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1 Introduction

Resource discovery is more than just search: it is browsing, searching, selecting, assessing
and evaluating, ie, ultimately accessing information. Giving users access to collections is one
of the defining tasks of a library. For thousands of years the traditional methods of resource
discovery have been facilitated by librarians: they create reference cards with meta-data that
are put into catalogues (nowadays, databases); they also place the objects in physical locations
that follow certain classification schemes and they answer questions at the reference desk.

The advent of digital documents has radically changed the organisation principles; now
it is possible to automatically index and search document collections as big as the world-
wide web à la Google and browse collections utilising author-inserted links. It is almost
as if automated processing has turned the traditional library access paradigm upside down.
Instead of searching meta-data catalogues in order to retrieve the document, web search
engines search the full content of documents and retrieve their meta-data, ie, the location
where documents can be found. Not all manual intervention has been abandoned, though.
For example, the Yahoo! directory is an edited classification scheme of submitted web sites
that are put into a browsable directory structure akin to library classification schemes.

Undoubtedly, however, it is the automated approaches that have made all the difference
to the way the vast world-wide web can be used. While the automated indexing of text
documents has been successfully applied to collections as large as the world-wide-web for
over a decade now, multimedia indexing by content involves different, still less mature and
less scalable technologies. Figure 1 shows a matrix of different search engines depending on
the query (columns) and document repository (rows). Entry a) in this matrix corresponds
to a traditional text search engine with a completely different technology than entry b), a
system that allows you to express musical queries by humming a tune and that then plays
the corresponding song; the three c) entries in Figure 1 correspond to a multi-modal video
search engine allowing search by motion with example images and text queries, eg, find me
video shots of the Houses of Parliament in London zooming into its tower’s clock face using
the following example still image; in contrast to this d) could be a search engine with a
query text box that returns BBC Radio 4 discussions. Section 2 summarises different basic
technologies involved in multimedia search.

Multimedia collections pose their very own challenges; for example, images and videos
don’t often come with dedicated reference cards or meta-data, and when they do, as in
museum collections, their creation will have been expensive and time-consuming. Section 3
explores the difficulties and limitations of automatically indexing, labelling and annotating
image and video content. It briefly discusses the inherent challenges of the semantic gap,
polysemy, fusion and responsiveness.
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Figure 1: New search engine types

Even if all these challenges were solved, indexing sheer mass is no guarantee of a successful
annotation either: While most of today’s inter-library loan systems allow access to virtually
any book publication in the world — at least around 98m book entries in OCLC’s Worldcat
database (OCLC 2008) and 3m entries from Bowker’s Books In Print — students and re-
searchers alike seem to be reluctant to actually make use of this facility. On the other hand,
the much smaller catalogue offered by Amazon appears to be very popular, presumably owing
to added services such as subject categories; fault tolerant search tools; personalised services
telling the customer what’s new in a subject area or what other people with a similar profile
bought; pictures of book covers; media and customer reviews; access to the table of contents,
to selections of the text and to the full-text index of popular books; and the perception of
fast delivery. In the multimedia context Section 4 argues that automated added services such
as visual queries, relevance feedback and summaries can prove useful for resource discovery in
multimedia digital libraries. Sections 4.1 is about summarising techniques for videos, Section
4.2 exemplifies visualisation of search results, while Section 4.3 discusses content-based visual
search modes such as query-by-example and relevance feedback.

Finally, Section 5 promotes browsing as resource discovery mode and looks at underlying
techniques to automatically structure the document collection to support browsing.

2 Basic Multimedia Search Technologies

The current best practice to index multimedia collections is via the generation of a library
card, ie, a dedicated database entry of meta-data such as author, title, publication year and
keywords. Depending on the concrete implementation these can be found with SQL queries,
text-search engines or XML query language, but all these search modes are based on text
descriptions of some form and are agnostic to the structure of the actual objects they refer
to, be it books, CDs, videos, newspaper articles, paintings, sculptures, web pages, consumer
products etc.

The left column of the matrix of Figure 1 is underpinned by text search technology and
requires the textual representation of the multimedia objects, an approach that I like to
call piggy-back text retrieval. Other approaches are based on an automatic classification of
multimedia objects and on assigning words from a fixed vocabulary. This can be a certain
camera motion that can be detected in a video (zoom, pan, tilt, roll, dolly in and out, truck
left and right, pedestal up and down, crane boom, swing boom etc); a genre for music pieces
such as jazz, classics; a generic scene description in images such as inside/outside, people,
vegetation, landscape, grass, city-view etc or specific object detection like faces and cars etc.
These approaches are known as feature classification or automated annotation.

The type of search that is most commonly associated with multimedia is content-based:
The basic idea is that still images, music extracts, video clips themselves can be used as
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queries and that the retrieval system is expected to return ‘similar’ database entries. This
technology differs most radically from the thousands-year-old library card paradigm in that
there is no necessity for meta-data at all. In certain searches there is the desire to match not
only the general type of scene or music that the the query represents, but instead one and only
one exact multimedia object. For example, you take a picture of a painting in a gallery and
submit this as a query to the gallery’s catalogue in the hope of receiving the whole database
record about this particular painting, and not a variant or otherwise similar exhibit. This is
sometimes called fingerprinting or known-item search.

The rest of this section outlines these four basic multimedia search technologies.

