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Abstract 

Any large scale security architecture that uses certificates to provide 
security in a distributed system will need some automated support for 
moving certificates around in the network. We believe that for efficiency, 
this automated support should be tied closely to the consumer of the cer- 
tificates: the policy verifier. As a proof of concept, we have built QCM, 
a prototype policy language and verifier that can direct a retrieval mech- 
anism to obtain certificates from the network. Like previous verifiers, 
QCM takes a policy and certificates supplied by a requester and deter- 
mines whether the policy is satisfied. Unlike previous verifiers, QCM can 
take further action if the policy is not satisfied: QCM can examine the 
policy to decide what certificates might help satisfy it and obtain them 
from remote servers on behalf of the requester. This takes place automat- 
ically, without intervention by the requester; there is no additional burden 
placed on the requester or the policy writer for the retrieval service we 
provide. We present examples that show how our technique greatly simpli- 
fies certificate-based secure applications ranging from key distribution to 
ratings systems, and that QCM policies are simple to write. We describe 
our implementation, and illustrate the operation of the prototype. 

1 Introduction 

Current research on languages for expressing security policies provides algo- 
rithms for deciding whether to grant requests based on certificates signed by 
trusted parties. These systems assume that the relevant certificates are present, 
leaving the collection of the certificates to some separate, unspecified mech- 
anism. We have implemented a prototype system, QCM (Query Certificate 
Manager), that verifies policies based on certificates submitted by the requester, 
and in addition can automatically obtain missing certificates on behalf of the 
requester. We argue that a policy verifier capable of retrieving certificates on 
its own is more efficient and convenient than current verifiers, and does not 
compromise security. 

Figure 1 displays a common architecture for verification systems. Arrows 
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Figure 1: A Security Architecture 

indicate a flow of certificates. For example, an application will supply certificates 
to the verifier to see whether a policy is satisfied, and the verifier may draw 
more certificates from a local database. These local certificates typically have 
been collected by the user in advance from remote sources using some retrieval 
mechanism (possibly the application itself). 

An example of this is PGP [18], a popular system supporting secure elec- 
tronic mail. A mail application can use PGP to verify signed e-mail messages: 
the PGP verifier performs this function by examining public key certificates held 
in a PGP key ring (the database). The key ring itself is built up over time by 
the user, who can retrieve certificates for inclusion in the key ring by browsing 
web sites (e.g., public key servers), receiving them by e-mail, or similar means. 
Systems such as PolicyMaker [2] and SPKI/SDSI [5] follow this same architec- 
ture, but seek to make the verifier more general so that it can work with many 
different kinds of applications. 

There are some obvious inefficiencies in this architecture when the right 
certificates are not available. First, it brings the user into the process. For 
example, when the user wants to send secure mail to someone, but does not 
have the right public key certificate, he must obtain it (by using a web browser 
or exchanging e-mail), place it on the key ring, and invoke PGP again. As 
certificate-based systems become widespread, the user will spend more and more 
time obtaining certificates; clearly, this won't scale. 

It is possible to remove the human element by making applications smart 
enough to retrieve missing certificates without user intervention, though few 
such systems exist today. The problem with this idea is that it introduces 
duplication of two kinds: between the verifier and the application, and between 
different applications. 

To see how there can be duplication between the verifier and the application, 
suppose the e-mail application needs to send an encrypted message to Bob, 
and the PGP policy is, "rely on either Alice or Trent for key bindings." The 
application invokes the verifier, which examines the policy and then looks for 



Figure 2: QCM Architecture 

a certificate for Bob signed by Alice or Trent in the local database. If no such 
certificate is found, it reports failure to the application. The smart application 
would then study the policy to determine a query to send to the key server: "give 
me any key certificates for Bob signed by Alice or Trent." So, the verifier and 
the application both perform what we call policy-directed certificate retrieval: 
they examine the policy to determine what certificates to retrieve. The only 
difference is that in the case of the verifier, the certificates are retrieved from 
the local database, while in the case of the application, they are retrieved over 
the network from the key server. This means that the logic for understanding 
policies is duplicated in the verifier and the application, and will be executed 
not once, or even twice, but three times: once for the failed verification, a second 
time by the application to formulate the query to the key server, and a final 
time by the verifier when the application submits the retrieved certificates for 
approval. 

Another sort of duplication exists between different applications. An appli- 
cation that wants to have automated certificate retrieval may not be able to 
re-use the retrieval mechanism of the e-mail application, for example. The code 
might be proprietary, or e-mail specific, or the writer of the application might 
not trust the writers of the e-mail system. This is not a source of inefficiency 
in itself, but it is a decided inconvenience. The policy languages and verifiers of 
systems like PolicyMaker and SPKI/SDSI were made as general as possible to 
eliminate just this sort of duplication. We believe that this approach needs to 
be taken not only for verification, but policy-directed retrieval as well. 

To address these issues we propose a new architecture in which the verifier 
itself can direct both a retrieval mechanism and a local database. This is pic- 
tured in Figure 2. As in the previous architecture, users and applications can 
still obtain and supply certificates to the verifier and the local database. How- 
ever, the verifier can invoke a retrieval mechanism directly to obtain certificates 
if necessary, and can store them in the local database (e.g., for caching). The 
retrieval system can also act as a server, accepting requests from the network, 
submitting them to the verifier, and returning a signed response. This is very 



convenient for users and applications, who do not have to be concerned with 
most of the details of certificate acquisition. And it should be more efficient be- 
cause we do not suffer the penalty imposed by a system in which policy-directed 
retrieval is duplicated between the application and the verifier. 

The new architecture does not sacrifice security for efficiency and conve- 
nience. Of course, retrieval is time-consuming, and automated retrieval could 
be the target of a denial-of-service attack that tries to provoke the server into 
making many queries. But this is not particular to our verifier architecture: 
an application providing automated retrieval, like the smart e-mail application, 
would be as vulnerable. It  is easy to turn off retrieval for cases where it is in- 
appropriate, so we provide a verify-only mode for our system, in addition to its 
default verify-retrieve mode. In verify-only mode, the system will act just like 
SPKI or PolicyMaker, and will verify policies on the basis of locally available 
certificates only; it will never try to retrieve missing certificates. 

It could be argued that a verifier with automated retrieval will be larger, 
more complicated, and hence less secure than a verifier based on the model 
of Figure 1. We have found that this is not so. Our system, QCM, which 
combines a verifier, retrieval mechanism, and local data storage mechanism, 
is about the same size as SDSI 2.0, which does not provide retrieval. This is 
because the tasks of verification, retrieval, and local data management have 
much in common, so we can share code between them. This re-use will become 
apparent when we describe our implementation. QChl is simple enough to be 
given a formal semantics, which enhances the correctness, and, therefore, the 
security of the system. 

In designing QCM we have taken a conservative approach and based it on 
a well-established language, the language of sets that forms the core of most 
database languages (SQL, the relational calculus, and so on). This language 
serves as the policy language and the query language of QCM. Verification in 
QCM consists of a database evaluation, while certificate retrieval corresponds 
to distributed database evaluation. Database evaluation has been well-studied 
over the past 30 years, so QCM can take advantage of extensive research into 
query optimization and distributed database implementation: when QCM needs 
to query for missing certificates, we use well-known techniques to choose queries 
that minimize message traffic. 

A principal advantage of QCM's policy language is that the policy writer 
does not have to write code that explicitly makes remote queries. By examining 
the policies, QCM automatically detects when queries need to be made, formu- 
lates the queries, sends them out, and collates the replies. This makes policies 
written in QCM much simpler to write and understand. Exactly how this works 
will be hinted first by example, then explained in more detail when we describe 
the QCM implementation. 

Overall, we have three goals for QCM: first, to show that policy-directed 
certificate retrieval greatly simplifies the task of building certificate-based se- 
cure applications; second, to show that it does not require writing complicated 
policies; and third, to  explain and illustrate our methods in enough detail that 
they can be applied to other verification systems. For example, i t  should be pos- 



sible to create a policy-directed retrieval system for SPKI. This paper focuses 
on our implementation and examples of its use; we also aim to explain some of 
the design space for QCM and the reasons for the choices we made within that 
space. 

Outline. In Section 2, we will introduce QCM and policy-directed certificate 
retrieval by example. Section 3 discusses the design of a system to carry out 
automatic retrieval and describes how these issues are resolved in our system. 
Section 4 describes our implementation. A detailed example is presented graph- 
ically in Section 5, and we conclude with related work and future directions in 
Section 6. 

