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LQ-S
hur Proje
tion on Large Sparse Matrix EquationsDaniel Boley� and Todd GoehringComputer S
ien
e and EngineeringUniversity of MinnesotaMinneapolis, MN 55455, USAAbstra
tA new paradigm for the solution of nonsymmetri
 large sparse systems of linearequations is proposed. The paradigm is based on an LQ fa
torization of the matrix of
oeÆ
ients, i.e. fa
toring the matrix of 
oeÆ
ients into the produ
t of a lower triangularmatrix and an orthogonal matrix. We show how the system of linear equations 
an bede
omposed into a 
olle
tion of smaller independent problems whi
h 
an then be usedto 
onstru
t an iterative method for a system of smaller dimensionality. We show thatthe 
onditioning of the redu
ed problem 
annot be worse than that of the original,unlike S
hur 
omplement methods in the nonsymmetri
 
ase. The paradigm dependson the existen
e of an ordering of the rows representing the equations into blo
ks ofrows whi
h are mutually stru
turely orthogonal, ex
ept for a last blo
k row whi
h is
oupled to all other rows in a limited way.1 Introdu
tionThe solution of large sparse systems of linear equations is a diÆ
ult and often time-
onsumingtask. The fo
us of this paper is on a new paradigm for 
onstru
ting a redu
ed order systemfrom the original system, as a generalization to the methods based on the S
hur 
omplement[1℄. The S
hur 
omplement method starts by partitioning a matrix A and applying a blo
kGaussian elimination pro
ess to this matrix:�A11 A12A21 A22 � = � I 0L21 I � ;�A11 A210 U22 � :Then the S
hur 
omplement of A22 is S = L22U22, where L21 = A21A�111 and U22 =A22 � L21A12 [6℄. Typi
ally, this method is useful when the equations are ordered so thatsystems of equations involving A11 are relatively easy to solve, so that S 
an be used inan iterative method without being formed expli
itly. However the ordering within A11 
anhave a dramati
 e�e
t on the numeri
al quality of the resulting representation of the S
hur�e-mail: boley�
s.umn.edu 1




omplement. This 
an lead to diÆ
ult trade o�s between the numeri
al a

ura
y on the onehand and the sparsity or 
omplexity of solution on the other.In this paper, we des
ribe a generalization of this method in whi
h the Gaussian elim-ination is repla
ed with a triangular orthogonalization pro
ess, i.e. a QR fa
torization [5℄.Sin
e we are using a row based s
heme instead of a 
olumn based s
heme, we will use insteadan LQ fa
torization, in whi
h a matrix is fa
tored into A = LQ with L lower triangular andQ orthogonal. In this 
ase, the numeri
al a

ura
y is independent of the ordering of therows, so we are free to 
hoose an order to enhan
e the sparsity of the LQ fa
tors as mu
has possible.It is well known that the LQ pro
ess results in mu
h more �ll than the Gaussian elimina-tion pro
ess. However we make 
ertain assumptions on the stru
ture of the original matrixwhi
h will limit the �ll and hen
e make a pra
ti
al algorithm. The main assumption is thatwe have ordered the rows of the matrix A into a number of blo
ks whi
h are mutually stru
-turally orthogonal, ex
ept for a last blo
k of rows whi
h are 
oupled to all the other blo
ks.The motivation for this stru
ture 
omes from the dis
retization of di�erential operators overphysi
al domains.Domain De
omposition addresses the topi
 of solving partial di�erential equations by par-titioning the domain into smaller semi-independent subdomains. There are many variations:overlapping vs non-overlapping subdomains, iterative S
hwarz methods vs S
hur 
omple-ment methods (where interior nodes are solved dire
tly and the boundary nodes are solvediteratively) [1, 7℄, as well as pre
onditioners of many types (ILU, ILUT, multilevel, et
.),some of whi
h are motivated by the underlying di�erential equations [6, 1℄. The presentpaper is limited in s
ope to the linear algebra aspe
ts of using an LQ de
omposition onmatri
es with a sparsity stru
ture 
ommonly found among matri
es derived from dis
retedi�erential operators. The relation with any underlying di�erential equations, in
luding adis
ussion of 
onvergen
e or appli
ation-spe
i�
 pre
onditioners is beyond the s
ope of thisshort paper.In this paper, in Se
. 2 we motivate the assumptions made regarding the stru
ture of thematrix operator, in Se
. 3 we introdu
e the overall setup and notation. In Se
. 4 we presentthe details of the solution pro
ess, in Se
. 5 we relate the iteration operator to the S
hur
omplement, and in Se
. 6 we sket
h some pre
onditioners pe
uliar to this formulation forthe redu
ed order system. We end with a short example in Se
. 7 and a summary in Se
. 8.2 Motivation of Stru
tureThe methods dis
ussed in this paper have been developed for systems with stru
tures sim-ilar to those derived from the �nite-element or �nite-di�eren
e dis
retization of a partialdi�erential equation over some domain. In order to 
arry out the pro
ess, we make 
ertainassumptions about the way the domain is partitioned into subdomains. These assumptionsare des
ribed below.1. The physi
al domain has been 
overed with a �nite 
olle
tion of nodes or verti
es,ea
h representing the unknowns at a single lo
ation or element in the domain. To ea
hnode 
orresponds an equation whi
h 
ouples the unknown values at that node with2