2.1 Piggy-back text retrieval

Amongst all media types, TV video streams arguably have the biggest scope for automat-
ically extracting text strings in a number of ways: directly from closed-captions, teletext
or subtitles; automated speech recognition on the audio and optical character recognition
for text embedded in the frames of a video. Full text search of these strings is the way
in which most video retrieval systems operate, including Google’s latest TV search engine
http://video.google.com or Blinkx-TV http://www.blinkx.tv. In contrast to television, for
which legislation normally requires subtitles to assist the hearing impaired, videos stored
on DVD don’t usually have textual subtitles. They have subpicture channels for different
languages instead, which are overlayed on the video stream. This requires the extra step
of optical character recognition, which can be done with a relatively low error rate owing to
good quality fonts and clear background/foreground separation in the subpictures. In general,
teletext has a much lower word error rate than automated speech recognition. In practice, it
turns out that this does not matter too much as query words often occur repeatedly in the
audio - the retrieval performance degrades gracefully with increased word error rates.

Web pages afford some context information that can be used for indexing multimedia
objects. For example, words in the anchor text of a link to an image, a video clip or a music
track, the file name of the object itself, meta-data stored within the files and other context
information such as captions. A subset of these sources for text snippets are normally used
in web image search engines.

Some symbolic music representations allow the conversion of music into text, such as
MIDI files which contain a music representation in terms of pitch, onset times and duration
of notes. By representing differences of successive pitches as characters one can, for example,
map monophonic music to one-dimensional strings. A large range of different text matching
techniques can be deployed, for example the edit distance of database strings with a string
representation of a query. The edit distance between two strings computes the smallest
number of deletions, insertions or character replacements that is necessary to transform one
string into the other. In the case of query-by-humming, where a pitch tracker can convert
the hummed query into a MIDI-sequence (Birmingham et al 2006), the edit distance is also
able to deal gracefully with humming errors. Other techniques create fixed-length strings,
so called n-grams, with windows that glide over the sequence of notes. The resulting strings
can be indexed with a normal text search engine. This approach can also be extended to
polyphonic music, where more than one note can be sounded at any one time (Doraisamy
and Rüger 2003).

2.2 Automated annotation

Automatically annotating images with text strings is less straightforward. Methods attempt-
ing this task include dedicated machine vision models for particular words (such as “people”
or “aeroplane”). However, the most popular and successful generic approaches are based
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on classification techniques. This normally requires a large training set of images that have
annotations and from these one can extract features, or characteristics (see Section 2.3),
and somehow correlate these with the existing annotations of the training set. For example,
images with tigers will have orange-black stripes and often green patches from surrounding
vegetation, and their existence in an unseen image can in turn bring about the annotation
“tiger”.

In particular, the following techniques have been studied: machine translation methods
that link image regions (blobs) and words in the same way as corresponding words in two
text documents written in different languages but otherwise of same contents (Duygulu et al
2002); co-occurrence models of low-level image features of tiled image regions and words (Mori
et al 1999); cross-lingual information retrieval models (Jeon et al 2003,Lavrenko et al 2003);
inference networks that connect image segments with words (Metzler and Manmatha 2004);
probabilistic modelling with latent Dirlichet allocation (Blei and Jordan 2003), Bernoulli dis-
tributions (Feng et al 2004) or non-parametric density estimation with EMD kernels (Yavlin-
sky et al 2005); support vector machine classification and relevance feedback (Izquierdo and
Djordjevic 2005); information-theoretic semantic indexing (Magalhães and Rüger 2007); and
simple scene-level statistics (Torralba and Oliva 2003). All these methods have in common
that a controlled vocabulary of limited size (in the order of 500 more or less general terms)
is used to annotate images based on a large training set.

Both those machine vision methods that model one particular item and the more generic
machine learning methods that create individual models for every term of a limited vocabulary
show a varying degree of success and, in general, relatively large error rates. As such these
automated annotation methods are more suitable in the context of browsing or in conjunction
with other search methods. If you want to “find shots of the front of the White House in the
daytime with the fountain running” (TRECVid 2003, topic 124), then a query-by-example
search in a large database may be solved quicker and better by emphasising those shots
that were classified as “vegetation”, “outside”, “building” etc even though the individual
classification may be wrong in a significant proportion of cases.

Machine learning methods are not limited to images at all. For example one can extract
motion vectors from MPEG-encoded videos and use these to classify a video shot indepen-
dently into categories such as “object motion from left to right”, “zoom in” etc. In contrast
to the above classification tasks the extracted motion vector features are much more closely
correlated to the ensuing motion label than image features are to text labels, and the corre-
sponding learning task is much simpler.

Musical genre classification can be carried out on extracted audio-features that repre-
sent a performance by its statistics of pitch content, rhythmic structure and timbre texture
(Tzanetakis and Cook 2002): timbre texture features are normally computed using short-
time Fourier transform and Mel-frequency cepstral coefficients that also play a vital role in
speech recognition; the rhythmic structure of music can be explored using discrete wavelet
transforms that have a different time resolution for different frequencies; pitch detection, es-
pecially in polyphonic music, is more intricate and requires more elaborate algorithms. For
details, see the work of Tolonen and Karjalainen (2000). Tzanetakis and Cook (2002) report
correct classification rates of between 40% (rock) and 75% (jazz) in their experiments with
10 different genres.

2.3 Content-based retrieval

The query-by-example paradigm extracts features from the query, which can be anything from
a still image, a video clip, humming etc, and compares these with corresponding features in
the database. The idea is to return to the user those items in the multimedia database that
are most similar to the query, ie whose features are most similar to the features of the query.
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Figure 2 shows a typical architecture of such a system.

Figure 2: Content-based multimedia retrieval: generic architecture

The commonest way of indexing the visual content of images is by extracting low-level
features, which represent colour usage, texture composition, shape and structure, localisation
or motion. These representations are often real-valued vectors containing summary statistics,
eg, in the form of histograms. Their respective distances act as indicators whether or not
two images are similar with respect to this particular feature. Design and usage of these
features can be critical, and there is a wide variety of them, as published by participants in
the TRECVID conference (TRECVid 2003).

