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Abstract

Asynchronous iterations often converge under different conditions than their syn-
chronous counterparts. In this paper we will study the global convergence of Jacobi-
Newton-like methods for nonlinear equations Faz = (0. It is a known fact, that the
synchronous algorithm converges monotonically, if F' is a convex M-function and
the starting values 29 and y” meet the condition F2¥ < 0 < Fy". In the paper it
will be shown, which modifications are necessary to guarantee a similar convergence
behavior for an asynchronous computation.

1 Introduction

Throughout this paper the natural partial ordering in IR” and IR"*" is used. For any
z,y € R™ with @ <y the set (x,y) = {z € R": 2 <z <y} is called order interval.
A mapping G : Q C IR™ — IR" (or IR"*") is called isotone on Qg C Q if G(z) < G(y)
holds for all 2,y € @ with = <y.
The notation 2¥ T 2* means that the sequence {2*} is monotonically increasing and
limy_oo 2% = 2*; analogously 2* | 2* is defined.

The following theorem on the convergence of sequential Jacobi-Newton-iterations is
known from [5]:

Theorem 1 [et F': () CIR" — IR". Assume that there exist 2°,y° € Q so that 2° < 4,
(2%4%) C Q and F(2°) < 0 < F(y°), and that F is Frechél-differentiable on (2°,y).
Moreover, suppose that F'(x) is a nonsingular M-matriz for each x € (x°,y°), and that
F'(2) : (2,4 — IR"™™ is an isotone mapping in x. Then the sequences defined by

?/f+1 - yf*(@ﬂ(?}’“))ﬂﬂ(?}k% i=1,....n L 0.1 0
A wF (9 F(y*)) (), P—1. : N O

satisfy y* | 2% and 2% 1 2%, where x* is the unique solution of F(x) =0 in (2", y°).



Note that the monotone behavior of the iterates is crucial for proving convergence.

This iteration can be parallelized by assigning each processor P; with updating a subset
J; of components. The parallel iteration may be done synchronously or asynchronously.
Asynchronous iterations recently attracted much attention because they may have sig-
nificantly lower computing times (see e.g. [4], also for more references). Asynchronous
implementations on parallel computers usually always fit into the following definition, [1]:

Definition 1 et Q CR", Q = Q1 X ... X Q,, and let H : ) — Q. For k =0,1,...
consider non-empty sets I* C {1,....n} and n-tuples (s1(k),...,s,(k)) of nonnegative
integers. Suppose that the following three conditions hold:

si(k) <k foreachie{l,....n}, k=0,1,...,
limy_osi(k) =00 for each v € {1,....,n},

H{keIN:iel"}| =00 foreachic{1,... n}.

Then the iterative method which, starting with an initial quess x° € Q, calculates the

k

iterates 2" according to

k . . Eo?
Ty if i &1
is termed asynchronous iteration for H.

Furthermore it will be assumed that, while updating a variable a;, its last iterate is known:

s Hg—1 ) . R k:07]7
i . ifig 1k

3

m’?‘“ _ { Hi(.???(k), o TS;,A (k)7 Tf7 T:_v{_—l? (k)7 el fl?s”'(k)) ifi e ]k

This assumption is fulfilled if the subsets .J; are pairwise disjoint.

2 A modified Jacobi-Newton-operator and some con-
vergence theorems

The basic Jacobi-Newton-operator for the upper bound is H;(y) = y; — (9;Fi(y)) ' Fi(y),
1=1,...,n. We propose the following modification:

v [y — (0 F(y)  Fily) if Fi(y) >0 C_
Hily) = { s otherwise p=1m (2)
The analogously modified operator for the lower bound is:
T otherwise

The modification is necessary because an asynchronous iteration for the basic operator
may not only cause non-monotone sequences of iterates, but also that an iterate out of the
domain of definition ) of the function F'is computed.



The following two theorems for the modified asynchronous iteration are the main results
of this paper.

Theorem 2 Assume that F', 2° and y° fulfil the conditions of Theorem 1. Then the iterates
{2%} and {y*} of an asynchronous iteration for the operators (2) and (3) satisfy y* | *
and x* T 2, respectively.

