some concern whether the smaller sample of 141
departments was adequate to yield an acceptable
number of degrees of freedom and reliable para-
meter estimates. However, after the variable selection
procedure eliminated 25 or more input variables,
our concern that the sample departments may be
‘much too small relative to the numbers of variables
under study’ was diminished (Hays, 1994, p. 723).
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set. We report the most significant variables
from the first three layers in the tree branching
that partitions the risk factor data according to
the CARTS procedure, the stepwise regression
techniques, and the neural network models,
in Table 5.

Backpropagation Model Results

Using the output values obtained from the Del-
phi risk rankings we developed backpropag-
ation neural network models. We used a train-
ing set size covering 70% of the data and a
‘hold-out’ data or test size set of 30%. Backpro-
pagation network development still requires
extensive experimentation, parameter selection,
and human judgment (Hammerstrom, 1993).
We also made several decisions regarding para-
meter choices and values based on software
package default settings, advice from software
vendor technical personnel, reading books and
manuals, and finally, based on our limited
experience with the software. Choices of this
kind are frequently required to be made; we
chose based on the best available information.
Future studies may consider other options. This
whole area of parameter selection and fine-
tuning is a matter of interest in the neural
network research community.

The results obtained from training backpro-
pagation networks using the Delphi study out-
put values for all three vendor software pack-
ages, i.e. NeuroShell, Neural Ware and
NeuroSolutions are now presented. Appearing
in Tables 6 though 11 below are the risk rank-
ing predictions for the top 25
academic/administrative departments corre-
sponding to (1) Delphi Study Assessments, (2)
NeuroShell (NShell), (3) NeuralWare (Predict),
and (4) NeuroSolutions (NSol), respectively. We
are primarily interested in the top 25 riskiest
departments denoted ‘A’ through ‘Y’, because,
as maintained by experienced practitioners,
efficiency precludes consideration of a larger
number of departments for audit coverage.
From a practical perspective, we were less con-
cerned with the risk ranking accuracy of lower
risk departments and elected to focus on the
top 25 ranked departments.

From Tables 6 and 7, it appears that, for



Table 5. Key risk factors identified through variable selection

Model Qualitative risk factors Quantitative risk factors

Neural networks Cash Risk, Revolving Fund Accounts, Total Non-payroll, Grants & Contracts,
Regulatory Impact, Inventory, Computer Sales and Service Revenue
Equipment, Purchase Relations

Classification and Special Risks, Computer Equipment, Total Non-payroll, Equipment, Grants &
regression trees Transaction Volume, Sensitive Contracts, Local Funds, Sales and Service
(CARTS) Information, Inventory, and Other Assets Revenue, and Non-academic Salaries
Logistic regression Solicited and Unsolicitied Interest, log (1 + Sales Service Revenue)

Grants & Contracts, Regulatory Impact
Multiple regression Policies and Procedures log (1 + Sales and Service Revenue), log

(1 + Grants & Contracts), log (1 + Local
Funds), log (1 + Non-academic Salaries)

Table 6 Comparison of backpropagation quantitat-
ive results with Delphi risk

Dept. Delphi Dept. NShell Dept. PredictDept. NSol
key key key key

A 5 D 5.00 H 4.93 H 4.57
B 5 A 4.99 D 4.81 O 4.33
C 5 C 4.96 C 4.76 R 4.31
D 5 H 4.87 R 4.73 B 4.26
E 4.6 B 4.84 K 4.72 K 4.20
F 4.4 M 4.69 O 4.71 P 4.09
G 4.4 V 4.65 N 4.71 BW 3.98
H 4.4 K 4.48 B 4.55 M 3.94
I 4.4 R 4.37 M 4.52 D 3.89
J 4.4 L 4.33 P 4.39 N 3.69
K 4.2 S 4.29 A 4.39 AF 3.63
L 4.2 N 4.28 S 4.38 L 3.55
M 4.2 O 4.27 BD 4.37 AS 3.48
N 4.2 J 4.11 I 4.21 V 3.28
O 4.2 Q 4.09 T 4.13 I 3.04
P 4.2 I 4.05 AA 4.06 AQ 3.02
Q 4.2 P 4.05 L 4.04 AR 2.97
R 4.2 T 3.91 J 4.02 AB 2.97
S 4.2 AB 3.82 V 4.00 A 2.94
T 4.2 AR 3.74 AH 4.00 AK 2.87
U 4 AG 3.73 AX 3.96 F 2.86
V 4 AD 3.69 F 3.95 AP 2.85
W 4 BW 3.67 Q 3.94 BK 2.84
X 4 AX 3.63 AZ 3.87 T 2.83
Y 4 AH 3.62 BA 3.82 DH 2.81

