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A Waveform Relaxation Algorithm with Overlapping
Splitting for Reaction Diffusion Equations

Martin J. Gander

Scientific Computing and Computational Mathematics, Stanford University, Stanford, CA 94305, USA

Waveform relaxation is a technique to solve large systems of ordinary differential equations (ODEs) in parallel.
The right hand side of the system is split into subsystems which are only loosely coupled. One then solves
iteratively all the subsystems in parallel and exchanges information after each step of the iteration. Two classical
convergence results state linear convergence on unbounded time intervals for linear systems of ODEs under some
dissipation assumption and superlinear convergence on bounded time intervals for nonlinear systems under a
Lipschitz condition on the splitting.

To apply waveform relaxation to partial differential equations (PDEs), one traditionally discretizes the PDE in
space to get a large system of ODEs, to which then the waveform relaxation algorithm is applied using a matrix
splitting. There are two problems with this approach: first information about how to split the right hand side is lost
during the discretization; second the convergence results derived in this fashion depend in general on the mesh
parameter and convergence rates deteriorate when the mesh is refined. To avoid those problems a new waveform
relaxation algorithm is formulated directly at the PDE level. The differential operator on the right hand side is split
using domain decomposition. It is shown for a scalar reaction diffusion equation with variable diffusion coefficient
that the new waveform relaxation algorithm converges superlinearly for bounded time intervals and linearly for
unbounded time intervals, extending the two classical convergence results to this type of PDE. Interestingly the
superlinear convergence rate is faster than the superlinear convergence rate obtained by the traditional matrix
splitting methods. It is shown how the convergence rates depend on the overlap of the domain decomposition
and a Lipschitz condition on the reaction function. The splitting of the right hand side is naturally given by the
domain decomposition and the convergence rates are robust with respect to mesh refinement when the algorithm
is discretized.

KEY WORDS Waveform Relaxation, Domain Decomposition, Reaction Diffusion Equa-
tions, Overlapping Splitting

1. Introduction

The basic ideas of waveform relaxation were introduced in the late 19th century by Picard
[24] and Lindelöf [15] to study initial value problems. There has been much recent interest
in waveform relaxation as a practical method for the solution of stiff ordinary differential
equations (ODEs) after the publication of a paper by Lelarasmee, Ruehli and Sangiovanni-
Vincentelli [14] in the area of circuit simulation. For some problems there is even a speedup
for the sequential version of the algorithm, but the real interest lies in the inherent paral-
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2 Martin J. Gander

lelism of waveform relaxation methods, making them attractive for large scale applications
([27], [13], [23],[18], [4]).

There are two basic types of convergence results for waveform relaxation algorithms
for ODEs: (i) for linear systems of ODEs on unbounded time intervals one can show
linear convergence of the algorithm under some dissipation assumptions on the splitting
([19], [20,21], [12] and [4]); (ii) for nonlinear systems of ODEs (including linear ones)
on bounded time intervals one can show superlinear convergence assuming a Lipschitz
condition on the splitting function ([20,21], [2] and [3]). For classical relaxation methods
(Jacobi, Gauss Seidel, SOR) the above convergence results depend on the discretization
parameter if the ODE arises from a PDE which is discretized in space. The convergence
rates deteriorate as one refines the mesh and thus makes the methods unpractical.

Mesh dependence can be overcome using multigrid. Lubich and Osterman prove in [17]
linear convergence for the one dimensional heat equation independent of the mesh param-
eter. Their analysis based on an eigenvector approach however is not easily generalizable
[4]. A more general approach to analyze multi grid waveform relaxation was given by
Ta’asan and Zhang [26]. Further results can be found in Janssen and Vandewalle [11].

Another way of overcoming mesh dependence is by formulating the waveform relax-
ation using Schwarz overlapping domain decomposition. This was done simultaneously
and independently by Gander and Stuart [8] who established results of type (i) and by Gi-
ladi and Keller [10] who established results of type (ii), both for dissipative linear PDEs.
We call this type of algorithms overlapping Schwarz waveform relaxation.

