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All substances are poisons; there is none that is not a poison. The right dose differentiates
a poison from a remedy.
Paracelsus (1493-1541)

1.1 INTRODUCTION

The number of chemicals in society is largely increasing, and therewith the risk of
being exposed to chemicals increases. Knowledge of possible toxic effects of these
chemicals is vital, as are the measurement and assessment of the effects and related
risks. Within the European Union, the Registration, Evaluation, and Authorisation of
Chemicals (REACH) legislation [1] places responsibility on the chemical industries
to properly assess the risks associated with their products. It has been estimated that
about 30,000 new chemicals will be put on the European market in the coming years.
The assessment of these chemicals would cost billions of euros and involve the use of
millions of animals. REACH also aims to ensure that risks from substances of very
high concern (SVHC) are properly controlled or that the substances are substituted. To
match REACH requirements, fast and reliable methods with reproducible results are
crucial, and regulatory bodies would be able to approve results. Property prediction
and modeling will play an important role in this case [2].

Toxicology, the study of harmful interactions between chemicals and biological
systems [3], uses more and more computer models. These models are based on already
available data and help to reduce in vivo testing. Toxicity modeling and its data have
many applications such as characterizing hazards, assessing environmental risks, and
identifying potential lead components in drug discovery. A well-established method
for toxicity modeling is quantitative structure—activity relationship (QSAR) or quan-
titative structure—property relationship (QSPR) [4,5]. On the basis of the available
measured and calculated properties or activities and descriptors of compounds, pre-
dictive models for a certain property are built, which are then used to predict that
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property for new compounds. An example for a property is the lethal dose (LD50),
which is the amount of a substance that kills 50% of the population exposed to it.
This property is mainly used to compare the toxicity of different compounds and to
classify them, for example, for hazard warnings.

Classical QSAR models have been based on a very limited number of parameters,
which have been measured (such as simple physicochemical properties) or calculated.
The model target has been to find a relationship between these parameters and the
property within a very limited congeneric series of chemicals. These chemicals share a
common skeleton, and a few fragments are linked to it. In more recent years, there has
been a significant change in the QSAR scenario: The interest has shifted from the
identification of the relationship between the parameters and the property to a more
practical use, the prediction of the properties of new chemicals. This calls attention to
the predictive power of the model, since previously a model was not verified but was
simply assessed with statistical measurements evaluating the fitting of the calculated
values. Meanwhile, the challenge has become to model larger sets of compounds,
and in addition the number of calculated chemical descriptors or fragments has
drastically increased to several thousands. Finally, new more powerful algorithms are
used, and these tools also introduce the possibility to extract new knowledge from
the data instead of simply leading the algorithms toward well-known parameters
based on a priori knowledge or hypotheses.

Classical bioinformatics applications such as data warehousing and data mining
are a major part of the model development as a result of the following:

(a) The available data are stored in very different sources such as published journal
papers, spreadsheets, and relational databases in different formats and notations
with different nomenclature and

(b) Relations between the data are mined and used for building predictive models
of various kinds such as multilinear regression (MLR), partial least squares
(PLYS), or artificial neural networks (ANNSs).

Other applications applied within the process of prediction model development belong
to the field of molecular modeling. Calculating certain properties of a molecule on the
basis of its two- and three-dimensional structures provides the basis for the prediction
of an endpoint such as LD50. Currently, the model-building and prediction process
includes a variety of steps that a toxicologist or a pharmacologist would perform
manually step by step by taking care of data selection, parameter setting, data format
conversions and data transfer between each pair of subsequent steps, and so on.
Pharmaceutical industry and regulatory bodies together with environmental agen-
cies are very interested in finding fast, cost-effective, easy, and reliable ways to identify
compounds with respect to their toxicity. The process of determining lead compounds
for a new drug takes years [6,7] in the laboratory, and in addition about 90% of the
potential drugs entering the preclinical phase fail in further process due to their toxi-
city [8,9]. In recent years, pharmaceutical companies along with research initiatives
have investigated modeling and prediction methods together with grid computing to
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streamline and speed up processes. The prominent interest of industries lies in cost
reduction, for example, reducing failure rate and using in-house PCs’ idle time to
run modeling tasks [10,11]. Software providers offer matching grid solutions [12,13]
for the latter. These approaches exploit the embarrassingly parallel! nature of the
applications and offer sophisticated scheduling mechanisms. They are deployed as
in-house systems, that is, they do not span multiple organizations, mainly for security
reasons. Companies do not risk their data and methods being exposed to outsiders.

Publicly funded research projects in bioinformatics investigate data and compu-
tational grid methods to integrate huge amounts of data, develop ontologies, model
workflows, efficiently integrate application software including legacy codes, define
standards, and offer easy-to-use and efficient tools [14-21].