the quantitative risk factors, all three vendor
software packages do a reasonably good job
of capturing the top 25 risky departments as
determined in the Delphi study.

Tables 8 and 9 show that, for the qualitative
risk factors, all three vendor software packages
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Table 7 Evaluation criteria for backpropagation
quantitative results

NShell— Predict— NSoI—
quant quant quant

R-squared 0.6162 0.5961 0.3040
% Delphi overlap 72% 76% 60%

do a modest job of capturing the top 25 risky
departments as determined in the Delphi study.

From Tables 10 and 11, it appears that, over-
all, all three vendor software do quite well
capturing the top 25 risky departments as
determined in the Delphi study.4 This finding
indicates that neural networks can function
effectively in aiding internal auditors in the
task of risk assessment. Further, because the
neural network models so developed embed
the pattern recognition expertise of experienced
practitioners, they constitute a valuable compo-
nent of efforts at knowledge acquisition from
experts and knowledge transfer to novices.

4Note that the target values used for this backpro-
pagation network were computed as the average of
the separately assessed qualitative and quantitative
risk factor based risk rankings elicited from the Del-
phi participants and weighted (0.6, 0.2,0.2) as
explained earlier.



Table 8 Comparison of backpropagation qualitative
results with Delphi

Dept. Delphi Dept. NShell Dept. PredictDept. NSol
key key key key

A 5.00 A 4.99 A 4.78 A 4.72
B 4.80 J 4.80 E 4.61 Q 4.53
C 4.80 U 4.56 B 4.50 E 4.47
D 4.40 Y 4.36 J 4.46 G 4.42
E 4.40 R 4.26 H 3.96 H 4.31
F 4.40 K 4.22 C 3.93 BS 4.31
G 4.40 C 4.21 M 3.88 J 4.25
H 4.40 AV 4.17 D 3.84 B 4.22
I 4.20 I 4.12 G 3.77 F 4.20
J 4.20 AN 4.09 R 3.72 I 4.16
K 4.00 H 4.08 BA 3.47 AV 4.15
L 4.00 O 4.06 P 3.35 CA 4.14
M 3.80 G 3.96 V 3.34 U 4.06
N 3.80 L 3.88 AA 3.33 C 4.05
O 3.80 AO 3.86 AI 3.23 L 3.95
P 3.60 N 3.85 AG 3.16 CM 3.90
Q 3.60 AY 3.84 T 3.15 BY 3.87
R 3.60 AG 3.80 L 3.14 AG 3.83
S 3.60 E 3.78 AS 3.08 BO 3.83
T 3.40 F 3.77 I 3.08 BQ 3.81
U 3.40 Q 3.77 X 2.98 D 3.79
V 3.40 CS 3.77 U 2.91 AZ 3.67
W 3.20 AM 3.75 W 2.79 AS 3.65
X 3.20 CM 3.73 AJ 2.73 AW 3.62
Y 3.00 BS 3.73 AM 2.72 O 3.62

Table 9 Evaluation criteria for backpropagation
qualitative results with Delphi

NShell— Predict—qual NSol—qual
qual

R-squared 0.6488 0.8573 0.4497
% Delphi 64% 72% 56%
overlap

COMPARISON WITH STATISTICAL MODELS

Multiple Linear Regression and Logistic
Regression

In general, neural networks are able to relax
classical assumptions regarding independence
of input variables as well as underlying para-
metric distribution requirements (Rumelhart
and McClelland, 1986). In addition, they are
capable of performing linear and nonlinear
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Table 10 Comparison of backpropagation
qualitative/quantitative results with Delphi