Once created, those features will allow the comparison and ranking of images in the
database with respect to images submitted as a query, the query-by-example paradigm. Sum-
mary statistics are very crude indicators of similarity. For example an eight-bin histogram
of intensity values of an image is a simple approximation of its brightness distribution, and
many images do indeed share the same histogram. The image in Figure 3 shows a woman in
the middle of bright column sculptures, but an image of a skier in snow is likely to have the
same intensity histogram. The other disadvantage of global histograms computed over the
whole image is that they lose any locality information. This can be alleviated by computing
separate histograms for different areas of an image such as the centre, the border region, or
in a number of tiles. Figure 3 is an example of a centre/border intensity histogram, where
two histograms are computed for two different areas.

Normally, each multimedia document m gives rise to a number of low-level features
f1(m), f2(m), . . . , fk(m), each of which would typically be a vector or numbers represent-
ing aspects like colour distribution, texture usage, shape encodings, musical timbre, pitch
envelopes etc. Most systems accumulate the distances of these features to the corresponding
features of the query q in order to define an overall distance:

Dw(m, q) =

k
∑

i=1

widi(fi(m), fi(q)) (1)

between multimedia documents m and a query q. Here di(·, ·) is a specific distance function
between the vectors from the feature i, and wi ∈ R is a weight for the importance of this
feature. Note that the overall distance Dw(m, q) is the number that is used to rank the
multimedia documents in the database, and that the ones with the smallest distance to the
query are shown to the user as query result, see Fig 2. Note also that the overall distance and
hence the returned results crucially depend on the weight vector w = (w1, . . . , wk). In most
interfaces the user can either set the weights explicitly (as in the interface shown in Figure 8)
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Figure 3: Centre-border intensity histogram of an image

or the system can change the weights implicitly if the user has given feedback on how well
the returned documents fit their needs.

The architecture presented here is a typical albeit basic one; there are many variations and
some radically different approaches that have been published in the past. A whole research
field has gathered around the area of video and image retrieval as exemplified by the annual
International ACM Conferences on Video and Image Retrieval (CIVR), Multimedia (ACM
MM) and Multimedia Information Retrieval (MIR) and the TREC video evaluation workshop
TRECVid; there is another research field around music retrieval, see the annual International
Conference on Music Information Retrieval (ISMIR).

2.4 Fingerprinting

Multimedia fingerprints are unique indices in a multimedia database. They are computed
from the contents of the multimedia objects, are small, allow the fast, reliable and unique
location of the database record and are robust against degradation or deliberate change of the
multimedia document that do not alter their human perception. Audio fingerprints of music
tracks are expected to distinguish even between different performances of the same song by
the same artist at perhaps different concerts or studios.

Interesting applications include services that allow broadcast monitoring companies to
identify what was played, so that royalties are fairly distributed or programmes and adver-
tisements verified. Other applications uncover copyright violation or, for example, provide a
service that allows you to locate the meta-data such as title, artist and date of performance
from snippets recorded on a (noisy) mobile phone.

Cano et al (2002) review some audio fingerprinting methods and Seo et al (2004) proposes
an image fingerprinting technique.

3 Challenges of automated visual indexing

There are a number of open issues with the content-based retrieval approach in multimedia.
On a perceptual level, those low-level features do not necessarily correlate with any high-level
meaning the images might have. This problem is known as the semantic gap: imagine a scene
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in which Bobby Moore, the captain of the English National Football team in 1966, receives the
world cup trophy from Queen Elizabeth II; there is no obvious correlation between low-level
colour, shape and texture descriptors and the high-level meaning of victory and triumph (or
defeat and misery if you happened to support the West German team). Some of the computer
vision methods go towards the bridging of the semantic gap, for example the ability to assign
simple concrete labels to image parts such as “grass”, “sky”, “people”, “plates”. A consequent
use of an ontology could explain the presence of higher-level concepts such as “barbecue” in
terms of the simpler labels.

Even if the semantic gap could be bridged, there is still another challenge, namely poly-
semy: images usually convey a multitude of meanings so that the query-by-example approach
is bound to under-specify the real information need. Users who submit an image such as the
one in Figure 3 could have a dozen different information needs in mind: “find other images
with the same person”, “find images of the same art scene”, “find other bright art sculptures”,
“find images with gradual shadow transitions”, . . . It is these different interpretations that
make further user feedback so important.

User feedback can change the weights in Equation (1), which represent the plasticity of
the retrieval system. Hence, putting the user in the loop and designing a human-computer
interaction that utilises the user’s feedback has been one of the main approaches to tackle
these perceptual issues. Amongst other methods there are those that seek to reformulate the
query (Ishikawa et al 1998) or those that weight the various features differently depending
on the user’s feedback. Weight adaptation methods include cluster analysis of the images
(Wood et al 1998); transposed files for feature selection (Squire et al 2000); Bayesian network
learning (Cox et al 2000); statistical analysis of the feature distributions of relevant images and
variance analysis (Rui et al 1998); and analytic global optimisation (Heesch and Rüger 2003).
Some approaches give the presentation and placement of images on screen much consideration
to indicate similarity of images amongst themselves (Santini and Jain 2000,Rodden et al 1999)
or with respect to a visual query (Heesch and Rüger 2003).

