Technical Report

Department of Computer Science
and Engineering
University of Minnesota
4-192 EECS Building
200 Union Street SE
Minneapolis, MN 55455-0159 USA

TR 99-035

LQ-Schur Projection on Large Sparse Matrix Equations

Daniel Boley and Todd Goehring

December 21, 1999

LQ-Schur Projection on Large Sparse Matrix Equations

Daniel Boley* and Todd Goehring
Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455, USA

Abstract

A new paradigm for the solution of nonsymmetric large sparse systems of linear
equations is proposed. The paradigm is based on an LQ factorization of the matrix of
coefficients, i.e. factoring the matrix of coefficients into the product of a lower triangular
matrix and an orthogonal matrix. We show how the system of linear equations can be
decomposed into a collection of smaller independent problems which can then be used
to construct an iterative method for a system of smaller dimensionality. We show that
the conditioning of the reduced problem cannot be worse than that of the original,
unlike Schur complement methods in the nonsymmetric case. The paradigm depends
on the existence of an ordering of the rows representing the equations into blocks of
rows which are mutually structurely orthogonal, except for a last block row which is
coupled to all other rows in a limited way.

1 Introduction

The solution of large sparse systems of linear equations is a difficult and often time-consuming
task. The focus of this paper is on a new paradigm for constructing a reduced order system
from the original system, as a generalization to the methods based on the Schur complement
[1]. The Schur complement method starts by partitioning a matrix A and applying a block
Gaussian elimination process to this matrix:

<A11 A12> :< I 0) (An A21>

Ay Ay Lyy I)7\ 0 Usy)/"

Then the Schur complement of Agy is S = LgyUsyy, where Ly, = AglAfll and Uy =
Ay, — Ly Ay, [6]. Typically, this method is useful when the equations are ordered so that
systems of equations involving A;; are relatively easy to solve, so that S can be used in

an iterative method without being formed explicitly. However the ordering within Ay; can
have a dramatic effect on the numerical quality of the resulting representation of the Schur

*e-mail: boley@cs.umn.edu

complement. This can lead to difficult trade offs between the numerical accuracy on the one
hand and the sparsity or complexity of solution on the other.

In this paper, we describe a generalization of this method in which the Gaussian elim-
ination is replaced with a triangular orthogonalization process, i.e. a QR factorization [5].
Since we are using a row based scheme instead of a column based scheme, we will use instead
an LQ factorization, in which a matrix is factored into A = LQ with L lower triangular and
Q orthogonal. In this case, the numerical accuracy is independent of the ordering of the
rows, so we are free to choose an order to enhance the sparsity of the LQ factors as much
as possible.

It is well known that the L.QQ process results in much more fill than the Gaussian elimina-
tion process. However we make certain assumptions on the structure of the original matrix
which will limit the fill and hence make a practical algorithm. The main assumption is that
we have ordered the rows of the matrix A into a number of blocks which are mutually struc-
turally orthogonal, except for a last block of rows which are coupled to all the other blocks.
The motivation for this structure comes from the discretization of differential operators over
physical domains.

Domain Decomposition addresses the topic of solving partial differential equations by par-
titioning the domain into smaller semi-independent subdomains. There are many variations:
overlapping vs non-overlapping subdomains, iterative Schwarz methods vs Schur comple-
ment methods (where interior nodes are solved directly and the boundary nodes are solved
iteratively) [1, 7], as well as preconditioners of many types (ILU, ILUT, multilevel, etc.),
some of which are motivated by the underlying differential equations [6, 1]. The present
paper is limited in scope to the linear algebra aspects of using an LQ decomposition on
matrices with a sparsity structure commonly found among matrices derived from discrete
differential operators. The relation with any underlying differential equations, including a
discussion of convergence or application-specific preconditioners is beyond the scope of this
short paper.