Dept. Delphi Dept. NShell Dept. PredictDept. NSol
key key key key

A 5.0 B 5.00 D 4.86 A 4.78
B 4.6 A 5.00 E 4.70 K 4.70
C 4.5 AF 4.97 B 4.68 G 4.52
D 4.4 F 4.89 Q 4.40 M 4.51
E 4.3 Q 4.87 L 4.32 D 4.45
F 4.3 D 4.65 F 4.31 E 4.38
G 4.3 S 4.47 G 4.20 C 4.35
H 4.2 E 4.40 AF 4.07 F 4.25
I 4.1 V 4.29 N 4.06 B 4.25
J 4.1 BG 4.22 O 4.05 Q 4.21
K 4.1 M 4.16 H 3.99 AY 4.17
L 4.0 Z 4.15 J 3.89 H 4.12
M 4.0 U 4.11 C 3.84 U 4.11
N 4.0 O 4.11 M 3.84 BB 4.10
O 3.9 N 4.10 I 3.83 BY 4.04
P 3.9 H 4.09 T 3.71 J 4.02
Q 3.8 AJ 4.04 P 3.65 N 3.97
R 3.8 L 4.02 AM 3.64 R 3.89
S 3.6 AW 3.88 U 3.58 Z 3.82
T 3.5 G 3.84 A 3.58 P 3.82
U 3.4 R 3.83 V 3.54 BH 3.80
V 3.4 J 3.82 AW 3.48 AD 3.74
W 3.4 AB 3.81 AB 3.41 AW 3.72
X 3.3 C 3.80 Z 3.41 AT 3.69
Y 3.3 I 3.80 K 3.35 W 3.65

Table 11 Evaluation criteria for backpropagation
qualitative/quantitative results

NShell— Predict— NSol—
QualQuant QualQuant QualQuant

R-squared 0.7742 0.8834 0.5504
% Delphi 80% 84% 72%
overlap

modeling, and handling complex hierarchical
or other intermediate data relationships (Davis,
1996). As such, in line with prior research that
makes comparisons of neural network models
with statistical models (e.g. Yoon et al., 1993;
Balakrishnan et al., 1994; Odom and Sharda,
1990; Bell et al., 1990), we compared our neural
network results with two statistical models:
multiple linear regression and logistic
regression. Both statistical procedures were per-
formed with stepwise variable selection that



systematically eliminates variables that have
lower diagnosticity while retaining those with
higher diagnosticity.

Logistic regression is of particular interest to
us because the standard transfer function used
in backpropagation networks, the sigmoidal
function, is equivalent to the logistic function.5

Because logistic regression works with a dichot-
omous response variable, we defined the fol-
lowing dichotomy: risk rankings $4 (‘high
risk’) and risk rankings #3 (‘low risk’). Our
justification for this split is that none of the
top 25 riskiest departments in the Delphi rank-
ings had a risk rank of 3 or lower. The logistic
regression chose four qualitative risk factor
variables and only one quantitative risk factor
variable. The proportion of the deviance
explained (a measure roughly equivalent to R-
squared) was a modestly high 0.6045.

Multiple linear regression, involving the step-
wise procedure, resulted in the choice of four
quantitative variables and only one qualitative
variable. Logarithmic transformation of the
quantitative risk factors led to making an effec-

5In logistic regression, the predictor variables can
be a mix of continuous, discrete and dichotomous
variables (Tabachnick and Fidell, 1996). The dichot-
omous outcome or response variable, Y′, in logistic
regression, is the probability of having one outcome
or another based on a nonlinear function of the
best linear combination of predictors. The response
function, varying from 0 to 1 as −u varies from −`
to +`, is given by:

Y′i = eu/(1 + eu)

where Y′i is the estimated probability that the ith
case (i = 1,2,. . .,n) is in one of the categories and u
is the standard linear regression equation:

u = A + B1X1 + B2X2 +. . .+ BkXk

with constant A and regression coefficients, Bj, and
predictors, Xj, for k predictors (j = 1,2,. . .,k).
This linear regression equation, in effect, produces
the logit or log of the odds:

ln (Y′/1 − Y′) = A + S Bj Xij

In other words, we estimate coefficients using
maximum likelihood to determine the best linear
combination of predictors, for a linear regression
equation that represents the natural logarithm of the
ratio of the probability of being in one category
divided by the probability of being in the other cate-
gory.
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tive use of them as regression variables. The
multiple R-squared for the linear regression
was again high, at 0.7925.