2 Policy-Direct ed Certificate Retrieval 

In this section we give an informal introduction to QCM and policy-directed 
certificate retrieval. We will show how policies are written and evaluated, be- 
ginning with a simple key distribution example that we explain in full. We then 
present some more interesting examples of policies at a high level. For reference, 
we give a high-level syntax of QCM in Table 1. QCM has the usual assortment 

Table 1: The Syntax of QCM 

e ::= c constants 
1 5  local names 
1 (e$x) global names 
1 ( e ~ , . . . , e n )  products 
I {el , . . . ,en} sets 
I union(e1,. . . , en) set union 
1 {e 1 I ,  . . . , } comprehensions 

g ::= (el = ea) guards 
I (P E e) generators 

p ::= x I c I (pl, . . . ,pn) patterns 

of constants (3, "Alice", t rue,  . . .). In particular, princzpals are constants in 
QCM. As in SDSI, SPKI, and PolicyMaker, principals are public keys. For 
brevity we will use K to range over principals here, but in our prototype we use 
a SPKI-like syntax for principals. In QCM a principal can come attached with 
a URI that identifies a server for the principal's certificates; again for brevity, 
this does not appear explicitly in the notation we are using here. Section 5 gives 
an example of our full syntax of principals. 

We use SDSI's concept of linked, local namespaces: K$x is the global n a m e  
of the local n a m e  x in K's namespace, and is pronounced, "K's x." In QCM, a 



global name always refers to a set. A typical example is 

K$  PKD = { ("Alice", K,lice), ("Bob", Kbob) ) 

This defines K$PKD to be a global name refering to a set of (user,key) pairs. 
This set can be thought of as a public key directory: it says that Alice's key 
is KaliCe and Bob's key is Kbob It can also be thought of as K's policy about 
Alice and Bob's keys. 

The directory K$PKD is under K's control; it may be kept in secure storage 
on K's machine, for example. Other principals can only determine the contents 
of K$PKD through certificates signed by K or by querying K's server (if K has 
a server). However, QCM does not contain any features for explicitly using cer- 
tificates or making queries. Policies just refer to global names like K$PKD, and 
the QCM evaluator will automatically use certificates or make remote queries 
when appropriate. 

2.1 A basic example 

To illustrate how policies can drive certificate retrieval in a simple case, consider 
a policy that says to rely on K$PKD to determine Alice's key(s): 

AliceKeys = { k I ("Alice", k) E K$  PKD ). 

The expression on the right is a set comprehension denoting the set of keys 
paired with "Alice" in K$PKD: it contains every key k such that there is a pair 
("Alice", k) in the set K$PKD. AEiceKeys might be evaluated in the context of 
a certificate signed by K: 

K says ("Alice", Kdice) E PKD. 

This is our notation for a document containing a signature (not shown), a signer 
(K, or more accurately, the private key corresponding to K), and an assertion 
about a global name (that ("Alice", Kalic,) is a member of the set K$ PKD) . 
When QCM is given this certificate, it can evaluate AliceKeys to the result 

QCM can actually evaluate AliceKeys given a collection of certificates, for ex- 
ample, 

K says ("Bob", Kbob) E PKD, 
K' says ("Alice", Kt)  E PKD. 

Here QCM would detect that neither certificate is relevant: the first because it 
gives Bob's key according to K,  and not Alice's key; the second because it gives 
Alice's key according to K t ,  and not K.  The result of evaluation would be the 
empty set, 

If QCM is asked to evaluate AliceKeys without any certificates, and K has 
a server, it will send a query to the server to obtain appropriate certificates. 



(Recall that QCM can look at K since it appears in AliceKeys, and K may be 
tagged with a server location.) A query is a QCM expression, just like a policy. 
In this case two appropriate queries are 

K$PKD 
and { k ( ("Alice", k) E K$  PKD ). 

The first query asks for the entire set K$PKD, while the second query asks for 
just Alice's key(s). An answer to either query would allow QCM to calculate the 
final result, but the second query is likely to produce a smaller reply from K's 
server. QCM uses standard query optimizations to choose the second query-so 
in this case, the query is in fact the expression defining AliceKeys. Call this 
expression P. 

When K's server receives this expression, it will submit it to its own QCM 
evaluator, which has access to the definition of K$PKD. The result will be 
{Kaac,), which can be returned in a certificate 

After checking the signature on the certificate, the first QCM evaluator can 
calculate the final result, 

{K&ce 1. 
Notice that the reply from the server states that P > {Kafice), not P = 

{Kdic,). This is because the server is free to base its evaluation on any mem- 
bership certificates it might have. A membership certificate does not give the 
exact value of a set; it only gives an approximation of a set. Therefore, QCM 
is a 'best effort' system that only calculates approximate answers to queries. 

Also, notice that since the signed reply from K's server includes the query, 
and the server does not know in advance what queries it will receive, it could 
not have prepared the certificate in advance. This means that the private key 
has to be online and available to the server, and the server will have to sign 
each response dynamically. This may sometimes be appropriate, but it places 
a burden on the server (signing is expensive) and makes the private key more 
vulnerable to compromise. 

Therefore QCM also has an offline signing mode, where the server works with 
pre-signed certificates, and no private key needs to be online. For example, the 
server could be provided with the following certificates. 

K says ("Alice", Kalice) E PKD 
K says ("Bob", Kbob) E PKD 

From these certificates, the server's QCM evaluator can recover the full defini- 
tion of K$PKD, and evaluate a query, like P, that refers to K$PKD. As it 
evaluates the query, it keeps track of what certificates were useful in producing 
the answer, and these certificates make up the reply. So the response to P would 
be the certificate 

K says ("Alice", KaIice) E PKD. 



Now, the original QCM evaluator has to do some more work, because the reply 
does not answer its query directly-its query asked for a key, and the certificate 
contains a pair of a string and a key. What we do is evaluate the query, P, on 
the original server in verify-only mode, with the certificates from the reply as 
input. This gives the final answer, 

In our prototype we have adopted the convention that it is the server's decision 
whether to use online or offline signing, and anyone making a query should be 
prepared for either kind of reply. 

So far we have shown how QCM can obtain Alice's key by examining policies 
and certificates, and possibly exchanging messages. Sometimes we do not want 
to obtain Alice's key, but, rather, check whether a particular key is Alice's 
key (for example, to verify the signature on an e-mail message). In QCM this 
amounts to asking a membership query: 

member(Kdice, AliceKeys)? 

Intuitively, a membership query should evaluate to "yes" or "no," or more accu- 
rately, "yes" or "not sure" (if we are working with membership certificates that 
only give us partial information about the set in question, we will not be able 
to give a definite "no"). Up until now, all of our queries have evaluated to sets, 
so it might seem that we need to define a new kind of evaluation. But the two 
kinds of evaluation have much in common, so we have instead used a trick that 
lets us use set evaluation to perform membership evaluation. QCM considers 
the membership query above as an abbreviation for a set comprehension that 
evaluates to either the empty set, or to a singleton set: 

{ "yes" I Kalice E AliceKeys ). 

The expression will evaluate to the set {"yes") if QCM can determine that Kdice 
is in AlzceKeys, and otherwise will evaluate to the empty set { }. In the first 
case, the answer to the membership query is "yes," and in the second case, the 
answer is "not sure." For example, if the query was submitted to QCM along 
with the certificate 

K says ("Alice", Kalice) E PKD, 

then QCM would answer "yes," without sending any queries. If no certificates 
were supplied along with the query, QCM would contact K about KdiCe, and in 
the end, it returns the same result, "yes." If no certificates were supplied and 
QCM were put into verify-only mode, it would not contact K ,  and could only 
answer "not sure." 

That summarizes the basics of policy-directed certificate retrieval. The re- 
mainder of this section gives more examplds of policies that can be written 
in QCM, without discussing how QCM evaluates the policies. We hope that 
these examples will show that interesting policies are easy to write in QCM, 



and that our policy-directed certificate retrieval service can simplify the task of 
writing secure applications. The specifics of policy-directed certificate retrieval 
are given in subsequent sections, followed by an extended example which we use 
to illustrate the prototype in more detail. 

2.2 A web of trust 

The last example showed how a public key directory is expressed in QCM. We 
now show how multiple public key directories can be combined in a way similar 
to PGP's 'web of trust' [17]. 

In the web of trust, users specify introducers, principals that are to be relied 
on for key bindings. In QCM this can be expressed as follows. 

introducers = {KI, K2, K3) 
local = { (u, k) I x E introducers, (u, k) E x$PKD ) 

This defines local to be a public key directory that is the union of the introduc- 
ers' directories: KI$ PKD, K2$ PKD, and K3 $ PKD. This constitutes a 'chain 
of trust' of length 1: Alice trusts principals she knows personally to provide 
key bindings. Like PGP, QCM supports trust chains of arbitrary length. For 
example, we could have defined Alice's local directory using a chain of length 2 
as follows. 

introducers2 = union(introducers, 
{ k I x E introducers, (v, k) E x$PKD )) 

local2 = { (u, k) I x E introducers2, (u, k) E x$PKD ) 

Here introducers2 consists of introducers as well as any key k appearing in the 
PKD of an introducer. Similarly, local2 is the union of the PKD's of principals 
that Alice knows personally, or who are known by a principal known by Alice. 