In this paper, in Sec. 2 we motivate the assumptions made regarding the structure of the
matrix operator, in Sec. 3 we introduce the overall setup and notation. In Sec. 4 we present
the details of the solution process, in Sec. 5 we relate the iteration operator to the Schur
complement, and in Sec. 6 we sketch some preconditioners peculiar to this formulation for
the reduced order system. We end with a short example in Sec. 7 and a summary in Sec. 8.

2 Motivation of Structure

The methods discussed in this paper have been developed for systems with structures sim-
ilar to those derived from the finite-element or finite-difference discretization of a partial
differential equation over some domain. In order to carry out the process, we make certain
assumptions about the way the domain is partitioned into subdomains. These assumptions
are described below.

1. The physical domain has been covered with a finite collection of nodes or vertices,
each representing the unknowns at a single location or element in the domain. To each
node corresponds an equation which couples the unknown values at that node with

those of its immediate neighbors. This is the typical situation that results from any
finite-difference method with a usual 5 or 9 point stencil in 2D or 7 point stencil in 3D,
or a finite-element method in which the values within each element are coupled only
those of the immediately adjacent elements. This structure is represented by a graph
with vertices corresponding to the nodes and edges corresponding to coupling between
nodes in a single equation (see e.g. [6, 7]). In the following, we discuss the ordering of
the matrix based on a partitioning of the graph, which is a discrete representation of
the original domain. The partitioning of the graph would correspond to a partitioning
of the original domain into disjoint subdomains. To emphasize that we are focusing on
the discrete problem, we refer to subgraphs instead of subdomains.

. The entire graph has been partitioned by some algorithm into a collection of subgraphs,
each separated from the neighboring subgraphs by a double-layered boundary. To see
why a double layered boundary is useful in this situation, consider 4 nodes in the
neighborhood of a boundary:

where A is in the interior of one subgraph, B is on the boundary of the same subgraph,
C is on the boundary of a different subgraph, and D is in the interior of this latter
subgraph. We say that B is part of the same subgraph as A, and C is part of the
same subgraph as D, but B, C lie on the boundary of their respective subgraphs. In a
parallel processing environment where each subgraph would be allocated to a different
processor, A, B would be put on together on one processor, while C, D would be put
together on another.

The equation centered at node A couples A with node B and with other nodes from
its own subgraph (both in the interior and possibly on the boundary). But A is not
coupled with nodes from any other subgraph, whether in the interior (such as D) or
on the boundary (such as C). Analogously, the equation centered at B couples B with
other nodes on the boundary of its own subgraph and neighboring subgraphs (such
as C), and with nodes in the interior of its own subgraph (such as A). But B is not
coupled with any node in the interior of any other subgraph (such as D). In other
words, there are edges within each subgraph, between the interior and the boundary
of the same subgraph, and among the boundary nodes, but there are no edges between
the interiors of two different subgraphs, nor between the boundary of one subgraph
and the interior of a different subgraph.

When the equations are assembled into a matrix operator, the result is that the rows
centered at interior nodes (such as A) are automatically structurely orthogonal to rows
centered on interior nodes of other subgraphs (such as D), as well as boundary nodes
of other subgraphs (such as C). The rows centered on boundary nodes (such as B) are
structurally orthogonal to rows centered on interior nodes of other subgraphs (such as

D).

3. The equations are ordered in the typical way in Domain Decomposition with the bound-
ary nodes (such as B and C above) ordered last. All the interior nodes of each subgraph
are ordered together, after which come all the boundary nodes, again grouped by sub-
graph. The resulting matrix A will have the following form

A:<A1>:<A11 A12>
A2 A21 A—22 ’
where

e Ay, is ny; x ny block diagonal, and each diagonal block represents the coupling
among the interior nodes of a single subgraph;

e A,y isn; xny with a rectangular block “diagonal” structure, and each rectangular
block represents the coupling between the interior of a single subgraph and the
boundary of the same subgraph, as viewed from the interior;

e Ay is ny xny with a rectangular block “diagonal” structure, and each rectangular
block represents the coupling between the interior of a single subgraph and the
boundary of the same subgraph, as viewed from the boundary;

e A, is ny X ny and represents the coupling among all the boundary nodes.