Both these statistical procedures compare fav-
orably with the neural network results in terms
of the proportion of the variance in the risk
rankings explained by the quantitative and
qualitative risk factors. Moreover, the statistical
results from logistic regression and stepwise
multiple linear regression are interesting, if
only because they emphasize different dimen-
sions of risk depending on the nature of the
response variable. The logistic regression uses
a dichotomous response variable: ‘high risk’ or
‘low risk’, while the multiple linear regression
uses a continuum of risk rankings ranging from
1 to 5. The sensitivity of the (variable selection)
results to the choice of response variable scaling
is an interesting finding and needs to be taken
into account in future research.

The fact that well-understood statistical tech-
niques such as logistic regression and multiple
linear regression do a reasonably good job of
modeling our data set should not be surprising.
Indeed, the statistical foundations of neural net-
work models are increasingly being recognized
in the technical literature (Swingler, 1996;
Bishop, 1995; Sarle, 1994; Smith, 1993). How-
ever, for this study, we need more fine-tuned
measures to compare the performance of stat-
istical and neural network models. We chose
Kendall’s Tau, a non-parametric measure of
association that makes no distributional
assumptions, for this purpose.

Additional Analyses

As mentioned earlier, we are focused on the
rank ordering of the top 25 riskiest depart-
ments. Thus, while we may not care about
whether the 38th ranked department in the
Delphi study is ranked 138th in one of the test
models, we are very much interested in know-
ing whether the 5th ranked department in the
Delphi study has been relegated to the 26th or
lower by one of the test models. All the pre-
vious analyses have focused on the unordered
risk rankings. In order to compute the ordered
ranking matches of the top 25 riskiest depart-



ments with the Delphi rankings, we chose the
Kendall’s Tau measure of rank correlation.6

To perform the Kendall’s Tau computation,
the Delphi sample of 141 departments was div-
ided into the top 25 riskiest departments
(ranked 1 through 25) and the remaining
departments were lumped together and given
a common rank of 26 (there were thus 116 such
departments). Because of this operationalization
and the inevitable ‘ties’ that resulted, the range
over which Kendall’s Tau took values was
(−0.102, 1.000) rather than (−1.000, 1.000).7

6The Kendall’s Tau measure is based on the follow-
ing computation:

(# of concordant pairs − # of discordant
pairs)/total # of pairs

The denominator, ‘total # of pairs’ is, of course,
adjusted for any ‘ties’. Observation pairs, (Xi, Yi)
and (Xj, Yj) are said to be concordant if the difference
between Xi and Xj is in the same direction as the
difference between Yi and Yj. Similarly, observation
pairs, (Xi, Yi) and (Xj, Yj) are said to be discordant
if the difference between Xi and Xj is not in the
same direction as the difference between Yi and Yj.
When either the X’s or Y’s are equal, the observation
pairs are neither concordant nor discordant
(Daniel, 1978).
7Suppose we denote n = 141 and r = 25 to represent
the total number of departments to be risk-ranked
and the top 25 riskiest departments respectively. For
the purposes of focusing on the top 25 departments,
we merely lumped together all non-top 25 riskiest
departments into a common rank of 26. This pro-
cedure caused the Kendall’s Tau lower and upper
bounds to deviate from the theoretical (−1.000,
1.000) range.

In the case of a perfect match of the top 25
between the Delphi rankings and a particular model,
we would have the following calculation to compute
the upper bound (the numerator is the difference
between concordant and discordant pairs, while the
denominator represents the total number of pairs
less ‘ties’):

{(r
2
) + r(n − r) }/ {(n

2
) − (n−r

2
) } = (2rn − r − r 2)/(2rn − r − r2) = 1

The equivalent numerical computation produces
3200/3200 = 1, the upper bound for Kendall’s Tau
measure.