those of its immediate neighbors. This is the typi
al situation that results from any�nite-di�eren
e method with a usual 5 or 9 point sten
il in 2D or 7 point sten
il in 3D,or a �nite-element method in whi
h the values within ea
h element are 
oupled onlythose of the immediately adja
ent elements. This stru
ture is represented by a graphwith verti
es 
orresponding to the nodes and edges 
orresponding to 
oupling betweennodes in a single equation (see e.g. [6, 7℄). In the following, we dis
uss the ordering ofthe matrix based on a partitioning of the graph, whi
h is a dis
rete representation ofthe original domain. The partitioning of the graph would 
orrespond to a partitioningof the original domain into disjoint subdomains. To emphasize that we are fo
using onthe dis
rete problem, we refer to subgraphs instead of subdomains.2. The entire graph has been partitioned by some algorithm into a 
olle
tion of subgraphs,ea
h separated from the neighboring subgraphs by a double-layered boundary. To seewhy a double layered boundary is useful in this situation, 
onsider 4 nodes in theneighborhood of a boundary: ... ... ... ...� � �A B C D � � �... ... ... ...where A is in the interior of one subgraph, B is on the boundary of the same subgraph,C is on the boundary of a di�erent subgraph, and D is in the interior of this lattersubgraph. We say that B is part of the same subgraph as A, and C is part of thesame subgraph as D, but B, C lie on the boundary of their respe
tive subgraphs. In aparallel pro
essing environment where ea
h subgraph would be allo
ated to a di�erentpro
essor, A, B would be put on together on one pro
essor, while C, D would be puttogether on another.The equation 
entered at node A 
ouples A with node B and with other nodes fromits own subgraph (both in the interior and possibly on the boundary). But A is not
oupled with nodes from any other subgraph, whether in the interior (su
h as D) oron the boundary (su
h as C). Analogously, the equation 
entered at B 
ouples B withother nodes on the boundary of its own subgraph and neighboring subgraphs (su
has C), and with nodes in the interior of its own subgraph (su
h as A). But B is not
oupled with any node in the interior of any other subgraph (su
h as D). In otherwords, there are edges within ea
h subgraph, between the interior and the boundaryof the same subgraph, and among the boundary nodes, but there are no edges betweenthe interiors of two di�erent subgraphs, nor between the boundary of one subgraphand the interior of a di�erent subgraph.When the equations are assembled into a matrix operator, the result is that the rows
entered at interior nodes (su
h as A) are automati
ally stru
turely orthogonal to rows
entered on interior nodes of other subgraphs (su
h as D), as well as boundary nodesof other subgraphs (su
h as C). The rows 
entered on boundary nodes (su
h as B) arestru
turally orthogonal to rows 
entered on interior nodes of other subgraphs (su
h asD). 3