Fig. 1 shows a typical structure for A derived from a standard 5 point stencil in 2D.
We note that with this ordering, Ay, A2, Aoy all tend to be sparse, and within the top
part, (Aj; Aj), the rows corresponding the each subgraph are structurally orthog-
onal to the rows corresponding to any other subgraph. The structural orthogonality
allows one to orthogonalize the rows for each subgraph independently.

3 Problem Setup and Projectors

Let A be a n x n matrix and b be an n-vector, partitioned as
A, Ay Ap b,

A= (i) = (an an) p=(5): D)
where Ay is n; X ny block diagonal and hence relatively easy to “invert,” and Ags is ng X ngy.
The matrix A would typically be constructed from a Domain Decomposition-like process,
in which the block A; = (A;; Ajy) represents the equations in the interior of a collection
of disjoint subgraphs and Ay = (Ag; Ay) represents the equations on the boundaries
between the subgraphs. We assume that the boundaries are “double layered” so that the
rows corresponding to each subgraph’s interior are structurally orthogonal to those for other
subgraphs’ interiors, as described in the previous section.

The goal is to solve the system of equations Ax = b. To this end, we decompose the

solution x into two parts x = x; + Xy with x; lying in the space spanned by the rows of A,
and x5 lying in the space orthogonal to this row space:

X € ROW-SPACE A
Xy L ROW-SPACEA| <= X9 € NULLSPACE A;.

(2)

4

We denote the orthogonal projector for row-space Ay as Py and the orthogonal projector for
the complementary space NULLSPACE A7 as Py =1 — P;. Then the second component of the
solution can be written as xy = Pyw for some vector w to be determined.

The overall procedure we will develop can be summarized as follows.

1. Solve for x; directly, where x; satisfies

A x; = b;(an underdetermined system)
such that x; € Row-sPACE A ;.

(3)

For this step, we use the LQ factorization of A, because parts of these factors will
then be saved for later use. The constraint makes the solution unique.

2. Form the equations for the second component of the solution:

AQXQ =T é b2 - AQXl (4)

such that xy = Pow for some vector w to be determined.

3. Solve equation (4) for w and then for x,. This is typically done by an iterative method,
though in some cases one could even think of using a direct method. In actual fact,

we solve the equations
A2P2w =T é bg — AQXl, (5)

where w lies in a restricted space to make the solution unique, so that in effect we are
solving a system of reduced dimensionality.

The key to the success of the overall method is that we can represent the operator A,P,
in (5) in terms of A, and sparse items constructed from A;. We never have to form P,
explicitly.

LQ Factorization

In order to carry out the intended solution procedure, we use a partial L(Q) factorization of
A. The entire L.QQ factorization of A is defined as

A=LQ= (= , 6
=L)/ " L L) len a,)
where L, Q is partitioned in conformity to the partitionings shown in (1). Here L is a lower

triangular matrix and @Q is an orthogonal matrix. Even though we define the entire LQ
factorization, we compute only the top n; rows:

A1 - LllQl- (7)

The rest of the LQ factorization will be represented implicitly. Furthermore, we use L,
only during the computation of x;, after which it may be dropped, keeping only Q, in later
stages.

In terms of the LQ factorization, the orthogonal projectors can be written as

P, = Q1TQ1 and Py = Q;FQQ =1- Q?Ql (8)

4 Solution Process

We now go through the steps of the solution process in some more detail.