For example, given the certificates 

Kz says ("Bob", Kbob) E PKD, 
Kbob says ("Alice", Kalice) E PKD, 
Kalice says (''Carol", KCa,,1) E PKD, 

QCM can evaluate the query 

{ k I ("Carol", k) E local2 ) 

to {Kca,,~). And in verify-retrieve mode, if QCM were only given the first two 
of these certificates, it would query Kalice for Carol's key. 

In this way, we can program any finite length chain of trust in QCM (though 
in practice, trust chains will be short, since longer chains are considered less 
secure). 



2.3 A DNS-like secure database 

We now show how to use QCM to define a secure hierarchical database similar 
to DNSSEC [I]. We have chosen to structure our database in a slightly different 
way than DNS, to make it easier to perform reverse lookups. 

Our database has a root server Kroot that understands the top-level structure 
of domain names. It maintains a table, 

Kroot$DNSTable = { ("corn", 128, Kcom), ("edu", 182, &au) ). 

The table is a set containing triples that explain the mapping of the top-level 
DNS domains. For example, the triple ("corn", 128, Kc,,,) means that com maps 
to 128 and the principal in charge of the com domain is Kc,,,. Kc,, maintains 
a similar table, 

Kc,,,$DNSTable = { ("ibm" ,66, KibII1), ( "dec" ,99, Kdec) ). 

Kcom's table says that Kibm is in charge of IBM's domain, and Kdec is in charge 
of DEC's domain. It is crucial that responsibility for different parts of the 
database be split up in this way, since IBM and DEC are competitors. 

Each table defines a part of the DNS mapping. The full mapping is defined 
by a resolver that queries the various servers for table entries. For example, the 
following QCM definition resolves the full mapping up to depth two: 

It specifies how a table entry of the root, Kroot, can be combined with a table 
entry of a principal kl, provided that kl is a principal in charge of a subdo- 
main in the root's table. For example, a typical element of DNS would be 
(("ibm" , '(corn"), (128,66)). 

Once we have defined DNS, we can use QCM to evaluate some interesting 
queries: 

DNS: return the entire mapping. 

{ a I (("ibm", "com"), a )  E DNS ): return the address of ibm.com. 

{ d I (d, (128,66)) E DNS ): return the domain with address 128.66. 

{ d ( ((d, '(corn"), a) E DNS ): return the subdomains of com. 

QCM can evaluate these queries in a manner similar to DNS: it starts by query- 
ing the root, learns who is in charge of subdomains, and sends those principals 
queries as well. 

As usual, QCM can also incorporate certificates into its computation. For 
example, it might be presented with a certificate giving an entry in the root 
table: 

KrOot says ("corn", 128, Kc,,) E DNSTable. 

QCM can use the certificate to short-circuit queries to the root: for example, 
to find the address of ibrn.com it can contact Kc,,, directly, without contacting 
Kroot. The certificate is in effect a cache-line of Kroot's table. 



2.4 A SPKI-like authorization system 

In SPKI [5], authorization certificates and access control lists (ACL's) are the 
means by which principals make statements about what authorizations they 
grant to other principals. 5-tuple reduction is the way that SPKI evaluates such 
statements to see whether they imply that a given principal has a particular 
authority. 

In this section we describe how SPKI's authorization mechanism can be 
simulated in QCM. SPKI ACL's will be written as QCM programs, SPKI au- 
thorization certificates will correspond to QCM certificates, and QCM program 
evaluation will take the place of 5-tuple reduction. 

A SPKI ACL can be thought of as a table associating principals with au- 
thorizations called tags. Such a table can be defined directly in QCM: 

Ko$ACL = { (Kl,  "read /etc/passwdV), 
(Kz, "write /etc/motd") ). 

This defines the ACL of KO, which states that K1 should be allowed to read the 
file /etc/passwd, and so on. KO might sign a QCM authorization certificate: 

KO says (K1, "read /etc/passwdn) E ACL. 

This certificate contains three of the five parts of a SPKI 5-tuple: the issuer 
(KO), the subject (KI), and the authorization ("read /etc/passwd"). A fourth 
part, indicating a time period over which the certificate is valid, is omitted from 
our presentation, but is implemented in our prototype. 

In SPKI, KO can use a fifth part, the delegation field, to say that Kl is 
permitted to delegate the authority granted to it by KO to other principals. In 
QCM KO can delegate to K1 by including all or part of Kl 's ACL in its own. 
For example, KO can assert that K1 is allowed to assign authority on its behalf 
using the following definition. 

The corresponding QCM delegation certificate looks like 

KO says ACL > K1$ACL. 

KO can limit the degree to which it delegates to KI.  For example, KO can 
specify that K1 is only permitted to delegate the authorizations in an arbitrary 
set A by including the following set in its ACL: 

Then KO's ACL will include any entry (k,a) in Kl's ACL, as long as a is in 
the allowed set A. In other words, the authorizations that KO grants to k are 
the intersection of A and the authorizations that K1 grants. This is exactly 



the behavior of SPKI's tag intersection. Abbreviating the expression (1) with 
delegate(K1, A), we can express limited delegation in a QCM certificate 

KO says ACL 2 delegate(K1, A). 

SPKI 5-tuple reduction can then be simulated by taking these kinds of QCM 
certificates and evaluating QCM queries in verify-only mode. For example, to 
find what authorizations KO grants to K1, we evaluate 

The current implementation of QCM uses strings as tags, while SPKI spec- 
ifies a more elaborate algebra of tags, including encodings of infinite sets ("any 
string with prefix http://www.ietf.org/"). We may add such tags to QCM in 
future versions, as we learn more about the needs of end applications. 

3 Design Issues and Decisions 

In designing a policy-directed certificate retrieval system we encountered many 
issues and tradeoffs that had to be resolved before we were able to implement a 
usable prototype. The primary issues were: what security guarantees we should 
try to provide; how to handle privacy of communications, policies, and data; 
how to manage both certificates that are supplied ('pushed') and those that 
are retrieved ('pulled'); whether to support online or offline signing; what to 
do about failure and partial information in a distributed context; and how to 
control resource utilization. We discuss each of these issues in turn here. In an- 
other paper we provide a formal semantics for QCM and express its correctness 
properties mathematically. Key issues there include the formal security model, 
concurrency, failure, and what the query optimizer must satisfy. 

Security assumptions and guarantees. The first priority of QCM is to 
preserve the integrity of policies even though communication takes place over 
the untrusted network. This means that a distributed QCM computation taking 
place over the network should be consistent with a non-distributed QCM com- 
putation in which all policies are gathered together on a single, secure machine. 
In other words, if a distributed QCM computation says ''Alice's key is Kali,,," 
then the non-distributed computation should say the same. 

We ensure policy integrity by a variety of mechanisms. QCM data is always 
accessed by public key (the principal, e.g., the K of K$x), and the response of 
a QCM server is always signed by that key. QCM also time stamps certificates, 
and discards certificates that have timed out. Of course, if trust is delegated 
to a principal K ,  and K's private key is compromised, integrity is lost. We 
do guarantee that if private keys are never contained in QCM definitions, then 
QCM does not reveal the keys. 

QCM aims to relieve applications from dealing directly with certificates. In 
particular, communication between an application and QCM does not need to 



be signed. However, this means that the communication link between QCM and 
the application must be secure, generally because this communication will occur 
on a secure machine. Security of communication between application processes 
is not directly maintained by QCM, although QCM can be of help. For example, 
QCM can be used by the applications to obtain each other's public keys, but it 
is up to the applications to use those keys to secure their communication. QCM 
does ensure that data transferred between QCM processes cannot be tampered 
with. 

Certificates are not the only mechanism that QCM can use to preserver 
policy integrity. For example, if a QCM process expects that it will have to make 
many queries to a particular server, it could establish a long-term connection to 
the server protected by a symmetric session key. Replies from the server would 
not be certificates, but rather their contents; for example, instead of a certificate 
K says K' E S, K would send K' E S over the link, suitably encrypted. This 
would be useful because symmetric cryptography is much more efficient than 
public key encryption or signing. 

Privacy of communications, policies, and data. Although QCM could 
form part of a system to support privacy, QCM itself does not attempt to provide 
privacy of communications, and provides only limited privacy for policies and 
data. In this our philosophy is similar to that of DNSSEC [I], where certificates 
are provided to anyone who wants them and no effort is made to encrypt the 
information maintained by the DNS servers. QCM is not incompatible with 
privacy, since queries and responses could easily be encrypted in an extension 
of the system, or could be kept private by use of a virtual private network. But 
ignoring the issue of access control for the policies themselves let us greatly 
simplify the system. 