3. The equations are ordered in the typi
al way in Domain De
omposition with the bound-ary nodes (su
h as B and C above) ordered last. All the interior nodes of ea
h subgraphare ordered together, after whi
h 
ome all the boundary nodes, again grouped by sub-graph. The resulting matrix A will have the following formA = �A1A2 � = �A11 A12A21 A22 � ;where� A11 is n1 � n1 blo
k diagonal, and ea
h diagonal blo
k represents the 
ouplingamong the interior nodes of a single subgraph;� A12 is n1�n2 with a re
tangular blo
k \diagonal" stru
ture, and ea
h re
tangularblo
k represents the 
oupling between the interior of a single subgraph and theboundary of the same subgraph, as viewed from the interior;� A21 is n2�n1 with a re
tangular blo
k \diagonal" stru
ture, and ea
h re
tangularblo
k represents the 
oupling between the interior of a single subgraph and theboundary of the same subgraph, as viewed from the boundary;� A22 is n2 � n2 and represents the 
oupling among all the boundary nodes.Fig. 1 shows a typi
al stru
ture for A derived from a standard 5 point sten
il in 2D.We note that with this ordering, A11;A12;A21 all tend to be sparse, and within the toppart, (A11 A12 ), the rows 
orresponding the ea
h subgraph are stru
turally orthog-onal to the rows 
orresponding to any other subgraph. The stru
tural orthogonalityallows one to orthogonalize the rows for ea
h subgraph independently.3 Problem Setup and Proje
torsLet A be a n� n matrix and b be an n-ve
tor, partitioned asA = �A1A2 � = �A11 A12A21 A22 � ; b = �b1b2 � ; (1)where A11 is n1�n1 blo
k diagonal and hen
e relatively easy to \invert," and A22 is n2�n2.The matrix A would typi
ally be 
onstru
ted from a Domain De
omposition-like pro
ess,in whi
h the blo
k A1 = (A11 A12 ) represents the equations in the interior of a 
olle
tionof disjoint subgraphs and A2 = (A21 A22 ) represents the equations on the boundariesbetween the subgraphs. We assume that the boundaries are \double layered" so that therows 
orresponding to ea
h subgraph's interior are stru
turally orthogonal to those for othersubgraphs' interiors, as des
ribed in the previous se
tion.The goal is to solve the system of equations Ax = b. To this end, we de
ompose thesolution x into two parts x = x1 + x2 with x1 lying in the spa
e spanned by the rows of A1and x2 lying in the spa
e orthogonal to this row spa
e:x1 2 ROW-SPACEA1x2 ? ROW-SPACEA1 () x2 2 NULLSPACEA1: (2)4



We denote the orthogonal proje
tor for ROW-SPACEA1 as P1 and the orthogonal proje
tor forthe 
omplementary spa
e NULLSPACEA1 as P2 � I�P1. Then the se
ond 
omponent of thesolution 
an be written as x2 = P2w for some ve
tor w to be determined.The overall pro
edure we will develop 
an be summarized as follows.1. Solve for x1 dire
tly, where x1 satis�esA1x1 = b1(an underdetermined system)su
h thatx1 2 ROW-SPACEA1: (3)For this step, we use the LQ fa
torization of A1, be
ause parts of these fa
tors willthen be saved for later use. The 
onstraint makes the solution unique.2. Form the equations for the se
ond 
omponent of the solution:A2x2 = r 4= b2 �A2x1su
h thatx2 = P2w for some ve
tor w to be determined: (4)3. Solve equation (4) for w and then for x2. This is typi
ally done by an iterative method,though in some 
ases one 
ould even think of using a dire
t method. In a
tual fa
t,we solve the equations A2P2w = r 4= b2 �A2x1; (5)where w lies in a restri
ted spa
e to make the solution unique, so that in e�e
t we aresolving a system of redu
ed dimensionality.The key to the su

ess of the overall method is that we 
an represent the operator A2P2in (5) in terms of A2 and sparse items 
onstru
ted from A1. We never have to form P2expli
itly.LQ Fa
torizationIn order to 
arry out the intended solution pro
edure, we use a partial LQ fa
torization ofA. The entire LQ fa
torization of A is de�ned asA = LQ � �L11 0L21 L22 ��Q1Q2 � � �L11 0L21 L22 ��Q11 Q12Q21 Q22 � ; (6)where L;Q is partitioned in 
onformity to the partitionings shown in (1). Here L is a lowertriangular matrix and Q is an orthogonal matrix. Even though we de�ne the entire LQfa
torization, we 
ompute only the top n1 rows:A1 = L11Q1: (7)The rest of the LQ fa
torization will be represented impli
itly. Furthermore, we use L11only during the 
omputation of x1, after whi
h it may be dropped, keeping only Q1 in laterstages.In terms of the LQ fa
torization, the orthogonal proje
tors 
an be written asP1 = QT1Q1 and P2 = QT2Q2 = I�QT1Q1: (8)5