4.1 Solve for x;

We compute the LQ factorization of A; (7). Given the structure we have assumed for the
matrix A, the rows in A; corresponding to different subgraphs are structurally orthogonal.
Hence the LQ factorization of each block can be computed independently and in parallel.
If one thinks of using a Gram-Schmidt orthogonalization procedure on the rows for each
subgraph, the result is that both L;; and Q,; will have the same block diagonal structure
as Aq1, but each diagonal block will be more full. One is free to order the rows within each
subgraph to reduce the fill, and we usually choose to order them by graph distance to the
boundary, which the nodes closest to the boundary last. The block Q4 will have also have
a rectangular diagonal-like block structure inherited from that of A;;. We do not compute
Ly or Q,, since the latter is often very full.
Writing (3) in terms of the LQ factorization yields L;;Q;x; = by, so that the solution
satisfying (3) is
x; = Q{L;/'by. (9)

Thus the vector x; can be found by solving the triangular system Lj;y, = by, and then
setting x; = Q1TY1-

4.2 Forming Second Set of Equations

To find x5, we must solve (5) for w, and then set x, = Pow. However, we will find a reduced
representation for (5) in terms of the partial LQ factorization. The right hand side of (5)
can be expanded as follows:

boax = () (x)=
0
= _ 10
<b2 - AZQ{LUlbl) ()

£ ()

We can expand the left hand side of (5) as follows:

Ax; = AP,w = (Z) Q; Q,w
= <A2§5Q2> w (because A;Q; = 0) (11)

= (L22Q2> w (because AyQL = Ly,).

Thus, it is seen that set of equations (5) actually reduces to a ny X ny linear system involving
the matrix Los. The catch is that we never compute Loy or Q,. Instead, we represent them

using only A, and the projector derived from A;:

AP = (b)) = (b)) (12)

Combining the above, equation (5) reduces to
Ay(I - Py)w =ry, (13)
after which we compute xy = (I — Py)w. The advantages of (13) are
e all the matrix operators on the left hand side are sparse or have a sparse representation;

e by using the relation Ay(I — P;) = LyyQ, we can precondition the matrix operator by
focusing on Q, or Ly, separately, as described below;

e we have some freedom in the representation of w, in the sense that (13) is an under-
determined system such that any solution w leads to the same final solution xs.

We discuss this last point a little further. Consider applying a Krylov space method to
the square but singular system

Ad-Pow= (0 py)v= () (14)

in which (13) is embedded. If we use Krylov space methods such as GMRES with an initial
guess equal to zero, then all the solutions will be taken from the Krylov space

() (o) () () ()] w0

which has the form
(0 0 -) | (16)
* * « ..

This naturally leads to restricting the solutions w to the form

vi(2) o

leading to the square set of equations

L22Q22W2 =T (18)

This completely specifies the solution w, but the numerical accuracy of the solution could
suffer if the condition number of Q,, is too high. We will show below how one can completely
eliminate the effect of Q,,, but if Q,, is very badly conditioned, then some modification to
the problem should be applied, such as a simple reordering of the columns in the original
problem, without affecting the structural orthogonality among the rows. For the purposes
of this paper, we will assume that Q,, is not singular or almost singular.

7

Of course, we remark that we do not form (18) explicitly, but we apply the operator of
(18) in an iterative method by actually iterating with (14), restricting the iteration vectors
to lie in a space of the form (16). When so restricted, (14) reduces to the iteration:

vy AQPQ(V(") = AQ(IQlTQl)<O>

2 Vo

= Ay (32> - A,Q7Q, <‘?2> (19)

= Agpvy — A2Q1TQ12V2
= (An — AQQy,)vs.

The last expression involves only the original data A, and the sparse orthogonal factor Q,
derived from A;. If (19) is used in an iterative method, then it can be left in separate parts
Vo = Agovy — AQQ{QIQVQ, but one could also explicitly form the matrix

Ap= Ay - AQQ, (20)

if one intends to use it in a direct method or apply an ILU-type of preconditioner. By a
simple manipulation, one can verify that Ap = L9Q,,, so that we have indeed found a
representation for (18) without computing Las, Q,, explicitly.