Where none of the top 25 riskiest departments
constitutes a match, we need to similarly compute
a lower bound (again, the numerator is the difference
between concordant and discordant pairs, while the
denominator represents the total number of pairs
less ‘ties’):
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Table 12 presents a summary of the Kendall’s
Tau measure of association for the qualitative,
quantitative and combined risk factor inputs
across different models. For simplicity of pres-
entation, only the diagonal elements of the
matrix are presented, except for the logistic and
multiple linear regression based rankings. As
explained in footnote 6, there is a positive bias
for Kendall’s Tau values because the lower
bound of −1.000 was moved up to −0.102 as a
consequence of our particular operationaliz-
ation of risk ranking assignments. However, it
should be noted that our operationalization of
the Kendall’s Tau measure with a focus on the
top 25 riskiest departments does not impair the
validity of the comparisons with the statistical
models. In fact, it slightly biases our hypotheses
against finding the neural network models to
be better predictors of Delphi risk rank

Table 12 Kendall’s Tau rank correlation measures
across models

Model used Inputs used Delphi rankings

Quant Qual Quant &
Qual

Predict Quantitative 0.713
Qualitative 0.670

Quant & Qual 0.750
NShell Quantitative 0.645

Qualitative 0.544
Quant & Qual 0.676

NSol Quantitative 0.484
Qualitative 0.486

Quant & Qual 0.631
Linear 0.607 0.360 0.475
regression
Logistic 0.651 0.502 0.612
regression

{(r
2
) − r2} / {(n

2
) − (n−r

2
) } = (−r − r2)/(2rn − r − r2)

= −(1 + r)/(2n − r − 1)

The equivalent numerical computation produces
−325/3200 = −0.1015, the lower bound for our oper-
ationalization of Kendall’s Tau measure.

Because the lower bound is only −0.102, we expect
a positive bias in the values of the Kendall’s Tau
measure for our operationalization of the risk rank-
ings (see Table 12).



orderings. Moreover, subsequent analyses
incorporating all 141 departmental units (non-
truncated, full sample) produced qualitatively
identical results.

From Table 12, based on the Kendall’s Tau
measures, NeuralWare’s Predict appears to
make the best predictions in terms of ordered
ranking matches with the Delphi study risk
rankings. Although the two statistical tech-
niques, multiple linear regression and logistic
regression, show relatively high and positive
Kendall’s Tau values for the quantitative
model, their performance is significantly worse
for the qualitative model. The better perform-
ance of the logistic regression model is partially
explained by noting that the sigmoidal transfer
function used in neural networks is equivalent
to the logistic function used in logistic
regression (Bell et al., 1990; Swingler, 1996).8

Nevertheless, Table 12 illustrates the slightly
superior performance of neural network back-
propagation models when compared with tra-
ditional statistical models using the Kendall’s
Tau measure. Because we were unable to per-
form significance tests on the Kendall’s Tau
measure, we proceeded to compute stan-
dardized scores (z-scores) using the Kendall’s
Tau values from Table 12, along with the modi-
fied lower and upper bounds (−0.102, 1.000).
This produced Table 13.

Table 13 confirms our earlier remarks that
NeuralWare’s Predict backpropagation model
is the best performer; in one case the Kendall’s

8The sigmoid function, also known as the logistic
function, is given by:

f(x) =
1

1 + e−x

The function takes values from [0,1]. Its derivative
conveniently turns out to be: f′(x) = f(x)(1−f(x)), that
is, it can be written as an output of the function
itself.

