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This article studies a least-squares finite element method for the numerical approximation of compressible
Stokes equations. Optimal order error estimates for the velocity and pressure in theH1 are established. The
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I. INTRODUCTION

In this article, we consider a least-squares finite element method for the "compressible" Stokes
equations of the form


−µ∆u− (µ+ λ)∇∇ · u + ρ(U · ∇ut)t +∇p = f , in Ω,

ρ′U · ∇p+ ρ∇ · u = f3, in Ω,

u = 0, on ∂Ω,

(1.1)

where u = (u, v)t and p are the dependent variables; the symbols ∆,∇, and∇· denote the Lapla-
cian, gradient, and divergence operators, respectively (∆u = (∆u,∆v)t and∇ut = (∇u,∇v));
µ and λ, the two coefficients of viscosity, are given constants satisfying µ > 0 and 2µ+ λ > 0;
the U = (U, V )t and P are given functions described the "ambient flow"; density ρ(P ) is a given
positive increasing function of P ; ρ′ = dρ

dP ; f = (f1, f2)t and f3 are given functions; and Ω is a
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bounded, open, connected domain in R2. Note that U · ∇ut = (U · ∇u,U · ∇v). This system is
obtained by linearizing the steady-state, compressible, viscous, Navier–Stokes equations around
the "ambient flow," (U, V, P ). Assume that U and P are C1 functions in Ω̄, and U = 0 on the
boundary ∂Ω.

In [1], Kellogg and Liu discretize (1.1) by using finite element methods. Conforming finite
elements are used to approximate both velocity and pressure. The error bound is derived, if the
finite element subspaces for velocity and pressure satisfy the inf-sup condition. Such error bound
does not have optimal order of accuracy. Some other results about viscous compressible flow can
be found in [2–5] and the references therein.

Recently, there has been substantial interest in the use of least-squares principles for numerical
approximation of the second-order elliptic problems, incompressible Stokes and Navier–Stokes
equations, and linear elasticity (for example, see [6–12] and references therein). In this article,
we develop a least-squares finite element discretization for (1.1). Conforming finite element is
used for velocity, u, and pressure, p. An optimal convergence rate is obtained, and the choice
of finite element spaces is not subject to the inf-sup condition. The order O(h) established in
Theorem 3.2 is optimal with respect to the assumed regularity of the solution, and is optimal with
respect to the degree of the finite element spaces, if both variables are approximated by piecewise
linear elements. In Section II, we introduce a least-squares formulation for (1.1) and establish its
ellipticity. The corresponding finite element approximation is discussed in Section III.

II. LEAST-SQUARES FORMULATION

We use the standard notation and definition for the Sobolev spacesHs(Ω) for s ≥ 0; the standard
associated inner products are denoted by (·, ·)s and their respective norms by ‖ · ‖s. For s = 0,
Hs(Ω)2 coincides with L2(Ω)2. In this case, the norm and inner product is denoted by ‖ · ‖ and
(·, ·), respectively. As usual, define

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}

and denote its dual by H−1(Ω) with norm defined by

‖ψ‖−1 = sup
0 6=φ∈H1

0 (Ω)

(ψ, φ)
‖φ‖1 .

Define the product spaces Hs(Ω)2 =
∏2
i=1H

s(Ω) with standard product norms. Finally, define

L2
0(Ω) = {v ∈ L2(Ω) :

∫
Ω
v dz = 0}.

In this section, we consider a least-squares functional based on system (1.1). Our primary objective
here is to establish ellipticity of this least-squares functional in the appropriate Sobolev space.

Dividing both sides of the second equation in (1.1) by ρ gives

Ū · ∇p+∇ · u = f̄3, (2.1)

where f̄3 = f3
ρ and Ū = (Ū , V̄ )t with Ū = ρ′U

ρ and V̄ = ρ′V
ρ . We will make use of the following

lemma (see [1]).
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Lemma 2.1. For any u ∈ H1
0 (Ω)2 and any p ∈ L2

0(Ω), there exist positive constants K and α
such that if ‖∂xU‖∞ + ‖∂yV ‖∞ + ‖∇P‖∞ < K, then we have that