Section 1.2 of this chapter will highlight grid systems in toxicology and drug
discovery and their main characteristics. Section 1.3 will give an in-depth overview
of the European OpenMolGRID approach, while Section 1.4 will conclude with an
outlook for future developments.

1.2 GRIDS FOR TOXICOLOGY AND DRUG DISCOVERY

Toxicology covers important issues in life and environmental sciences. It is essential
that the characteristics of a chemical be identified before producing and releasing it
into the environment. In drug discovery, one aim is to exclude toxic, chemically un-
stable and biologically inactive compounds from the drug discovery [22,23] early onin
the process. Therefore, models are being developed for predicting which compounds
are liable to fail at a later stage of the process. In this context, QSAR models are
one of the most popular methods. Another goal is to identify compounds that would
bind to a given biological receptor. The area of docking is important to understand
biological processes and find cures that succeed by activating or by inhibiting protein
actions [24]. The docking studies require the modeling of the enzyme (which has to
be known) in addition to the modeling of the small chemical compounds to be studied
(ligand). However, these docking studies are more complex and do require a careful
tridimensional description of the ligand. This is not always necessary in the case of
QSAR models. For this reason, faster and simpler screening based on easier methods
is often performed by drug companies, and the detailed docking studies are performed
only for a limited number of chemicals. However, grid technologies introduce new
possibilities.

The major objectives for using grid technology [25,26] to support biomathematics
and bioinformatics approaches in drug discovery and related fields are to shorten the
time to solution and reduce its costs. Users of such technology are (computational)
biologists, pharmacologists, and chemists, who are usually not computer system
experts. To bridge this gap, providing a user-friendly system is crucial. It allows

! An application is called embarrassingly parallel if no particular effort is needed to split it into a large
number of independent problems that can be executed in parallel, and these processes do not need to
communicate with each other.
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the user to solve the biochemical problem without the knowledge about the details
of the underlying system. Users require access to their private and publicly available
data, execution of legacy software, and visualization of results. In cases where users
develop their own application software, it should also be easily integratable.

There exist quite a few initiatives, projects, and systems that exploit grid methods
for chemoinformatics, bioinformatics, and computational biology, and some of which
focus on applications relevant to this chapter. One of the early grid projects in drug
discovery is the Virtual Laboratory [27]. In the beginning of this century, the Virtual
Laboratory project set up an infrastructure based on the Globus Toolkit 2.4 [28] and
the Nimrod-G resource broker [29], specifically designed for parametric studies. The
Virtual Laboratory environment provides software tools and resource brokers that
facilitate large-scale molecular studies on geographically distributed computational
and data grid resources. This is used for examining or screening millions of chemical
compounds (molecules) in the Chemical Data Bank (CDB) to identify those hav-
ing potential use in drug design. The DOCK software package [30] is integrated for
molecular docking calculations and for access to the CDB, and the data replica cata-
logs are provided. The user interface allows us to specify input and output data sets
and locations, set parameters for the DOCK software, submit jobs, and retrieve out-
put. This command-line interface has recently been replaced by a Web portal within
the Australian BioGrid initiative [31].

DDGrid [32] is a subproject of the China grid initiative that also focuses on
docking. Its goal is to analyze chemical databases and identify compounds appro-
priate for a given biological receptor. It offers access to a variety of databases such
as Specs (chemically available compounds’ structure database), MDL Comprehen-
sive Medicinal Chemistry 3D (pharmaceutical compounds), National Cancer Insti-
tute Database (NCI)-3D (structures with corresponding 3D models), China Natural
Products Database, Traditional Chinese Medicinal Database (TCMD), and ZINC-
ChemBridge (chemical structures). The user is provided with tools for preprocess-
ing of data (Combimark), for visualization, for structure search, and for encrypting
and decrypting of data. The core middleware layer is based on the Berkeley Open
Infrastructure for Network Computing (BOINC, [33]), which is a well-established
base for the group of “at home” systems. For example, Rosetta@home [34] uses
PCs all over the world to model protein structures and interactions to understand dis-
eases and find cures. Rosetta@home distinguishes itself from other grid initiatives in
drug discovery by using voluntarily donated free CPU cycles to execute the Rosetta
program. The “users” of these systems have no influence on the application. They
download the software that uses the free CPU cycles to run the application set up by
a research group, which in this case was David Baker’s group at the University of
Washington in Seattle [35].

