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ABSTRACT

XML is nowadays considered the standard meta-language for
document markup and data representation. XML is widely
employed in Web-related applications as well as in database
applications, and there is also a growing interest for it by the
literary community in order to develop tools for supporting
document-oriented retrieval operations. The purpose of this
paper is to show the basic new requirements  of this kind of
applications and to present the main features of a typed
query language, called Tequyla-TX, designed to support
them.

1. Introduction

During the last few years XML has rapidly emerged as a
standard meta-language for document markup and data
representation. XML was designed as a simplification and an
evolution of SGML (ISO, 1986), with the purpose of
broadening the language application field and of easing the
development of efficient management tools.

XML has been widely employed in the document community,
in many Web-related applications, as well as in many
database applications. Its ubiquitous presence is due to the
ability to represent nearly any kind of data sources, ranging
from structured data (e.g., database records) to semistructured
databases (e.g., collections of BibTeX references), and to
unstructured data (e.g., DNA sequences).

To exploit this great flexibility of XML it is important to
have managing tools (e.g., querying, indexing, and storing
tools), which can efficiently manage structured,
semistructured, as well as unstructured data. In particular,
there is the need for query languages able to support both
database-like queries and textual queries.

This paper describes Tequyla-TX, a typed text retrieval query
language for XML documents. Tequyla-TX is an extension of
Tequyla (Albano, Colazzo, Ghelli, Manghi, & Sartiani,
2000b) (Albano, Colazzo, Ghelli, Manghi, & Sartiani, 2000a),
a typed query language for XML data, from which it inherits
the ability to perform database-like queries; Tequyla-TX
integrates these features with the support for both word-
based and char-based searches to satisfy the basic
requirements of text retrieval applications and, in particular,
of literary applications.

The paper is organized as follows. Sections 2 and 3 present
the motivations of the project as well as a brief overview of
other query languages; Section 4 presents the Tequyla-TX
language by means of examples. Sections 5 and 6 are focused
on  the type system and the query algebra of Tequyla-TX. In
the conclusions we briefly comment the work in progress.

2. Motivations

Tequyla-TX is the result of a collaboration between the
Database Research Group of the University of Pisa and the
CRIBECU (Centro Ricerche Informatiche per i Beni Culturali)
group of the Scuola Normale Superiore di Pisa. CRIBECU
expertise is in the field of text retrieval for literary
applications, such as philological analysis of literary texts,
textual criticism, stylistic analysis, and linguistic research.

To support these kinds of applications CRIBECU has
implemented a search engine TreSy (Text Retrieval System)
(Corti, Lombardini, & Paoli, 2000) based on a particular text-
indexing data structure, called String B-tree (Ferragina &
Grossi, 1999). The goal of Tequyla-TX is to integrate a typed
XML query language with the TReSy search engine to
support the following basic functionality required by a wide
range of literary applications:  search on both content and
structures; word-based and char-based searches; tag-
dependent full text searches; match points; text
normalization.

Search on both content and structure Traditional query
languages for text and information retrieval allow one to
query the content of documents only; this solution is not
appropriate for XML documents, where data can be arbitrarily
nested and mixed with structural information. In these cases,
both content and structure of XML documents have to be
queried.

Example 1. Consider the following fragment of the Italian
“Vocabolario della Crusca”, where the first entry defines
the meaning of the word ‘ANITRACCIO’ (Tuscan word for
duckling), and the second one defines its synonym
‘ANITROCCOLO’:

...

<entry ID="B6">

   <form type="lemma"> ANITRACCIO </form>

   <sense rend="definizione"

          value="semplice">

      ...

   </sense>

</entry>

...

<entry id="B10">

   <form type="lemma"> ANITROCCOLO </form>

   <xr> vedi

      <ptr target="B6">

         <hi>ANITRACCIO</hi>.

      </ptr>

   </xr>

</entry>

...

Assume that we want to find the definition of the word
‘ANITRACCIO’, without retrieving the definition of its
synonym. We can express this query by combining a content
constraint (look for ‘ANITRACCIO’) with a structural one
(look inside form elements contained into entry elements).
Indeed, the specification of a content constraint only would
return the definition of ‘ANITRACCIO’ as well as any other
reference to it.

Word-based and char-based searches XML documents are
used for representing various kinds of information sources:
texts, semistructured databases, scientific databases, and so
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on. Given the wide application field of XML, the ability to
perform both word-based and char-based searches (i.e., the
search for patterns that cross word boundaries) is required; in
particular, char-based searches are necessary in many literary
applications, such as analyses of the use of prepositions in
Latin texts.