(µ∇u,∇u) + ((µ+ λ)∇ · u,∇ · u) + (ρ(U · ∇ut)t, u) ≥ α‖u‖21. (2.2)

Also, there exists a constant γ(K) > 0 such that

(Ū · ∇p, p) ≥ −γ(K)‖p‖2, (2.3)

where γ(K) can be made arbitrarily small by making K small.
We define the least-squares functional in terms of norms of the residuals for system (1.1):

G(u, p; f , f̄3) = ‖ − µ∆u− (µ+ λ)∇(∇ · u) + ρ(U · ∇ut)t +∇p− f‖2−1

+‖Ū · ∇p+∇ · u− f̄3‖2.
(2.4)

Let

V = H1
0 (Ω)2 × (H1(Ω)/R

)
.

The least-square formulation for system (1.1) is to minimize the quadratic functionalG(u, p; f , f̄3)
with given f and f̄3 over V: find (u, p) ∈ V such that

G(u, p; f , f̄3) = inf
(v,q)∈V

G(v, q; f , f̄3). (2.5)

We establish the ellipticity and continuity of the homogeneous functional G in the following
theorem. Below, we will use C with or without subscripts to denote a generic positive constant,
possibly different at different occurrences, which is independent of the mesh size h introduced in
the subsequent section, but may depend on the domain Ω, µ, and λ.

Theorem 2.1. For sufficiently small γ(K) ≥ 0, there exist the constants C1 and C2 such that
for any (u, p) ∈ V we have

C1
(‖u‖21 + ‖p‖2 + ‖Ū · ∇p‖2) ≤ G(u, p; 0, 0) (2.6)

and

G(u, p; 0, 0) ≤ C2
(‖u‖21 + ‖p‖2 + ‖Ū · ∇p‖2) . (2.7)

Proof. Upper bound (2.7) follows from the triangle inequality and from the easily established
bounds

‖∆u‖−1 ≤ ‖u‖1, ‖∇(∇ · u)‖−1 ≤ ‖u‖1, and ‖∇p‖−1 ≤ ‖p‖. (2.8)

We proceed to show the validity of lower bound (2.6) for (u, p) ∈ V , satisfying that u ∈ H2(Ω)2.
Then (2.6) follows for (u, p) ∈ V by continuity. For any p ∈ L2

0(Ω), note first that (see, e.g., [13])

‖p‖ ≤ C1‖∇p‖−1. (2.9)

It then follows from the triangle inequality, (2.8), and the boundedness of ρ and U that

‖p‖ ≤ C1

(
‖ − µ∆u− (µ+ λ)∇(∇ · u) + ρ(U · ∇ut)t +∇p‖−1

+ ‖ − µ∆u− (µ+ λ)∇(∇ · u) + ρ(U · ∇ut)t‖−1

)
≤ C1G

1
2 (u, p; 0, 0) + C1C2‖u‖1. (2.10)
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By using Lemma 2.1 and integrating by parts, we have that

α‖u‖21 ≤ (µ∇u,∇u) + ((µ+ λ)∇ · u,∇ · u) + (ρ(U · ∇ut)t,u)

= (−µ∆u− (µ+ λ)∇ (∇ · u) + ρ(U · ∇ut)t +∇p, u) + (p,∇ · u) (2.11)

and that

(p, ∇ · u) = (p, Ū · ∇p+∇ · u)− (p, Ū · ∇p)
≤ ‖Ū · ∇p+∇ · u‖ ‖p‖+ γ(K)‖p‖2. (2.12)

The last inequality used the Cauchy–Schwarz inequality and Lemma 2.1. It now follows from
(2.11), the definition of H−1-norm, (2.12), (2.10), and the arithmetic-geometric mean inequality
that

α‖u‖21 ≤ C
(
G(u, p; 0, 0) + ‖u‖1G 1

2 (u, p; 0, 0)
)

+ 2(C1C2)2γ(K)‖u‖21
≤ C G(u, p; 0, 0) +

(α
2

+ 2(C1C2)2γ(K)
)
‖u‖21.

Hence, for sufficiently small γ(K), i.e., γ(K) < 1
4α(C1C2)−2, we have that

‖u‖21 ≤ CG(u, p;0, 0).

