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Abstract

In this paper, we consider approximations of probability distributions over ZZn

p
. We

present an approach to estimate the quality of approximations of probability distributions

towards the construction of small probability spaces. These are used to derandomize al-

gorithms. In contrast to results by Even, Goldreich, Luby, Nisan and Veli�ckovi�c [EGLNV],

our methods are simple, and for reasonably small p, we get smaller sample spaces. Our con-

siderations are motivated by a problemwhich was mentioned in recent work of Azar, Motwani

and Naor [AMN], namely, how to construct in time polynomial in n a good approximation

to the joint probability distribution of the random variables X1; X2; : : : ; Xn where each Xi

has values in f0; 1g and satis�es Xi = 0 with probability q and Xi = 1 with probability 1� q

where q is arbitrary. Our considerations improve on results by [EGLNV] and [AMN].

1 Introduction

During the last years, techniques have been developed to minimize the number of random bits
which are used by randomized algorithms. In general, these methods are such that independent
random variables are replaced by some weakly dependent random variables which can be gener-

ated using fewer bits, therefore, dropping the running times of several algorithms. Alon, Babai
and Itai [ABI] observed that it su�ces for certain algorithms to use only pairwise independ-

ent bits instead of mutually independent ones. In general, to generate k-wise independent bits
sample spaces of size only O(nk) can be used, cf. Karlo� and Mansour [KM] for further details.

However, for certain algorithms a large amount of independence is desirable. In view of this,
Berger and Rompel [BR] showed that for several problems it su�ces to consider only (logn)c-

wise independence of the corresponding random variables. Small probability spaces are very
desirable for derandomizing randomized algorithms. The resulting sample space which re
ects

the behaviour of the considered random variables, can be investigated by exhaustive search or
by the method of conditional probabilities, cf. Alon and Spencer [AS], and Motwani, Naor and
Naor [MNN].

Instead of looking for small probability spaces, Naor and Naor [NN] considered approximations
to probability distributions. In their work, they used the notion of the bias of a distribution
which was introduced by Vazirani [Va].

De�nition 1.1: Let X1; X2; : : : ; Xn be random variables with values in f0; 1g. The bias of a

subset S � fX1; X2; : : : ; Xng with respect to linear tests is de�ned by

jProb[
X
Xi2S

Xi � 0mod2]� Prob[
X
Xi2S

Xi � 1mod2]j :

�
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In an �-biased distribution, each subset S of the random variables has bias at most �. Clearly,
for mutually independent and uniform random variables the bias is zero. Naor and Naor gave

in [NN] constructions of �-biased distributions where the sample space has size poly(n; 1=�). A
di�erent construction based on Weil's theorem on quadratic residues was given by Peralta [Pe].

Alon, Goldreich, H�astad and Peralta gave in [AGHP] three constructions, including Peralta's
construction, for �-biased sample spaces S � ZZ

n
2 with respect to linear tests in ZZ2 of size

O(n2=(�2(log (n=�)�) where � = 1; 0 and 2 in the third construction. Azar, Motwani and Naor
[AMN] generalized the work of [AGHP] to random variables with values from arbitrary groups,

in particular, for ZZp = f0; 1; : : : ; p�1g, the set of residues modulo p. There, among others, they
used Weil's theorem on character sums and Fourier transforms to obtain estimates on how to

measure approximations to the uniform distribution over ZZnp . Here, we use a more elementary
way to achieve this, and we obtain sharper estimates. The results from [AGHP] were applied in
the paper [HPS] of H�astad, Phillips and Safra where, for a collection of polynomials over ZZp of

degree at most two, they wanted to �nd the largest number of these polynomials which have a
common root. Indeed, �nding for this problem an approximate solution within a factor of p� �

for any � > 0 is as hard as �nding the exact solution.

Besides Weil's theorem on quadratic residues, a similar behaviour of the underlying structures is
given by Lindsey's inequality [BFS] or by the corresponding inequalities for Expander- respective

Ramanujan graphs [LPS]. These phaenomena can be summarized under the term Quasirandom-

ness, see [CGW], namely, the structures behave approximately like random, that is, show small

discrepancies. From that point of view, it is natural that the combinatorial notion of discrep-
ancy was taken into account with the work of Even, Goldreich, Luby, Nisan and Veli�ckovi�c

[EGLNV]. Indeed, Alon, Bruck, Naor, Naor and Roth [ABNR] used Ramanujan graphs to con-
struct good error-correcting codes which also yield small sample spaces for approximating the

joint distribution of random variables.

Azar, Motwani and Naor stated in [AMN] the problem of �nding good approximations for the
joint distribution of random variables X1; X2; : : : ; Xn with values in f0; 1g, where X1; X2; : : : ; Xn

are identically distributed, and Prob[X1 = 0] = 1 � Prob[X1 = 1] = q 6= 1
2 . Even, Goldreich,

Luby, Nisan and Veli�ckovi�c [EGLNV] considered this problem in a general setting, namely, for
independent random variables X1; X2; : : : ; Xn with values in f1; 2; : : : ; mg where Prob[Xi = j] =

pi;j , 1 � i � n and 1 � j � m. In [EGLNV], constructions of small sample spaces were given
which approximate the joint distribution of X1; X2; : : : ; Xn. To do so, they used the combin-

atorial notion of discrepancy, cf. [BC]. Let Rn be the set of all axis-aligned rectangles of the
n-dimensional cube [0; 1)n. For any �nite set S � [0; 1)n and any rectangle R 2 Rn with volume

vol(R), the discrepancy of S on Rn is de�ned by discS(Rn) = supR2Rn
jvol(R)� jS \Rj=jSjj.