Proof: Fork =0,1,...let the sets L¥ and M* be defined by L* = {i € T*: Fi(y*™) > 0}
and M* = {i € I* . Fy(2*®) <0}, respectively. Then the iterates 2 and y* k=0,1,...,
are calculated according to

(8 B (s BN T (s R)y s e
yf‘l;l_{yz (i Fi(y*™)~ F(y™™)) ifiel (4)

y¥ otherwise

and

x ()
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x; otherwise

b _ { — (D Fy M) T ()i e MY

By assumption, F'is a M-function on (2% 4%). Hence, since F(2%) < 0 < F(y%), there
exists a unique solution z* € (2% y°) of F(x) = 0. On the other hand, since F” is an
isotone mapping, Theorem 13.3.2 of [5] ensures that F' is order-convex. Consequently,

Fly) = F(x) > F'(x)(y — =), (6)

whenever x and y are comparable, that means, » <y or y < x.
The proof consists of 4 parts. We have to show that
a) aF < gy <k B =01,
b) oh <a* <yF k=0,1,...,
c) ke N:ic ¥} =00, {k € IN:i € M*}| =00, 7€ {1,...,n}, and
d) limgp_o y% = 2%, limp_ o, 2% = 2>
(a) Since F'(y) is a nonsingular M-matrix, 9; F;(y) > 0 for each y € (2%, y°). Using this
relation, the monotone hehavior of the iterates immediately follows from the definition of
the operators (2) and (3).
(b) We show by induction that

b

(
(
(
(

Fae) <0< F(y'), 5=01,.... (7)

Then the assertion follows from the inverse isotonicity of F. By assumption, (7) holds for
J = 0. Suppose that (7) is true for j = k.
First consider the upper iterate y*+'. By (6) we have

Fy™) > By + > oiFS) (™ —yh), i=1,. 0,

jELk

and hence, because 9; F;(y*) < 0 if i #£ j,

Fi(y™") > Fi(y*) > 0, i ¢ LR,
Fily™") > Fy*) + 0 Fi(y®) (" —yl), ie Lk
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Thus, in the case i € L*, from (4) we obtain
F(y*) > Fi(y*) = 0 F(y")(0:Fi(y* ™) 7 Fi(y* ™).
Using 4% < y*®) it follows from the isotonicity of F’ that
O:Fi(y*) < 0:Fi(y*™), (8)

and, since I is off-diagonally antitone, that F;(y*®)) < Fi(y*). Hence, Fi(y**') > 0 holds
for i+ € L*, too.

Next consider 251, We show first that 25" < y¥ i =1,... n. Obviously this holds for
i ¢ MP* because it = zF. In the case i € MF we start from the relation
gt > yf — (0, F(y*™)) T Fi(y*), which holds by inductive assumption. Adding (5) to
this relation, we find

yi > e (g ) (R (R Fi(yh).

— 3

Since F is off-diagonally antitone, #°(%) < 2% engures

Fi(r®) > (b, )
Hence
yl > 2 (yf 2D+ Oy ™) T (RGN - Fi(yh)). (10)

Due to (6), the inductive assumption and again off-diagonal isotonicity, it follows that
Fi(x®) = Fiy®) > 20 Fi(y") (o] — y) > O Fi(y") (=] — yf).
7=1

Together with (10) we get
e N L T (T D 7 | [

and, because of (8), y* > 2¥'. Now, an analogous argument as for y**' leads to

F(2"+") < 0: By (6) we have |

Fi(a™) < Fy(a") + 30 giF ) (! —2h), a=1, 0,
JEME

and hence, because 9, F;(z*") < 0if 7 £ j,

Fi(ax*+1) < Fy(a*) <0, ¢ M-
Fi(a?+) < Fi(ah) + 0 Fi(a ) (2t — 2h), i e M*.

Thus, in the case 1 € M*, from (5) we obtain

Pt < Bty = PO () ),
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Using 2541 < y# < ) it follows from the isotonicity of F’ that
O Fy(2*h) < 3¢ﬂ(?/s(k))-

Hence, together with (9), Fi(z*") <0 holds for 7 € M*, too.