Within the UK e-Science program, the e-Science Solutions for the Analysis of
Complex Systems (eXSys) project [36] studies drug discovery from the angle of
interaction networks. It analyzes protein interaction networks to identify sets of pro-
teins in a bacterium that, if they were inhibited, would destroy the bacterium but
not affect its host organism. These proteins qualify as potential drug targets. eXSys
tackles data access and integration issues by building local data sets for intracellular
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metabolic or protein interaction networks from heterogeneous resources such as the
Database of Interacting Proteins (DIP, [37]), the Kyoto Encyclopedia of Genes and
Genomes (KEGG, [38]), the Swissprot protein databank [39], and publications. A
project internal common data format is established in which all data are integrated.
The necessary network analysis programs plus their integration as grid services are
developed. A graphical user interface allows users to select interaction networks from
a local database, analyze them, and visualize the results. myGrid [40] and OGSA-
DAI/OGSA-DQP [41] are used for data access and analysis of various data sources.
The myGrid infrastructure offers a workbench well suited for bioinformaticians.
It includes workflow generation and enactment, as well as a variety of services
for data integration such as knowledge annotation and verification of experiments
(KAVE), semantic discovery (Feta), and life science identifier (LSID) services for data
handling.

The aspects of workflows for the drug design pipeline are also dealt with in the
Wide In Silico Docking On Malaria (WISDOM) data challenge [42], a project to
challenge the infrastructure built by the Enabling grids for e-Science (EGEE) project
[43]. WISDOM seeks to find new inhibitors for a family of proteins by using in silico
docking on the grid. During the 6-week data challenge in mid-2005, a terabyte of data
was produced using 80 CPU years. These data from over 40 million docked ligands
are now being further analyzed.

While most of the drug-discovery-related grid projects and systems deal with
simulations and modeling of docking ligands to proteins and the identification of
protein functions, it is also important to identify and optimize lead molecules with
the targeted therapeutic potential. Pharmaceutical companies set up in-house grid
systems to also cover this aspect. Little is published about these grid systems, but
information can be found in case studies of software vendors [10] and press releases
[44—46]. Key to this approach is workflow modeling, semantic Web technologies, and
data management.

The approaches described use a variety of grid middleware or infrastructure
systems, including grid service and pregrid-service versions of the Globus Toolkit,
gLite (basis of the EGEE test bed), Web services, network computing (desktop grid),
myGrid, and the pregrid-service version of UNICORE. With respect to middleware,
all further developments aim at a service-oriented architecture (SOA), whatever type
of resource is being used. The Open grid Services Architecture (OGSA [47]) has been
defined by the Open grid Forum [48] to achieve a standardized grid framework. For
drug discovery, the topics workflow modeling, application integration, standards for
data structures, metadata and ontologies, and data integration are equally important.

Recently, a series of activities has addressed both the issues of databases of chem-
ical compounds used in the world and how to predict their environmental and toxic
properties. The European Commission’s Joint Research Centre is considering the
strategic development of a general system to predict properties of industrial chemi-
cals. The U.S. Environmental Protection Agency (EPA), which adopts predictive tools
for the property predictions of chemicals for decades, is also enlarging its set of tools.
The Danish EPA predicted properties of tens of thousands of chemicals using a set
of software. All these initiatives show the deep interest in a more powerful approach
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capable to cope with a problem that involves many programs, databases, and resources,
which would surely benefit from an integrated strategy supported by grid.

The following section will detail these characteristics taking the OpenMolGRID
system as an example.

1.3 EXAMPLE OpenMolGRID

The Open Computing grid for Molecular Sciences and Engineering (OpenMolGRID,
[49]) system has been developed to support the lead component identification in
drug discovery and designed in an open manner to be of immediate use for other
applications in biochemistry and pharmacology. The objectives of this project are to

¢ Develop tools that permit end users to securely and seamlessly access, integrate,
and use relevant globally distributed data resources;

¢ Develop tools that permit end users to securely and seamlessly access, use, and
schedule globally distributed computational methods and tools; and

¢ Provide foundations and design principles for developing and constructing next-
generation molecular engineering systems.

The selected underlying grid middleware UNICORE [50] offers well-designed in-
terfaces for application software integration both on the user client side and on the
execution server side. It provides data access and data transfer together with work-
flow modeling, execution, and monitoring. To facilitate the development of prediction
model and prediction workflows, the OpenMolGRID project developed abstraction
layers to easily integrate application software and to access different publicly avail-
able relevant databases (e.g., ECOTOX [51], NTP [52]), and built a data warehouse
from that data [53]. It includes automated workflow support that simplifies the task of
the user by including support steps such as data conversion and data transfer into the
workflow, by automatically assigning appropriate execution servers, and by exploiting
parallelism [54,55].