A sample space S � f1; 2; : : : ; mgn is (�; k)-independent with respect to the joint distribution
of the independent random variables X1; X2; : : : ; Xn with values in f1; 2; : : : ; mg if for any se-

quence (�i1 ; : : :�ik ) 2 f1; 2; : : : ; mgk it holds jProb[(Xi1; Xi2 : : : ; Xik) = (�i1 ; �i2 ; : : : ; �ik)] �Qk
j=1 pij ;�ij j � �. In [EGLNV], Even, Goldreich, Luby, Nisan and Veli�ckovi�c showed that sets

S with small discrepancy, i.e., discS(Rn) � �, yield sample spaces which are (�; k)-independent
with respect to the joint distribution of random variables. Their construction has the advant-

age to be universal. One construction in [EGLNV] yields an (�; k)-independent sample space
S � f1; 2; : : : ; mgn of size poly(logn; 2k; 1=�), while the other two constructions yield (�; k)-

independent spaces S � f1; 2; : : : ; mgn of size O
�
(n=�)log (1=�)

�
and O

�
(n=�)logn

�
, respectively.

The results of [EGLNV] were extended and applied by Chari, Rohatgi and Srinivasan [CRS].
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Again using the notion of discrepancy and projections, they constructed an (�; k)-independent
sample space S of size poly(logn; 1=�;minf2k; klog(1=�)g).
The considerations in this paper are motivated by the problem from Azar, Motwani and Naor
[AMN]. In contrast to the work of [EGLNV] and [CRS] where the discrepancy of axis-aligned
rectangles is used, we o�er a di�erent approach for investigating approximations of probabil-

ity spaces by using basic Linear Algebra. The intention behind our considerations is to give
more insight towards the understanding of the underlying concepts for approximating random

variables as asked for in [EGLNV].

Using our results on approximations to the uniform distribution over ZZnp , we show, by collapsing
nonzero entries to 1, how good this strategy measures the deviation distance between these

distributions. For uniformly distributed random variables and reasonably small values of p,
the quality of our approximation is better than the one of [CRS] and [EGLNV], i.e., the sample

spaces have size O(p2n2=�2). Otherwise, the quality of our approximations is comparable to that
of [CRS], i.e., for identically distributed independent binary random variables X1; X2; : : : ; Xn

with Prob[X1 = 0] = 1 � Prob[X1 = 1] = 1=p and p a prime, the size of an (�; k)-independent
sample space S is O(22kp2n2=�2). It should be mentioned that by using parity check matrices
of BCH-codes as in [ABI] and [NN], in all these upper bounds for jSj the n can be replaced by

k2 � logp n for p � 3 and by k � logn for p = 2. in all these upper bounds for jSj.
However, for some applications our concepts seem to be more appropriate. Especially, if one
wants to apply the results in circuit theory. Namely, Krause and Pudlak [KP] show by a probabil-

istic argument that fAND;OR;NOTg-circuits of quasipolynomial size (i.e., size exp((lnn)O(1)))
can be realized by a threshold MODp-circuit of quasipolynomial size. Similarly, one can show

that, say, a threshold AND-circuit can be simulated by a threshold-MODp-circuit. By choos-
ing MODp-gates with �-biased weight vectors, one can construct such threshold-MODp-circuits

approximatively, cf. [Be].

2 (�; k)-Independence

First we introduce some basic notation. Let p be a �xed prime number. Let ZZp = f0; 1; : : : ; p�1g
be the set of residues modulo p. For positive integers n, the set ZZnp = f0; 1; : : : ; p� 1gn is the n-
fold cartesian product of ZZp. For sequences � = (�1; �2; : : : ; �n) 2 ZZ

n
p and � = (�1; �2; : : : ; �n) 2

ZZ
n
p , let < �; � >p�

Pn
i=1 �i�imod p denote the inner product of � and � modulo p. Let

0n = (0; 0; : : : ; 0) be the sequence of length n which has only zero entries.

We introduce some basic notions from probability theory. By a sample space, we will understand
a subset S � ZZ

n
p .

De�nition 2.1: a) Let p be a prime. For a random variable X with values in ZZp, let the bias

of X be de�ned by

bias(X) = (p� 1) � Prob [X = 0]� Prob [X 6= 0] :

A random variable X 2 ZZp is �-biased if jbias(X)j � �.

b) The sample space S � ZZ
n
p is �-biased with respect to MODp-tests if for each c 2 ZZp

and each sequence � = (�1; �2; : : : ; �n) 2 ZZnpnf0ng the following is valid: if a sequence X =
(x1; x2; : : : ; xn) 2 S is chosen uniformly at random from S, then the random variable (< �;X >p

+cmod p) is �-biased.
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c) For a �xed positive integer k, the sample space S � ZZ
n
p is �-biased with respect to MODp-tests

of size at most k if for each c 2 ZZp and each sequence � = (�1; �2; : : : ; �n) 2 ZZ
n
pnf0ng where at

most k entries of � are nonzero, the following is valid: if a sequence X = (x1; x2; : : : ; xn) 2 S is
chosen uniformly at random from S, then the random variable (< �;X >p +cmod p) is �-biased.

d) A sample space S � ZZ
n
p is called (�; k)-independent if for each k positions 1 � i1 < i2 < : : : <

ik � n and any sequences � = (�1; �2; : : : ; �k) 2 ZZ
k
p and X = (x1; x2; : : : ; xn) 2 S where X is

chosen uniformly at random from S, we have����Prob [(xi1 ; xi2 ; : : : ; xik) = �]�
1

pk

���� � � :

Thus, in an (�; k)-independent sample space S � ZZ
n
p , each �xed sequence of length k occurs as

a subsequence approximately (up to �) as often as it should.

In this paper, we will use heavily linear algebra. It turns out that the following set of functions is
convenient for our purposes. For �xed elements c 2 ZZp and sequences � = (�1; �2; : : : ; �n); � =

(�1; �2; : : : ; �n) 2 ZZ
n
p , let �

c
�:ZZ

n
p ! IR be de�ned by

�c
�(�) =

(
�
p
p� 1 if

Pn
i=1 �i�i + c � 0mod p

1p
p�1 else.

Essentially, the function �c
� is a `normalized' indicator function for the event < �; � >p +c �

0mod p. Namely, observe thatX
c2ZZp

�c
�(�) = �

p
p� 1 + (p� 1) �

1p
p� 1

= 0 :

Central in our argumentation is the following Lemma which generalizes a result of Vazirani [Va]
who considered the case p = 2, cf. [AGHP].