On a practical level, the multitude of features assigned to images poses a fusion problem;
how to combine possibly conflicting evidence of two images’ similarity? There are many
approaches to carry out fusion, some based on labelled training data and some based on user
feedback for the current query (Aslam and Montague 2001,Bartell et al 1994,Shaw and Fox
1994,Yavlinsky et al 2004).

There is a responsiveness problem, too, in that the näıve comparison of query feature
vectors to the database feature vectors requires a linear scan through the database. Although
the scan is eminently scalable, the practicalities of doing this operation can mean an unde-
sirable response time in the order of seconds rather than the 100 milli-seconds that can be
achieved by text search engines. The problem is that high-dimensional tree structures tend to
collapse to linear scans above a certain dimensionality (Weber et al 1998). As a consequence,
some approaches for fast nearest-neighbour search use compression techniques to speed up
the disk access of linear scan as in (Weber et al 1998) using VA-files; or they approximate the
search (Nene and Nayar 1997,Beis and Lowe 1997); decompose the features componentwise
(de Vries et al 2002, Aggarwal and Yu 2000) saving access to unnecessary components; or
deploy a combination of these (Müller and Henrich 2004,Howarth and Rüger 2005).

4 Added Services

4.1 Video summaries

Even if the challenges of the previous section were all solved and if the automated methods
of Section 2 enabled a retrieval process with high precision (proportion of the retrieved items
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Figure 4: News search engine interface

that are relevant) and high recall (proportion of the relevant items that are retrieved) it would
still be vital to present the retrieval results in a way so that the users can quickly decide to
which degree those items are relevant to them.

Images are most naturally displayed as thumbnails, and their relevance can quickly be
judged by users. Presenting and summarising videos is a bit more involved. The main
metaphor used for this is that of a storyboard that contains keyframes with some text about the
video. Several systems exist that summarise news stories in this way, most notably Informedia
(Christel et al 1999) and F́ıschlár (Smeaton et al 2004). The Informedia system devotes much
effort to added services such as face recognition and speaker voice identification allowing
retrieval of the appearance of known people. Informedia also provides alternative modes of
presentation, eg, through film skims or by assembling ‘collages’ of images, text and other
information (eg, maps) sourced via references from the text (Christel and Warmack 2001).
F́ıschlár’s added value lies in the ability to personalise the content (with the user expressing
like or dislike of stories) and in assembling lists of related stories and recommendations.

Our very own TV news search engine ANSES (Pickering et al 2003,Pickering 2004) records
the main BBC evening news along with the sub-titles, indexes them, breaks the video stream
into shots (defined as those video sequences that are generated during a continuous operation
of the camera), extracts one key-frame per shot, automatically glues shots together to form
news stories based on an overlap in vocabulary in the sub-titles of adjacent shots (using lexical
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chains), and assembles a story-board for each story. Stories can be browsed or retrieved via
text searches. Fig 4 shows the interface of ANSES. We use the natural language toolset
GATE (Cunningham 2002) for automated discovery of organisations, people, places and dates;
displaying these prominently as part of a storyboard as in Figure 4 provides an instant
indication of what the news story is about. ANSES also displays a short automated textual
extraction summary, again using lexical chains to identify the most salient sentences. These
summaries are never as informative as hand-made ones, but users of the system have found
them crucial for judging whether or not they are interested in a particular returned search
result.

Dissecting the video stream into shots and associating one keyframe along with text from
subtitles to each shot has another advantage: A video collection can essentially be treated as
an image collection, where each, possibly annotated image acts as entry point into the video.

Figure 5: Sammon map for cluster-guided search

4.2 New Paradigms in Information Visualisation

The last decade has witnessed an explosion in interest in the field of information visualisation,
(Hemmje et al 1994,Ankerst et al 1996,Card 1996,Shneiderman et al 2000,Börner 2000). Here
we present three new visualisation paradigms, based on our earlier design studies (Au et al
2000,Carey et al 2003). These techniques all revolve around a representation of documents
in the form of bag-of-words vectors, which can be clustered to form groups. We use a variant
of the buckshot clustering algorithm for this. Basically, the top, say, 100 documents that
were returned from a query are clustered via hierarchical clustering to initialise document
centroids for k-means clustering that puts all documents returned by a query into groups.
Another common element of our visualisations is the notion of keywords that are specific
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to the returned set of documents. The keywords are computed using a simple statistic; for
details see (Carey et al 2003). The new methods are:

Sammon Cluster View. This paradigm uses a Sammon map to generate a two dimensional
screen location from a many-dimensional vector representing a cluster centroid. This map
is computed using an iterative gradient search (Sammon 1969) while attempting to preserve
the pairwise distances between the cluster centres. Clusters are thus arranged so that their
mutual distances are indicative of their relationship. The idea is to create a visual landscape
for navigation. Fig 5 shows an example of such an interface. The display has three panels, a
scrolling table panel to the left, a graphic panel in the middle and a scrolling text panel to the
right that contains the traditional list of returned documents as hotlinks and snippets. In the
graphic panel each cluster is represented by a circle and is labelled with its two most frequent
keywords. The radius of the circle represents the cluster size. The distance between any two
circles in the graphic panel is an indication of the similarity of their respective clusters - the
nearer the clusters, the more likely the documents contained within will be similar. When
the mouse passes over the cluster circle a tool-tip box in the form of a pop-up menu appears
that allows the user to select clusters and drill down, ie, re-cluster and re-display only the
documents in the selected clusters. The back button undoes this process and climbs up the
hierarchy (drill up). The table of keywords includes box fields that can be selected. At the
bottom of the table is a filter button that makes the scrolling text window display only the
hot-links and snippets from documents that contain the selected keywords.