(¢) Let 2 be an arbitrary, but fixed element of {1,....n}. We number through the
elements of the infinite set {k € IN: 7 € I*}, so that {k € IN:7 € [*} = {k%] =1,2,...},
where the sequence {k!} is strictly monotonically increasing. Analogously we represent the
sets {k € N:i € LF} and {k € IN:4 € M*} by the sequences {I’} and {m’}, respectively.
We show by induction that for any element I: there exists a successor I, ;. At the beginning
I; =k} holds, because of

s(k? S9 k; S5 k; Si41 k; s (K7
Fi(y ™0y = Fu(yy 00yt g0 gm0 ey > )0y > 0, (11)

Assume that ]’7 = k;

By Definition 1, for all h € {1,...,n} there exists a number g, € IN, so that s;(k) > I} 41
for all & > qp,. Set ¢ = maxy, g, and r = min{t € IN: k! > ¢}. The number r exists because
the k! form an infinite sequence.

Then l;+1 c {k Ei}: since, if l;+1 > ki

RPN 4, then

s(k? s1(kE si_1 (kL l;'H i (KL sn (Kt [t
Fi(y ) = By Oy ) g™ e ) () > BB > .,

v Y11 s Yi s Y11 9

In the same manner it can be shown that the sequence {m;} is infinite.
(d) We consider the sequence {y*}.  Up to now it is shown that there exists

limp_oo yF = lim,_o y:" = z; > af, 1 = 1,...,n. Since F'(z) is isotone in x, we find
that

I I S(Ii ) oI B oI .

g~y = (GO T ) > 0 R ) T R >0, i=1 .
Therefore ]imljﬁm[y? — yl;“] = 0 and (9 F:(y”))"" > 0 imply lim,_, F?;(y”’(l;)) = 0,

1 = 1,...,n. Consequently, using the continuity of F together with Definition 1, we

get .
Fi(lim 55 = ﬂ(ljim y")=Fi(z)=0, i=1,...,n,
J—00 — 00
which shows that z = 2*. The proof for {*} can be done analogously. 0

The conditions on the initial guesses 2%, 4 can be weakend. Theorem 2 also holds if
instead of F(2°) <0 < F(y°) only 2° < 2* < 4" is demanded. We formulate this as a
theorem:

Theorem 3 let I': () CIR" — R™. Assume that there exist 2*,2°,y° € Q so that
Flz=) =0, 2°<a2"<y°% (°y") CQ.

Suppose that F is Frechét-differentiable on (x°,y°), that F'(x) is a nonsingular M-matrix
for each v € (2%, y°), and that F'(x) : (2°,y°) — IR" "™ is an isotone mapping in x. Then
the iterates {z*} and {y*} of an asynchronous iteration for the operators (2) and (3) satisfy
y® | and 2 T 2*, respectively.



Proof: We proceed as in the proof of Theorem 2. Clearly, part (a) holds. For the sake of
brevity we denote by (y°®); z;) the vector y*®)_ for which the i-th component was replaced
by z;:

(k). ) s1(k) si—1(k) sit1 (k) wsw(k))_

(U 2 :(U1 s e Y 2771/7—1—1 9t

To show assertion (b), we proceed by induction. By assumption, we have that 2 < 2* < ¢°.
Assume that 27 < 2* <4/, 5 =0,1,... k.

First consider y*+'. Obviously, if 7 ¢ L*, then yf*' = yf > 2 1f i € I*, using (6) and
(4), we get

Fi((y* W5yt > Fi((v* ™ y) + 0K (s yf ) (T — yf) = 0. (12)

Suppose that y' < 2% Then R(( s(h ),1/7“'1)) < Fi(x*) = 0, because F'is a M-function.