Lemma 2.2: Let k � 1 be a �xed positive integer. Let S � ZZ
n
p be a sample space which is

�-biased with respect to MODp-tests of size at most k. Then, the space S is (2 ��=p �(1�p�k); k)-
independent.

An elementary proof of Lemma 2.2 using basic linear algebra is given in the appendix.

By Lemma 2.2, MODp-tests, i.e., linear tests, are appropriate to test (�; k)-independence of

sample spaces. Linear tests can be seen as tests for trying to refute randomness. As an immediate
consequence of Lemma 2.2, we obtain:

Corollary 2.3: Let S � ZZ
n
p be a sample space which is �-biased with respect to MODp-tests.

Then, for every positive integer k, the space S is (2 � �=p � (1� p�k); k)-independent.

Next, we consider the distance of two probability distributions.

For any sequence � = (�1; �2; : : : ; �k) 2 IRk of reals, let jj�jj1 =
Pk

i=1 j�ij denote the L1-norm
of �. The distance d(�; �) between two sequences � = (�1; �2; : : : ; �k) and � = (�1; �2; : : : ; �k)

is de�ned by d(�; �) = jj�� �jj1. For two probability distributions D1; D2 on ZZ
k
p the variation

distance of D1 and D2 is jj (D1(x))x2ZZkp � (D2(x))x2ZZ
pk
jj1.

Let X1; X2; : : : ; Xn be random variables with values in some set Y . The joint distribution is
the distribution on Y n, i.e., for any sequence (�1; �2; : : : ; �n) 2 Y n one is interested in the

probability Prob[(X1; X2; : : : ; Xn) = (�1; �2; : : : ; �n)].
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De�nition 2.4: Let X1; X2; : : : ; Xn be random variables with values in ZZp. For a subset S �
fX1; X2; : : : ; Xng let U(S) denote the uniform distribution on this subset S of random variables.

Let D(S) denote the joint distribution of S. Then, the random variables X1; X2; : : : ; Xn are
called k-wise �-dependent if for all subsets S with jSj � k, we have

jjD(S)� U(S)jj1 � � :

Theorem 2.5: If the random variables X1; X2; : : : ; Xn, with values in ZZp are �-biased with
respect to MODp-tests of size at most k, then they are also k-wise �-dependent for � = � �
pk=2=

p
p� 1.

Thus, using a sample space of polynomial size, one can approximate well a logp n-wise inde-
pendent uniform distribution, cf. [NN]. Theorem 2.5 strengthens a result of Azar, Motwani and

Naor [AMN] where � = pk � � was shown. The case p = 2 was proved by Alon, Goldreich, H�astad
and Peralta [AGHP].

For c 2 ZZp and � 2 ZZ
k
p , de�ne

dc� =
X
�2ZZkp

�c
�(�) � p� :

For the proof of Theorem 2.5, we use the following lemma.

Lemma 2.6: X
�2ZZkp

p2� = p�(k+1) �
X
c2ZZp

X
�2ZZkp

(dc�)
2 : (1)

Proof: We evaluate the right hand side of (1). Using (21) (from the appendix), we infer

X
c2ZZp

X
�2ZZkp

(dc�)
2 =

X
c2ZZp

X
�2ZZkp

0
B@ X
�2ZZkp

�c
�(�) � p�

1
CA
2

=
X
�2ZZkp

p2�
X
c2ZZp

X
�2ZZkp

�c
�(�)

2

+
X

2ZZkp

p

X
c2ZZp

X
�2ZZkp

X
�2ZZkp;�6=


�c
�(�) ��c

�(
) � p�

=
X
�2ZZkp

p2� � pk+1 +
X

2ZZkp

p

X
c2ZZp

X
�2ZZkp

X
�2ZZkp;�6=


�c
�(�) � �c

�(
) � p�

= pk+1 �
X
�2ZZkp

p2�

since we have by (19) (from the appendix) thatX
c2ZZp

X
�2ZZkp

X
�2ZZkp;�6=


�c
�(�) � �c

�(
) � p� = 0 :

2
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Now we will prove Theorem 2.5.

Proof: First notice that by assumption and by (15) (from the appendix), we have jdc�j �
�=
p
p� 1. Using

P
�2ZZkp p� = 1, we have

d00k =
X
�2ZZkp

�0
0k(�) � p� =

X
�2ZZkp

�
p
p� 1 � p� = �

p
p� 1 ; (2)

and for c 6= 0,

dc0k =
X
�2ZZkp

�c
0k(�) � p� =

1p
p� 1

: (3)

This implies that

p�(k+1) �
X
c2ZZp

(dc0k)
2 = p�k : (4)

Assume w.l.o.g. that S = fX1; X2; : : : ; Xkg. Then,

jjD(S)� U(S)jj1 =
X
�2ZZkp

jp� � p�kj :

To estimate this expression, we use the fact that
P

�2ZZkp p� = 1 and the Cauchy-Schwarz in-

equality. Together with (1) and (4) we obtain

X
�2ZZkp

jp� � p�k j � p
k
2 �

0
B@ X
�2ZZkp

(p� � p�k)2

1
CA

1
2

= p
k
2 �

0
B@ X
�2ZZkp

p2� � p�k

1
CA

1
2

=

= p
k
2 �

0
B@p�(k+1) � X

c2ZZp

X
�2ZZkp

(dc�)
2 � p�k

1
CA

1
2

= p
k
2 �

0
B@p�(k+1) � X

c2ZZp

X
�2ZZkpnf0kg

(dc�)
2

1
CA

1
2

�

� p
k
2 �
 
p�k � (pk � 1) �

�2

p� 1

! 1
2

<
p
k
2

p
p� 1

� � :

Clearly, for any subset S � fX1; X2; : : : ; Xng with jSj � k, the same bound holds. 2