Figure 6: Dendro Map - A plane-spanning binary tree (query “Beethoven”)

Dendro Map Visualisation. The Dendro Map visualisation represents documents as leaf
nodes of a binary tree that is output by the buckshot clustering algorithm. With its plane-
spanning property and progressive shortening of branches towards the periphery, the Dendro
Map mimics the result of a non-Euclidean transformation of the plane as used in hyperbolic
maps without suffering from their computational load. Owing to spatial constraints, the
visualisation depth is confined to five levels of the hierarchy with nodes of the lowest level
representing either documents or subclusters. Different colours facilitate visual discrimination
between individual documents and clusters. Each lowest level node is labelled with the most
frequent keyword of the subcluster or document. This forms a key component of the Dendro
Map as it gives the user the cues needed for navigating through the tree. As the user moves
the mouse pointer over an internal node, the internal nodes and branches of the associated
subcluster change colour from light blue to dark blue while the leaf nodes, ie, document rep-
resentations, turn bright red. As in the Sammon Map, a tool-tip window provides additional
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information about the cluster and can be used to display a table with a list of keywords asso-
ciated with the cluster. The user may drill down on any internal node. The selected node will
as a result replace the current root node at the center and the entire display is re-organized
around the new root. The multi-level approach of the Dendro Map allows the user to gain a
quick overview over the document collection and to identify promising subsets.

Figure 7: Radial Visualisation

Radial Interactive Visualisation. Radial (Figure 7) is similar to VIBE (Korfhage 1991), to
Radviz (Hoffman et al 1999) and to Lyberworld (Hemmje et al 1994). It places the keyword
nodes round a circle, and the position of the document dots in the middle depend on the
force of invisible springs connecting them to keyword nodes: the more relevant a keyword for
a particular document, the stronger its spring pulls on the document. Hence, we make direct
use of the bag-of-words representation without explicit clustering. Initially, the twelve highest
ranking keywords are displayed in a circle. The interface lets the user move the keywords, and
the corresponding documents follow this movement. This allows the user to manually cluster
the documents based on the keywords they are interested in. As the mouse passes over the
documents, a bubble displays a descriptive piece of text. The location of document dots is not
unique owing to dimensionality reduction, and there may be many reasons for a document
to have a particular position. To mitigate this ambiguity in Radial the user can click on
a document dot, and the keywords that affect the location of document are highlighted. A
choice of keywords used in the display can be exercised by clicking on two visible lists of words.
Zoom buttons allow the degree of projection to be increased or reduced so as to distinguish
between documents around the edges of the display or at the centre. The Radial visualisation
appears to be a good interactive tool to structure the document set according to one’s own
preferences by shifting keywords around in the display.
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(a) Query by example (left panel) with initial results in the right panel

(b) A new query made of three images from (a) results in many more dark-door images

Figure 8: Visual search for images of dark doors starting with a bright-door example
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Unified Approach. The integration of the paradigms into one application offers the pos-
sibility of browsing the same result set in several different ways simultaneously. The cluster-
based visualisations give a broader overall picture of the result, while the Radial visualisation
allows the user to focus on subsets of keywords. Also, as the clusters are approximations
that highlight particular keywords, it may be useful to return to the Radial visualisation and
examine the effect of these keywords upon the whole document set. The Radial visualisa-
tion will perhaps be more fruitful if the initial keywords match the user’s area of interest.
The Sammon Map will let the user dissect search sets and re-cluster subsets, gradually hom-
ing in on target sets. This interface was developed within the joint NSF-EC project CHLT
(http://www.chlt.org); it was evaluated from a human-computer-interaction point of view
with encouraging results (Chawda et al 2005) and has proven useful in real-world multi-
lingual scholarly collections (Rydberg-Cox et al 2004).
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Figure 9: A relevance feedback model

4.3 Visual search and relevance feedback

The visual query-by-example paradigm discussed in Section 3 gives rise to relatively straight-
forward interfaces; an image is dragged into a query box, or, eg, specified via a URL, and the
best matching images are displayed in a ranked list to be inspected by the user, see Fig 8(a).
A natural extension of such an interface is to offer the selection of relevant results as new
query elements. This type of relevance feedback, a.k.a. query point moving, is shown in
Fig 8(b).

One other main type of relevance feedback, weight space movement, assumes that the
relative weight of the multitude of features that one can assign to images (eg, structured
meta-data fields such as author, creation date and location; low-level visual features such as
colour, shape, structure and texture; free-form text) can be learned from user feedback. Of
the methods mentioned in Section 3 our group chose analytic weight updating as this has a
very small execution time. The idea is that users can specify the degree to which a returned
image is relevant to their information needs. This is done by having a visual representation;
the returned images are listed in a spiral, and the distance of an image to the centre of the
screen is a measure of the relevance that the search engine assigns to a specific image. Users
can now move the images around with the mouse or place them in the centre with a left

13



mouse click and far away with a right click. Fig 9 shows this relevance feedback model. We
evaluated the effectiveness of negative feedback, positive feedback and query point moving,
and found that combining the latter two yields the biggest improvement in terms of mean
average precision (Heesch and Rüger 2003).

A new and relatively unexplored area of relevance feedback is the exploitation of social
context information. By looking not only at the behaviour and attributes of the user, but also
his past interactions and also the interactions of people he has some form of social connection
with could yield useful information when determining whether search results are relevant or
not. Browsing systems could recommend data items based on the actions of a social network
instead of just a single user, using more data to yield better results.

The use of such social information is also becoming important for multimedia meta data
generation, particular in the area of folksonomies where the feedback of users actively produces
the terms and taxonomies used to describe the media in the system instead of using a prede-
termined, prescribed dictionary (Voss 2007). This can be seen being effectively used in online
multimedia systems such as Flickr (http://www.flickr.com) and del.icio.us (http://del.icio.us).