Anyone can query a QCM server to obtain information on its policies (the 
sets K$x that it maintains), but QCM answers queries extensionally rather 
than intensionally, so complete information about policies is not revealed. For 
instance, if a principal K defines a set S = K1$R, then a query to K about 
S will only yield elements of K1$R, and not the fact that K' was consulted 
to obtain them. Thus policies and data can be known in only a limited way. 
In future work we may extend QCM to return intensional results. This might 
help clients frame better queries, or indicate where clients could obtain useful 
certificates on their own. 

Push and pull of certificates. A key question is how certificates 'pushed' 
into QCM by an application or another QCM node should interact with queries 
that the QCM node generates to 'pull' information from other QCM nodes. 
Consider the applications and QCM servers pictured in Figure 3. Let A, B, 
C, D be principals with associated applications and QCM servers. Suppose 
that A's application makes a request of B's application, and B's application is 
programmed to approve the request if A appears on an ACL, maintained in its 
local QCM server. B's QCM server defines this list by delegation to C, and C in 
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Figure 3: Pushing and Pulling Certificates 

turn delegates the definition of its ACL to D. Now, when A submits its request 
to B, then, assuming that verify-retrieve mode is used by B and C ,  the QCM 
server of D is eventually asked whether A is in D$ACL. A's application can try 
to speed this up by supplying certificates to B's application, which B can then 
supply to QCM. For instance, if A supplies a certificate C says A E C$ACL, 
then B's QCM server will use this information instead of sending a query to C. 

The interesting issue arises when A supplies a certificate D says A E D$ACL 
to B. By itself, this is not enough for B's QCM server to determine that 
A E B$ACL. In fact, as far as B knows, the certificate is not even relevant 
to the query. In QCM at present, then, B's server ignores the certificate and 
queries C directly, which queries D in turn. 

An alternative would be for B's server to 'push' the certificate along to C 
when it makes the query. This would let C's server avoid a query to D. We 
decided not to do this because it seems just as likely that the certificate would 
not be of use to C, and pushing it along would therefore waste bandwidth. 
Strategies for pushing certificates intelligently through a distributed QCM com- 
putation would require some means of knowing who might make use of them, 
and we have not yet experimented with this enough to know how it could be 
automated. 

Offline versus online signing. In online signing, the server signs responses 
to queries as they go out. In offline signing, the server does not have a key to sign 
responses; it only has a set of certificates that were pre-signed by some offline 
principal. Responses in the offline case consist of a set of these certificates. 

Neither signing method is clearly superior to the other. Offline signing offers 
more protection to the private key of the signer, and the server does not have 
to continuously sign responses, which could be expensive. However, there is an 
added burden of coordination between the signer and the server to maintain the 
certificates, which typically time out periodically. It is also more expensive for 
the client, who might have to verify signatures on a set of certificates instead of 
just one, and do some extra work to extract the answer to the query from the 
returned certificates. 

One of the primary design objectives of QCM was to achieve greater automa- 
tion even in the presence of diverse kinds of servers. We have therefore sought 
to provide support for networks of QCM nodes in which some nodes provide on- 



line signing while others provide offline signing and where some nodes operate in 
verify-only mode while others operate in verify-retrieve mode. The main ques- 
tion about QCM is whether a sufficient level of automation can be achieved to 
adequately support typical applications without excessive intervention of users. 

Failure and  part ial  information. An essential aspect of QCM is that it is 
a distributed system, and must therefore cope with failure. If a server is not 
responding or if there is any other kind of error it is essential to carry out the 
computation in a safe way. A simple approach would be for QCM to halt and 
report back to the user or application when an error or unavailable server is 
detected. 

We have tried a more sophisticated approach in which computation can con- 
tinue even if some servers are down. This is possible because we have designed 
QCM around sets: every global name in QCM refers to a set, certificates com- 
municate information about sets, and QCM policies and queries are expressions 
that evaluate to sets. Thus when failure occurs, we have a default result to 
fall back on: the enipty set, which approximates all other sets. For example, if 
QCM is given a query union(KI$ACL, K2$ACL, K3$ACL), and the server of 
Kz is unavailable, it will work on union(K1 $ACL, { ), K3$ACL) instead. Quite 
often, we can return useful results even if failure occurs. 

In theoretical terms, QCM provides a monotonic data approximation. That 
is, the less failure is encountered, the larger (and more accurate) the response 
provided. This allows us to assert exactly what can be known for sure about a 
QCM response regardless of the failures that may have been encountered. 

Control of resource utilization. Currently, we provide no access control 
for QCM data, and it is possible for a single user to make many requests for 
data, or a single request for an extremely large amount of data. Web servers 
and DNS name servers are similarly vulnerable to this kind of abuse. It would 
be useful for QCM to have a way to deal with requests that are taking more 
time than expected or allowed, but we have not implemented one yet. Another 
danger is the creation of request cycles in distributed QCM programs, which 
could lead to infinite loops. Cycles come about because of mutually recursive 
QCM definitions, and the only solution in QCM right now is not to write such 
programs. We leave a better solution to these problems to future research. 

4 Implementation 

Before describing the details of the implementation, it is helpful to recall the 
expressions of Table 1, page 5, and also introduce some new syntax. 

d ::= (K$x = e) definitions 
P ::= (dl;.  . . ; d,; e) programs 
u ::= c 1 (ul, . . . , u,) 1 {UI, . . . , u,) values 
I ::= (e > e') inclusions 
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Figure 4: QCM evaluation 

Evaluation of a QCM expression proceeds in the presence of a set of definitions 
for global names. A QCM expression together with such a set of definitions 
is called a program. The values are the results of QCM program evaluation; 
notice that they are a subset of the expressions (they are the fully evaluated 
expressions). The inclusions are the assertions of certificates, and they state 
that one set expression includes another. 

4.1 The local evaluator 

An application invokes QCM by giving it a query (i.e., an expression) and a set 
of certificates. This input passes through a number of phases, structured as in 
Figure 4. We describe each phase in turn. 

Parsing The first phase parses the query and certificates into QCM's internal 
abstract syntax. This is a security-critical step: QCM assumes that the 
application treats the certificates as black boxes (strings of bytes) which 
are obtained from a possibly hostile source, and which could therefore 



be syntactically ill-formed. Furthermore, although the application has 
formed the query, its actions could have been influenced by an adversary, 
so we need to check the form of the query as well. 

If the parser detects any errors in the input, it reports them to the appli- 
cation, and evaluation halts. 

Checking After the certificates have been parsed, their signatures are verified 
and we check their provenance. Informally, this means that a principal 
should only sign a certificate that makes a statement about its own names. 
For example, K says K1$x > {4,5) is rejected if K # Kt.  A certificate 
such as K says x > {4,5) is accepted, because unqualified names in 
a certificate are assumed to be implicitly qualified by the signer of the 
certificate. 

When checking provenance, we examine only the left-hand sides of the 
inclusions in the certificates. For example, a certificate of the form K' 
says K1$x > K$x is allowed, even though it is signed by K' and refers 
to K$x. This is how K' can delegate power over K1$x to K ;  in other 
words, the signer is permitted to give up control. Conversely, a certificate 
K says { ) > K1$x is not allowed, since otherwise K could force K1$x to 
be empty. We can formally prove that our restrictions give each K control 
over its own names. 

The output of the checking phase is the set of inclusions asserted by the 
acceptable certificates. 

Recovery The recovery phase takes in a set of inclusions and constructs a set 
of definitions for the names appearing on the left of the inclusions (we 
say the definitions are recovered from the inclusions). These definitions 
will be used in evaluating the query at  the local node, and t h e y  m a y  
n o t  be t h e  s a m e  as t h e  actual definitions. Instead, they are the "best 
approximation'' to the actual definitions that can be constructed from 
the available inclusions. For example, given inclusions K$x  > {3,4) and 
K$x  > K1$y, the recovery phase would construct the definition K$x = 
union(K1$y, {3,4)). We have a formal definition of "best approximation," 
and a proof that our recovery phase produces one. 

The recovery phase checks the resulting definitions to make sure that they 
are not circular. We do not allow mutually recursive definitions, because 
they are harder to evaluate (though it should be possible to extend QCM 
to handle recursive definitions by using Datalog evaluation techniques). 

Optimization The recovered definitions are combined with local policy defini- 
tions (the local database) and the parsed query to form a program, which 
is passed through an optimization phase. Our optimizer uses standard 
techniques to transform the program into a more efficient program. This 
includes deciding the form of any remote queries that will be sent during 
the next phase, set evaluation. 
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Figure 5: QCM remote evaluation 

Set evaluation Finally, the program is run through the set evaluator, pro- 
ducing a value that is returned to the calling application. The value is 
unsigned, because applications should not have to perform cryptography 
to use QCM. This does not compromise security because in all local com- 
putations we are already forced to rely on the security of the operating 
system of the local machine. 