The hyperbolic tangent (tanh) function is given by:

f(x) =
ex − e−x

ex + e−x

This function takes values from [−1,1]. Its derivative,
again, conveniently turns out to be:
f′(x) = (1 + f(x))(1−f(x)), which can be written as an
output of the function itself.
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Table 13 Standardized Kendall’s Tau rank corre-
lation measures across models

Model used Inputs used Delphi rankings

Quant Qual Quant &
Qual

Predict Quantitative 0.819
Qualitative 0.582

Quant & Qual 1.02
NShell Quantitative 0.445

Qualitative −0.111
Quant & Qual 0.615

NSol Quantitative −0.442
Qualitative −0.431

Quant & Qual 0.368
Linear 0.235 −1.124−0.491
regression
Logistic 0.478 −0.324 0.263
regression

Tau z-score is over 1 standard deviation above
the mean. Table 13 also shows that, in some
cases, the performance of logistic and multiple
linear regression is below the mean, across all
models. Again, subsequent analyses involving
the full sample produced qualitatively ident-
ical results.

These statistical analyses increase our confi-
dence in the ability of neural networks to fur-
nish reasonably good models for risk ranking
applications in internal auditing. Overall, we
remain quite enthusiastic about the perform-
ance exhibited by these neural network models
and hope that future research in this area will
be able to further optimize their performance.

DISCUSSION AND CONCLUSION

Information technology in general, and artificial
intelligence tools in particular, are perceived as
being critical in the future role of accountants
as information providers and risk management
consultants (Elliott, 1992). Integrating these into
audit practice will facilitate the development of
more effective training programs and decision
aids that feature advanced technologies (see
Brown and Eining, 1997). Neural networks, a
technology inspired by human brain architec-



ture, represents one of the latest advances in
artificial intelligence techniques. They have
been tremendously successful in a variety of
real-world applications and contain the promise
to become part of the standard toolkit of the
internal auditor of the twenty-first century. This
paper reports the results of a study aimed at
evaluating the potential of neural networks for
risk assessment in internal auditing.

We began with the premise that risk assess-
ment is complex and difficult especially because
the internal auditor is faced with large amounts
of both qualitative and quantitative data. A key
aspect of risk assessment is the detection of
patterns and trends that are indicative of
noticeable discrepancies, significant anomalies,
and exceptional or error conditions. Conse-
quently, the internal auditor’s ability to use
emerging technologies with pattern recognition
capabilities, such as neural networks, has the
potential to enhance audit quality and perform-
ance. In this connection, a common observation
reiterated by McNamee and McNamee (1993),
McNamee (1996), and Shakespeare (1996) is
that ‘risk assessment needs the participation
and input of management outside of internal
auditing in order to succeed’. If neural network
technology is not embraced by management
who have the primary responsibility for risk
management, or if it proves not to be ‘user-
friendly’ or feasible from a cost–benefit stand-
point, it is unlikely to succeed in practice. In
addition, the anticipated benefits from using
neural networks depends on satisfactory
answers to the following questions: (1) do we
obtain faster, cheaper, and possibly more accur-
ate output from a neural network application
than afforded by traditional methods?
(efficiency); (2) are the risk rankings produced
consistent upon repetition? (consistency/
reliability); (3) how well do neural network
models of risk assessment work in practice?
(validity); (4) are the variables entering into
a neural network model and the subsequent
combining process used easily explained?
(defensibility/transparency); and, finally, (5)
how well are the model results ‘received and
accepted’ by knowledgeable practitioners?
(profession-wide acceptance). We believe neural
network technology does carry significant
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promise in adequately addressing each of
these concerns.

As noted before, the three Delphi study audi-
tor-participants included the Director of the
UIC Office of University Audits, with 21 years’
experience; and two Senior Auditors, UIC
Office of University Audits, with 19 years and
7 years of experience respectively. The use of
these experienced auditors shields us from Gra-
ham’s (1993) justified criticism that much of
past expertise research has inappropriately lab-
eled auditors with only two or three years of
experience as ‘experts’. With reference to exter-
nal auditing, to highlight the role of seniority
in accumulating professional experience, Van
Dijk and Williams (1990, p. 67) observe: ‘Experi-
ence gains in importance with the level in the
audit hierarchy, to complement audit technical
findings with rules of experience about causal
relationships within the client’s organization
and outside. This gives the audit partner and
manager the ability to understand the impli-
cations of audit findings better than field staff
could.’ These remarks also generally apply to
the internal auditing environment (cf. Colbert,
1989).