Tag-dependent full text searches Literary applications
frequently use in XML documents tags that do not show the
same behavior w.r.t content searches. For example, it i s
common to find three different classes of tags. The first class
contains tags (called hard tags), that describe the logical
organization of documents, such as the sectioning in
chapters, section, and so on; hence, they divide documents
into distinct search contexts, whose borders should not be
crossed by a search function (a search context is just a
string).

The second class contains tags (called soft tags) that describe
the typographical layout of documents. Even though one key
idea behind XML is the separation between content (the XML
document itself) and presentation (XSL stylesheets), still
there is the need for encoding some layout information into
documents themselves. For example, documents representing
ancient manuscripts usually contain detailed layout
descriptions, considered as important information by
researchers; moreover, a proper rendering of such documents
cannot be handled by XSL and XSLT engines (it is just too
complex for XSL). These tags, describing typographical
aspects, do not define new search contexts, and they should
be transparent to a content search function

The third class contains tags (called jump tags) used for
representing footnotes, endnotes, bibliography references,
etc, which require a special treatment during retrieval
operations. Consider, for example, a literature paper
containing notes at the end of each page, explaining the
meaning of particular statements, or giving the reader further
information about a particular topic. These notes are not part
of the main search context, but indeed they define a new one.

Example 2. Consider the following fragment of XML:

...

<chapter>

   <title> Anatomy of a conspiracy </title>

   ...

   <section id = 2>

      <hi> OAS </hi>

      <note> Organization de l’arm&eacute;e

             secr&egrave;te  </note>

      was …

   </section>

   …

   <section id = 10> ...  Paris </section>

   <section id = 11> The Jackal ...

   </section>

   ...

</chapter>

...

 Element tags such as chapter, title, and section describe the
logical structure of the document; hence they are classified
as hard tags. The tag note, instead, is used to describe the
acronym ’OAS’, and it is classified as a jump tag. The tag hi,
finally, is used to describe that the word ‘OAS’ i s
capitalized, so it is classified as a soft tag.

These tags define various search contexts, as shown in
Figure 1.
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Figure1. Search contexts within an XML document

It should be noted that the note element does not break the
search context starting from OAS.

Now, assume that we want to locate, in the previous
fragment, the pattern ‘Paris The Jackal’; since this pattern
does not occur into a single search context, this query
should fail on this fragment. A search for the pattern ‘OAS
was’, instead, would succeed, since the tag hi (surrounding
’OAS’) is transparent to content searches, and the tag note
does not break the current context.

Match points Literary researchers are mainly interested in
locating the portions of a document (or of a collection of
documents) satisfying the search criteria, and in viewing
them in the context of the original documents.

Thus, the result of a query should be a set of match points,
i.e., a set of pointers to the original documents identifying
the relevant portions of text, instead of a set of strings or
XML elements (which could be very long and hard to read) as
in traditional XML query languages (Deutsch, Fernandez,
Florescu, Levy, & Suciu, 1998) (Robie, Lapp, Schach, Hyman,
& Marsh, 1998).

Example 3. Consider the following XML fragment:

<paragraph> ... for two reasons ...

    ... set. For example

</paragraph>

The result of a query for finding any occurrence of the
string ‘for’ inside the paragraph element should contain
two match points, as shown in Figure 2.

����������	������������������������������)����*�����������������	

�
��������� ������������

Figure 2. Match points
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Text normalization White spaces, punctuation marks, and
other symbols require a special treatment during query
processing. For example, the search for the pattern ‘the car’
should locate also ‘the__car’, ignoring the extra white spaces
in the text. In other words, the text should be normalized in
order to be queried. This approach, coming from the PAT
System for Oxford English Dictionary (OED) (Salminen &
Tompa, 1994), allows the text to be transformed depending
on the requirements of the specific application field. In
particular, text normalization in the context of literary
applications consists of three main transformations:

• resolution of XML entities representing accents and
other special characters, e.g., citt&agrave; -> ‘città’;

• transformation of punctuation marks into word
separators, e.g.,  ‘It was a nice day. Nevertheless …’
-> ‘It was a nice day  Nevertheless’;

• fusion of contiguous word separators into a single
one, e.g., ‘it was  \n a nice day’ -> ‘it was a nice day’.

In Section 4 it will be shown how text normalization can be
confined into specific language functions, thus enhancing
the flexibility of the query language.