3 Approximating Nonuniform Distributions

In [AMN] Azar, Motwani and Naor stated the problem to construct in time polynomial in n a
good approximation to the joint distribution of the independent identically distributed random

variables X1; X2; : : : ; Xn where each Xi takes value 0 with probability q 6= 1=2 and value 1
with probability 1 � q. We consider here the case q = 1=p where p is a prime number. We

consider random variables Z1; Z2; : : : ; Zn which take values in ZZp uniformly at random, i.e.,
Prob[Zi = j] = Prob[Zi = k] = 1=p for all j; k 2 ZZp. Applying our results on �-biased

approximations to the joint distribution of Z1; Z2; : : : ; Zn, we investigate what happens for the
new distribution where all nonzero entries are collapsed to 1. Notice that in the unbiased case,
i.e., � = 0, we obtain that the entry 0 occurs with probability q = 1=p and the entry 1 with

probability 1� 1=p.
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De�nition 3.1: Let �
 = (
1; 
2; : : : ; 
n) 2 f0; �gn be a sequence where � stands for any element
from ZZpnf0g. A sequence X = (x1; x2; : : : ; xn) 2 ZZ

n
p is of type �
, i. e., type(X) = �
 if and only

if it holds that xi = 0 i� 
i = 0 for i = 1; 2; : : : ; n. Thus, if two sequences X; Y 2 ZZ
n
p are of the

same type, the positions of the nonzero entries of X and Y coincide, but the entries need not

be the same.

For sequences � 2 ZZ
n
p , collapsing the nonzero entries of � to 1 yields a new sequence �� 2 f0; 1gn,

the reduced sequence of �. For a sample space S � ZZ
n
p , let the reduced space �S � ZZ

n
2 (possibly

a multiset) be obtained from S by identifying in any sequence X = (x1; x2; : : : ; xn) 2 S every
nonzero entry by 1.

Theorem 3.2: Let S � ZZ
n
p be a sample space which is �-biased with respect to MODp-tests

of size at most k. Then, the reduced space �S � ZZ
n
2 is

�
� � 2k+1=p; k

�
-independent.

This improves on recent results in [EGLNV] (version from 2.97, Theorem 10).

Proof: Let X = (x1; x2; : : : ; xn) be chosen uniformly at random from S. We consider w.l.o.g.

the �rst k positions of X , i.e., x1; x2; : : : ; xk. For a sequence �
 2 f0; �gk, let P (�
) be the
probability that �
 = type(x1; x2; : : : ; xk). Let z(�
) be the number of components of �
 with zero

entries. Then, by (16) (from the appendix), we have

P (�
) =
X

�2ZZkp;type(�)=�


p� = p�(k+1) �
X

�2ZZkp;type(�)=�


X
�2ZZkp

X
c2ZZp

dc� ��c
�(�) :

First, consider the sum for � = 0k. Let

P (�
; 0k) = p�(k+1) �
X

�2ZZkp;type(�)=�


X
c2ZZp

dc0k � �
c
0k(�) : (5)

Using (2) and (3), equality (5) becomes

P (�
; 0k) = p�(k+1) �
X

�2ZZkp;type(�)=�


X
c2ZZp

dc0k � �
c
0k(�)

= p�(k+1) �
X

�2ZZkp;type(�)=�


"�
�
p
p� 1

�2
+

p� 1�p
p� 1

�2
#

=
(p� 1)k�z(�
)

pk
: (6)

With (5) and (6), we infer

�����P (�
)� (p� 1)k�z(�
)

pk

����� = p�(k+1) �

�������
X

�2ZZkpnf0kg

X
c2ZZp

dc� �

0
B@ X
�2ZZkp;type(�)=�


�c
�(�)

1
CA
������� : (7)

Assume w.l.o.g. that the �rst g = z(�
) components of �
 have zero entries. We partition the set
ZZkp n f0kg into subsets B0; B1; : : : ; Bk�g, i.e., ZZkp n f0kg = B0 �[B1 �[ : : : �[Bk�g , where

Bj = f� = (�1; �2; : : : ; �k) 2 ZZ
k
p n f0kg j jfi j g + 1 � i � k and �i 6� 0mod pgj = jg :
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Observe that for j = 1; 2; : : : ; k � g, we have

jB0j = pg � 1 and jBj j = pg �
 
k � g

j

!
� (p� 1)j :

Then, (7) becomes

�����P (�
)� (p� 1)k�g

pk

����� = p�(k+1) �

�������
X
c2ZZp

k�gX
j=0

X
�2Bj

dc� �

0
B@ X
�2ZZkp ;type(�)=�


�c
�(�)

1
CA
������� �

� p�(k+1) �
X
c2ZZp

k�gX
j=0

X
�2Bj

���dc���� �
�������

X
�2ZZkp;type(�)=�


�c
�(�)

������� :

To estimate this sum, we consider �rst the expression (
P

�2ZZkp;type(�)=�
 �
c
�(�)). Fix some � 2 B0.

Then, < �; � >p� 0mod p for each � 2 ZZ
k
p with type(�) = �
. Thus, for c = 0, we have

�������
X

�2ZZkp;type(�)=�


�c
�(�)

������� = (p� 1)k�g �
p
p� 1 ; (8)

and, for c 6= 0, we obtain�������
X

�2ZZkp ;type(�)=�


�c
�(�)

������� = (p� 1)k�g �
1p
p� 1

: (9)

With jdc�j � �=
p
p� 1, we infer that

p�(k+1) �
X
c2ZZp

X
�2B0

jdc�j �

�������
X

�2ZZkp;type(�)=�


�c
�(�)

�������
� p�(k+1) �

�p
p� 1

� (pg � 1) �
�
(p� 1)k�g �

p
p� 1 + (p� 1)k�g �

p� 1p
p� 1

�

= 2 � p�(k+1) � � � (pg � 1) � (p� 1)k�g : (10)

Next, we consider the case � 2 Bj , j � 1. For given c 2 ZZp and � = (�1; �2; : : : ; �l) 2
f1; 2; : : : ; p � 1gl, let N(l; c) denote the number of solutions X = (x1; x2; : : : ; xl) 2 (ZZp n f0g)l
of the congruence < �;X >p +c � 0mod p. If x1; x2; : : : ; xl�1 2 ZZp n f0g are chosen arbitrarily,

then there is a unique element xl 2 ZZp such that < �;X >p +c � 0mod p. For xl = 0, the
number of solutions of the equation < (�1; �2; : : : ; �l�1); (x1; x2; : : : ; xl�1) >p +c � 0mod p is

equal to N(l� 1; c). Thus, N(l; c) = (p� 1)l�1 �N(l� 1; c). With N(1; 0) = 0 and N(1; c) = 1
for c 6= 0, we obtain by induction that for l � 2 the following holds