The general architecture underlying the OpenMolGRID system is depicted in
Fig. 1.1. The abstract resource interfaces are the key to flexibility providing a com-
mon interface accessible by the UNICORE server and a resource-specific interface
on the resource side. Each resource has an XML resource description attached to
inform the server and the client about input and output characteristics and behavior.
The challenges addressed in the OpenMolGRID project are as follows:

e Molecular design and engineering are computationally very demanding, and
they generates huge amounts of data.

¢ Data from a variety of different sources need to be integrated using data ware-
housing techniques, and the data need to be accessible seamlessly.

¢ The scientific workflows involve heterogeneous data, compute, and application
resources.
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Figure 1.1. OpenMolGRID high-level architecture.

e The scientific workflows are fairly complex and involve multiple dependent
steps.

These challenges become obvious when analyzing, for example, the QSAR model-
building process: First, relevant experimental (toxicity) data are searched from one or
multiple sources, which requires that all sources be accessible through the system and
that the relevant data can be extracted. The structural information is then extracted and
a 3D structure is generated for each molecule. Application software such as MOL-
GEO [56] is used to accomplish this task. In the next step, the generated molecular
geometry is optimized using the molecular modeling software for example, MOPAC
[57]. These applications process a single structure at a time so that the tasks can easily
be distributed. This is also true for the next step in the workflow, the calculation of des-
criptors, for example, using the molecular descriptor analyzer (MDA) module from
the Codessa [58] software package. The results from all structures serve as input to
model development software—for example, the best multilinear regression (BMLR)
analysis module of Codessa. The following sections will describe the OpenMolGRID
solutions in detail.

1.3.1 Data Management

Besides storage of data, the major challenge in data management is the access to
every kind of data source containing data relevant to drug discovery, toxicology,
pharmacology, and, of course, the interpretation and integration of these data.
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1.3.1.1 Access to Data Sources

The abstraction layer for data sources is realized as a set of metadata and a server-side
wrapper application called database access tool that encapsulates the communication
with the underlying database system. The output data are sent to the client in an XML
format that is designed for easy automatic processing. The metadata file contains
information on the database layout and semantic information—for example, database
name, access restrictions, information about the database intended for the user, table
names, field names, and types.

The XML structure defined to transfer the data from the data source to the user
client or as input to other applications is a list of elements. This facilitates an easy
transformation to other formats, for instance, application software input formats, and
for easy extraction of certain fields, for example, the structure of a chemical compound.

1.3.1.2 Data Warehouse

Predictive QSAR/QSPR modeling requires the handling and management of chem-
ical structure and property data, along with data relating to molecular descriptors.
Often these data must be retrieved from public or private data repositories as well
as integrated and formatted so that it is amenable to data mining methods such as
linear regression methods, artificial neural networks, and decision tree algorithms.
Data warehousing [59] provides the data integration and formatting functionality re-
quired by data mining applications. It is employed to integrate, cleanse, normalize,
and consolidate data from different sources and to map them onto “ready-to-use” data
structures (e.g., by denormalizing relational database tables). Within the OpenMol-
GRID system, a grid-enabled data warehouse for molecular engineering environments
has been developed [53]. Its main purpose is to provide integrated and consolidated
data originating from selected data resources relevant to molecular engineering. The
following data resources have been integrated:

¢ National Toxicology Program database, which provides information regarding
potentially toxic chemicals to health regulatory and research agencies, the sci-
entific and medical communities, and the public NTP [52]

e ECOTOX (ecotoxicology) databases Aquire and Terretox, which provide
chemical toxicity information for aquatic and terrestrial life, respectively [51]

e Multidrug resistance (MDR) data set, proprietary
¢ G-protein-coupled receptor (GPCR) data set, proprietary

The databases integrated in the data warehouse are harvested from the sources men-
tioned above and are mapped into the warehouse and its physical repository. A de-
tailed view of the OpenMolGRID data warehouse and its relation to the Web and other
OpenMolGRID components is depicted in Fig. 1.2. The warehouse processes follow
the typical extract, transform, and load scheme (also known as ETL). According to
reflect updates in the underlying databases, the warehousing process is performed
periodically. The extract component transfers the database from its public Web site
as single or multiple files (depending on the database) to the data warehouse. Each
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Figure 1.2. OpenMolGRID data warehouse and related components.

database has its own implementation-specific format from which the data are extracted
and mapped into the data transformation environment. Within this environment, the
data are denormalized from relational databases, cleansed (inconsistent entries are
removed), enriched, and standardized based on the requirements of the molecular
engineering environments. New fields are computed to facilitate different types of
analyses. For example, the log inverse of the measured dosage of a chemical’s tox-
icity is often more useful for some calculations and models than that of the toxicity
value itself. By providing this value within the warehouse’s data structures, the user
does not have to perform this calculation and can focus on the more intricate aspects
of the modeling task at hand. Data normalization may involve, for example, missing
value imputation, mean centering, or alignment to canonical units. In addition, com-
plex data transformations (descriptor calculations) are integrated into the warehouse
again to offer values the users would have to calculate otherwise.