Now, upper bounds in (2.6) for the terms ‖p‖2 and ‖Ū · ∇p‖2 are immediate consequences of
(2.10) and the triangle inequality. This completes the proof of the validity of (2.6) and, hence, the
theorem.

Remark 2.1. The restriction γ(K) < 1
4α(C1C2)−2 is similar to that in [1]. Also, as in [1],

discontinuous pressure finite element spaces are not included here.

III. FINITE ELEMENT APPROXIMATIONS

In this section, we present a discrete H−1 least-squares finite element approximation for the
compressible Stokes equation based on (2.5). We first discuss the well-posedness of the discrete
problem, and then establish optimal error estimates for the velocity in H1 and for the pressure
in L2.

We use a Rayleigh–Ritz type finite element method to approximate the minimum of the least-
squares functionalG(u, p; f , f̄3) defined in (2.4). LetTh be a partition of the Ω into finite elements,
i.e., Ω = ∪K∈ThK with h = max{diam(K) : K ∈ Th}. Assume that the triangulation Th is
quasi-uniform, i.e., it is regular and satisfies the inverse assumption (see [14]). Let Vh = Uh×Ph
be a finite dimensional subspace of V such that, for any (v, q) ∈ (H2(Ω)2 ×H2(Ω)) ∩ V , there
exists an interpolant of (v, q), denoted by (vI , qI), in Vh satisfying

‖v − vI‖+ h‖v − vI‖1 ≤ Chr+1‖v‖2, (3.1)∑
K∈T h

hK(‖∆(v − vI)‖0,K + ‖∇(∇ · (v − vI))‖0,K) ≤ Chr‖v‖2 (3.2)

‖q − qI‖+ h‖q − qI‖1 ≤ Chr+1‖q‖2, (3.3)
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where r is an integer with r ≥ 1 and, (·, ·)0,K and ‖ · ‖0,K indicate the inner product and norm
in L2(K). It is well known that (3.1)–(3.3) hold for typical finite element spaces consisting of
continuous piecewise polynomials with respect to quasi-uniform triangulations (cf. [14]).

We need to replace the H−1-norm in (2.4) by a computationally feasible discrete H−1-norm
that ensures the equivalence onVh between the standard norm inV and that induced by the discrete
homogeneous functional (see [15]). So, let A: H−1(Ω)2 → H1

0 (Ω)2 be the solution operator for
the Poisson problem {

−∆ψ +ψ = v in Ω,

ψ = 0 on ∂Ω;
(3.4)

i.e., Av = ψ for a given v ∈ H−1(Ω)2 is the solution of (3.4). It is well known that (A·, ·) 1
2

defines a norm that is equivalent to the H−1-norm. Let Ah: H−1(Ω)2 → Uh be the discrete
solution operator ψ = Ahv ∈ Uh for the Poisson problem (3.4) defined by∫

Ω
(∇ψ · ∇w +ψ ·w) = (v, w), w ∈ Uh.

It is easy to check that (Ah·, ·) 1
2 defines a semi-norm on H−1(Ω)2, which is equivalent to the

discrete H−1 seminorm:

‖ · ‖−1,h ≡ sup
w∈Uh

(·,w)
‖w‖1 .

Assume that there is a preconditioner Bh : H−1(Ω)2 → Uh that is symmetric with respect to
the L2(Ω)2-inner product and spectrally equivalent to Ah; i.e., there exists a positive constant C,
independent of the mesh size h such that

1
C

(Ahv, v) ≤ (Bhv, v) ≤ C(Ahv, v), v ∈ Uh. (3.5)

Finally, we define "discrete" Laplacian and gradient operators: the "discrete" Laplacian operator,
∆h: H1

0 (Ω)2 → Uh, for a given v ∈ H1
0 (Ω)2 is defined by ∆hv = ψ satisfying

(ψ, w) = −(∇v, ∇w), ∀ w ∈ Uh;
and the "discrete" gradient operator, ∇h: L2(Ω) → Uh, for a given q ∈ L2(Ω) is defined by
∇hq = v satisfying

(v,w) = −(q,∇ ·w), ∀ w ∈ Uh.
The implementation of computing the discrete gradient and Laplace operators can be found in [8]
and [15]. Now, we are ready to define the discrete counterparts of the least-squares functional G
as follows:

Gh(u, p; f , f̄3)

= | − µ∆hu− (µ+ λ)∇h(∇ · u) + ρ(U · ∇ut)t +∇p− f |2−1,h

+
∑
K∈Th

h2
K‖ − µ∆u− (µ+ λ)∇(∇ · u) + ρ(U · ∇ut)t +∇p− f‖20,K (3.6)

+ ‖Ū · ∇p+∇ · u− f̄3‖2, (3.7)
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where | · |−1,h ≡ (Bh·, ·) 1
2 defines a seminorm on H−1(Ω)2, which is equivalent to ‖ · ‖−1,h, by

(3.5). Then the least-squares finite element approximation to (2.5) is to find (uh, ph) ∈ Vh such
that

Gh(uh, ph; f , f̄3) = inf
V ∈Vh

Gh(v, q; f , f̄3). (3.8)

Theorem 3.1. For sufficiently small γ(K) ≥ 0, there exist positive constants C1 and C2 such
that

C1
(‖u‖21 + ‖p‖2 + ‖Ū · ∇p‖2) ≤ Gh(u, p;0, 0) (3.9)

and

Gh(u, p;0, 0) ≤ C2
(‖u‖21 + ‖p‖2 + ‖Ū · ∇p‖2) (3.10)

for any (u, p) ∈ Vh.

Proof. Let Qh: L2(Ω)2 → Uh be the L2(Ω)2 projection onto Uh, then (3.1) implies that

‖v −Qhv‖ ≤ Ch‖v‖1 and ‖Qhv‖1 ≤ C‖v‖1 (3.11)

for any v ∈ H1
0 (Ω)2. Since Bh and Ah are symmetric with respect to the L2(Ω)2 inner product,

we have that Bh = BhQh and Ah = AhQh. These further imply that the spectral equivalence,
(3.5), betweenBh andAh holds for all v inL2(Ω)2. Now, the upper bound in (3.10) follows from
the triangle and inverse inequalities and from the easily established bounds

|∆hu|−1,h ≤ ‖∇u‖ and |∇h(∇ · u)|−1,h ≤ ‖∇u‖. (3.12)

To prove the lower bound in (3.9), note that a standard duality argument implies that

‖v −Qhv‖−1 ≤ Ch‖v‖ ≤ C
( ∑
K∈Th

h2
K‖v‖20,K

) 1
2

and that

‖Qhv‖−1 = sup
w∈H1

0 (Ω)2

(Qhv, w)
‖w‖1 ≤ sup

w∈H1
0 (Ω)2

(v, Qhw)
‖Qhw‖1 ≤ C‖v‖−1,h

for any v ∈ L2(Ω)2. Therefore, we have

‖v‖2−1 ≤ C
( ∑
K∈Th

h2
K‖v‖20,K + ‖v‖2−1,h

)
,

which, together with the choice v = ∇p and the inequality (2.9), gives that

‖p‖2 ≤ C
( ∑
K∈Th

h2
K‖∇p‖20,K + ‖∇p‖2−1,h

)
≤ C1

( ∑
K∈Th

h2
K‖∇p‖20,K + |∇p|2−1,h

)

for any p ∈ Ph. The last inequality used (3.5). Now, it follows from the triangle and inverse
inequalities, the boundedness of ρ and U, and (3.12) that

‖p‖2 ≤ C

(
Gh(u, p; 0, 0) +

∑
K∈Th

h2
K

(‖∆u‖20,K + ‖∇(∇ · u)‖20,K + ‖(U · ∇ut)t‖20,K
)
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+ |∆hu|2−1,h + |∇h(∇ · u)|2−1,h + |(U · ∇ut)t|2−1,h

)
≤ C Gh(u, p;0, 0) + C3‖u‖21. (3.13)

By using Lemma 2.0 and the definitions of the discrete Laplacian and gradient operators,
integrating by parts, and using the definition of the discrete H−1-norm, (2.12), and (3.5), we
have that, for any u ∈ Uh,

α‖u‖21 ≤ (µ∇u,∇u) + ((µ+ λ)∇ · u,∇ · u) + (ρ(U · ∇ut)t,u)