N(l; 0) = (p� 1)l�1 �
l�2X
i=1

(p� 1)i � (�1)l+i ;

8



and,

N(l; c) = (p� 1)l�1 �
l�2X
i=0

(p� 1)i � (�1)l+i :

For �xed �j 2 Bj , j � 1, we infer

X
c2ZZp

�������
X

�2ZZkp;type(�)=�


�c
�(�)

�������
=

X
c2ZZp

����(p� 1)k�g�j �N(j; c) � (�
p
p� 1) +

�
(p� 1)k�g �N(j; c) � (p� 1)k�g�j

�
� 1p

p� 1

����
=

X
c2ZZp

(p� 1)k�g�j �
p
p� 1 �

������N(j; c) +
(p� 1)j �N(j; c)

p� 1

����� = 2 � (p� 1)k�g�j �
p
p� 1 :(11)

Using jdc�j � �=
p
p� 1, we obtain

p�(k+1) �
k�gX
j=1

X
�2Bj

X
c2ZZp

jdc�j �

�������
X

�2ZZkp ;type(�)=�


�c
�(�)

�������
� p�(k+1) �

�p
p� 1

�
k�gX
j=1

pg �
 
k � g

j

!
� (p� 1)j � 2 � (p� 1)k�g�j �

p
p� 1

= 2 � p�(k+1) � � � pg � (p� 1)k�g � (2k�g � 1) : (12)

Altogether, with (10) and (12), we obtain�����P (�
)� (p� 1)k�z(�
)

pk

����� � p�(k+1) � (p� 1)k�g �
h
2 � � � (pg � 1) + 2 � � � pg � (2k�g � 1)

i

�
� � 2k+1

p
:

2

Theorem 3.3: Let S � ZZkp be a sample space which is �-biased with respect to MODp-tests

of size at most k. Then, the reduced space �S � ZZ
k
2 is k-wise (� � 3k=p)-dependent.

Thus, using a sample space of polynomial size, one can approximate well a log3 n-wise independ-

ent nonuniform distribution, cf. [NN].

Proof: Set P (�
) =
P

�2ZZkp;type(�)=�
 p�. By assumption and (15) (from the appendix), we have

jdc�j � �=
p
p� 1. We have to compute

P
�
2ZZk2

���P (�
)� (p�1)k�z(�
)

pk

���. Using (1), (2), (3), (10) and

(12), we obtain

X
�
2ZZk

2

�����P (�
)� (p� 1)k�z(�
)

pk

�����
9



� p�(k+1) � � �
X
�
2ZZk2

h
2 � (pz(�
) � 1) � (p� 1)k�z(�
) + 2 � pz(�
) � (p� 1)k�z(�
) � (2k�z(�
) � 1)

i

= p�(k+1) � � �
kX

g=0

 
k

g

!
�
h
2 � (pg � 1) � (p� 1)k�g + 2 � pg � (p� 1)k�g � (2k�g � 1)

i

= p�(k+1) � � �
h
2 � (3p� 2)k � 2 � pk

i

< 2 � p�(k+1) � � � (3p� 2)k <
� � 3k

p

which yields the desired result. 2

4 Applications

Lemma 2.2 links the ability to pass MODp-tests with almost independence. We can use this

to consider the problem of Azar, Motwani and Naor [AMN] to construct a p-ary sample space
that is �-biased with respect to MODp-tests. Starting with an �-biased sample space S � ZZ

n
p ,

according to Lemma 2.2, the space S is (2 � �=p � (1 � p�k); k)-independent. If we replace in

every vector of the sample space every nonzero entry by one, our sample space which might
be a multiset, will become a reasonable approximation, cf. Theorem 3.2, to the distribution

on n p-ary random variables in which each random variable independently takes value 0 with
probability 1=p and 1 with probability 1� 1=p.

Alon, Goldreich, H�astad and Peralta gave in [AGHP] three constructions for sample spaces

which are �-biased with respect to linear tests. These can be modi�ed such that they also
yield sample spaces which are �-biased with respect to MODp tests. The generalizations of

two constructions to the p-ary case are due to Azar, Motwani and Naor [AMN] and to Even
[Ev]. The generalization of the third construction is straightforward. For completeness and to

have a typical example, we give it below. Another construction using Ramanujan graphs and
Justesen codes is given in [ABNR] where an (�; k)-independent sample space of size O(n=�3) is
constructed.

Construction: For a �xed prime p, consider the �nite �eld GF (pm). Let f :GF (pm) �! ZZ
m
p

be the standard representation of GF (pm) as a vector space over GF (p). Then f(0) = 0m and
f(u+ v) � (f(u)� f(v))mod p where addition + is meant in GF (pm) and addition � in ZZmp is

meant componentwise modulo p. The sample space Snm is de�ned as follows. The elements of
Snm are determined by pairs of elements in GF (pm), namely given two elements x; y 2 GF (pm),

the ith entry of the sequence sx;y 2 Snm is the inner product < f(xi); f(y) >p, i = 0; 1; : : : ; n� 1.

The sample space Snm has the following properties:

Proposition 4.1: The sample space Snm has size jSnmj = p2m and is (p� 1) � (n� 1)=pm-biased

with respect to MODp-tests.

Proof: Clearly, we have jSnmj = p2m. Let s(x; y) = (s0(x; y); s1(x; y); : : : ; sn�1(x; y)) where
si(x; y) �< f(xi); f(y) >p, denote the element from Snm speci�ed by x; y 2 GF (pm). Note that

by linearity of f for any sequence � 2 ZZ
n
p , we have

< �; s(x; y) >p�
n�1X
i=0

�i� < f(xi); f(y) >p�< f(
n�1X
i=0

�i � xi); f(y) >p :

10



Let p�(t) =
Pn�1

i=0 �i � ti be a polynomial over ZZp which is not identically zero. We want to
determine the distribution of < f(p�(x)); f(y) >p where x 2 GF (pm) and y 2 GF (pm) are

chosen uniformly at random. To do so, we �rst �x x 2 GF (pm). We distinguish two cases:

1) Assume that p�(x) 6= 0, i.e., x is not a zero of p�(t). Then, f(p�(x)) 6= 0m and for uniformly
chosen y 2 GF (pm), the values < f(p�(x)); f(y) >p are as well uniformly distributed in ZZp,

that is < f(p�(x)); f(y)>p is unbiased.