The transformed data are then loaded into the data warehouse’s physical data
storage, a PostgreSQL relational database. Client access to data in the OpenMolGRID
data warehouse is enabled via the generic database access tool mentioned above.
Inputs and outputs are encapsulated in an OpenMolGRID-specific XML syntax and
data are easily identifiable due to being associated with generic data types defined
especially for OpenMolGRID’s data needs. These data types are used throughout all
applications in the OpenMolGRID system.

The data warehouse’s transformation environment includes the calculation of cer-
tain descriptor values as mentioned. Specialized software is required to perform these
calculations and they are expensive to compute, especially if there are a large number
of chemicals and several representations of the same chemical. From a data ware-
house perspective, these descriptor calculations are complex data transformations.
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Therefore, the most frequently used molecular descriptors are calculated for each
molecular structure in the data warehouse. Besides the traditional molecular descrip-
tor types, a physicochemical parameter, the log P value (octanol-water partition co-
efficient), is also calculated for the compounds. Essentially, the descriptor calculation
procedure amounts to virtualization of parts of the data warehouse’s data transforma-
tion processes. This virtualization functionality is realized by the development of the
command-line interface for UNICORE.

1.3.1.3 A Data Type for Toxicity

A major challenge is that many data resources contain inconsistencies by way of
the same data (types) represented in different records (the idea of a record varies
from source to source). For example, supposing we have decided that the stan-
dardized data unit for a particular dosage field is milligrams per kilogram (mg/kg),
there may be variations in the style, a source represents this. Some records may
contain Mg/kg (or some other variation), thereby causing inconsistencies with the
standard realized in the OpenMolGRID warehouse. The taxonomy step in the pro-
cess flow described enables any number of substitutions to be defined to ensure
that consistency is maintained within, and between, data resources entering the
warehouse. Characteristic of many data sources is the idea that each data field
contains a value from a set of allowable values. This can be problematic when a
number of resources are being integrated into a data warehouse. For example, a
dosage field can have several measurement units associated with it—for example,
g/kg, mg/kg, or wg/kg—which have to be aligned to be usable for data mining. In
the absence of a data warehouse, this must be performed manually, but in the
OpenMolGRID data warehouse, anautomated mechanism is required. The mech-
anism was developed based on canonical units or primitives. Measurement units
can be broken down into several categories—for example, length, weight, and time.
Each of these categories has an associated base unit, the unit primitive—for exam-
ple, kilograms for weight. For the conversion between various forms of the same
measurement category, scaling factors (which can be more complex mathematical
formulations) are defined, in both directions, to enable dynamic conversion from one
unit to another.

1.3.1.4 Data Storage

Besides the data warehouse that contains the cleaned and transformed data from
available data sources, space to store (intermediate) results is required. A relational
database has been set up to support the complete molecular engineering process. It
is capable of handling all data generated in the OpenMolGRID system (molecules,
descriptors, models, experimental property values, predicted property values, etc.).
It is set up as a read/write store, while the data warehouse is read-only from the end
users’ perspective.

Very important for a data store for molecular sciences is a structure and substructure
search capability that has been developed. This function is necessary for identifying
the best subset of data (chemical compounds) to be used for further analysis and is
fundamental in chemical and related communities. The substructure search is realized
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Figure 1.3. Application interface.

as a two-part process with two different queries. The first query aims to select a
subset of structures that may contain the substructure. This is performed using a
fingerprinting approach, which significantly accelerates the search. Fingerprints of the
structures are matched against the fingerprint of the substructure, and those structures
that cannot possibly match are removed from the set. The second query is performed
within the matching subset to select structures that actually contain the full chemical
substructure. The comparison is computationally expensive, which makes it important
to use the first step to reduce the input set for the second query and thereby make the
overall process more efficient.

1.3.2 Application Integration

Similar to the integration of data sources through metadata and access software
(database access tool), all kinds of applications can be integrated into the system
as shown in Fig. 1.3. The abstract interface is realized as a wrapper to existing soft-
ware modules. It provides the description of the application (its metadata) and the
input/output (I/O) data format conversion routines from the standard data format to
the proprietary and vice versa. The metadata also define the interface and I/O format
information used by clients. As a result, a well-defined application on the server side
can be addressed on the user client side by an application-specific interface as shown
in the following section.