This is a contradiction, hence y**' > 2% is shown.

kt+t, Agam it is clear ‘rha‘r gt =gk < ifi ¢ METEi € M* using (5)

Next consider z <z,

and the isotonicity of F’, we get
P =k (B ®) T R ) < b — (@R () R, (13)

3

From (6) we obtain

= i 7

Hence, together with (13), zf+" < 27 is shown.
In the remainder of the proof we qhow parts (c) and (d) together. Consider first the sets L*
and the sequence {y*}. We split the set of indices into three parts, {1,...,n} = A+ B+C°,

where
A= el =,
B = {ie{l,....n}: 1/ > af and Fi(yo) > 0},
C = {ie{l,...;n}:y? > a7 and Fi(ys) < 0}.

Ifi € A, then y* = 2% for all k= 0,1,..., because of Fi((y*"™;27)) < Fy(2*) = 0.

Without loss of generality we assume B # (. Otherwise it would follow from F(y") < 0
that y” < 2%, hence A = {1....,n}, which would finish the proof.

If i € B, then, because of (11), I! = ki. Assume that ]’7 = k; Then, by (12), we have

Fi((y”’(l;); yl;“)) > 0. By Definition 1, for all h € {1,... ,n} there exists a number gy, so
that s,(k) > S’h(l ) for all k > ¢,. Set ¢ = max;, ¢, and r = min{t € IN : k! > ¢}. Then

Iy e{kiy, .. kY since, if Iy > ki, then
(k! s1 (k2 siq (k2 l‘i‘H siqpr (k2 sn (Kt (1t l,i'H
Fily" ™) = Fiyy ™y i ) > BT > 0.

Thereby we have shown that |[{k € IN:7 € L*}| = oo for all indices 7, which are contained
in B.
If C° = 0, then part (d) of the proof of Theorem 2 can be used to complete the proof.
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Assume now that C° # (). We will show that there exist an index j° € C° and a number
c(7°), so that Fjo(y“(jo)) > 0.
Suppose that for all i € C° we have that Fi(y*) < 0, &k = 0,1,.... Then limy_., y* = 3
exists. If 7 € A, then g; = 27 if 1 € C° then y; = y?. For i € B the same argument as in
part (d) of proof of Theorem 2 leads to F;(y) = 0. Since Fi(y) < 0,7 € C°, it follows that
F(5) <0. This results in § < 2*, which contradicts g; = ¢ > 2* for i € C°.

By Definition 1, for all A € {1,...,n} there exists a number ¢;, so that s, (k) > ¢(j ) for all

k> qp. Aq uqua] g = maxy q, and r = min{t € IN : k; > ¢} are defined. Then 117 < kj :
since, if 1'17 > kT 1, then

6] 6]
5.0 _ (kl ) 5.0 (k,z ) Sm ’,70 (49
SRR ) 7?/.?07?/,7‘3:11 sy ) > Fio(y™i)) > 0,

o 0
Fo(y ™)) = Fja(yp ™)
Analogously to the case i € B we can prove now that |[{k € IN: ;° € [*}| = c0.

Now we set C'' = C\{j°}, and proceed for C'" as for CV. If necessary, we set O = C"\{j'},
and so on. This process is finite, since C'° does not contain more then n — 1 elements. This
concludes the proof for L* and {y*}.

To prove parts (c) and (d) for the sets M* and the sequence {z¥} we proceed analogously.
To do this, we only need the following counterpart of (12): If 7 € M*, then

A iat ) < Rl(a it (st ) (at

= Fi((@W5a)) = o (O )0y ) E (0 )
< 0, (14)
which can be obtained using (6), (5), part (b) and the isotonicity of F”. 0

Remark: Under the conditions of Theorem 2 the function F and the initial guesses 2°
and y° fulfil the assumptions of Theorem 3, too. So we could have omitted the proof of
Theorem 2. Nethertheless it was additionally given because in part (b) supplementary to
the assertion relation (7) was shown. This enabled us to prove part (¢) much easier than
in the proof of Theorem 3.

Remark: The assumption 27 < 2* < 4% is re-
ally weaker than F'(2%) < 0 < F(y"). For the

P2 Pt case I': ) C R? — IR? this is illustrated by

F_2=0

F_1=0

the figure. If y° lies between the curves Fy = 0
and Fy = 0 (like Py), then it fulfils both con-

op3 ditions, but if it is located above Fy = 0 (like
x Py) or below Iy = 0 (like P3), it only satisfies

the first condition.