4 Solution Pro
essWe now go through the steps of the solution pro
ess in some more detail.4.1 Solve for x1We 
ompute the LQ fa
torization of A1 (7). Given the stru
ture we have assumed for thematrix A, the rows in A1 
orresponding to di�erent subgraphs are stru
turally orthogonal.Hen
e the LQ fa
torization of ea
h blo
k 
an be 
omputed independently and in parallel.If one thinks of using a Gram-S
hmidt orthogonalization pro
edure on the rows for ea
hsubgraph, the result is that both L11 and Q11 will have the same blo
k diagonal stru
tureas A11, but ea
h diagonal blo
k will be more full. One is free to order the rows within ea
hsubgraph to redu
e the �ll, and we usually 
hoose to order them by graph distan
e to theboundary, whi
h the nodes 
losest to the boundary last. The blo
k Q12 will have also havea re
tangular diagonal-like blo
k stru
ture inherited from that of A12. We do not 
omputeL21 or Q12 sin
e the latter is often very full.Writing (3) in terms of the LQ fa
torization yields L11Q1x1 = b1; so that the solutionsatisfying (3) is x1 = QT1L�111 b1: (9)Thus the ve
tor x1 
an be found by solving the triangular system L11y1 = b1; and thensetting x1 = QT1 y1.4.2 Forming Se
ond Set of EquationsTo �nd x2, we must solve (5) for w, and then set x2 = P2w. However, we will �nd a redu
edrepresentation for (5) in terms of the partial LQ fa
torization. The right hand side of (5)
an be expanded as follows:b�Ax1 = �b1b2 �� �A1A2 �x1= � 0b2 �A2QT1L�111 b1 �4= � 0r2 � : (10)We 
an expand the left hand side of (5) as follows:Ax2 = AP2w = �A1A2 �QT2Q2w= � 0A2QT2Q2 �w (be
ause A1QT2 = 0)= � 0L22Q2 �w (be
ause A2QT2 = L22): (11)Thus, it is seen that set of equations (5) a
tually redu
es to a n2�n2 linear system involvingthe matrix L22. The 
at
h is that we never 
ompute L22 or Q2. Instead, we represent them6



using only A2 and the proje
tor derived from A1:AP2 = � 0A2P2 � = � 0A2(I�P1)� : (12)Combining the above, equation (5) redu
es toA2(I�P1)w = r2; (13)after whi
h we 
ompute x2 = (I�P1)w. The advantages of (13) are� all the matrix operators on the left hand side are sparse or have a sparse representation;� by using the relation A2(I�P1) = L22Q2 we 
an pre
ondition the matrix operator byfo
using on Q2 or L22 separately, as des
ribed below;� we have some freedom in the representation of w, in the sense that (13) is an under-determined system su
h that any solution w leads to the same �nal solution x2.We dis
uss this last point a little further. Consider applying a Krylov spa
e method tothe square but singular systemA(I�P1)w = � 0A2(I�P1)�w = � 0r2 � (14)in whi
h (13) is embedded. If we use Krylov spa
e methods su
h as GMRES with an initialguess equal to zero, then all the solutions will be taken from the Krylov spa
e(� 0r2 � ; � 0A2(I�P1)�� 0r2 � ; � 0A2(I�P1)�2 � 0r2 � ; � � �) (15)whi
h has the form � 0 0 � � �? ? � � �� : (16)This naturally leads to restri
ting the solutions w to the formw 4= � 0w2 � ; (17)leading to the square set of equations L22Q22w2 = r2 (18)This 
ompletely spe
i�es the solution w, but the numeri
al a

ura
y of the solution 
ouldsu�er if the 
ondition number ofQ22 is too high. We will show below how one 
an 
ompletelyeliminate the e�e
t of Q22, but if Q22 is very badly 
onditioned, then some modi�
ation tothe problem should be applied, su
h as a simple reordering of the 
olumns in the originalproblem, without a�e
ting the stru
tural orthogonality among the rows. For the purposesof this paper, we will assume that Q22 is not singular or almost singular.7