1.3.3 User Interface

OpenMolGRID, being based on the UNICORE grid middleware [60], includes the
UNICORE graphical client (see Fig. 1.4), which is shown here with the detailed
workflow for model building (for the description of the coarse-grained workflow,
see introduction to Section 1.3). It is a Java application offering job creation and
monitoring for complex multistep and multisite jobs. Jobs are composed of subjobs,
tasks, and dependencies reflecting temporal and data dependencies. Jobs are repre-
sented by acyclic directed graphs with tasks and subjobs as vertices and dependencies
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Figure 1.4. User client.

as edges. UNICORE jobs representing subjobs are associated with a target system
(vsite), where the (part of the) job should be executed. The basic tasks the client pro-
vides are import of input data files, export of output data files, transfer of data between
subjobs, execute of a program, and dependencies for simple sequential dependency,
if-then-else, while, repeat, and hold. The most important feature in the OpenMol-
GRID context is the client’s plugin interface to integrate application-specific plugins
that represent new flavors of the execute task. The application-specific plugins cor-
respond to defined application resources on the server side as described in Section
1.3.2.

1.3.4 Workflow Modeling

The specification and execution of complex workflows such as those in molecular
design and engineering using grid resources is still under research [61]. Workflow
solutions exist mostly for business processes. Languages to describe business pro-
cesses are, for example, BPEL4WS (Business Process Execution Language for Web
Services, see Reference 62) and WPDL (Workflow Process Definition Language; see
Reference 63). The modeling of complex workflows in the scientific arena is mostly
performed manually using the tools the existing grid middleware offers [64,65]. The
key to automated generation of workflows is the description of software resources
available on grid computing resources. In the OpenMolGRID system, this is provided
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by the application’s abstraction layer. These descriptions can be used for automated
application identification and inclusion in multistep workflows. The following para-
graphs will describe the solution for automated workflow specification and processing
developed within the OpenMolGRID project.

Workflow Specification. Workflows consist of task or process elements with logi-
cal, temporal, and data dependencies. Tasks may also be independent of other tasks
in a workflow. As described in Section 1.3.3, OpenMolGRID uses the UNICORE
client that offers graphical workflow specification to build up complex jobs. Existing
workflow description languages do not match the UNICORE model with respect to
application software resources. As these play the most important role within the au-
tomatic job generation, a workflow specification language has been developed that
enables a high-level definition of various scientific processes containing sufficient
information for the automatic generation of complete UNICORE jobs. This includes
the tasks and their dependencies, as well as the necessary resources. XML has been
selected as a specification language for the workflow. A core element in a workflow
is the task, which is described by

¢ A string, the task’s function to be fulfilled by an application resource and sup-
ported by a client plugin

e A string, the UNICORE task identifier in the job tree

¢ An integer, the unique numerical task identification within the workflow

¢ A boolean, the export flag specifying whether result files are to be exported to
the user’s workstation

¢ A boolean, the split flag specifying whether the task is data parallel and can be
distributed onto several execution systems

¢ A string, the identifier of an application that is capable of splitting the input data
for this task into n chunks (splittertask)

¢ A string, the identifier of an application that is capable of joining the n result
files into one file (joinerTask)

¢ A set of options to feed the application with parameter settings

A set of resources is specified for a task requesting runtime, number of nodes, number
of processors, and memory. The target system for the execution of all tasks within a
UNICORE (sub)job can be specified by usite and vsite.

The following shows the XML workflow specification for the model development
process:

<?xml version="1.0" 7>

<!—*##* Model Multi-Drug resistance on OpenMolGRID data warehouse data ***

— >

<workflow xmlIns="http://www.openmolgrid.org/namespaces/2004/Workflow
Description” xmlns:rd="http://www.openmolgrid.org/namespaces/2004/
SimpleResources” >
<group type="“subjob” identifier="Query Database” id="1" >
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<!— wrapper group to allow easy datasource selection —>
<task name="DataBaseRequest” identifier="Query Database” id="11"
export="false” split="false” >
<option name="query” value="SELECT chemical.moldw_id,
chemical.structuretype, chemical.fileformat,chemical.
molecularstructure,property.propertyid,property.propertyname,
property.loginverse FROM (chemical LEFT JOIN property ON
chemical.moldw_id=property.moldw_id) WHERE chemical.
molecularstructure!=" and property.propertyname like ‘Multi-Drug%””’ />
</task>
<task name="DataBaseRequestToPLF” identifier="Property file
preparation” id="3" export="false” split="false” />
<task name="DataBaseRequestToSLF” identifier="Structure file
preparation” id="2" export="false” split="false” />
<resourceRequest>
<rd:node usite="Ulster OMG” vsite="MOLDW” />
</resourceRequest>
</group>
<task name="2Dto3Dconversion” identifier="Convert 2D to 3D” id="21"
export="false” split="false” />
<task name="SemiempiricalCalculation” identifier="Structure optimization”
1d="25" export="false” split="true” splitterTask="SplitStructureList”
joinerTask="JoinStructureLists” >
<option name="keywords” value="AM1 PRECISE 1SCF NOINTER” />
</task>
<task name="DescriptorCalculation” identifier="Codessa descriptor
calculation” id="29" export="false” split="false” />
<task name="ModelBuilding” identifier="Model building” id="40"
export="false” split="false” >
<resourceRequest>
<rd:resources runTime="3600" />
</resourceRequest>
</task>
<dependency pred="11" succ="2" />
<!- db request to structure extract —>
<dependency pred="11" succ="3" />
<!- db request to property extract —>
<dependency pred="3" succ="40" />
<!— property extract to model building —>
<dependency pred="2" succ="21" />
<! struct extract to 2d to 3d —>
<dependency pred="21" succ="25" />
<!- 2d to 3d to semiempirical —>
<dependency pred="25" succ="29" />
<!- semiempirical to descriptor calc —>
<dependency pred="3" succ="40" />
<!— property extract to model building —>
<dependency pred="29" succ="40" />
<!— descriptor calc to Modelbuilding —>
<resourceRequest>
<rd:node usite = “Tartu OMG” vsite = “VSite|”/ >
</resourceRequest>
</workflow>
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Workflow Processing. A workflow specified as described serves as input to the
MetaPlugin, a special plugin to the UNICORE client. The MetaPlugin parses the
XML workflow, creates the corresponding UNICORE job, and assigns target systems
and resources to it. These tasks include a number of sophisticated actions:

e Subjobs are introduced into the job wherever necessary, for example, when
requested applications are not available on the same target system.

¢ Transfer tasks are introduced into the job to transmit data from one target system
to another, which is the execution system of a subjob.

e Data conversion tasks are added between two tasks where the output format
(specified in XML according to the application metadata) of one task does not
match the input format of the successor task.

e Splitter and transfer tasks are added to the workflow as predecessor tasks of a
splitable task for input data preparation.

e Subjobs are created around split tasks for each selected target system and a
transfer task to transfer the output data back to the superordinate subjob.

e Joiner tasks are added to join the output data of split tasks.

e The directed acyclic graph of dependencies between all tasks (the Explicit ones
from the workflow specification and the automatically generated ones) is set up.

The MetaPlugin uses the resource information provided by the target system (vsite),
the metadata of the applications, and information about the plugins available to the
client. A resource information provider component has been developed to support the
MetaPlugin in resource selection. It returns the client plugin handling the function, the
target systems offering the corresponding application, and the I/O formats. Currently,
the MetaPlugin does resource selection at a basic level, but a more sophisticated
resource broker component can easily be added. The main advantage of this mecha-
nism is that a user who wants to do model building can name the coarse-grained tasks
and their dependencies in an XML workflow, thereby avoiding the tedious job of the
step-by-step preparation of the complex workflow of the corresponding UNICORE
job. The latter would demand detailed knowledge about, for example, I/O formats
for the inclusion of data conversion tasks and the manual splitting and distribution of
tasks onto appropriate target systems. The automatic UNICORE job creating gives
the flexibility to the system to adapt to the actual grid layout and resource availability
and helps to avoid human errors.

Figure 1.4 shows on the left-hand side the UNICORE job the MetaPlugin generated
from the workflow detailed. All tasks starting with “Auto_” have been added as are the
groups “Executel” and “Execute2,” where the semiempirical calculation is distributed
among systems offering the necessary application software. “Auto_Transfers” are
used, for example, to transfer data from the database to the systems where the structure
conversion and the model development are to be executed. The “Auto_SplitlnputData”
and “Auto_Join_Data” tasks have been included to partition the input data for the
semiempirical calculation to allow for its distributed execution and to join the result
files after the execution is completed.
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1.3.5 Experience

One of the most noteworthy outcomes of the OpenMolGRID project is that it paves
the way for standardization of model-building and prediction processes. Within Open-
MolGRID, we checked that results obtained with the automatic process are equivalent
to those obtained by manual modeling, both for the chemical descriptor calculation
and for the QSAR results. This shows that OpenMolGRID has practical potential
as a regular tool for QSAR modeling. It is important to note the advantages in this
direction offered by the OpenMolGRID approach for models for regulatory purposes.
Indeed, in the case of scientific applications the automatic simplified process is surely
convenient and appealing, and it speeds up the application. But for regulatory pur-
poses, it becomes necessary to get the same result independently of the user. So far
in most of the cases QSAR models, except those within the classical approach with a
few simple parameters, require manual steps that produce variable results due to op-
timization differences and the lack of sufficient details. The availability of automatic
QSAR modeling tools would surely cover the need for more reproducible results,
which is a requirement for results to be used within a regulatory context: The imple-
mentation of a candidate protocol for QSAR modeling as a workflow would achieve
reproducibility, easy models, and suitability for regulatory purposes [66].