2) If p�(x) = 0, then < f(p�(x)); f(y)>p� 0mod p for all y 2 GF (pm). However, the polynomial
p�(t) has at most n� 1 zeros.

Therefore, for each � = (�1; �2; : : : ; �n) 2 ZZ
n
p where the polynomial p�(t) =

Pn�1
i=0 �i � ti has u

zeros, we have

j(p� 1) � Prob[< �; s(x; y) >p� 0mod p]� Prob[< �; s(x; y) >p 6� 0mod p]j

=

�����(p� 1) �
u � pm + (pm � u) � pm�1

p2m
�
(pm � u) � (pm � pm�1)

p2m

�����
=

(p� 1) � u
pm

�
(p� 1) � (n� 1)

pm

which gives the desired result. 2

Corollary 4.2: Let � > 0 be given. Let p be a prime, and let n be a positive integer. Then,

one can explicitly construct a sample space S � ZZ
n
p of size jSj < p4 � n2=�2 which is �-biased

with respect to MODp-tests.

Proof: Let m be the smallest positive integer such that (p � 1) � (n � 1)=pm � �. Then, by

Proposition 4.1 the sample space Snm is �-biased and satis�es jSj = p2m, i.e., jSj < p4 � n2=�2. 2

Indeed, if n=pm�1 � �, then jSj � c � p2n2=�2 for some small constant c > 0.

Corollary 4.3: Let � > 0 be given. Let p be a prime, and let n be a positive integer. One

can explicitly construct a sample space S � ZZ
n
p of size jSj < 4 � (1� p�k)2 � p2 � n2=�2 which is

(�; k)-independent.

Proof: Using Lemma 2.2 with � := � � p=(2 � (1� p�k)), the result follows with Corollary 4.2. 2

Now, we consider the case of approximating nonuniform random variables.

Corollary 4.4: Let � > 0 be given. Let p be a prime, and let k; n be positive integers. Then
one can explicitly construct a sample space S � ZZn2 of size jSj < 22k+2 � (1� p�k)2 � p2 � n2=�2
which is (�; k)-independent (with respect to the probability 1=p), i.e., if X = (x1; x2; : : : ; xn) is
chosen uniformly at random from S, then for any k positions 1 � i1 < i2 < : : : < ik � n and
any sequence � = (�1; �2; : : : ; �k) 2 ZZk2 with z entries being 0 it holds that�����Prob[(xi1; xi2 ; : : : ; xik) = (�1; �2; : : : ; �k)]�

(p� 1)k�z

pk

����� � � :

11



Proof: By Corollary 4.3, we can explicitly construct a sample space S � ZZ
n
p of size jSj <

22k+2 � (1� p�k)2 � p2 � n2=�2 which is (�=2k; k)-independent. Then, by Theorem 3.2 the reduced

space S � ZZ
n
2 (obtained from S by identifying all nonzero entries by 1) is (�; k)-independent

(with respect to the probability 1=p). 2

The sample spaces from above generate (�; k)-independent random variables. Using as an addi-
tional tool parity check matrices of BCH-codes as in [ABI] and [NN], the size of S can be further

reduced by replacing in the upper bounds for S for p � 3 the `n' by `k2 � logp n', i.e., for example
in Corollary 4.2 we obtain jSj = O(p4k4(logp n)

2=�2).

A simple application is the heavy codeword problem for linear codes over ZZp. Let M 2 ZZ
m�n
p be

an n �m-matrix with no row containing only zero entries. One wants to �nd a vector x 2 ZZ
n
p

such that Mx has at least p�1
p
�m nonzero entries. For a sample space S � ZZ

n
p which is �-biased

with respect to MODp-tests with � < 1=m, let x 2 S be chosen uniformly at random. For
i = 1; 2; : : : ; m, let mi be the ith row of matrix M . The weight wt(x) of a vector is the number

of nonzero entries of x. The expected value E(wt(Mx)) of the weight ful�lls

E(wt(Mx)) =
mX
i=1

Prob[< mi; x >p 6� 0mod p]

=
mX
i=1

(p� 1)� bias(< mi; x >p)

p

� p� 1

p
�m� � �m

p
:

If � < 1=m, then E(wt(Mx)) > p�1
p
�m� 1

p
. As wt(Mx) is an integer, there must be a codeword

x such that the weight of Mx is at least dp�1
p
�me. Thus, using exhaustive search the heavy

codeword problem over ZZp is for p = poly(n) in NC.

Another example comes from testing circuits, namely, in order to test circuits in which each gate

depends on at most k inputs, one uses (n; k; p)-universal sets, cf. [NN], [NSS]. The elements are
sequences taken from ZZnp , and for any set of k coordinates the projection on these contains all

possible pk sequences. If we have a k-wise �-dependent sample space for � < p�k , then this is
also a (n; k; p)-universal set. The reason is simple. If for k coordinates i1; i2; : : : ; ik, there is a

sequence in the chosen sample space over ZZkp which has probability 0, then the distance from

the uniform distribution of xi1 ; xi2 ; : : : ; xik is at least p
�k > �. Using Theorem 2.5 and Corollary

4.2 together with the above mentioned BCH-codes, one can construct (n; k; p)-universal sets of

size O(logn � p3k+o(k)).

5 Discussion

Our considerations can be extended to the case where we have an arbitrary �nite group instead
of the group ZZp of residues modulo p, but the group should have no divisors of zero. If the

group has divisors of zero, this can be handled by taking only the multiples of an element under
consideration.