5 Relation to Schur Complement

The reader will notice the obvious similarity of the above development with the Schur com-
plement. We write the inverse of A in terms of the LQ factorization (6):

An A\ Q) Q) Ly 0
= T T —1) (21)
Ay Ay Qi Qo X Ly
where the “x” block is irrelevant to this discussion. Letting S denote the Schur complement
of Ays, S7! is the 2-2 block of A™!, and thus

S = LyQyy (22)

This is in contrast to the operator LyyQ,, in (18). For nonsymmetric operators, it is possible
for S to have a higher condition number compared to the original matrix A, and the same
is true of the operator LyyQ,,. However, we will show below how to find a sparse right
preconditioner to completely eliminate the effect of Q,,. The remaining triangular part,
Ly,, must have a condition number no larger than that of the original matrix A, as can be
seen by applying the eigenvalue interlacing theorem [5] to the symmetric matrix

T T Lll 0>T<L11 0)_()(X >
QATAQ" = <L21 Lo Ly L/ \X L;FQL22 ' (23)

A sparse left preconditioner can be used to help reduce the conditioning due to Lys.

6 Preconditioning

We can completely eliminate the effect of Q, from (18) (and hence from the iteration
matrix AP,). We form a triangular neutralizing matrix N which is applied to the right of
the operator Ap = LgyyQ,,; hence it is called a right preconditioner. The preconditioner
is the Cholesky factor of a symmetric positive definite matrix derived from the partial LQ
factorization:

N'N = QQTQQ22 =I- Q1T2Q12- (24)

Then a simple computation:

(QQQNJ)T : Q22N71 = NiTQ2T2Q22N71 =1

shows that Q,,N ! is an orthogonal matrix. Hence the condition number of Loy Q,,N "' is
exactly the same as the condition number of Ly,;. Furthermore, N is an upper triangular
matrix which also inherits the block diagonal structure present in Q%,Q,,.
The operator used in actual computation is Ap (20). The preconditioned operator is
therefore:
vy = AN vy = (Ayy — AQT Q)N vy = Apyvy. (25)

where it is implicit that the vector N 'v, is computed by solving the triangular system
involving N. Since coNpD A py = conD Lgs, (23) leads to the following simple result:
Theorem. Given the LQ) factorization (6) of an arbitrary square matriz A and the oper-
ator Apy defined in (25) with N defined in (24), the 2-norm condition number of Apy is
guaranteed to be less than or equal to the 2-norm condition number of the original matrix
A.

One may apply a left preconditioner of the user’s choice to Apy. The rows in this
operator represent the boundary nodes in the subgraphs on the original grid. One way
to construct a left preconditioner is to extract the rows (equations) corresponding to the
boundary nodes in each subgraph separately, and to compute an L(Q factorization of these
rows alone, repeating this process for each subgraph. The resulting “L” factors for each
subgraph are then assembled into a block diagonal left preconditioner, which we label M;.
This preconditioner corresponds to a block Jacobi-type preconditioner, and is a natural
choice if the equations for each subgraph were distributed to different processors, as each
subgraph can be handled independently.

One can refine this preconditioner by first orthogonalizing the boundary equations within
each subgraph against the interior equations for the same subgraph and then carrying out the
above local LQ) factorization. This preconditioner, which we label M5, can be motivated as
follows. Let Af represent the rows from the interior of a given subgraph ¢, and Ag represent
the rows from the boundary of the same subgraph, and consider the local LQ factorization

corresponding to this subgraph:
g X

e () - wa= ()&

The block £§’2 is used as a preconditioner for the rows Ag. All the 1332 blocks are then
assembled into a block diagonal preconditioner

M2 = DIAG{EZQ}!}:L---,IJ‘

9

Note that the blocks ffil and Qf corresponding to the interior nodes have already been
computed as part of (7), so here it is necessary only to extend that LQ) factorization. This
preconditioner will also be block diagonal, but will have more fill than M;. Further study of
the theoretical behavior of these preconditioners is needed and will be reported in a future
paper, but we do give an indication of how they affected the conditioning on some specific
numerical examples given in Sec. 7.

An alternate choice of left preconditioner could be obtained by assembling the operator
Apy, which is often itself sparse, and then applying an off-the-shelf preconditioner such as
Incomplete LU [6]. The pros and cons of different left preconditioners, which can have a
dramatic effect on the convergence of the overall algorithm, is beyond the scope of this short
paper, and is the subject of further study.