Mazzatorta et al. [67] obtained stable and thoroughly validated QSARs using the
OpenMolGRID system, and Maran et al. [68] detailed the use of OpenMolGRID for
the development of QSAR models for the prediction of HIV-1 protease inhibition
ability of potential inhibitors. They pointed out that building the model is accom-
plishable within 1 h using the system instead of 1 day because of automation of the
workflow and parallel execution of tasks. This shows that the objective to shorten the
time to solution has been achieved. Especially the automatic distribution of a task
onto the available systems and the automated output/input format conversion account
for this.

During the development of the system, application integration has proved to be
easy because the application software itself does not need to be adapted, only a
wrapper implementing the abstract interface has to be developed. The data ware-
house’s transformation process has been significantly improved by the provision of a
command-line interface and a queuing component to the UNICORE system. The data
warehouse uses these components to submit descriptor calculation to grid resources
and retrieve the output. Indirectly, this also speeds up the user’s workflows because
values that every user requires are already calculated up-front and provided in the
data warehouse.

The current lack of an XML editor to generate the workflows makes it difficult
for the toxicologists to prepare their own workflows. These have to be prepared by
someone familiar with XML and the workflow schema which can easily be covered
for standard workflows that are prepared initially and made available to everyone—
for example, the model development process, but not for, for example, experimental
workflows.

A set of open issues has arisen from data handling. Standard formats should be
used wherever possible, but, for example, there is not yet an established standard
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for globally unique identifiers for molecular descriptors. How to store the predictive
models has not yet been resolved because PMML (predictive model markup language,
[69]) is not sufficient, and it cannot be used to describe PLS (partial least square) or
PCR (principal components regression) models. An extension to PMML could be a
solution. For a molecular structure, multiple conformations can exist, and the handling
of these multiple data including their storage, selection, and processing has not yet
been resolved in chemoinformatics. These topics will, among others, be dealt with in
the EC-funded project Chemomentum [70].

1.4 SUMMARY AND OUTLOOK

QSAR modeling, in silico modeling, is a prominent method in toxicology and phar-
macology. Important is the quality of the models; for example, the REACH legislation
requires a clear estimation of the quality of a model, its accuracy, before it can be
used for REACH purposes. The European Chemical Bureau is coordinating an action
on QSAR [71] in support of prediction modeling for regulatory purposes. Within
drug discovery, it is vital to have significant models for the prediction of ADMET
(absorption, distribution, metabolism, excretion, and toxicity) properties [72]. The
mathematical modeling is supported by grid computing because it helps speed up the
process of model building through parallelization and user-friendliness. Pharmaceuti-
cal companies save further costs with in-house grids using their idle desktop PC cycles
instead of investing in additional compute power. The emerging service-oriented
architectured grid systems allow interoperability and thereby support for true global
sharing of all kinds of resources (CPU cycles, data, knowledge, applications, etc.).
This enables collaboration and may lead to synergy in achieving better and quicker
results. Data and knowledge management are key to interoperability. The data from
different sources need to be interpretable, requiring ontologies to be further developed
to enable “understanding.” The Semantic grid [73] offers the necessary framework.
It can be used to automate the integration of data from different sources and their
transformation into knowledge. The CombeChem UK e-Science project [74] demon-
strates the advantages of Semantic grid for data from chemistry. On the basis of a
chemistry ontology and RDF (Resource Description Framework) graphs using XML
data descriptions, it provides a flexible data structure for data integration and knowl-
edge management. Drug development and toxicology are going to gain from the smart
laboratory that has developed. An aspect to be covered is data privacy and security,
especially for company-owned data or medical records. These data would not be al-
lowed to leave the source, but it may be allowed to mine the data locally and transfer
only the results. Therefore, distributed data mining is another topic needing further
research [75]. In addition to security issues, it may not be feasible to transfer data to
an execution server because of their sheer volume.

In the future, grid computing will further impact procedures in toxicology and
pharmacology. Having standard procedures will help regulatory bodies in their deci-
sions. High-quality prediction models will reduce the amount of in vitro and in vivo
testings. Nanotoxicology [76], the research on toxic effects of nanoparticles (particles
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of nanometer size), will need computational and prediction models and procedures for
determining physicochemical parameters and effects and for risk assessment. Drug
development will extend its use of computational methods and knowledge exploitation
to find cures. The systems, biology approach to simulate all processes in a biological
system—for example, a cell—is used to further understand the way the system works
and can be influenced, which may improve drug discovery [77].
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