Of 
ourse, we remark that we do not form (18) expli
itly, but we apply the operator of(18) in an iterative method by a
tually iterating with (14), restri
ting the iteration ve
torsto lie in a spa
e of the form (16). When so restri
ted, (14) redu
es to the iteration:v2 7! A2P2 � 0v2 � = A2(I�QT1Q1)� 0v2 �= A2 � 0v2 ��A2QT1Q1 � 0v2 �= A22v2 �A2QT1Q12v2= (A22 �A2QT1Q12)v2: (19)The last expression involves only the original data A2 and the sparse orthogonal fa
tor Q1derived from A1. If (19) is used in an iterative method, then it 
an be left in separate partsv2 7! A22v2 �A2QT1Q12v2, but one 
ould also expli
itly form the matrixAP 4= A22 �A2QT1Q12 (20)if one intends to use it in a dire
t method or apply an ILU-type of pre
onditioner. By asimple manipulation, one 
an verify that AP = L22Q22, so that we have indeed found arepresentation for (18) without 
omputing L22;Q22 expli
itly.5 Relation to S
hur ComplementThe reader will noti
e the obvious similarity of the above development with the S
hur 
om-plement. We write the inverse of A in terms of the LQ fa
torization (6):�A11 A12A21 A22 ��1 = �QT11 QT21QT12 QT22 ��L�111 0� L�122 � ; (21)where the \�" blo
k is irrelevant to this dis
ussion. Letting S denote the S
hur 
omplementof A22, S�1 is the 2-2 blo
k of A�1, and thusS = L22Q�T22 (22)This is in 
ontrast to the operator L22Q22 in (18). For nonsymmetri
 operators, it is possiblefor S to have a higher 
ondition number 
ompared to the original matrix A, and the sameis true of the operator L22Q22. However, we will show below how to �nd a sparse rightpre
onditioner to 
ompletely eliminate the e�e
t of Q22. The remaining triangular part,L22, must have a 
ondition number no larger than that of the original matrix A, as 
an beseen by applying the eigenvalue interla
ing theorem [5℄ to the symmetri
 matrixQATAQT = �L11 0L21 L22 �T �L11 0L21 L22 � = �� �� LT22L22 � : (23)A sparse left pre
onditioner 
an be used to help redu
e the 
onditioning due to L22.8



6 Pre
onditioningWe 
an 
ompletely eliminate the e�e
t of Q22 from (18) (and hen
e from the iterationmatrix AP2). We form a triangular neutralizing matrix N whi
h is applied to the right ofthe operator AP = L22Q22; hen
e it is 
alled a right pre
onditioner. The pre
onditioneris the Cholesky fa
tor of a symmetri
 positive de�nite matrix derived from the partial LQfa
torization: NTN = QT22Q22 = I�QT12Q12: (24)Then a simple 
omputation:(Q22N�1)T �Q22N�1 = N�TQT22Q22N�1 = Ishows that Q22N�1 is an orthogonal matrix. Hen
e the 
ondition number of L22Q22N�1 isexa
tly the same as the 
ondition number of L22. Furthermore, N is an upper triangularmatrix whi
h also inherits the blo
k diagonal stru
ture present in QT12Q12.The operator used in a
tual 
omputation is AP (20). The pre
onditioned operator istherefore: v2 7! ApN�1v2 = (A22 �A2QT1Q12)N�1v2 4= APNv2: (25)where it is impli
it that the ve
tor N�1v2 is 
omputed by solving the triangular systeminvolving N. Sin
e CONDAPN = CONDL22, (23) leads to the following simple result:Theorem. Given the LQ fa
torization (6) of an arbitrary square matrix A and the oper-ator APN de�ned in (25) with N de�ned in (24), the 2-norm 
ondition number of APN isguaranteed to be less than or equal to the 2-norm 
ondition number of the original matrixA. One may apply a left pre
onditioner of the user's 
hoi
e to APN . The rows in thisoperator represent the boundary nodes in the subgraphs on the original grid. One wayto 
onstru
t a left pre
onditioner is to extra
t the rows (equations) 
orresponding to theboundary nodes in ea
h subgraph separately, and to 
ompute an LQ fa
torization of theserows alone, repeating this pro
ess for ea
h subgraph. The resulting \L" fa
tors for ea
hsubgraph are then assembled into a blo
k diagonal left pre
onditioner, whi
h we label M1.This pre
onditioner 
orresponds to a blo
k Ja
obi-type pre
onditioner, and is a natural
hoi
e if the equations for ea
h subgraph were distributed to di�erent pro
essors, as ea
hsubgraph 
an be handled independently.One 
an re�ne this pre
onditioner by �rst orthogonalizing the boundary equations withinea
h subgraph against the interior equations for the same subgraph and then 
arrying out theabove lo
al LQ fa
torization. This pre
onditioner, whi
h we label M2, 
an be motivated asfollows. Let ~Ag1 represent the rows from the interior of a given subgraph g, and ~Ag2 representthe rows from the boundary of the same subgraph, and 
onsider the lo
al LQ fa
torization
orresponding to this subgraph:~Ag � � ~Ag1~Ag2 � = ~Lg ~Qg � � ~Lg11 0~Lg21 ~Lg22 �� ~Qg1~Qg2 � :The blo
k ~Lg22 is used as a pre
onditioner for the rows ~Ag2. All the ~Lg22 blo
ks are thenassembled into a blo
k diagonal pre
onditionerM2 = DIAGf~Lg22gg=1;:::;p:9