For approximating nonuniform distributions of identically distributed random variables we con-

sidered the case of q = 1=p where p is a prime. The general case of q being an arbitrary rational

12



number 0 � q � 1 can be handled by choosing a prime p and an integer l such that q � l=p.
Then, one uses linear tests where we do not distinguish whether a MODp-test gives the res-

ult zero or nonzero, but rather whether a MODp-test gives a result contained in the interval
f0; 1; : : : ; l� 1g or in fl; l+ 1; : : : ; p� 1g. The corresponding calculations are along the lines we

discussed in this paper but are more technical. We only mention that instead of the functions
�c
� we use the functions �c;l

� : ZZnp ! IR with

�c;l
� (�) =

(
� p�lp

p�1 if
Pn

i=1 �i�i + c � jmod p for some j 2 f0; : : : ; l� 1g
lp
p�1 else.

6 Appendix

Lemma 2.2: Let k � 1 be a �xed positive integer. Let S � ZZ
n
p be a sample space which is

�-biased with respect to MODp-tests of size at most k. Then, the space S is (2 ��=p �(1�p�k); k)-
independent.

Proof: Let X = (x1; x2; : : : ; xn) be chosen uniformly at random from the sample space S. By

assumption, S is �-biased with respect to MODp-tests of size at most k. Thus, for each element
c 2 ZZp and each sequence � = (�1; �2; : : : ; �n) 2 ZZnp n f0ng with at most k nonzero entries, we

have

j(p� 1) � Prob[< �;X >p +c � 0mod p]� Prob[< �;X >p +c 6� 0mod p]j � � : (13)

We consider w.l.o.g. the �rst k positions of X , i. e., x1; x2; : : : ; xk. For each sequence � =
(�1; �2; : : : ; �k) 2 ZZkp, let p� denote the probability that xi = �i for i = 1; 2; : : : ; k. For c 2 ZZp

and � 2 ZZ
k
p, de�ne

dc� =
X
�2ZZkp

�c
�(�) � p� : (14)

By de�nition of the functions �c
� and using (13), we have

���dc���� =

��������
X

�2ZZkp;<�;�>p+c�0modp

p� �
p
p� 1 +

X
�2ZZkp;<�;�>p+c6�0modp

p� �
1p
p� 1

�������
=

1p
p� 1

� j(p� 1) �Prob[< �;X >p +c � 0mod p]� Prob[< �;X >p +c 6� 0mod p]j

�
�p
p� 1

: (15)

Hence, dc� describes up to the factor 1=
p
p� 1 the absolute value of the bias of S with respect

to the MODp-test given by c and �.

Claim 6.1: For every sequence 
 2 ZZkp,

p
 = p�(k+1) �
X
c2ZZp

X
�2ZZkp

dc� � �c
�(
) : (16)
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Proof: Let the sequence 
 2 ZZ
k
p be given. By multiplying (14) by �c

�(
) and summing over all

possible values of c 2 ZZp and � 2 ZZ
k
p; we obtainX

c2ZZp

X
�2ZZkp

dc� � �c
�(
) =

X
c2ZZp

X
�2ZZkp

X
�2ZZkp

�c
�(�) � �c

�(
) � p� : (17)

In the following, we will show thatX
c2ZZp

X
�2ZZkp

�c
�(
)

2 � p
 = p
 � pk+1 (18)

and that X
c2ZZp

X
�2ZZkp

X
�2ZZkp;�6=


�c
�(�) � �c

�(
) � p� = 0 : (19)

To evaluate the right hand side of (17), considerX
c2ZZp

X
�2ZZkp

�c
�(�) � �c

�(
) � p� (20)

for a �xed sequence � 2 ZZkp. We distinguish three cases according to the value of �; namely,

Case 1: � = 
, Case 2: � and 
 are linearly independent, and Case 3: � and 
 are linearly
dependent. Let � 2 ZZkp be �xed.

Case 1: Assume that � = 
. Then, (20) becomes

X
c2ZZp

X
�2ZZkp

�c
�(
)

2 � p
 = p
 �
X
�2ZZkp

 
(�
p
p� 1)2 + (p� 1) �

�
1p
p� 1

�2!

= p
 � pk+1 : (21)

Case 2: Next, we assume that � and 
 are linearly independent. Let � = (�1; �2; : : : ; �k) 2 ZZkpn
f0kg and 
 = (
1; 
2; : : : ; 
k) 2 ZZkp n f0kg. Then, there are indices i; j with 1 � i < j � k

such that the subsequences (�i; �j) and (
i; 
j) are linearly independent in ZZ
2
p. We want

to count the number of terms �c
�(�) � �c

�(
) with the same value. To do so, for �xed

c 2 ZZp, we partition the set ZZkp into four sets, namely, ZZkp = A1(c) �[A2(c) �[A3(c) �[A4(c)
where

A1(c) =
n
� 2 ZZ

k
p j< �; � >p +c � 0mod p and < �; 
 >p +c � 0mod p

o
A2(c) =

n
� 2 ZZ

k
p j< �; � >p +c � 0mod p and < �; 
 >p +c 6� 0mod p

o
A3(c) =

n
� 2 ZZ

k
p j< �; � >p +c 6� 0mod p and < �; 
 >p +c � 0mod p

o
A4(c) =

n
� 2 ZZ

k
p j< �; � >p +c 6� 0mod p and < �; 
 >p +c 6� 0mod p

o
:

As (�i; �j) and (
i; 
j) are linearly independent, these two vectors span ZZ2p. Then, for any
choice of �1; : : : ; �i�1; �i+1; : : : ; �j�1; �j+1; : : : ; �k 2 ZZp and for any �xed r1; r2 2 ZZp, there

exist unique �0; �� 2 ZZp such that � = (�; : : : ; �i�1; �0; �i+1; : : : ; �j�1; ��; �j+1; : : : ; �k)
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satis�es < �; � >p +c � r1mod p and < �; 
 >p +c � r2mod p. Hence, the number of
sequences � 2 ZZ

k
p with < �; � >p +c � r1mod p and < �; 
 >p +c � r2mod p is equal to

pk�2. We infer that

jA1(c)j = pk�2

jA2(c)j = jA3(c)j = (p� 1) � pk�2

jA4(c)j = (p� 1)2 � pk�2 :