In this paper we extend the linear and superlinear convergence results established in [8]
and [10] for overlapping Schwarz waveform relaxation to nonlinear parabolic equations
of reaction diffusion type with variable diffusion coefficient. The main tool in the analysis
is a Positivity Lemma, which is established in Section 2. In Section 3. we formulate the
overlapping Schwarz waveform relaxation algorithm for the reaction diffusion equation. In
Section 4. we prove linear convergence of the algorithm on unbounded time intervals at the
continuous level provided the growth of the reaction function is bounded by the smallest
eigenvalue of the Laplacian. In Section 5. we prove superlinear convergence of the algo-
rithm on bounded time intervals assuming the growth of the reaction function is bounded
from above by any finite constant. In Section 6. we generalize the results of Sections 4.
and 5. to the case where the diffusion coefficient varies in space and time. Numerical ex-
periments which support the convergence analysis are presented in Section 7. In the last
section we show how our estimates can be sharpened using a local argument. We also show
how the analysis can be generalized to several subdomains leading to an inherently parallel
algorithm. We conclude by an outlook on how the present analysis could be extended to
higher dimensional problems.

2. The Positivity Lemma

The Positivity Lemma is central in our analysis of the overlapping Schwarz waveform
relaxation algorithm for reaction diffusion equations. It’s proof can be found for example
for bounded time domains in [22], where the result is deduced from a Maximum Principle.
We give here a simple direct proof valid for unbounded time domains as well.

Lemma 2.1. (Positivity Lemma) Suppose the function� � ����� ����������� ������� ���
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������ satisfies the differential inequalities

��
��

� ����� ���
��

���
� 	��� ��� � � � 
 � 
 �� � � �

���� �� � � � � �
���� �� � � � � �
���� �� � � � � � � ��

(2.1)

where 	��� �� is a function bounded from below, 	��� �� � � for some constant � and
����� �� � � for all � � ��� �� and � � �����. Then

���� �� � � �� � ��� ��� � � ������

Proof Consider the case first where the function 	��� �� is strictly positive, 	��� �� � �
for all � � ��� �� and � � �����. To reach a contradiction, suppose that the function
���� �� becomes negative, ���� �� � �Æ 
 � for some positive quantity Æ and some
�� � � ��� �� � �����. By continuity there exists a first time �� and a point �� where �
reaches the value � Æ

� , ����� ��� � � Æ
� . Then the time derivative of � at that point is non-

positive, ������ ��� � � and the second spatial derivative is non-negative,������� ��� � �,
since otherwise there would be a point nearby ���� ��� at which � is already smaller than
� Æ

� . But � satisfies the differential inequality (2.1),

������ ���� ����� ��������� ��� � 	���� �������� ��� � ��

which is a contradiction, since the first term is non positive, the second non-negative and the
third one strictly negative. Therefore the function � can not become negative in the interior
of the domain. But on the boundary, it is non-negative by definition and thus the result
follows. Now for general functions 	��� �� which are bounded from below, 	��� �� � �,
consider the function 
 �� ����. This function satisfies the differential inequality


� � ����� ��
�� � �	��� ��� ��
 � ��

with non-negative initial and boundary data. Because 	��� �� is bounded from below by �
we have 	��� �� � � � � and hence by the above argument 
 can not become negative.
This implies that � cannot become negative either, since � � ����
, which concludes the
proof.

Remark: It suffices for � to be piecewise continuous at the boundary for the Lemma to
hold, since the continuity at the boundary was not used in the proof.

All the convergence results we obtain in this paper are for continuous problems and
depend on the Positivity Lemma. An identical convergence analysis applies to the semi
discrete equations, as it was shown for the heat equation in [8], provided we have a discrete
Positivity Lemma. For completeness we present here a discrete Positivity Lemma for a
finite difference discretization.

Suppose the inequalities (2.1) have been discretized by a centered finite difference scheme
on a grid with � gridpoints, � � ���� � 	�. Then setting 	���� �� 	���� �� and ����� ��
����� �� for � � 	� 
� � � � � � we get the set of discrete ODE inequalities

��

��
� ����� (2.2)
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4 Martin J. Gander

where the matrix ���� is given by

���� �
	

��

�
����
�
������ 	�����

� �����
����� �
������ 	�����

� �����
. . .

. . .
����� �
������ 	�����

�

�
���� (2.3)

and the initial condition���� � �. Note that all the inequalities are componentwise.

Lemma 2.2. (Discrete Positivity Lemma) Suppose ����� and 	���� are bounded for all
� � � and 	 � � � �. Then

���� � � �� � ������
Proof Using an integrating factor in (2.2) we obtain

���� � �
�
�

�
����	�

�����

Now defining � �� ��
����
�������
� � 	����� and denoting the identity matrix by � ,

the exponential can be split into a scalar factor and the exponential of a matrix with non
negative entries only,

���� � �����
�
�

�
������
	�

�����

Thus���� � � since ���� � �.