5 Browsing: lateral and geo-temporal

The idea of representing text documents in a nearest-neighbour network was first presented
by Croft and Parenty (1985), albeit, as an internal representation of the relationships between
documents and terms, not for browsing. Document networks for interactive browsing were
identified by Cox (1992 and 1995). Attempts to introduce the idea of browsing into content-
based image retrieval include Campbell’s work (2000); his ostensive model retains the basic
mode of query based retrieval but in addition allows browsing through a dynamically created
local tree structure. Santini and Jain’s El niño system (2000) is another attempt to combine
query-based search with browsing. The system tries to display configurations of images in
feature space such that the mutual distances between images are preserved as well as possible.
Feedback is given in the same spirit as in Fig 9 by manually forming clusters of images that
appear similar to the user. This in turn results in an altered configuration with potentially
new images being displayed.

Other network structures that have increasingly been used for information visualisation
and browsing are Pathfinder networks (Dearholt and Schvaneveldt 1990). They are con-
structed by removing redundant edges from a potentially much more complex network. Fowler
et al (1992) use Pathfinder networks to structure the relationships between terms from docu-
ment abstracts, between document terms and between entire documents. The user interface
supports access to the browsing structure through prominently marked high-connectivity
nodes.

Our group (Heesch and Rüger 2004) determines the nearest neighbour for the image under
consideration (which we call the focal image) for every combination of features. This results in
a set of what we call lateral neighbours. By calculating the lateral neighbours of all database
images, we generate a network that lends itself to browsing. Lateral neighbours share some
properties of the focal image, but not necessarily all. For example, a lateral neighbour may
share text annotations with the focal image, but no visual similarity with it at all, or it may
have a very similar colour distribution, but no structural similarity, or it may be similar in
all features except shape, etc. As a consequence, lateral neighbours are deemed to expose the
polysemy of the focal image. Hence, when they are presented, the user may then follow one
of them by making it the focal image and explore its lateral neighbours in turn. The user
interaction is immediate, since the underlying network was computed offline.

We provide the user with entry points into the database by computing a representative
set of images from the collection. We cluster high-connectivity nodes and their neighbours
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(a) Initial visual summary of the database (right panel) from which the user chooses the
falcon, its nearest lateral neighbours are then displayed in the left panel.

(b) Clicking on any image will make it the centre of the nearest neighbours panel and display
is associated lateral neighbours around it.

Figure 10: Lateral browsing for an image “from behind the pitcher in a baseball game. . .”
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Starting with the football image (upper left) from the database overview, one of its lateral
neighbours is an image of a lawn with a sprinkler; when this is made the focal image (upper
right) there are already images from baseball scenes. Clicking on one of them (lower left)
reveals that there are more of this kind; they can be enlarged and the corresponding video
played in the “viewer tab” (lower right).

Figure 11: Alternative ways to browse for images “from behind the pitcher . . .”
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up to a certain depth using the Markov chain clustering algorithm (van Dongen 2000), which
has robust convergence properties and allows one to specify the granularity of the clustering.
The clustering result can be seen as a image database summary that shows highly-connected
nodes with far-reaching connections. The right panel of Fig 10(a) is such a summary for our
TRECVid (2003) database. The user may select any of these images as an entry point into the
network. Clicking on an image moves it into the centre around which the lateral neighbours
are displayed, see the nearest-neighbour panel on the left side of fig 10(a). If the size of the
lateral-neighbour set is above a certain threshold the actual number of images displayed is
reduced to the most salient ones.

If a user wanted to find “video shots from behind the pitcher in a baseball game as
he throws a ball that the batter swings at” (TRECVid 2003, topic 102) then they might
explore the database in Fig 10 by clicking on the falcon image. The hope is that the colour
of a baseball field is not far off from the green colour of that image. The resulting lateral
neighbours, displayed in the left panel of Fig 10(a), do not contain the desired scene. However,
there is an image of a sports field. Making that the focal image, as seen in the left part of
fig 10(b), reveals it has the desired scene as a lateral neighbour. Clicking that will unearth a
lot more images from baseball fields, see the right side of Fig 10(b). The network structure,
a bit of lateral thinking and three mouse clicks have brought the desired result.

In the same way, and again with only three clicks, one could have started from the football
image in the database overview to find “video shots from behind the pitcher in a baseball
game as he throws a ball that the batter swings at”. Heesch (2005) has shown that this
is no coincidence; lateral-neighbour networks computed in this way have the so-called small
world property (Watts and Strogatz 1998) with only 3–4 degrees of separation even for the
large TRECVid (2003) database that contains keyframes from 32,000 video shots. Lateral
browsing has proven eminently successful for similar queries (Heesch et al 2003).

Geo-temporal browsing takes the idea of timelines and automatically generated maps, eg
as offered in the Perseus Digital Library (Crane 2005), a step further. It integrates the idea
of browsing in time and space with a selection of events through a text search box. In this
way, a large newspaper or TV news collection can be made available through browsing based
on what happened where and when as opposed to by keyword only.

The interface in Fig 12 is a design study in our group that allows navigation within a large
news event dataset along three dimensions: time, location and text subsets. The search term
presents a text filter. The temporal distribution can be seen in lower part. The overview
window establishes a frame of reference for the user’s region of interest. In principle, this
interface could implement new zooming techniques, eg speed-dependent automatic zooming
(Cockburn and Savage 2003), and link to a server holding a large quantity of maps such as
National Geographic’s MapMachine (http://plasma.nationalgeographic.com/mapmachine/ as
of May 2005) with street-level maps and aerial photos.