Note that the blo
ks ~Lg11 and ~Qg1 
orresponding to the interior nodes have already been
omputed as part of (7), so here it is ne
essary only to extend that LQ fa
torization. Thispre
onditioner will also be blo
k diagonal, but will have more �ll thanM1. Further study ofthe theoreti
al behavior of these pre
onditioners is needed and will be reported in a futurepaper, but we do give an indi
ation of how they a�e
ted the 
onditioning on some spe
i�
numeri
al examples given in Se
. 7.An alternate 
hoi
e of left pre
onditioner 
ould be obtained by assembling the operatorAPN , whi
h is often itself sparse, and then applying an o�-the-shelf pre
onditioner su
h asIn
omplete LU [6℄. The pros and 
ons of di�erent left pre
onditioners, whi
h 
an have adramati
 e�e
t on the 
onvergen
e of the overall algorithm, is beyond the s
ope of this shortpaper, and is the subje
t of further study.7 ExampleWe illustrate how the sparse stru
ture in A 
arries over the the 
omputed L11 and Q1. Asa �rst example, we take a matrix arising from a simple 5 point �nite-di�eren
e sten
il ona 2D grid in Fig. 1, after reordering a

ording to Se
. 2, using 4 subgraphs. Fig. 2 showsthe stru
ture of the resulting LQ fa
tors, whi
h preserve the blo
k diagonal stru
ture. Weremark that the entire Q1 is needed for the LQ fa
torization, for the 
omputation of x1 andfor the 
omputation of N. After that, Q1 appears only in the operator AP buried within thematrix produ
t A2QT1Q12. Be
ause of the sparsity stru
ture ofA2 and ofQ12, many nonzeroentries in Q1 are multiplied by only zero entries in A2;Q12 and hen
e 
an be dropped. Theelements of L11 are needed to 
ompute the LQ fa
torization, to solve for x1, and to formthe pre
onditioner M2, but 
an be dropped after that. All these entries that are droppedafter x1;N;M2 have been 
omputed are 
olored gray in Fig. 2b. So during the iterativesolution of pre
onditioned system (28), only the bla
k elements of Fig. 2b must be retained.A detailed analysis of the exa
t memory requirements depends 
riti
ally on the underlyingstru
ture of the equations being solved as well as on the spe
i�
 ordering used.In Table 1, we summarize the e�e
t of the LQ fa
torization approa
h on the 
onditionnumber for two typi
al examples. The FIDAP004 matrix is a symmetri
 inde�nite matrixtaken from the Harwell-Boeing matrix 
olle
tion [3℄ and the RAEFSKY1 matrix is a nonsym-metri
 matrix taken from [2℄. Using a partitioner based on the multi-node level-set expansionalgorithm [4, 6℄, the results of Table 1 are enough to show 
ertain properties enjoyed by theLQ-S
hur method.� The memory requirements during the LQ fa
torization stage 
an be 
onsiderable, buton
e one rea
hes the iteration stage, one 
an drop many of the elements substantiallyredu
ing the memory requirements. But the memory requirements during the LQfa
torization stage 
an be mitigated by using the fa
t that the LQ fa
torization forea
h subgraph 
an be 
omputed separately.� The 
onditioning of the redu
ed order operatorAPN 
an be noti
eably less than that ofthe entire matrix operator, and in some 
ases less than that of the S
hur 
omplement.One 
an also note that the left pre
onditioners 
an be e�e
tive in further redu
ing the10