3. The Overlapping Schwarz Waveform Relaxation Algorithm

We consider the one dimensional reaction diffusion equation on the domain � � ��� ���
��� � �,

��
��

� ����� ���
��

���
� ���� � 
 � 
 �� � 
 � 
 �

���� �� � ����� � 
 � 
 �
���� �� � ����� � 
 � 
 �
���� �� � ����� � � � � �

(3.1)

with � � ���IR� and �� � ����� �� � �� for � � � � � and � 
 � 
 � . We assume
that � ���� 
 � for a finite constant � and that the given data �����, ����� and ����� are
piecewise continuous. This gives existence and uniqueness of a solution to (3.1) [22].

To obtain a waveform relaxation algorithm for (3.1) we decompose the domain � into
two overlapping subdomains �� � ��� ��� � ��� � � and �� � ������ � ��� � � where
� 
 � 
 � 
 	 as given in Figure 1. We define two subproblems

�

��

� ����� ���
�


���
� ��
� � 
 � 
 ��� � 
 � 
 �


��� �� � ����� � 
 � 
 �

���� �� � ����� �� � 
 � 
 �

��� �� � ����� � � � � ��

(3.2)

and
��
��

� ����� ���
��

���
� ���� �� 
 � 
 �� � 
 � 
 �

����� �� � 
���� �� � 
 � 
 �
���� �� � ����� � 
 � 
 �
���� �� � ����� �� � � � ��

(3.3)
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�� ���� � ��

�� �� ��

�

�

Figure 1. Decomposition into two overlapping subdomains.

Note that setting 
��� �� �� ���� �� on �� and ���� �� �� ���� �� on �� is a solution to
(3.2) and (3.3). A waveform relaxation algorithm to obtain this solution can be formulated
using a Schwarz type iteration introduced for elliptic problems in [25] and further studied
in [16], [6] and references therein. In the parabolic case, we obtain the overlapping Schwarz
waveform relaxation algorithm

�
���

��
� ����� ���

�
���

���
� ��
���� � 
 � 
 ��� � 
 � 
 �


������ �� � ����� � 
 � 
 �

������� �� � ������ �� � 
 � 
 �

������ �� � ����� � � � � ��

(3.4)

and

�����

��
� ����� ���

�����

���
� ������� �� 
 � 
 �� � 
 � 
 �

�������� �� � 
����� �� � 
 � 
 �
������� �� � ����� � 
 � 
 �
������� �� � ����� �� � � � ��

(3.5)

To analyze the convergence of this algorithm to the solution ���� ��, define the errors on the
subdomains ����� �� �� 
���� ������� �� and ����� �� �� ����� ������� �� and consider
the error equations

�����

��
� ����� ���

�����

���
� � ����������� � 
 � 
 ��� � 
 � 
 �

������� �� � � � 
 � 
 �
�������� �� � ������ �� � 
 � 
 �
������� �� � � � � � � ��

(3.6)
and

�����

��
� ����� ���

�����

���
� � ����������� �� 
 � 
 �� � 
 � 
 �

�������� �� � ������ �� � 
 � 
 �
������� �� � � � 
 � 
 �
������� �� � � �� � � � ��

(3.7)
where we have used the remainder term in Taylors theorem,

��
����� ���� � � �����������
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6 Martin J. Gander

for some function ������� �� which lies between 
������ �� and ���� �� for � � � � ��,
� 
 � 
 � , and similarly

�������� ���� � � �����������

for some function ������� �� which lies between ������� �� and ���� �� for �� � � � �,
� 
 � 
 � .

We first consider the case where the diffusion coefficient is constant, ����� �� 	 ��. The
case with variable diffusion is investigated in Section 6.

4. Linear Convergence on Unbounded Time Intervals

We prove linear convergence of the overlapping Schwarz waveform relaxation algorithm
(3.4) and (3.5) on unbounded time intervals, � � �. We consider in the following func-
tions in �� �� ���IR�� IR� with the infinity norm



����

� �� ��

���


����
�

Lemma 4.1. Suppose that the derivative of � in (3.1) is uniformly bounded from above by
a constant 	 


�

�
�

��
. Then the error in the iteration (3.6), (3.7) decays linearly on the

interfaces � � �� and � � ��. Specifically



�������� ��

� � �

������ ��

�� (4.1)



�������� ��

� � �

������ ��

�� (4.2)

where the factor � � ��� 	� is given by

� �

	
����

�
�

 �	� ����

����
�
�

 �	� ����


	
����

�
�

 ���

����
�
�

 ���



� (4.3)