=
(−µ∆hu− (µ+ λ)∇h(∇ · u) + ρ(U · ∇ut)t, u

)
=
(−µ∆hu− (µ+ λ)∇h(∇ · u) + ρ(U · ∇ut)t +∇p, u

)
+ (p,∇ · u)

≤ ‖ − µ∆hu− (µ+ λ)∇h(∇ · u) + ρ(U · ∇ut)t +∇p‖−1,h‖u‖1
+ ‖Ū · ∇p+∇ · u‖‖p‖+ γ‖p‖2

≤ CGh(u, p;0, 0) + CGh(u, p;0, 0)‖u‖1 + γ(K)C3‖u‖1.
Hence, the arithmetic-geometric mean inequality implies that(α

2
− γ(K)C2

3

)
‖u‖1 ≤ C Gh(u, p;0, 0).

For sufficiently small γ(K) < 1
2αC

−2
3 , we then have that

‖u‖21 ≤ CGh(u, p;0, 0),

which, together with (3.13) and the triangle inequality, implies

‖p‖2 ≤ CGh(u, p;0, 0) and ‖Ū · ∇p‖ ≤ CGh(u, p;0, 0).

This completes the proof of (3.9) and, hence, the theorem.
Denote by bh(· ; ·) the bilinear form induced by the quadratic form Gh(u, p;0, 0), i.e.,

bh(u, p;v, q) = (BhLh(u, p), Lh(v, q)) +
∑
K

h2
K (L(u, p), L(v, q))0,K

+ (Ū · ∇p+∇ · u, Ū · ∇q +∇ · v),

where operators L and Lh are given by

L(v, q) = µ∆v − (µ+ λ)∇(∇ · v) + ρ(U · ∇vt)t +∇q
and Lh(v, q) = µ∆hv − (µ+ λ)∇h(∇ · v) + ρ(U · ∇vt)t +∇q.

Then the corresponding variational form of (3.8) is to find (uh, ph) such that

bh(uh, ph;v, q) = f(v, q), ∀ (v, q) ∈ Vh, (3.14)

where the linear form f(·) is given by

f(v, q) = (Bhf , Lh(v, q)) +
∑
K

h2
K (f , L(v, q))0,K + (f̄3, Ū · ∇q +∇ · v).
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Theorem 3.2. Let (uh, ph) ∈ Vh be the solution of (3.14), and let (u, p) ∈ (H2(Ω)2 ×
H2(Ω)) ∩ V be the solution of (2.5). Then, under assumptions of Theorem 3.0, we have that

‖u− uh‖1 + ‖p− ph‖+ ‖Ū · ∇(p− ph)‖ ≤ Ch(‖u‖2 + ‖p‖2)
≤ Ch(‖f‖1 + ‖f3‖2). (3.15)

Proof. It is easy to see that the following error equation holds:

bh(uh − u, ph − p;v, q) = 0

for all (v, q) ∈ Vh. Let (uI , pI) ∈ Vh be the interpolant of (u, p) satisfying (3.1–3.3), we then
have that

bh(uh − uI , ph − pI ;uh − uI , ph − pI) = bh(u− uI , p− pI ;uh − uI , ph − pI).
Since Bh is symmetric positive definite, using the Cauchy–Schwarz inequality and dividing

b
1
2
h (uh − uI , ph − pI ;uh − uI , ph − pI) on the both sides give

bh(uh − uI , ph − pI ;uh − uI , ph − pI) ≤ Cbh(u− uI , p− pI ;u− uI , p− pI).
It then follows from Theorem 3.1, the above error equation, the Cauchy–Schwarz and triangle
inequalities, and approximation properties (3.1)–(3.3) that

‖uh − uI‖21 + ‖ph − pI‖2 + ‖Ū · ∇(ph − pI)‖2

≤ C(‖u− uI‖21 + ‖p− pI‖2 + ‖Ū · ∇(p− pI)‖2),
which, together with the triangle inequality and (3.1–3.3), imply the first inequality in (3.14). The
second inequality is a direct consequence of the following regularity result (see [1]):

‖u‖3 + ‖p‖2 ≤ K(‖f‖1 + ‖f3‖2).
This completes the proof of the theorem.
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