If F'(x) is not isotone on (2% y°), but upper bounds M;; for the partial derivatives
0; F; are available, e.g., via interval arithmetic, then Theorems 2 and 3 still hold for the
operators which arise, if in (2) and (3) the derivatives 0, Fi(y) are replaced by the bounds
M;;(x,y). This is given in the following theorem:

Theorem 4 Let F': Q CTR” — IR" and 2°,y° € Q with 2° <y, (2°,4°) C Q. Suppose
that F is Frechét-differentiable on (x°,y°) and that F'(z) is a nonsingular M-matriz for
each x € (x°,y°). Moreover, assume that fori =1,... n there exist M;;(2°,y") € R so that
0, Fi(2) < My (2°,4°) for each z € (x°,4°). In addition assume either F(z%) <0 < F(y")
(as in Theorem 2) or that there exists x* € (x°,y°) with F(2*) = 0 (as in Theorem 3).
Then the sequences defined by

E (M5B s 1 gy 5(R) e Ik
y;«+1_{y7k (M@ ) B0 e 1 5)

. 9
Y; otherwise

and
wf — (M (2 23 Fy () if i € M*

otherwise
satisfy y® | x* and 2® T 2*, respectively.

Proof: Relation (6) does not hold under the assumptions of this theorem, but it can be
replaced by

Fily) < Fi(w) + Mig(z,y)(yi — @), i=1,....n, (17)
which holds for z,y € (2%, 4°) whenever # < y. Using (15), (16) and (17) instead of (4),

(5) and (6), the assertion is proved by the same arguments as in the proofs of Theorems 2
and 3. O

It is possible to view Theorems 2 and 3 as special cases of the following general theorem
on asynchronous iterations for enclosing fixed points of isotone operators, stated in [2]:

Theorem 5 let Q CIR", Q = Q1 X ... X @,. Suppose that H : () — @ is continuous,
isotone and has an unique fived point ¥* € . Assume that there exist 2°,y° € Q so that

wt <yt w2t < H(2"), H(y") <y

Then the sequences of the iterates {x*} and {y*} of an asynchronous iteration for H satisfy

P <<yt kE=0,1,..., and k]immk:m*, k]imyk:m*.

Note that here no monotone behavior of the iterates is stated. In general this would require
the additional assumption that the sequences {s;(k)}, 7 = 1,....n, are increasing, but in
the case of Theorems 2 4 it is a trivial consequence of the special form of the operators
(2), (3), (15) and (16).

To show that Theorems 2 and 3 are immediate corollaries of Theorem 5, it now suffices to
prove the following lemma:



Lemma 6 Under assumptions of Theorems 2 and 3 the operators (2) and (3) are isotone
on (x*,y°) and (20, 2*), respectively.

Proof: First consider operator (2). Tet a* < y*> < y' < y° We have to show that
H(y*) < H(y').

In case that Fi(y') < 0 it is clear that H;(y?) <y? <y! = H;(y").

On the other hand, if Fi(y") > 0, then we distinguish between the following two cases. If
Fi(y*) > 0, then the isotonicity of F’ and (6) imply

Hi(y') — Hi(y?) y! —y? + (0iF(y?)” 1/’7(1/22 (37”7:§?;1))1 Fi(y')

>y !+ (0iFY) (F?) — Filyh)

> 0
If F;(y?) < 0, we proceed as follows. From (12) we know F;((y'; H;(y'))) > 0. Suppose that
yi = Hi(y?) > Hi(y'), then we get Fi(y*) > Fi((y';y7)) > F((U ,Hv(W))) - 0, becanse

is a M-function. This is a contradiction.

Next consider operator (3). Tet 2 < 2' < 2? < 2*. The operator depends not only on the
lower iterate x, but on the upper iterate y, too. Because during the asynchronous iteration
the sequence {y*} is monotonically decreasing, while the sequence {z*} is monotonically
increasing, z* < y? < y' <y is fulfilled for the corresponding values of ' and y2. The
aim now is to show that H(z' y") < H(2?, y?).