Proof Consider the differential equation

� �����

��
� �� �

� �����

���
� 	 ����� � 
 � 
 ��� � � �

�������� �� � � � � �
��������� �� � 

�������� ��

� � � �

�������� �� � 

�������� ��

�
����

�
�

 ��

����
�
�

 ���

� � � � ���

(4.4)

The solution to (4.4) is the steady state solution

�������� � 

�������� ��

�
����

�
�

 ��

����
�
�

 ���

� (4.5)

Note that �������� is non-negative for � � � � �� since �� 
 	 � �

�
�

��
. Hence the

difference � �� ����� � ���� satisfies

��
��

� �� �
��

���
� 	 ����� � � ����������� � 
 � 
 ��� � � �

���� �� � � � � �
����� �� � � � � �
���� �� � � � � � � ���

(4.6)
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To apply the Positivity Lemma, note that the term on the right hand side in (4.6) can be
written as

	 ����� � � ����������� � 	 ����� � � ������� ����� � � ������� ����� � � �����������

� �	� � �������� ����� � � ���������

Now using the fact that ����� is non-negative and the assumption that � � is bounded by 	,
the first term on the right is non-negative and therefore the partial differential equation in
(4.6) can be replaced by a differential inequality, namely

��

��
� ��

���

���
� � �������� � �� � 
 � 
 ��� � � ��

Now the Positivity Lemma applies so that � � ����� � ���� � �. A similar argument
holds for the sum �� �� ����� � ���� � �, and thus the modulus of ������� �� can be
bounded by


������� ��
 � �������� � 

�������� ��

�
����

�
�

 ��

����
�
�

 ���

� (4.7)

Similarly on the second subdomain


������� ��
 � 

������ ��

�
����

�
�

 ��� ���

����
�
�

 �	� ����

(4.8)

Evaluating this last equation at � � ��, taking the supremum over all � � � and inserting
the result into equation (4.7) leads to the inequality


������� ��
 � 

������ ��

�
	
����

�
�

 �	� ����

����
�
�

 �	� ����


	
����

�
�

 ��

����
�
�

 ���



� (4.9)

Now evaluate (4.9) at � � �� and take the supremum over � � � to obtain



�������� ��

� � �

������ ��

��

with � as given in (4.3). The second inequality is obtained similarly. It remains to show
that with the given condition on 	 the convergence factor � 
 	. Consider the cases 	 � �,
	 
 � and � 
 	 


�

�
�

��
separately. For 	 � � the result for the heat equation obtained

in [8] is recovered, namely

���
���

� �
��	� ��

��	� ��
� (4.10)

which is clearly less than 	 for � 
 � 
 � 
 	. For 	 
 � the factor � can be rewritten as

� �
�����

�
���

 ���� �����

�
���

 ��

�����

�
���

 ���� �����

�
���

 ��

� (4.11)

Noting that ������� is monotonically decreasing for � � � and using the fact that � 
 � 


� 
 	 one obtains � 
 	 for 	 
 �. In the last case, � 
 	 

�

�
�

��
, rewrite � in the form

� �
����

�
�

 ���� ����

�
�

 ��

����
�
�

 ���� ����

�
�

 ��

� (4.12)
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8 Martin J. Gander

Noting that ������ is monotonically decreasing for � 
 � 
 � and using � 
 � 
 � 
 	

one obtains again � 
 	 for � 
 	 

�

�
�

��
. Hence � 
 	 for 	 


�

�
�

��
and the proof is

established.
For any function ���� �� in ����	�  �� ��� we introduce the norm




���� ��


� �� ��

�����



���� ��

��

Theorem 4.1. (Linear Convergence) Assume that the derivative of � in (3.1) is uniformly
bounded from above by a constant 	 


�

�
�

��
. Then the overlapping Schwarz waveform

relaxation algorithm for the reaction diffusion equation (3.1) with two subdomains con-
verges linearly for any initial guess at a rate depending on the size of the overlap and the
ratio of the constant 	 to the diffusion coefficient ��. Specifically




�������� ��


� � ����

������ ��

� (4.13)




�������� ��


� � ����

������ ��

�� (4.14)

where

� �

	
����

�
�

 �	� ����

����
�
�

 �	� ����


	
����

�
�

 ���

����
�
�

 ���



� (4.15)

and the constants �� and �� are given by

�� � ��

������

����
�
�

 ��

����
�
�

 ���

�� � ��

������

����
�
�

 ��� ���

����
�
�

 �	� ����

�

(4.16)

Proof From equation (4.7) in the proof of Lemma 4.1. one obtains


�������� ��
 � 

������� ��

�
����

�
�

 ��

����
�
�

 ���

� (4.17)

Using Lemma 4.1. for 

������� ��

� in (4.17) and taking the supremum in � on the right
leads to


�������� ��
 � ���
�

������ ��

�

which is the desired uniform bound in � and �. The second inequality is obtained analo-
gously.