The pervasive influence of qualitative factors
in assessing risk indicates that the best
approach would be a combination of ‘scenario-
building tools’ and neural network technology.
Scenario analysis, in a brainstorming session
of knowledgeable in-house experts, can help
identify all manner of organizational risks.
Once scenarios have been elicited, neural net-
works can be utilized to absorb all these scen-
arios (input vector of risk characteristics) and
their associated risks (target risk ranking) in a
pattern-mapping exercise. Careful selection of
high audit risk areas using such a strategy
yields at least two major benefits to auditors:
recipients of such audits are likely to value
them; and, a focused approach is likely to
shorten the overall audit duration (McNamee,
1996). If neural network based decision aids
are developed and implemented successfully,
internal auditors will possess a sophisticated
tool that can enable them to make sound rec-
ommendations to management for strategic
purposes such as process control and business



process re-engineering (Stoner and Werner,
1995).

This research study is not without its limi-
tations. We recognize that the most important
limitation arises from the fact that no external
cross-validation using a completely new data
set was done. Obtaining good results on a fresh
data set would be an unambiguous measure of
network performance and generalization. How-
ever, to do that would have required us to
possess an equally large data set with
accompanying Delphi type evaluations that we
did not possess. Nevertheless, we did perform
suitable internal cross-validations by splitting
the training and test sets on a (70%, 30%)
basis that resulted in reasonably good network
performance. A more carefully defined linkage
between input risk factors and output or
organizational risk may also be warranted in
future studies. Our analysis of the pairwise
correlation between the qualitative-factor-based
and quantitative-factor-based risk rankings sug-
gests that these two distinct types of risk factors
may be tapping into different dimensions of
output or organizational risk. If this is indeed
the case, the neural network model perform-
ance can be further improved by specifically
distinguishing qualitative and quantitative risk
factors, linking them with aspects of organiza-
tional risk that they refer to, and strengthening
the model specification.

The neural network models that we have
developed are in the context of a public state
university. Therefore, a legitimate concern is
whether the model so developed applies to
smaller community colleges or even to private
schools. Following Van Dijk and Williams
(1990), a similar question can also be raised
about the portability of our model outside of
the academic setting, e.g. in banks or insurance
companies. We must point out that the risk
assessment task is quite generic to internal
auditors working in business, government or
industry. Accordingly, the findings from this
study should not be regarded as being too
industry-specific, but generalizable. However, it
is true that other customized applications for
risk assessment will need to be similarly
explicit about design considerations, i.e. the
domain-specific data input–output structures,
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availability of output values representing ‘cor-
rect answers’, choice of network architectures,
learning algorithms, and parameter values, in
order to permit replicability.

Among the many alternative network archi-
tectures available, we have only implemented
and reported the results of the backpropagation
architecture in conjunction with error-correction
learning. However, there exist a plethora of
other neural network architectures such as
Boltzmann machines, Hopfield networks,
modular networks, radial basis functions, recur-
rent networks, etc. Similarly, there are numer-
ous learning algorithms as well as transfer func-
tions that could be used. As business
applications of neural networks become more
common, we are bound to see experimentation
with more of these ‘esoteric’ network architec-
tures and learning.

This collaborative research represents our
initial foray into evaluating the potential of
neural network technology for internal audit-
ing, fuller details of which can be found in a
research monograph published by the Institute
of Internal Auditors’ Research Foundation
(Ramamoorti and Traver, 1998). The research
effort has already assisted with the process
of continuous improvement at the Office of
University Audits, University of Illinois, by
providing a richer understanding of the benefits
and limitations of neural network technology.
More sophisticated applications such as neural
network modeling of ‘pattern mapping’ (e.g.
for fraud detection, see also Green and Choi,
1997; Fanning and Cogger, 1998) and ‘data min-
ing’ of institutional databases (e.g. for strategic
decision making, see Berry and Linoff, 1997)
would appear to be logical extensions of this
stream of research.

AUTHOR NOTE
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