If the program refers to global names that do not appear in its definitions, 
the set evaluator may need to make remote queries to obtain informa- 
tion about the names. The optimization phase has previously determined 
what queries to make, and the actual queries are carried out by a remote 
evaluation phase which we describe next. The set evaluator can also be 
configured to make no remote queries (verify-only mode). In this case, 
whenever a remote query is indicated, the evaluator simply assumes that 
the query would result in the empty set, and continues without sending 
any messages. 

4.2 The remote evaluator 

The phases of the remote evaluator are given in Figure 5. The remote evalu- 
ator takes as input a parsed query and a principal to whom the query should 
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Figure 6: A QCM server with online signing 

be directed. It first marshalls the query into a format suitable for network 
transmission, possibly adding some information that will help coordinate the 
response with the query. (The evaluator is multi-threaded and there can be 
multiple outstanding queries.) The marshalled query is then shipped to the 
principal over the network. 

When the reply arrives, it is unmarshalled and parsed. Several kinds of 
replies are possible for any given query. A direct reply is the easiest to deal 
with. If the query is e and the target principal is K ,  then a direct reply is a 
certificate of the form K says e > v. In this case, the remote evaluator just 
checks the signature on the certificate and returns the value v as the answer to 
the query. 

In general, a remote principal can only make a direct reply if it keeps its 
private key online, because the query must be signed and included in the reply. 
The remote principal might want to keep its private key offline to make it less 
vulnerable. If this is the case, the remote evaluator will not get a direct reply 
to its query, but rather will receive a set of certificates, signed offline by the 
principal, that can be used to answer the query. 

An offline reply can easily be handled by phases that we have already de- 
scribed. Essentially, we use the local evaluator to process the reply. The remote 
evaluator passes its original query and the certificates that it got in response 
from the target principal through the checking, recovery, optimization, and set 
evaluation phases of the local evaluator. The set evaluator is put in verify-only 
mode, so that it does not invoke the remote evaluator recursively. The resulting 
value is returned to the original invocation of the local evaluator (the one that 
invoked the remote evaluator in the first place). 

4.3 A QCM server with online signing 

Now that we have seen how applications on a single machine can use the QCM 
local evaluator to query local policies, it is easy to create an application that 
acts as an online QCM server, processing queries on the local policies for other 
machines on the network. Figure 6 shows how this works. The server waits for 



queries to come in from the network. When a query arrives, it is unmarshalled 
and sent to the local evaluator, resulting in an unsigned value. The value is then 
signed (the server has the private key), marshalled, and shipped back across the 
network. The marshalling and unmarshalling phases are the complements of 
the unmarshalling and marshalling phases of the remote evaluator. 

4.4 Query evaluation with offline signing 

We have already described the client side of QCM's offline signing mechanism: 
when the remote evaluator makes a query and receives a collection of offline 
certificates in response, it runs the query and certificates through its local eval- 
uator in verify-only mode to get the answer to the query. We now explain the 
server side of the offline signing mechanism: how a server with a collection of 
offline certificates chooses what certificates to return in response to a query. 

Offline signing for the server requires very little new functionality, because 
we are able to apply existing phases to the problem. In particular, we re-use set 
evaluation. The idea is that given a query e, we can construct a query e' that 
evaluates to the same result as e, along with the set of certificates it used along 
the way. 

This is best illustrated by example. Suppose a server is given the following 
certificates, which were signed offline. 

K says ("Alice", KaliCe) E PKD 
K says ("Bob", Kbob) E PKD 
K says Kal;,, E Superusers 

Call these certificates C1, Cz, and C3. From these certificates, the server 
can construct approximations of K$PKD and K$Superusers called PKD' and 
Superusersl, instrumented to keep track of certificates. Every elenlent of PKD' 
will be an element of K$PKD, paired with the set of certificates that prove that 
the element is a member of K$PKD; and similarly for Superusers'. 

PKD' = { ({CI), ("Alice", Kalice)), ({Cz), ("Bob", Kbob)) ) 
Superusers' = { ({C3), Kalice) ) 

Now suppose that the server receives the query 

{ x 1 (x, k) E K$ PKD, k' E K$Superusers, k = k' ). 

This finds the names of all superusers. The server will transform the query to 
use PKD' in place of K$PKD and Superusers' in place of K$Superusers, and 
also keep track of certificates: 

{ (union(m, n) , x) I (m, (x, k)) E PKD', 
(n, k') E Superusers', k = kt ). 

The idea is that whenever (x, k) E K$PKD, we know this because of the cer- 
tificates in the set m, and similarly, if k' E K$Superusers, we know this because 
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Figure 7: Offline QCM evaluation 

of the certificates in n. So if x ends up in the result, it is due to the certificates 
in both m and n. 

Call this instrumented query Q. It evaluates to 

{ ({Cl , C3), "Alice") ) . 
This is the set of elements of that would be calculated by the original query, 
each paired with a set of certificates. The full set of certificates used to calculate 
the result is given by 

{ x  I (Y,.) E Q,x  E Y 1. 
The server can simply run this through the evaluator and return the resulting 
set of certificates. 

Figure 7 summarizes the process. The offline certificates are first passed 
through a recovery and indexing phase, to produce definitions that take certifi- 
cates into account (like PKD' and Superusers' above). We call these indexed 
definitions. 

To process a query, we first parse it, then pass it through an indexing phase so 
that it refers to the indexed definitions, calculates the value of the original query 
and the relevant certificates, and discards the value (like the last query above). 
The indexed query and definitions are then passed through the optimizer and 
set evaluator, in verify-only mode. The resulting set of certificates is used as 
the final answer. 



Figure 8: A 2-3 hashtree and the membership path for 7 

4.5 Offline certificate update and refresh 

In offline signing, a principal creates certificates with its private key at  a location 
isolated from the network, and supplies them by some means to one or more 
servers that will answer queries from the network on the principal's behalf. 
Notice that the server is maintaining both sets (e.g., the value of some K$x) 
and proofs of set membership (e.g., a certificate K says K$x > (7)). 

These proofs of set membership are not trivial to maintain over an extended 
period. Policies (sets) are likely to change over time, so the offline principal 
must communicate new proofs (certificates) to the server periodically. Moreover, 
certificates are typically marked with a time interval over which they are valid. 
Even if the offline principal's policies never change, it will have to "refresh" the 
certificates on the server as they expire. If we use the certificates that we have 
described up to now, this would mean that at  the end of every expiration period, 
the offline principal would have to sign and transmit n certificates of the form 
K says K$x > { u )  for each set K$x of size n. 

To support more efficient offline certificate update and refresh, we have im- 
plemented a second kind of membership certificate, based on a scheme of Naor 
and Nissim [13]. The same scheme supports non-membership certificates, which 
will be needed for revocation. 

The main idea is that both the offline signer and the online server will 
maintain the set in a balanced binary hash tree data structure. We use 2-3 
hash trees, whose interior nodes have either 2 or 3 children. Figure 8 contains 
an example. This is a 2-3 hash tree for the set {1,3,5,7,11,13,17,19,23),  whose 
elements appear as the leaves of the tree, in increasing order. Each interior node 
of the tree contains a hash and the maximal leaf reachable from the node. The 
hash value of a node is the hash of the values at the children of the node. For 
example, H2 = hash(5,7,11) and H5 = hash(H1,3,H2,11). We use a one-way 
hash function (SHA), so that signing the root hash value is as good as signing 
the whole tree-it is computationally infeasible to find a tree with the same root 
hash. 

Both the offline signer and its online server maintain a copy of the tree. When 
the offline signer needs to bring the server's tree up to date, it sends a change list 
to the server, along with a signature for the new root hash. The server applies 



the change list (insertions and deletions) to its tree, thereby obtaining an exact 
copy of the offline signer's new tree. Insertion and deletion take O(logn), so 
an update on a set of size n takes time O(mlogn), where m is the size of the 
change list. The important thing about these bounds is that they show that we 
can efficiently maintain not only the set, but also the certzficates of membership 
and nonmembership for the set. 

A membership certificate for an element of the set consists of the signed root 
hash, and just enough of the tree to prove that it has the element as a leaf. "Just 
enough" turns out to be the path from the root to the leaf, plus the children 
of all nodes in the path. For example, to be convinced that 7 is an element of 
the set of Figure 8, we need the path from the root to 7 (in the dark outline), 
plus any children of the path (in the light outline). We just have to check the 
hashes (H7 = hash(H5,11,H6,23), H5 = hash(H1,3,H2,11), H2 = hash(5,7,11)) 
to verify that 7 is a leaf of a tree with root hash H7. 