We now analyze how the rate of convergence � depends on the size of the overlap deter-
mined by the parameters � and � and on the constants 	 and � � given in the problem. First
note that for 	 �

�

�
�

��
the iteration factor becomes

� �
������	� ���

������	� ���

�������

�������
� 	�

The last step follows from the identity ����	� � � ����	� ���� ������	� ���� �. Hence the

iteration stagnates for 	 �
�

�
�

��
. For 	 


�

�
�

��
Figure 2 shows how � depends on 	 for

� � 	 and � � ���, � � ��� and �� � 	. The graph depicts clearly that the convergence of
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Figure 2. Dependence of the iteration factor � on the constant � given by the problem
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Figure 3. Dependence of the iteration factor � on the overlap size on the left (fixed �) and on the
position of the overlap (fixed � � �) on the right for � � �

the algorithm becomes faster the smaller 	 is. This agrees with the intuition that the smaller
	 is the faster the solution decays. In fact from (4.11)

���
����

� � ��

Note that a small diffusion coefficient �� amplifies the effect of 	.
The dependence on the overlap is shown in Figure 3. On the left the size of the overlap

is varied by fixing � � ��� and varying � � ��� ����. Clearly the iteration converges faster
if the overlap is increased by decreasing �. On the other hand, if the overlap approaches
zero, the convergence factor becomes, using (4.3)

���
���

� � 	

and thus the algorithm does not converge without overlap. This agrees with intuition as
well, since without overlap, no information is exchanged.

In Figure 3 on the right the size of the overlap � � � 	 ��
 is fixed and the overlap
is moved across the domain from � � � �� � ��
� to � � ��� �� � 	�. Note that the
convergence is slower if the overlap is in the center. As the overlap moves towards the

31/10/2002 22:54 PAGE PROOFS paper



10 Martin J. Gander

boundary convergence gets faster and faster, until instantaneous convergence is obtained if
one subdomain spans the whole domain.

5. Superlinear Convergence on Bounded Time Intervals

We consider now bounded time intervals, � � ��� � �, � 
 �. with the usual infinity norm
for functions in ������ � �� IR�,



����

� �� ��

�����


����
�

We are generalizing ideas introduced by Giladi and Keller in [10] for linear parabolic
problems. A reformulation of their analysis in terms of Maximum Principles permits the
extension of their results to reaction diffusion equations. The following Lemma establishes
superlinear convergence of the overlapping Schwarz waveform relaxation algorithm on the
interfaces.

Lemma 5.1. Suppose that the derivative of � in (3.1) is uniformly bounded from above,
� ���� 
 	 for all � � IR. Then the error in the iteration (3.6), (3.7) decays superlinearly
on the interfaces � � �� and � � ��. Specifically



������� ��

� � ������� � 	�erfc�
!�� � ����

���
�

������ ��

� (5.1)



������� ��

� � ������� � 	�erfc�
!�� � ����

���
�

������ ��

� � (5.2)

Proof Consider the differential equation on the quarter plane,

� �����

�� � �� �
� �����

���
� 	 ����� � 
 ��� � 
 � 
 �

��������� �� � 
�������� ��
 � 
 � 
 �
�������� �� � � � � ���

(5.3)

Its solution is shown in Cannon [5] to be

����� �

� �

�

"����� �� �� #��������
�������� #�
�#� (5.4)

where the kernel "���� �� is given by

"���� �� �
�



�
������

��
��

���� � (5.5)

Thus ����� is non-negative. Consider the difference � �� ����� � ���� which satisfies the
differential equation

��

��
� ��

���

���
� 	 ����� � � �����������

� ��
���

���
� �	� � �������� ����� � � ���������
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Since 	 is an upper bound on the derivative of � and ����� is non-negative the term �	 �
� �������� ����� is non-negative and thus � satisfies the differential inequalities

��
��

� ���
���

� � �������� � � � 
 � 
 ��� � 
 � 
 �

���� �� � � � 
 � 
 �
����� �� � � � 
 � 
 �
���� �� � � � � � � ���

(5.6)

By the Positivity Lemma � � ����� � ���� � �. A similar result holds for the sum
�� �� ����� � ���� � � and hence the modulus of ������� �� can be bounded by