7 Example

We illustrate how the sparse structure in A carries over the the computed L;; and Q,. As
a first example, we take a matrix arising from a simple 5 point finite-difference stencil on
a 2D grid in Fig. 1, after reordering according to Sec. 2, using 4 subgraphs. Fig. 2 shows
the structure of the resulting LQ factors, which preserve the block diagonal structure. We
remark that the entire QQ, is needed for the L(Q) factorization, for the computation of x; and
for the computation of N. After that, Q, appears only in the operator A p buried within the
matrix product AQQITQm. Because of the sparsity structure of A, and of Q,,, many nonzero
entries in Q, are multiplied by only zero entries in Ay, Q,, and hence can be dropped. The
elements of Li; are needed to compute the LQ factorization, to solve for x;, and to form
the preconditioner My, but can be dropped after that. All these entries that are dropped
after x;, N, My have been computed are colored gray in Fig. 2b. So during the iterative
solution of preconditioned system (28), only the black elements of Fig. 2b must be retained.
A detailed analysis of the exact memory requirements depends critically on the underlying
structure of the equations being solved as well as on the specific ordering used.

In Table 1, we summarize the effect of the LQ factorization approach on the condition
number for two typical examples. The FIDAP004 matrix is a symmetric indefinite matrix
taken from the Harwell-Boeing matrix collection [3] and the RAEFSKY1 matrix is a nonsym-
metric matrix taken from [2]. Using a partitioner based on the multi-node level-set expansion
algorithm [4, 6], the results of Table 1 are enough to show certain properties enjoyed by the
LQ-Schur method.

e The memory requirements during the LQ factorization stage can be considerable, but
once one reaches the iteration stage, one can drop many of the elements substantially
reducing the memory requirements. But the memory requirements during the LQ
factorization stage can be mitigated by using the fact that the LQ factorization for
each subgraph can be computed separately.

e The conditioning of the reduced order operator A py can be noticeably less than that of
the entire matrix operator, and in some cases less than that of the Schur complement.
One can also note that the left preconditioners can be effective in further reducing the

10

matrix name FIDAPO004 | RAEFSKY1
size 1601 3242
number of partitions 4 2
size of Lys block 416 954
nonzeros in A 1.2% 2.8%
nonzeros in Ly 9.2% 20.7%
nonzeros in Q, 13.4% 31.0%
in last stage 2.9% 8.7%
nonzeros in N 4.8% 24.3%
nonzeros in M; 4.7% 15.1%
nonzeros in M 12.8% 25.0%
coxp A 2.39x10% | 1.29%x10%
CONDS 6.75x10% | 4.27x103
CoNDA p 0.58x10% | 2.04x10%
CoND A py 1.05x103 | 6.47x103
coxoM[' Apy 3.14x102 | 1.47x103
coND M, ' Apy 2.23x10% | 1.08x103

Table 1: Summary of method results on two examples, showing how the condition number can
be reduced in some cases, while maintaining the sparse representation of the operators.

condition number. On the other hand, it is clear that Ap can have a higher condition
number than even the original matrix, so it is essential to use the right preconditioner
N to eliminate the effect of Q,, in (18).

Both of these properties are critically dependent on the specific choice of partitioner and
on the success of finding a good ordering that exposes a sequence of mutually structurally
orthogonal rows in the matrix operator. In fact, the partitioner we used was not chosen with
these specific examples in mind, as this was not the focus of this paper. The partitioning
shown here, however, is sufficient to show some of the properties of the LQ-Schur based
projection.

8 Summary
We summarize the process one would use to solve a given system Ax = b.

1. Compute a partitioning and an associated ordering of the matrix A using any method
so that the result satisfies the assumptions of Sec. 2. The result for a matrix derived
from a 2D 5-point finite-difference stencil is illustrated in Fig. 1.