Naor and Nissim showed that the same idea can be used to show that some 
x is n o t  a member of the set. We implemented a simplification of their method 
based on the following observation. 

Note that the algorithm for testing whether x is a member of the set is 
deterministic: start at the root, move to the leftmost child whose "max leaf" 
value is greater than or equal to x, and repeat until a leaf is reached. If the leaf 
is x, then x is a member of the set, otherwise, x is not a member of the set. 
The parts of the tree examined in a failed search for x are exactly the same as 
those needed for a membership certificate: a path from the root to a leaf, and 
all children of the path. Verifying that such a structure proves non-membership 
is just the same as proving membership, except that we must also check that 
we have a correct search path for x that does not end in x. 

For example, the outlined structure of Figure 8 is enough to convince us that 
8 is not an element of the set. We can easily verify that the hashes are correct 
and that the path does not end in 8. Furthermore by examining the "max leaf" 
values of the path and its children, we can see that this is the correct search path 
for 8. Thus the structure shows that 8 is not a leaf of the tree. The structure 
also shows that 9 and 10 are not leaves; but it does not show that 12 is not a 
leaf. The search path for 12 would start with the right child of the root, since 
the max leaf of the left child is 11. 

These new "tree" certificates are transparently handled by QCM: we just ex- 
tended the checking and recovery phases to handle both our original certificates 
and tree certificates. 

4.6 Revocation 
We are currently extending QCM to support certificate revocation. In this 
section we discuss how we plan to do this, and some of the subtleties that come 
UP. 

One way to add revocation to QCM is to add the operation of set difference. 



For example, suppose K issues a certificate for Alice's key: 

K says ("Alice", Kalice) E PKD. 

If Alice's key becomes compromised, K might want to revoke the certificate. 
This could be done by maintaining a set containing the compromised bindings: 

K$ Revoked = { ("Alice", Kalice), . . . ) . 

Any principal that relies on K$PKD but wants to avoid revoked bindings can 
simply use (K$PKD-K$Revoked) instead of K$PKD. Or, K could force others 
to consult the revocation list by issuing a certificate such as 

K says PKD > {("Alice", KaaCe)) - Revoked. 

To show that a binding is in ( K  $ PKD - K $ Revoked), you have to show that 
it is not in K$Revoked. So we will need a new kind of certificate, indicating 
non-membership: 

K says ("Bob", Kbob) 6 Revoked. 

The Naor-Nissim scheme already described is one way of representing these 
certificates efficiently. 

Unrestricted use of membership and non-membership certificates can lead 
to security loopholes. For example, the following scenario was possible in SDSI 
1.1 [ l l ] :  

students = Kl $students, 
school = union(teachers, admin, students), 
employees = school - students. 

This defines two groups, school and employees, in terms of some other groups 
such as K l  $students. In order to decide whether or not a principal K2 is a mem- 
ber of school or employees, we require a document, signed by K1, stating whether 
or not K2 is a member of students: that is, a certificate K1 says K2 E students, 
or K1 says K2 6 students. Suppose an 'error' occurs and we are presented 
with both certificates. This might seem impossible, but the set of students is 
bound to change (students graduate) so an adversary could collect contradic- 
tory certificates over time and submit them together, perhaps attacking a gap 
in the timestamping procedures of the database. Since K2 E students, by the 
first definition we have K2 E school. And then since K2 6 students, we have 
K2 E employees-even though K2 was never a teacher or administrator! 

The problem here seems to be that we have conflicting positive and nega- 
tive information about students. We will prohibit this in QCM by creating two 
syntactically distinct classes of names: positive names that can be used in mern- 
bership certificates, and negative rlames that can be used in non-membership 
certificates. By enforcing such restrictions we can guarantee that inconsistencies 
like the example above can never occur. 



4.7 Details of the implementation 

QCM is implemented in Caml [4], a dialect of the language ML. We chose Caml 
based on our own background as ML programmers and because of very positive 
experiences with Caml as a language for writing distributed and network pro- 
grams. In particular, our own active network implementation [14] and projects 
elsewhere such as Ensemble [7] and MMM [12] have shown that Caml can be 
used to build efficient distributed applications quickly. This success is supported 
by language features such as strong typing and automatic memory management. 
Another good candidate would have been Java, which also offers these features, 
but the Caml compiler and target code are more efficient than current Java 
implementations, and Caml has excellent support for language development. 

We have implemented several variants of QCM, all of which run on plat- 
forms that support Caml; these include Windows 95 and NT, and a number 
of Unix variants. The primary implementation uses TCP sockets to send mes- 
sages between QCM servers. Another variant runs in a single-machine mode, 
simulating distributed computing using threads. This variant is useful for pro- 
totyping, debugging, and simulating QCM computations conveniently. A third 
variant of QCM was built to run on top of the PLANet active network [lo]. In 
this implementation QCM carries out network communication using PLAN [9] 
active packets. Mike Hicks has used this system to implement a security infras- 
tructure for access control of PLANet switchlets. The examples in this paper 
run under each of our implementations, and we have developed a number of 
other small QCM programs to help us understand how well our query opti- 
mization works and to test how expressive the policy language can be. We 
have also implemented a graphical user interface for instigating and observing 
QCM computations, that runs with all variants of QCM. It produced all of the 
illustrations given in the next section. 

Our implementation is about the same size as other verifiers. The IP, 
PLANet, and simulated variants of QCM combined take up about 9,000 lines 
of Caml; this includes approximately 2,000 lines for basic cryptographic algo- 
rithms (SHA, DSA, and key generation). The GUI adds another 2,500 lines of 
code. In comparison, the SDSI 2.0 distribution is about 13,000 lines of C and 
Perl, not including basic cryptographic algorithms or GUI support. 

5 Observing QCM Computation 

In this section we give a complete example of an actual QCM computation as 
viewed with our graphical user interface. The example is based on PICS [16, 151, 
the Platform for Internet Content Selection. PICS is a system for assigning 
ratings to web pages. These ratings come in the form of labels that identify 
the page, rating, and issuer of the label, and that can optionally be signed. To 
use PICS to filter objectionable web pages, a browser must first decide what 
issuers to rely on and what ratings are acceptable; this amounts to defining a 
policy [3,6]. Second, the browser has to obtain labels. Labels can be embedded 



in pages, in which case the browser would simply get the page in question, and 
submit the labels to a verifier. It is also possible that the page might not have 
labels issued by someone the browser wants to rely on-after all, it is too much 
trouble for the page provider to coordinate with all possible issuers. QCM's 
policy-directed retrieval handles both cases nicely. 

5.1 A PICS-like rating system in QCM 

A QCM program expressing the policy of a browser is given in Table 2. The 
program is large because it contains keys. For readability, we will give an 
abbreviated version later, but it is instructive to consider the difficulties involved 
in programming with keys, including their effect on program size. 

The first line of the program is a comment, and it says that the program 
is intended to run a t  saul:3335. QCM conlputation is carried out between a 
family of QCM processes running on various computers and acting as servers 
on ports, where they receive queries and send responses over TCP sockets. 
The QCM process of the browser will run on a computer named Saul, and will 
accept queries on port 3335. Strictly speaking, there is no need for the browser's 
QCM process to accept queries from the network, but this is convenient for our 
example. 

The second line says that this is an online program: answers to queries will 
be signed online. The signing principal is given next, in a notation similar to 
that of SDSI; the principal contains both the public key, and the private key 
needed to produce signatures. The keys are DSA keys given in base 64 notation. 

The main part of the program is given next, in a sequence of definitions 
that should look familiar: we use exactly the same syntax as in the rest of the 
paper, except that the principals are written out in full, and 'E' is not an ASCII 
symbol, so we use '<-' instead. The first definition relies on a principal with 
two parts: a server, saul:3336, and a public key. Let's abbreviate this principal 
as K6, so the definition is easier to parse: 

Ratings = { x I ("a l ice" ,k)  <- K6$PKD, x <- k $ ~ a t i n g s  1; 

The policy says to rely on the PKD of K6 to say what key k is associated with 
Alice, and then rely on k for ratings. There is a second definition, OK, that says 
that G-rated pages are OK to view. 

Our example uses a handful of other QCM processes, which for simplicity 
were all run on a single computer (Saul) at different ports. However, all commu- 
nication was carried out through the socket interface just as it would have been 
if the processes were on different computers. The programs of the processes are 
displayed in Table 3, where they are listed one after the other beginning with a 
comment line indicating which port they are listening on and a brief explana- 
tion of their function. For brevity, principals have been abbreviated in the table 
listing: K3 is the principal of saul:3333, K4 is the principal of saul:3334, and so 
on. In the actual QCM programs the principals are written out in full. They 
always include a public key, and also private keys and server addresses when 
appropriate. 