matrix name FIDAP004 RAEFSKY1size 1601 3242number of partitions 4 2size of L22 blo
k 416 954nonzeros in A 1:2% 2:8%nonzeros in L11 9:2% 20:7%nonzeros in Q1 13:4% 31:0%in last stage 2:9% 8:7%nonzeros in N 4:8% 24:3%nonzeros in M1 4:7% 15:1%nonzeros in M2 12:8% 25:0%CONDA 2:39�103 1:29�104CONDS 6:75�103 4:27�103CONDAP 9:58�104 2:04�104CONDAPN 1:05�103 6:47�103CONDM�11 APN 3:14�102 1:47�103CONDM�12 APN 2:23�102 1:08�103Table 1: Summary of method results on two examples, showing how the 
ondition number 
anbe redu
ed in some 
ases, while maintaining the sparse representation of the operators.
ondition number. On the other hand, it is 
lear that AP 
an have a higher 
onditionnumber than even the original matrix, so it is essential to use the right pre
onditionerN to eliminate the e�e
t of Q22 in (18).Both of these properties are 
riti
ally dependent on the spe
i�
 
hoi
e of partitioner andon the su

ess of �nding a good ordering that exposes a sequen
e of mutually stru
turallyorthogonal rows in the matrix operator. In fa
t, the partitioner we used was not 
hosen withthese spe
i�
 examples in mind, as this was not the fo
us of this paper. The partitioningshown here, however, is suÆ
ient to show some of the properties of the LQ-S
hur basedproje
tion.8 SummaryWe summarize the pro
ess one would use to solve a given system Ax = b.1. Compute a partitioning and an asso
iated ordering of the matrix A using any methodso that the result satis�es the assumptions of Se
. 2. The result for a matrix derivedfrom a 2D 5-point �nite-di�eren
e sten
il is illustrated in Fig. 1.2. Compute a partial LQ fa
torization of A. The result is illustrated in Fig. 2. Solve forpartial solution x1 via (9) and residual r2 4= b2 �A2x1 (10).11



3. Colle
t the quantities A2, Q1 needed to form or apply the operator APN and rightpre
onditioner N.Then the unpre
onditioned system to be solved isAPw2 = r2; (26)where the solution to Ax = b is thenx = x1 + x2 = x1 + (I�QT1Q1)� 0w2 � (27)4. Compute the right pre
onditioner N via (24). Form the operator APN (25) eitherimpli
itly or expli
itly, and optionally 
ompute a suitable left pre
onditioner M,5. Solve the pre
onditioned systemM�1APNy2 =M�1r2 (28)using an iterative method, where the solution to Ax = b is thenx = x1 + x2 = x1 + (I�QT1Q1)� 0N�1y2 � (29)From this summary, it is 
lear that there is a high degree of overlap with S
hur 
omplementmethods. But S
hur 
omplement depends on a partial Gaussian elimination of the originaloperator in whi
h one must trade o� pivoting for numeri
al stability against ordering formaximum sparsity. For nonsymmetri
 operators, it 
an also happen that the 
ondition num-ber of the redu
ed order operator will ex
eed that of the original. On the other hand, usingan LQ fa
torization 
ombined with the right pre
onditioner, we 
an bound the 
onditionof the resulting operator to be at most that of the original matrix, and often it is mu
hless. Though it has not been dis
ussed here, one is also free to order the 
olumns of theoriginal matrix to lower the 
ondition number of the intermediate operators N, et
. In thissense, the method based on the LQ fa
torization enjoys many of the advantages of solvinga nonsymmetri
 system via the normal equations, but without su�ering the squaring of the
ondition number.The main limitations of the LQ fa
torization approa
h are the in
reased memory require-ments in order to 
ompute even the partial fa
tors. In a pra
ti
al implementation, one 
anmitigate this problem to some extent by 
omputing the LQ fa
torization and partial solutionx1 for ea
h subgraph separately, saving only the items needed for the later iterative pro
ess.But the ne
essary bookkeeping 
an be
ome rather 
ompli
ated. We have not investigatedthe possibility of keeping Q1 in some sort of fa
tored form.Referen
es[1℄ T. F. Chan and T. P. Mathew. Domain de
omposition algorithms. In A
ta Numeri
a,pages 61{143. Cambridge Univ. Press, 1994.12
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Figure 1: Matrix example based on a 2D 5-point �nite-di�eren
e sten
il after reordering into 4subgraphs.
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(b) Q from LQ fa
torFigure 2: LQ fa
tors for the matrix in Fig. 1. The gray entries 
an be dropped during the �nalstage while 
omputing x2 13
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