������� ��
 � ����� �

� �

�

"����� �� �� #��������
�������� #�
�#� (5.7)

By a similar argument the modulus of ������� �� can be bounded by


������� ��
 �
� �

�

"���� ��� �� #��������
������ #�
�#� (5.8)

Evaluating (5.8) at �� and inserting it into (5.7) one obtains


������� ��
 �
� �

�

"������� ��#��������
� �

�

"��������� #�$��������
������ $�
�$�#�
(5.9)

By induction


������� ��
 �
� �

�

"���� � ���� �� $���
������� � � �� �����

�

"���� � ���� $���� � $����
������������
������ $���
�$�� � � � �$��

(5.10)
First note that the exponential terms can be combined, because

����������������� � � � ������������� � ����������

Hence one can take the supremum of ��������� and 
������ $���
 out of the integral,


������� ��
 � 

������ ��

��������� 	�
� �

�

"���� � ���� �� $�� � � �� �����

�

"���� � ���� $���� � $����$�� � � � �$��
(5.11)

To unfold the convolutions, note that the Laplace transform of a convolution is the product
of the Laplace transformed kernels. In our case the Laplace transform of the kernel is
(Abramowitz [1]) � �

�

���"���� � ���� ���� � ��
������

��

�
�

and thus the 
!-fold convolution is the product of identical exponentials in the Laplace
transformed domain,

��
��������

��

�
��
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Backtransforming this expression, one finds the bound


������� ��
 � 

������ ��

��������� 	�
� �

�

"��
!�� � ���� �� #��#� (5.12)

Performing the variable transform

% ��
!�� � ����
����� #�

in the integration leads to


������� ��
 � �������� 	�erfc�
!�� � ����

���
�

������ ��

��

Noting that the expression on the right is nondecreasing in � inequality (5.1) follows. In-
equality (5.2) is obtained similarly.

Defining for any function ���� �� in ����	�  �� ��� the norm




���� ��


� �� ��

�����



���� ��

�

one obtains

Theorem 5.1. (Superlinear Convergence) Assume that � � in (3.1) is uniformly bounded
from above by an arbitrary constant 	. Then the overlapping Schwarz waveform relaxation
algorithm for the reaction diffusion equation (3.1) with two subdomains converges super-
linearly for any initial guess at a rate depending on the size of the overlap, the length of
the time interval and the diffusion coefficient. Specifically




�������� ��


� � �������� � 	�erfc�
!�� � ����

���
�

������ ��

� (5.13)




�������� ��


� � �������� � 	�erfc�
!�� � ����

���
�

������ ��

� � (5.14)

Proof From inequality (5.7) in Lemma 5.1. one gets


�������� ��
 � 

������� ��

�
� �

�

"����� �� � � #���������#�

Taking the maximum of the exponential out of the integral and noting that the remaining
integral is bounded by unity, one gets.


�������� ��
 � ������� � 	�

������� ��

� �
Now application of Lemma 5.1. leads to the desired result. The second inequality is ob-
tained similarly.

Remark: It is interesting to note that this superlinear convergence rate is faster than
the traditional superlinear convergence rate, which is of the form ��� � ��!� for waveform
relaxation algorithms with matrix splittings, since asymptotically

erfc��!� 
 	�
��!

���
���

whereas
��

!�

 	�


�!
��� �	������	����
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6. Variable Diffusion Coefficient

To obtain explicit convergence rates we need to bound the solution of the partial differen-
tial equation with variable coefficients with the solution of a constant coefficient equation.
Then the above analysis can be applied. Such comparison results are obtained in the fol-
lowing subsections.

6.1. Steady State Upper Bound

Consider the differential equation with variable coefficients,

��

��
� ����� ��

���

���
� 	��� ��� � 
 � 
 ��� � � �

���� �� � � � � �
����� �� � ���� � � �
���� �� � � � � � � ���

(6.1)

where 	��� �� is a function bounded from below, 	��� �� � � for some constant � and
�� � ����� �� � �� for strictly positive constants � 
 �� � �� for all � � ��� �� and
� � ����� and compare it with the constant coefficient steady state equation

� � ���
��


���
� �	
 � 
 � 
 ��


��� � �

���� � 

����

�

(6.2)

Lemma 6.1. If

��� � ��

���

����� �� � �	 � ��� 	��� ��

����� ��
� � � � � ��� � � � (6.3)

and

�	 �


���

��

��

(6.4)

then 
��� is a bound on 
���� ��
, 
��� � 
���� ��
, � � � � ��, � � �.