6 Summary

This chapter has introduced basic concepts of multimedia resource discovery technologies
for a number of different query and document types; these were the piggy-back text search,
automated annotation, content-based retrieval and fingerprinting. The paradigms we have
discussed include summarising complex multimedia objects such as TV news, information
visualisation techniques for document clusters, visual search by example, relevance feedback
and methods to create browsable structures within the collection. These exploration modes
share three common features: they are automatically generated, depend on visual senses and
interact with the user of the multimedia collections.

Multimedia resource discovery has its very own challenges in the semantic gap, in poly-
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Figure 12: Geo-temporal browsing in action

semy inherently present in under-specified query-by-example scenarios, in the question how
to combine possibly conflicting evidence and the responsiveness of the multimedia searches.
In the last part of the chapter we have given some examples of user-centred methods that
support resource discovery in multimedia digital libraries. Each of these methods can be seen
as an alternative mode to the traditional digital library management tools of meta-data and
classification. The new visual modes aim at generating a multi-faceted approach to present
digital content: video summaries as succinct versions of media that otherwise would require
a high bandwidth to display and considerable time by the user to assess; information visual-
isation techniques help the user to understand a large set of documents that match a query;
visual search and relevance feedback afford the user novel ways to express their information
need without taking recourse to verbal descriptions that are bound to be language-specific;
alternative resource discovery modes such as lateral browsing and geo-temporal browsing will
allow users to explore collections using lateral associations and geographic or temporal filters
rather than following strict classification schemes that seem more suitable for trained librar-
ians than the occasional user of multimedia collections. The cost for these novel approaches
will be low, as they are automated rather than human-generated. It remains to be seen how
best to integrate these services into traditional digital library designs and how much added
value these services will bring about (Bainbridge et al 2005).

The following four books provide further reading for content-based multimedia retrieval;
they complement the material of this chapter:

A del Bimbo (1999): Visual Information Retrieval. Morgan Kaufmann.

M Lew, ed. (2001): Principles of Visual Information Retrieval. Springer.

Y-J Zhang, ed. (2006): Semantic-based visual information retrieval. Idea Group Inc.

S Rüger (to appear 2009): Multimedia information retrieval. Morgan & Claypool.
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Exercises

Search types

Look at the matrix of search engine types in Figure 1. Give a search and retrieval scenario
for each element of this query retrieval matrix. What would be the most appropriate search
technology (piggy-back text search, feature classification, content-based, fingerprint) for each
scenario?

Colour histograms

Colour is perceived as a point (r, g, b) in a three-dimensional space. Each colour component
(red, green and blue) is usually encoded as an integer between 0 and 255 (1 byte); there are
two principal methods to create colour histograms: you can compute three 1d histograms of
each of the r, g and b components independently or you can compute one 3d colour histogram.
a) If you divide each of the red, green and blue axes into nr, ng, nb equal intervals, respectively,
then the 3d colour cube [0, 255]3 is subdivided into nrngnb cuboids or bins. Show that by
mapping (r, g, b) to

⌊nrr

256

⌋

ngnb +
⌊ngg

256

⌋

nb +

⌊

nbb

256

⌋

you get an enumeration scheme 0, . . . , nrngnb − 1 for the cuboids. A 3d colour histogram of
an image is a list of the numbers of the pixels in an image that fall into each of the different
cuboids in colour space. In other words, you look at each pixel in an image, compute above
index from its colour (r, g, b) and increment the corresponding variable, which records the
number of pixels that fall into this colour cuboid.
b) Compute both types of colour histograms for the image below (the colours of the stripes
are given by the table next to the image). Use 64 = 43 bin cubes for the 3d-bin-histogram
and 22 bins for each of the three colour-component histograms (yielding 66 bins altogether),
so that both histogram types have a similar number of bins.

  0 255 255 cyan
255   0 255 magenta

  0   0   0 black
255   0   0 red
  0 255   0 green

  0   0 255 blue

255 255   0 yellow
255 255 255 white

  R   G   B

c) Which of the two colour histogram methods has retained more information about the colour
distribution in the original picture? How came it about that one of the two methods lost vital
information despite having roughly the same number of bins (64 vs 66)?
d) Why are usually normalised histograms computed and stored for content-based retrieval?
Normalised histograms store the proportions of pixels in the respective bins not the absolute
number of pixels.

Image search

Sketch the block diagram of a colour-and-texture-based image search engine for curtain fab-
rics. Explain the general workings of a content-based search engine and contrast it with the
workings of a text search engine in terms of retrieval and indexing technology.
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Indicative solutions

Search types

It is relatively easy to come up with a usage scenario for each of the matrix elements in
Figure 1: for example, the image input speech output matrix element might be “given an X-ray
image of a patient’s chest, retrieve dictaphone documents with a relevant spoken description
of a matching diagnosis”. However, creating satisfying retrieval solutions is highly non-trivial
and the main subject of the multimedia information retrieval discipline.

In essence, Figure 1 lists cross-modal retrieval scenarios. The left column describes situa-
tions where the search is by text, for example, using a web-search-engine type-interface such
as the one in Figure 4 for TV news. Users have grown accustomed to this search method, and
it can easily be implemented as long as the document repositories (be it text, video, images,
speech, music, sketches etc) have textual meta-data associated with their individual entries.
Museum catalogues would be good examples of sources of these meta-data. Depending on
the document types in the repository at hand it may be more or less easy to extract a sur-
rogate text of the original document. This is almost trivial when the repository consists of
text documents: One would strip these from formatting instructions and, for example, stem
words in order to remove variations brought about by grammar rules, to arrive at a “bag of
words” that can be indexed. The audio track of video or speech documents could undergo
automated speech recognition; one would hope that redundancy of word repetitions in the
original document somehow alleviates the effect of transcription errors.