Table 2: The policy of a browser written in QCM 

# saul:3335 -- Policy of a browser 

online 

Principal ( 
<PrivateKey="AxuvCtdEoj OVtGnBD2bMAIhXI8Y=l1 , 
PublicKey="P: 6e+ixW3D5dHFrZo+Cd2YsR/CxvFVcDyAImn5nESzl7GjBurur 

3xrEVj7XV+wpS7N2XtZOQPeNoUIdlRRXAY2qDK8Cc7WyofsomqCzW5Sdz4d4sa45J2 
ur/+pdiZtqEnfGoYdl5mUPhShE5BtfaYOVrBzrfX7pqIPLhq476zobs=, Q: 2dfTn 
TvliOm4HzCh9rlIaKT2alk=, ALPHA: 5amSLOVSdMxCRphMFIqiFq+ZFlo5q9gPVs 
w2Fxm5HDCxCxXr3sjixgOpQ6Z~Ze/eaOKGyjvE8xQuwfJZmlGvSDAvOiyyDyoor~ 
qHkzjM9+m7zetZvZl3F3zDnVKQR3MfgQpix6qeri9xsivuU4fE2iusOZsrTwBiF49z 
N20MA=, Y: ljO40fQJ5KhSk+wRwvfRypl4Y2Yk7XHNvYYwRcQy~+e5dMzGeryYjD 
qXNrVZUnV4cuDX65tRSBcTR3TI815Ort3N~Goflo6E/G6LDF~sAqv5JbmsNvehL7 
nmbkHok3W/37XHxrAKcA5DgLgNqDzV7PejxKhOafjjABq9/~qM=~~>) 

Ratings = 
{ x I (llalicell,k) <- Principal( 

<Server= [saul : 33361 , 
PublicKey="P: 6e+ixW3D5dHFrZo+Cd2YsR/ 

CxvFVcDyAImn5nESz17GjBurur3xrEVj7XV+wpS7N2XtZOQPeNoUIdlRRXAY2qDK8C 
c7WyofsomqCzW5Sdz4d4sa45J2ur/+pdiZtqEnfGoYd15mUPhShE5BtfaYOVrBzrfX 
7pqIPLhq476zobs=, Q: 2dfTnTvliOm4HzCh9rlIaKT2alk=, ALPHA: OXrnMrRFw 
HdRY2i/ya7d1murBUkhJwc+H41JTpZ7LJNKcOs3+HolntE~WiO5B4OwwSO2Pl5B7a 
zZxm23zFXUJVXQATGEH13XsX+BEaxrIMj6Vh+dOw5B3286wjhAm/lgyglrSsl20BNq 
NeW42zTMCoYqeFrs+vI4Z1OZx8yCMmY=, Y: D+4MymnOidGKMoOgZjappciAzd/qM 
~ L I ~ A ~ ~ ~ T E R ~ ~ Y Q ~ O ~ ~ U L ~ L ~ X / S ~ Y ~ G ~ L Z N J ~ L J ~ I Y ~ E Q G ~ G ~ N P E ~ C + ~ W H ~ ~ ~ D ~ S K  
OXjaaeCOaulREkyO~W5qvvXql31YAbinnBMRrJx5nZoL2TelVAW/KY5JNM9riUSp6 
KdKKnT+dE4=I1>) $PKD , 

x <- k$Ratings 1; 

OK = ( p I (p,"G") <- Ratings ); 



Table 3: QCM Programs 

# saul:3333 -- A ratings database 
off line 
{ <Document = <Name = ltRatingsll, 

Includes = (("www .microsof t . comlI, tlR1l))>, 
Signature = ..., Signer = K3>, 
<Document = <Name = "Ratings", 

Includes = ( ("www . yahoo. com" , "G") I> , 
Signature = ..., Signer = K3>, 
(Document = <Name = "Ratings", 

Includes = {("www . ietf . org" , "GIt))>, 
Signature = ..., Signer = K3> 

3 

# saul:3334 -- A ratings database 
online K4 { 
Ratings = { 

("www.netscape. corn", "R") , 
("WWW. nsa. gov" , "R") 

3; 
3 

# saul:3335 -- Policy of a browser 
online K5 { 
Ratings = { x I ("slice" ,k) <- K6$PKD, 

x <- k$Ratings 3; 
OK = ( p I (p,"G1') <- Ratings ); 

3 

# saul:3336 -- A public key directory 
online K6 { 
local = ( ("cindy" , K7) , 

("doug", K6) 3; 
PKD = union(loca1, K~$PKD) ; 

3 

# saul:3337 -- A public key directory 
online K7 C 
PKD = ( ("alice" , K3), 

("bob", K5) , 
("alice", K4) 3 ;  

3 



Notice that we have included one offline program, for saul:3333. This simply 
consists of a collection of certificates, all signed by K3. Each certificate gives a 
single member of the set K3$Ratings. In previous sections of the paper we've 
used a more readable notation, for example, we would have written the last 
certificate as 

K3 says Ratings 5) {("www.ietf.org" , "Go)) 

or even 
K3 says (L'www.ietf.org", "G") E Ratings. 

The table gives the actual syntax, except that the signatures have been trun- 
cated for brevity. 

5.2 Tracing QCM execution. 

We have built an application, the QCM GUI, whose primary purpose is to 
instigate QCM computations and observe their actions. The GUI can submit 
queries to QCM just like any other application, and in addition, can cause any 
QCM node to send it activity reports. Over time the GUI gathers a trace of 
the computation of a distributed collection of nodes, which can be displayed, 
replayed, and even exported as a movie. The pictures shown in this section were 
generated by the GUI from a trace of an actual QCM computation carried out 
by our IP implementation of QCM. 

No computation takes place until a query is submitted, so we use the GUI 
to submit the query OK to saul:3335. According to Table 3, this should evaluate 
to the set of web pages that K5 (the principal of the browser) considers to be 
'ok'. This was defined to be the set of web pages that a key of "alice" rates 
as having "G" content. We used the GUI to watch how QCM determines the 
keys of "slice" and the ratings associated with these keys. According to the 
program of saul:3335, keys for "slice" are drawn from K6, so we expect this 
principal to be queried first, and this is confirmed by the first two steps shown 
by the GUI: 

OK; {k 1 ("aliceU,k) <- KG$PKD); 

Each picture shows the activity of the five QCM processes at  a step of the 
computation. In the first picture, the question mark next to node saul:3335 



indicates that the node has received a query, OK, printed under the picture. 
In the second picture, the arrow indicates a message sent from saul:3335 to 
saul:3336; again, the question mark indicates a query, printed below the picture. 
The query asks for the keys of "al icel ' ,  according to the PKD of K6 (the 
principal at  saul:3336). 

Since KG$PKD is defined in terms of K7$PKD, we expect saul:3336 to exchange 
messages with saul:3337 (the server of K7), and this is exactly what happens: 

{k I ("alice" , k) <- K7$PKD) ; Signed(<Document = 
<QueryHash = "X5gsZeAn ...", 
Response = {K3,K4)>, 

Signature = "R: TycLDa. . . ">) 

The response (indicated with an exclamation point) is a signed message. It has 
three parts: the response to the query itself (the keys K3 and K4); a hash of 
the original query; and a signature. (We've truncated the hash and signature 
to save space.) Note that there is no Signer field, because we assume that 
saul:3336 expects K7 to be the signer. The hash prevents a 'man in the middle' 
from using a previous response signed by K 7  as the response to this new query. 
The hash is calculated by converting the query into a canonical string form, 
which is then run through SHA; the signature is produced by running DSA on 
the canonical string of the Document. Both the hash and signature are checked 
by QCM at saul:3336. 

Saul:3336 can now tell saul:3335 the keys of "a l ice" ,  and saul:3335 can 
begin collecting ratings: 



Signed(<Document = {p I (p,  "G") <- K3$Ratings); 
<QueryHash = "ZGW. . . " , 
Response = IK3,K4)>, 

Signature = "R: K...">) 

On the left is the response to saul:3335. Note that although sad3336 has no 
keys to add to those it obtained from K7, the certificate signed by K7 is not 
simply forwarded. This is because saul:3335 asked about KG$PKD, not K7$PKD, 
and expects a response signed by K6. Consequently, saul:3335 will have no way 
of knowing that the response was derived from K7. 