If Fi(x') > 0, then, obviously, H;(z',y') = 2! <27 < H:(2?%,y?).

If, on the contrary, Fi(z') <0, then we again distinguish between two cases. If F;(2?) <0,
then the isotonicity of F” and (6) imply

Hi(m1ay1) - Hv?(flfzayz) 2 ; 1 1€ 1
L= al (O Fi(y?) T (Fi(e?) — i
1 . .

VAVARVANN
SRR

If Fi(2?) > 0, then the assumption H;(z* y*) = 2* < H(z",y"), using (14), leads to the
contradiction Fi(x?) < Fi((z';27)) < F(( cHi (2, y'))) <0. 0

Remark: Note that the unmodified Jacobi-Newton-operators, defined by (1), are isotone
only on the sets {z € IR" : F/(z) > 0} and {z € R" : F'(2) < 0}, respectively, so that the
assumptions of the mentioned general theorem are not fulfilled. Also from this point of
view the proposed modification seems to be useful.

To conclude this section we remark that in the proof of Lemma 1 we considered asyn-
chronous iterations via the instruction

: Hi(y*™® ifielh .
gt = {yf( ) i with H; from (2),
(B =y ifie 1k
k+1 — 7 , Y '
x; {Tf it I with H; from (3),



where the same subsets 7* and n-tuples s(k) are used to compute both, z¥+' and y**'.
There are asynchronous implementations which justify the use of the more general scheme

) sg(k) AP L
yf“ = ’L{:(?/ ) ”C7 € ]i with H; from (2),
’ Y; if i € ]2’ (]8)
. 31(k) 32(]4) s k
it = 'L{:(T SR ”C7 € I1k with H; from (3),
' xy ifo & I}

see [3]. To discuss this case, we use some ideas of [3], Theorem 3.5. Set F' = (2% 2*),

E? = (a*,y°), B = F' x E* x E*. Denote x € K hy

xr = (.’171 s, T2, ’I’q) = (.’171’17 e s T2y -y X2y T3y ey .’173’77,).
In K we define the partial ordering <p as

r<py < 11 <Y, T2 > Y2, T3 > Y3.
Tet G: F — F with
Gi(e) = {771,7: — ((()7:}777('772))71 Fi(aq) if Fi(xq) <0

T, otherwise ’

(;2,7;<m>—(;3,7;<m>—{”"/3"7@"”(“))1”(“) i Filaa) 20

T3 otherwise

Then, under assumptions of Theorems 2 and 3, G is an isotone mapping on K, which is a
conclusion of LLemma 1. Additionally we get

(movyovyo) <g (.77*7.”17*7.”17*)7 (movyovyo) <g G(movyovyo)v G(T*vT*vT*) = (T*vT*vT*)
Define T% = (IT < {1} U (15 x {2}) U (75 x {3}) and
9(]{‘) = (31’1 (](‘)7 R 731’77,(]{?)7 S2.1 (](‘)7 ceey 32,77,(k>7 53,1 (](‘)7 ceey 33’77,(]{?))

with s;i(k) = si(k), 7 = 1,2,3, 5 = 1,....n. I {IF}, {5} and {s'(k)}, {s>(k)}, {s*(k)}
meet the conditions of Definition 1, then {I*} and {s(k)} satisfy them, too. An asyn-
chronous iteration for (7, which uses the sets I* and the 3n-tuples s(k), describes iteration
(18). Now, using Theorem 3.3 of [3], which is a more general theorem on asynchronous

iterations for isotone operators than Theorem 5, we get (2}, 25, 25) — (2%, 2%, 2%), k — .

3 Numerical results

For some special functions I, which arise from the discretization of PDE’s, this method
was implemented on the 32-node distributed memory CM-5 at the Bergische Universitat-
GH Wuppertal. In comparison with synchronous methods asynchronous iterations were
able to save about 10 — 20% of the computing time, especially, when the work load was
not balanced.
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