2. Compute a partial LQ factorization of A. The result is illustrated in Fig. 2. Solve for
partial solution x; via (9) and residual ry 2 by — Ayx, (10).

11

3. Collect the quantities Ay, Q, needed to form or apply the operator Apy and right
preconditioner N.

Then the unpreconditioned system to be solved is
Apwy =13, (26)

where the solution to Ax = b is then

0
X:X1+X2:X1+(I_Q1TQ1)<W2> (27)
4. Compute the right preconditioner N via (24). Form the operator Apy (25) either
implicitly or explicitly, and optionally compute a suitable left preconditioner M,

5. Solve the preconditioned system
M 'Apyy, =M 'y (28)

using an iterative method, where the solution to Ax = b is then
1 1 N— Yo

From this summary, it is clear that there is a high degree of overlap with Schur complement
methods. But Schur complement depends on a partial Gaussian elimination of the original
operator in which one must trade off pivoting for numerical stability against ordering for
maximum sparsity. For nonsymmetric operators, it can also happen that the condition num-
ber of the reduced order operator will exceed that of the original. On the other hand, using
an LLQ factorization combined with the right preconditioner, we can bound the condition
of the resulting operator to be at most that of the original matrix, and often it is much
less. Though it has not been discussed here, one is also free to order the columns of the
original matrix to lower the condition number of the intermediate operators N, etc. In this
sense, the method based on the LQ factorization enjoys many of the advantages of solving
a nonsymmetric system via the normal equations, but without suffering the squaring of the
condition number.

The main limitations of the LQ factorization approach are the increased memory require-
ments in order to compute even the partial factors. In a practical implementation, one can
mitigate this problem to some extent by computing the LQ factorization and partial solution
x; for each subgraph separately, saving only the items needed for the later iterative process.
But the necessary bookkeeping can become rather complicated. We have not investigated
the possibility of keeping Q; in some sort of factored form.

References

[1] T. F. Chan and T. P. Mathew. Domain decomposition algorithms. In Acta Numerica,
pages 61-143. Cambridge Univ. Press, 1994.

12

Matrix Operator after re-ordering
0 T T

L
0 50 100 150 200 250
nz =1216

Figure 1: Matrix example based on a 2D 5-point finite-difference stencil after reordering into 4
subgraphs.

upper part of lower triangular factor upper part of orthogonal factor

N
=]
T
_iE Ui

4
L i
g p
T
4 lll
e,
§

S
T

=]

100 -

I
%
120 - ‘!ll
i Il
"5

L .
o '“*lllllll“lhi

160 ‘!“’II
k'
180 e
‘ ‘ ‘ *m!ll“llhu ‘
° % 100 nz = 2786 190 20 20 0 % nzlzognal = 6804, blact5= 1056
(a) L from LQ factor (b) Q from LQ factor

Figure 2. LQ factors for the matrix in Fig. 1. The gray entries can be dropped during the final
stage while computing x5

13

[2] T. Davis. University of Florida sparse matrix collection. http: //www.cise.ufl.edu/~davis
/sparse/, ftp://ftp.cise.ufl.edu/pub/faculty /davis/matrices. See NA Digest vol. 97, no.
23, June 7, 1997.

[3] I. Duff, R. Grimes, and J. Lewis. Harwell-Boeing sparse matrix collection. http:
//math.nist.gov/MatrixMarket /collections/hb.html.

[4] T. Goehring and Y. Saad. Heuristic algorithms for automatic graph partitioning. tech.
report UMSI 94-29, Univ. of Minn. Supercomputer Inst., 1994.

[5] G. H. Golub and C. F. Van Loan. Matriz Computations. Johns Hopkins Univ. Press,
3rd edition, 1996.

[6] Y. Saad. [terative Methods for Sparse Linear Systems. PWS, 1996.

[7] B. Smith, P. Bjorstad, and W. Gropp. Domain Decomposition, Paralllel Methods for
Elliptic Partial Differential Equations. Cambridge Univ. Press, 1996.

14