Above right, saul:3335 queries the first "alice" for the "G" rated pages, 
provoking the following response: 

Certificates (<Document = <Name = "Ratings", 
Includes = C ("www. yahoo. corn", "G") )>, 

Signature = "R: de jgOAkQJf SUsoYQ . . . " , Signer = K3>, 
<Document = <Name = "Ratings", 

Includes = {("wuw.ietf.org","G"))>, 
Signature = "R: SkhPiA74jrkrnClB. . . " , Signer = K3>) 

This is an offline response, i.e., a set of certificates that were signed offline by the 
principal K 3 .  Notice that saul:3333 is smart enough to return only the subset 
of its certificates that are relevant to the query being asked (in Table 3, we can 
see that there is also a certificate for an "R" rated page). These certificates 
are different from the signed responses we have seen so far. First, they do not 
directly answer the query: the query asked for a set of pages, and the certificates 



speak of both pages and their ratings. This forces saul:3335 into some extra 
work, extracting the answer to its query from the certificates, as described in 
Section 4. Second, they are self-contained in that they have a Signer field, and 
an explicit Name instead of a QueryHash field. Self-contained certificates are also 
used for 'pushing' certificates at QCM. 

Querying the second "a l i ce"  does not yield any new pages (none there are 
rated " G " ) :  

{p I (p,"Gt1) <- K4$Ratings>; Signed(<Document = <QueryHash = . . . , 
Response = I>>,  

Signature = ... >) 

In the final step, the responses are combined to answer the original question 
('which web pages are ok?'): 

One further remark on the GUI is in order. Since the computation is dis- 
tributed there is no guarantee, even when running all of the processes on the 
same machine as we did here, that the GUI will receive reports of events in the 
order in which they occured. When we set up this example, our runs sometimes 
showed events in the causal order that appears here in the paper and some- 
times showed these events in other orders. Actual sequencing is ensured only 
for causally related events in a single node. This makes it more complicated 
to understand the QCM movie, of course; further work on the GUI and QCM 
would be necessary to aid better ordering. A simple approach to this problem is 



to use our threaded version of QCM, which runs in one process; when the GUI 
monitors this process, causally related events will be reported in the expected 
sequence. 

5.3 Variations and Analysis. 

We now consider some variations on the computation above and analyze a few 
design decisions. 

Suppose one or more of the QCM servers does not respond. This would not 
be at all unusual in a distributed context since overloaded servers and machine 
outages could cause this behavior. Recall that QCM attempts a best effort 
response, so failures of this kind cause less information to be reported. For our 
example above, with query OK submitted to to saul:3335, the response would 
be the empty set, { ), if any of the servers saul:3333, saul:3336, saul:3337 were 
not available. However, if saul:3334 is not available, then the ultimate response 
will not be affected because it turns out that saul:3334 had no information 
about appropriately-rated pages. This approach has the advantage that QCM is 
tolerant of some lack of information, and the disadvantage that the information 
it returns must be viewed as partial in such cases. 

QCM has been set up to make limited use of supplied certificates. For 
example, if we supplied a certificate from K6 along with the original query, 
then queries to saul:3336 would have been short-circuited. If the certificate said 
that the keys of "alice" were K3 and K4, then the computation would have 
proceeded as before, but without queries to saul:3336 and saul:3337. If, on 
the other hand, this certificate contained diferent information, then saul:3335 
would rely on it and possibly obtain a different answer. For instance, suppose 
the GUI supplied a certificate signed by K6 with no keys for "alice". Such 
a certificate might have been obtained at  an earlier time from saul:3336 when 
saul:3337 was unavailable. Then saul:3335 would have replied to the GUI with 
the empty set because it would assume that saul:3336 does not provide any keys 
for "alice". This is unfortunate, but the alternative would be to have QCM 
query saul:3336 anyway, and this would defeat the point of supplying certificates 
in the first place. Applications must supply certificates only if they wish them 
to be used in place of a query to the principal that signed a response. This is 
safe because the worst consequence is that less information may be given. 

QCM nodes can also be configured to run in a verify-only mode. If saul:3333, 
saul:3334, or saul:3337 were configured this way there would be no effect on the 
computation. If, however, saul:3335 or saul:3336 were configured in this way 
then the application would need to supply certificates in order to get a response. 
In verify-only mode, the verify will not automatically retrieve certificates, leav- 
ing that to the application. For instance if saul:3335 is in verify-only mode 
then the application would need to consult all of the other processes to obtain 
certificates and then submit them to saul:3335. If all of the processes are in 
verify-retrieve mode except saul:3336, then the application will heed to obtain 
a certificate for the keys of "alice" signed by K6 (not K7!) in order to get the 
desired information. 



An important thing to observe about each of these computations is that 
the data/programs of the QCM servers themselves are never changed. After the 
query is answered, the information held at all of the nodes is the same as before, 
and another query will cause the same computation to take place. The situation 
is similar to that of web pages, where the page is viewed but not changed by a 
hit. QCM could cache information, but, as always, there is a problem with stale 
data. Our current implementation does not attempt to do caching; however, an 
application could cache certificates to speed responses. This is safe since QCM 
will check the validity ranges on the certificates. 

6 Conclusions 

We have described a system, QCM, that combines security policy verification 
with automatic policy-directed certificate retrieval. QCM is able to accept cer- 
tificates supplied by applications, combine them with local certificates, and 
determine which remote certificates are needed. It is able to retrieve remote 
certificates on a best effort basis while maintaining data integrity. The sup- 
plied, local, and retrieved certificates can then be combined to determine policy 
compliance. The system is able to handle offline and online modes. It is able to 
deal with nodes that will retrieve certificates on behalf of a requester and those 
that do not. The system has been formally specified and implemented to run 
on a variety of platforms. We have explored many kinds of policies and retrieval 
techniques to show that the system is able to express policies simply and carry 
out retrieval in a reasonable way. We believe that these steps have shown that 
policy-directed certificate retrieval is feasible and desirable. 

There are a few systems relevant to QCM and policy-directed certificate 
retrieval. DNSSEC [I], the secure extension of the Domain Name System pro- 
posed by the IETF, is one such. DNSSEC is similar to QCM in that it is a 
hierarchical, distributed database system for public data. The fact that DNS 
is such a widespread service is a good indication that QCM will be scalable to 
larger examples than we have shown here. We think that QCM has two advan- 
tages over DNSSEC: first, DNS has not been designed as a verifier, for example, 
it does not accept certificates 'pushed' at it along with queries; and second, DNS 
has been specifically targeted to the needs of the network infrastructure. It can 
be adapted to other applications, via the mechanism of text resource records, 
but this is not central to its design. QCM has been designed with application 
support as a first priority. A very recent example of a policy-directed system 
is PICSRules [8], a language proposed by the World Wide Web Consortium for 
expressing policies about web content filtering. PICSRules policies specify what 
PICS labels are required for viewing a web page, and can specify that labels 
can be obtained from remote servers ("label bureaus"). PICS labels are not yet 
signed, although this is planned. 

It seems certain that certificates will be used by more and more applica- 
tions in the coming years. Some of these applications will present challenges 
to automatic, policy-directed retrieval systems that we have not yet considered. 



Figure 9: Certificates in a Mortgage Approval 

Consider, for example, the documents involved in the pre-approval of a mort- 
gage. Today, these documents are passed along by mail, fax, computer network, 
orally over the telephone, through personal contact, and so on. The authentica- 
tion of documents generally relies on letterheads and security of communication 
channels like the telephone. What would it take to make this process more 
electronic and more automatic? It is important to note that certificate retrieval 
is a key element of the verification process. The person requesting the mortage 
and the one granting it are engaged in a mutual effort to create a proof: a proof 
that a mortgage should be pre-approved. To do this various "axioms" must be 
established, like how much money the requester has in the bank, and it must 
be proven that certain policies are respected, such as bank rules about the size 
of a loan compared to the value of a property. This proof entails the retrieval 
of a number of certificates. For instance, the requester may be asked to supply 
recent bank statements and permission for the grantor to check the requester's 
credit rating (see Figure 9). This process is reflective of many of the themes of 
this paper. Certificates must be 'pushed' to the grantor by the requester while 
the grantor uses information from the requester to carry out information re- 
trieval from a credit rating company. However, this story also carries a number 
of complexities. For instance, the grantor may need to get a certificate (possibly 
just oral permission) before accessing the credit record of the requester. In an 
electronic version of this scenario such permission should probably be passed 
as a certificate and checked by the credit rating company before releasing in- 
formation. This causes the retrieval problem to be intermingled with access 
control. Our system would need to be extended to deal automatically with this 
added complexity. However, it is likely that much of the process can indeed be 
automated. 

Another aspect of the scenario of Figure 9 is the likely existence of large data 
repositories controlled by one or more of the principals. The bank and credit 
rating company almost certainly have large databases that are used to generate 
the certificates involved in this exchange. A system for automating this process 
will need to have a convenient interface to these systems. We believe that this is 
a strength of QCM, which was designed to make this interface easier, but there 



is still work to do if QCM is to match queries in its comprehension syntax to 
standards like SQL. 
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