Proof Define the difference ���� �� �� 
���� ���� ��. Then � satisfies

��

��
� ���

��


���
� ����� ��

���

���
� �	
 � 	��� ���

� ���� � ����� ���
��


���
� ����� ��

���

���
� ��	� 	��� ���
 � 	��� ����

So if we can show that

& ��� �� �� ���� � ����� ���
��


���
� ��	� 	��� ���
 � �

then by the Positivity Lemma ���� �� � � and we are done. Using the differential equation
(6.2) we have

��


���
� � �	

���
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and thus

& ��� �� �



��	���

� � ����� ���

���
� �	� 	��� ��

�

�

Now note that 
 � � with condition (6.4). So the second factor in & ��� �� is non-negative,
and the first one becomes non-negative using the conditions (6.3), since

��	���� � ����� ��� � �	��� � 	��� �����

���
�
�	����� ��� 	��� �����

���
� ��

which concludes the proof.
Using this lemma to construct an upper bound, the linear convergence results can be

extended to a variable diffusion coefficient.

6.2. Superlinear Upper Bound

Consider the differential equation with variable coefficients,

��

��
� ����� ��

���

���
� 	��� ��� � 
 ��� � 
 � 
 �

����� �� � ���� � 
 � 
 �
���� �� � � � � ���

(6.5)

where 	��� �� is a function bounded from below, 	��� �� � � for some constant � and
�� � ����� �� � �� for strictly positive constants � 
 �� � �� for all � � ��� �� and
� � ��� � � and compare it with the constant coefficient equation

�


��
� ���

��


���
� �	
 � 
 ��� � 
 � 
 �


���� �� � 

����

� � 
 � 
 �

��� �� � � � � ���

(6.6)

Note that these are quarter plane problems.

Lemma 6.2. If

��� � ��

���

����� �� � �	 � ��� 	��� ��

����� ��
� � � � � ��� � 
 � 
 � (6.7)

then 
��� �� is an upper bound on ���� ��,


��� �� � 
���� ��
� � � ��� � � � � ��

Proof Define the difference ���� �� �� 
��� ��� ���� ��. Then � satisfies

��

��
� ���

��


���
� ����� ��

���

���
� �	
 � 	��� ���

� ���� � ����� ���
��


���
� ����� ��

���

���
� ��	� 	��� ���
 � 	��� ����

So if we can show that

& ��� �� �� ���� � ����� ���
��


���
� ��	� 	��� ���
 � �
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then by the Positivity Lemma ���� �� � � and we are done. Using the differential equation
(6.6) we get

��


���
�
	

���



�


��
� �	


�
and thus

& ��� �� �
��� � ����� ��

���
�


��
�



��	���

� � ����� ���

���
� �	� 	��� ��

�

�

Now ��
�� � � on � � �� by the monotonicity of the boundary condition and at � � � since


��� �� � � by the Positivity Lemma. Since ��
�� satisfies a linear reaction diffusion equation

as well, we have ��
�� � � throughout the domain by the Positivity Lemma. Hence the first

term in the sum is non-negative by the definition of ���. In the second term of the sum, the
first factor is non-negative by the conditions of the Lemma and the second factor 
��� �� as
well by the Positivity Lemma, which concludes the proof.

Using this lemma to construct an upper bound, the superlinear convergence results can
be extended to variable coefficients.

7. Numerical Experiments

We perform numerical experiments to measure the actual convergence rate of the overlap-
ping Schwarz waveform relaxation algorithm and compare it with the theoretical bounds
derived in the previous sections.

7.1. Linear Example

Consider a linear example problem, for which the derived bounds are expected to be sharp,

��
��

� ���
���

� 	� � 
 � 
 	� � 
 � 
 �

���� �� � � � 
 � 
 �
��	� �� � ��� � 
 � 
 �
���� �� � �� � � � � 	�

(7.1)