In the case of “query by example” modes, where the query is of the same type as the doc-
ument in the repository, one immediate approach would be relying on a type of content-based
or fingerprinting retrieval. The trick here is to be able to extract features that are specific
to the document and invariant under perceptually or otherwise irrelevant transformations of
the query or the document: it should not matter whether spoken queries are issued by a
man or a woman, whether an image as query input is scaled, has undergone a high or low
image compression, whether a hummed query is slightly higher or lower in pitch, etc. This
requirement is non-trivial: eg, for medical image retrieval the features should pick up only
medically relevant aspects of the imaging, and this normally requires much domain expertise
and arguably a fair amount of signal processing skills to achieve that.

In the case of retrieving speech documents against spoken queries the common best prac-
tice appears to be not to use low-level feature matching of the processed speech signal, but
instead transcribe both queries and speech documents to text. In contrast, approaches to
query by humming — a thriving challenge of the growing music information retrieval commu-
nity — most commonly deploy low-level features for the matching process. Currently, it is not
clear what the best approach for image search by image similarity would be: low-level feature
matching or automated annotation. In the first case common research questions are which
features and which similarities to use, while the second case requires an appropriate choice of
symbolic vocabulary and suitable models, typically from machine learning, to facilitate the
automated annotation.

The level of desired similarity or sameness is also an important factor in deciding which
techniques are more likely to succeed. In order to locate the exact performance of, say, a
music piece that you are listening to on the radio, one would likely employ a signal-based
fingerprinting technique that is invariant to distortions brought about by the broadcasting
and recording (eg, invariant to the background noise in a car when recording the music sample
with a mobile phone) but still sensitive to the qualities of the particular performance. If on
the other hand, one was interested more generally in versions of the same melody or lyrics
by possibly different artists performed within possibly even differnt genres (a pop version of
a jazz song, say) then a more symbolic or coarse feature extraction process may be more
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appropriate.
Cross-modal retrieval where queries and documents are of different type clearly require

some sort of translation, which in the simplest case could be a textual annotation of either
using a discrete set of vocabulary. The cross-modal translation is the most involved, and least
explored, of all the cases in Figure 1.

Colour histograms

a) The first thing to note is that r/256 is smaller than 1, as r runs from 0 to 255; hence,
ir := ⌊nrr/256⌋ is an integer that takes on values from 0 (for r = 0) to nr − 1. Note
that the floor function ⌊x⌋ returns the largest integer smaller than or equal to x. Similarly,
ig := ⌊ngg/256⌋ ∈ {0, . . . , ng −1} and ib := ⌊nbb/256⌋ ∈ {0, . . . , nb−1}. The 3d bins in colour
space correspond to a 3d array that has the dimensionality bin[nr][ng][nb]. ir, ig and ib are
valid indices for this 3d array. A compiler might assign the location irngnb + ignb + ib in an
equivalent one-dimensional array; this assumes that array indices start from 0 and that the
last index of a multidimensional array addresses neighbouring locations in memory as is the
case, eg, in the programming language C++.
b) Of the 64 different 3d bins (numbered 0, . . . , 63) in above scheme only eight bins are
occupied, as there are only 8 different colours used in the example picture: bin 0 (black),
3 (blue), 12 (green), 15 (cyan), 48 (red), 51 (magenta), 60 (yellow) and 63 (white). The
following figure visualises this 3d colour histogram:

The area of the circles in the occupied bins indicate how much this bin is occupied; the
colour corresponds to average colour that this bin summarises.

In contrast, the three 1d histograms are identical: The values 0, . . . , 255 are subdivided
into 22 different bins, and bin 0 and bin 21 are the only ones that are occupied in each of the
r, g and b histograms.
c) The 3d colour histogram has retained more information about the colour use in the original
image than the three 1d histgrams dispite the fact that there are more bins in the three
1d histograms than in the 3d histogram (66 vs 64). The 3d histgram captures the joint
distribution of the r, g and b values and clearly recognises that 1/8th of the pixels are black,
blue, green, cyan, red, magenta, yellow and white, respectively. The three 1d histograms
have only retained the marginal distribution of the r, g and b values. As such images with a
completely different colour distribution can have the same marginal distributions. In fact, a
black and white image with half the pixels black and the other half of the pixels white would
have the same marginal distributions. Marginalisation of multi-dimensional distributions
always loses information.
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d) Normalising histograms makes them scaling invariant, ie, larger and smaller versions of
the same image result in the same histogram.

Image search

Figure 2 can be modified to cater for the colour-and-texture-based image search engine at
hand. The query would be an example image containing curtain fabrics of similar colour and
texture. The feature extraction process would deploy colour histograms, for example, the
3d colour histogram from the previous exercise and a texture feature vector. Both vectors
could be concatenated into a singe vector representation. In the end the query image will
have a certain representation as a point in feature space and so will every single image in the
database.

The images whose representations are closest to the representation of the query are ranked
top by this process. In fact, all images in the database will be sorted by their distance in
feature space to the query image. Thus the feature representation and distance notion in
feature space are key aspects of the workings of this type of content-based search engine. A
very simple distance of the query feature vector f q to an arbitrary image feature vector f i is
the Manhatten distance

d(f q, f i) =
n

∑

j=1

|f q
j − f i

j |,

which is simply the sum of the absolute differences of the respective n components of the
feature vector.
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