Then, for �xed �, expression (20) becomesX
c2ZZp

X
�2ZZkp

�c
�(�) ��c

�(
) � p�

= p� �
X
c2ZZp

X
�2A1(c)

X
�2A2(c)

X
�2A3(c)

X
�2A4(c)

�c
�(�) ��c

�(
)

= p� �
X
c2ZZp

�
jA1(c)j � (p� 1) + 2 � jA2(c)j � (�1) + jA4(c)j �

1

p� 1

�
(22)

= 0 :

Case 3: Finally, let � and 
 be linearly dependent, but � 6= 
. Then, we have � = l � 

for some l 2 ZZpnf1g. Assume �rst that l 6= 0 and 
 6= 0k. We partition the set ZZkp

as in Case 2, namely for �xed c 2 ZZp let ZZkp = A1(c) �[ A2(c) �[ A3(c) �[ A4(c). First,

consider the set A1(c). If � 2 A1(c), i.e., < �; � >p +c �< �; 
 >p +c � 0mod p, then
(l � 1)� < �; 
 >p� 0mod p. Since l 6= 1, we infer < �; 
 >p� 0mod p. As we assumed

that 
 6= 0k, we have

jA1(c)j =
(

pk�1 if c = 0

0 if c 6= 0.

Next, we consider the set A2(c). Let � 2 A2(c) and c 6= 0. If < �; � >p +c � 0mod p,
we claim that < 
; � >p +c 6� 0mod p. Namely, < 
; � >p +c � 1

l
� (< �; � >p +l � c) �

1
l
� (�c + l � c) 6� 0mod p as l 6= 0; 1 and p is a prime. Then, for c 6= 0, we only have

to ful�ll < �; � >p +c � 0mod p, and we have jA2(c)j = pk�1. For c = 0, however, we
infer < �; � >p� 0mod p, i. e., < 
; � >p� 0mod p, as l 6= 0. Thus, jA2(0)j = 0, and by

symmetry we have

jA2(c)j = jA3(c)j =
(

0 if c = 0

pk�1 if c 6= 0.

As ZZkp = A1(c) �[ : : : �[ A4(c), i.e.,
���ZZkp��� = P4

i=1 jAi(c)j for each c 2 ZZp, we infer jA4(c)j =
pk �

P3
i=1 jAi(c)j, hence

jA4(c)j =
(

pk � pk�1 if c = 0

pk � 2pk�1 if c 6= 0.

Then, (20) becomesX
c2ZZp

X
�2ZZkp

�c
�(�) � �c

�(
) � p�
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=
4X

i=1

X
�2Ai(0)

�0
�(�) ��0

�(
) � p� +
X

c2ZZpnf0g

4X
i=1

X
�2Ai(c)

�c
�(�) ��c

�(
) � p�

= p� �
"
pk�1 �

�
�
p
p� 1

�2
+
�
pk � pk�1

�
�
�

1p
p� 1

�2#
+

+p� �
X

c2ZZpnf0g

"
2 � pk�1 � (�1) +

�
pk � 2 � pk�1

�
�
�

1p
p� 1

�2#
(23)

= 0:

Now, let 
 = 0k and � 6= 0k. We claim thatX
c2ZZp

X
�2ZZkp

�c
�(�) � �c

�(
) � p� = 0 : (24)

Namely, X
c2ZZp

X
�2ZZkp

�c
�(�) ��c

�(
) � p�

= p� �
X
�2ZZkp

�0
�(�) � (�

p
p� 1) + p� �

X
c2ZZpnf0g

X
�2ZZkp

�c
�(�) �

1p
p� 1

= p� � (pk�1 � (�
p
p� 1)2 + (pk � pk�1) � (�1)) +

+p� �
�
(p� 1) � pk�1 � (�

p
p� 1) �

1p
p� 1

+ (p� 1) � (pk � pk�1) �
1

(
p
p� 1)2

�
= 0 :

Summarizing (18), (19) and (17), we proved equality (16), and hence Claim 6.1.

2

We continue with the proof of Lemma 2.2. By (16), we have for �xed 
 2 ZZkp that

p
 � p�k�1 �
X
c2ZZp

dc0k � �
c
0k(
) = p�k�1 �

X
c2ZZp

X
�2ZZkpnf0kg

dc� � �c
�(
): (25)

Although we know only approximate values for the probabilities of the occurring subsequences,
the identity

P
�2ZZkp p� = 1 holds in any case. Using this, we obtain

p�k�1 �
X
c2ZZp

dc0k ��
c
0k(
) = p�k�1 �

0
@d00k � �00k(
) + X

c2ZZpnf0g
dc0k ��

c
0k(
)

1
A

= p�k�1 �

0
@d00k � (�pp� 1) +

1p
p� 1

�
X

c2ZZpnf0g
dc0k

1
A

= p�k�1 �

0
B@(�pp� 1) �

X
�2ZZkp

�0
0k(�) � p� +

1p
p� 1

�
X

c2ZZpnf0g

X
�2ZZkp

�c
0k(�) � p�

1
CA
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= p�k�1 �

0
B@(p� 1) �

X
�2ZZkp

p� +
1

p� 1
�

X
c2ZZpnf0g

X
�2ZZkp

p�

1
CA

= p�k :

With (25), we infer

jp
 � p�k j = p�k�1 �

�������
X
c2ZZp

X
�2ZZkpnf0kg

dc� � �c
�(
)

������� : (26)

By (15), i.e., jdc�j � �=
p
p� 1, we conclude

jp
 � p�k j � p�k�1 �
X
c2ZZp

X
�2ZZkpnf0kg

���dc���� � ����c
�(
)

���
� p�k�1 �

�p
p� 1

�
X

�2ZZkpnf0kg

X
c2ZZp

j�c
�(
)j = p�k�1 �

�p
p� 1

�
X

�2ZZkpnf0kg

�p
p� 1 +

p� 1p
p� 1

�

=
2 � �
p

�
�
1� p�k

�

which �nishes the proof of Lemma 2.2. 2
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