First we choose a large time interval, � � � to be in the linear convergence regime. To
solve the partial differential equation, we discretize the Laplacian using centered finite
differences and the backward Euler method in time on a grid with  � � ! � 	��� and
 � � ��	���. For the first experiment we choose the constant 	 � ! and split the domain
� � ��� 	�� ��� � � into the two subdomains�� � ��� ��� ��� � � and �� � ��� 	�� ��� � �
for two different overlaps, ��� �� � ������ ����� ����!� ��!!��. We call the grid point at the
interface�� grid point  and measure the error in the infinity norm in time at this grid point.
Figure 4 shows on the left the convergence of the algorithm at the grid point  for the two
overlaps. The solid line is the predicted convergence rate according to Lemma 4.1. and the
dashed line is the measured one. The iteration with the bigger overlap converges quicker as
expected. The measured error displayed is the difference between the numerical solution
on the whole domain and the solution obtained from the domain decomposition algorithm,
and we used as an initial guess for the iteration the constant function 
 ���� �� � 	. For
the second experiment we fix the size of the overlap � � ��� and � � ��� and vary the
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Figure 4. Theoretical and measured linear decay rate of the error for two different overlaps on the
left and for three different values of � on the right
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Figure 5. Theoretical and measured superlinear decay rate of the error for two different overlaps
on the left and for two different values of � on the right

constant 	 � ��
� !� ���. The results are shown in Figure 4 on the right. Note how the
iteration stagnates for 	 � ��.

To test the superlinear convergence bounds, we choose a short time interval, � � ��	.
Using the same numerical method as before on a grid with � � !� 	��� and � � 	�
	��
 we perform the above experiments again. Figure 5 shows on the left the superlinear
convergence of the algorithm at the grid point  for the two overlaps and on the right the
same overlap for two values of the constant 	 � ��
� 	
�. The solid line is the predicted
convergence rate according to Lemma 5.1. and the dashed line is the measured one. Note
that the iteration converges in the superlinear regime even though the constant 	 � � �.
Furthermore one can see that the asymptotic convergence rate is not affected by the reaction
term 	, there is only a constant factor introduced for large 	, as predicted by the analysis.
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Figure 6. Theoretical and measured decay rates of the error for the nonlinear example problem

7.2. Nonlinear Example

Consider now a nonlinear example problem, namely

��
��

� ���
���

� !��� ��� � 
 � 
 	� � 
 � 
 �

���� �� � � � 
 � 
 �
��	� �� � ��� � 
 � 
 �
���� �� � �� � � � � 	�

(7.2)

We apply the same numerical method as in the linear case, except that we treat the nonlinear
part explicitly in the backward Euler scheme. we split the domain with � � ��� and � �
���. Figure 6 shows on the left the convergence behavior for � � � where the iteration is
in the linear regime. The solid line is the predicted convergence rate according to Lemma
4.1. and the dashed line is the measured one. On the right, Figure 6 shows the superlinear
convergence behavior of the algorithm for � � ��	. As before the solid line denotes the
predicted convergence rate according to Lemma 5.1. and the dashed line is the measured
one.

8. Generalization and Future Directions

We first want to show how sharper estimates can be obtained than the ones stemming from
the global assumptions on the growth of the reaction function � . Both the linear conver-
gence Theorem 4.1. and the superlinear convergence Theorem 5.1. establish a uniform
contraction in a ball ' � ����	�  �� ���. The radius of the ball depends on the growth
rate of the reaction function, the quality of the initial guess and in the superlinear case on
the length of the time interval. Since all the iterates remain in the ball ', the constant 	 in
the convergence rates stemming from the global boundedness assumption on the derivative
of the reaction function can be sharpened using the local estimate � ���� � 	 for � � '
and Theorems 4.1. and 5.1. still hold.

Second it is of interest to generalize the results for two subdomains to many subdo-
mains to obtain an algorithm which can be run in parallel. The linear convergence result
in Theorem 4.1. can be generalized in the same way as the result for the heat equation
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was generalized in [8]. The resulting convergence rate however will depend on the num-
ber of subdomains as in the heat equation case, and the convergence will slow down as
one increases the number of subdomains, because information from the boundary of the
whole domain has to propagate into the interior across subdomains, taking one iteration to
cross each subdomain. This is because the steady state case is limiting the convergence rate
on unbounded time intervals. This is different when the superlinear convergence result in
Theorem 5.1. is generalized to many subdomains. Here information is propagated from the
initial condition, to which every subdomain is directly connected. Hence the convergence
rate will not depend on the number of subdomains. This can be seen directly from the local
decay properties of the kernel functions in the proof of Theorem 5.1. and is analogous to
the heat equation case investigated in [7].

Finally for applications results in higher spatial dimesions would be needed. The main
tool in the convergence analysis of the one dimensional case is the Positivity Lemma 2.1..
This Lemma holds in higher dimensions as well [22]. In the heat equation case, the one
dimensional results in [8] have been generalized to � dimensions in [9] by first using
the maximum principle in higher dimensions and then reducing the estimates to the one
dimensional case. Such an approach is currently pursued in the reaction diffusion case.
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