3. Related Works

There exist many query languages for XML documents,
coming from both the database community and the XML
community; there also exist languages specifically designed
for text-retrieval on structured documents (Navarro, 1995)
(Neumann, 2000). None of them, including the original
Tequyla, fully meets the above requirements.

XML-QL and Lorel (Deutsch, Fernandez, Florescu, Levy, &
Suciu, 1998) (Abiteboul, Quass, McHugh, Widom, & Wiener,
1997), coming from the database community, are based on
the SSD paradigm. They share many common features, such
as the ability to perform querying operations as well as
transformations, the use of graph data models (simple
variants of OEM (Papakonstantinou, Widom, & Molina,
1996)), a copy semantics, etc.

Unfortunately they do not satisfy the requirements described
in the previous section. In the first place, there is not a
notion of match point, nor there are operators for binding
variables to match points, and for manipulating them.

In the second place, XML-QL support to text retrieval i s
limited to a string containment predicate like, which
compares the value of an element or attribute with a string
regular expression. Lorel, instead, provides some textual
operators, the same predicate like, as well as an operator for
reconstructing the text contained in an XML tree, but they are
still limited and do not properly manage white spaces.

Example 5. Consider the following XML fragment:

<chapter> <title> File Structures </title>

   <section> <title> Inverted File </title>

   ...

   </section>

</chapter>

We want to locate the character sequence ’tures invert’
contained (directly or indirectly) into a chapter element.

This query cannot be expressed into XML-QL nor in Lorel,
since they both lack support for match points. By relaxing
this requirement, this query can be formulated in Lorel as
follows.

select flatten(y)

from ...

where flatten(y) like "%tures invert%"

This query returns the text contained in the whole chapter,
by means of the flatten operator, which does not take care o f
tags with different behaviors.

In (Florescu, Kossmann, & Manolescu, 2000) an extension of
XML-QL that enables keyword searches is described. This
extension consists of a boolean predicate contains, which
tests whether a given word is contained into an XML tree at a
specified depth; contains allows one to perform searches on
tag names, attribute names, element content, and attribute
values (or on any arbitrary combination of them).

While the proposed predicate is useful for expressing queries
over documents, whose structure is unknown or
heterogeneous, it does not suffice for text retrieval purpose,
since it does not overcome the limitations of XML-QL.

XQL is a query language designed by Jonathan Robie (Robie,
Lapp, Schach, Hyman, & Marsh, 1998) (Robie et al., 1999),
and vastly adopted in the XML community. An XQL query
has the form of an XPath pattern (Clark & DeRose, 1999),
enriched with filtering conditions (inline conditions) and
the ability to perform join-like operations on different
fragments of a document.

XQL has a limited expressive power (Fernandez, Siméon, &
Wadler, 1999), since it cannot express general
transformations on query results. Moreover, XQL has not a
well-defined semantics, which leaded to many inconsistent
implementations (e.g., there is no agreement on whether XQL
joins are inner joins or outer joins).

XQL offers many textual operators, which allow one to
perform case sensitive or insensitive searches, to reconstruct
the text contained into an XML tree, and to compare the
position of different words (before, after), but still it does
not satisfy our major requirements. First of all, XQL does not
support match points; moreover, textual operators apply
only to word-based searches (e.g., there is no support for
char-based searches); finally, text normalization is not
supported.

Example 6. Assume that we want to locate any occurrence o f
the pattern ‘ex a’ inside a student translation from Italian
to Latin (this control is useful since the preposition ‘ex’
applies only to words beginning with a vowel). Finding
these occurrences requires to abstract from the word
representation of the text, and to work on the char
representation, which is not feasible in XQL.
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XIRQL (Fuhr, 2000) is an evolution of XQL for information
retrieval applications. It extends XQL in three major ways.
First of all, it contains operator for performing similarity
searches, and for weighting and ranking query results. These
similarity operators are defined not only on strings, but also
on numbers, dates, and other relevant datatypes.

Second, XIRQL introduces a notion of result contexts, which
is, to some extent, similar to the notion of match points. The
key idea behind result contexts is to identify rooted,
possibly nested, subtrees of an XML document, whose roots
are then returned as results whenever the corresponding
subtree matches the search criteria. Result contexts are
statically defined by the database administrator, who
enriches the document schema with such information.

Finally, XIRQL endows XQL path language with a keyword ‘-
’, used for matching both elements and attributes, e.g., -
author matches both author elements and author attributes.

Despite these extensions, XIRQL still does not satisfy our
requirements, since it does not support char-based searches
nor tags with different behaviors.

XQuery is the standard XML query language being defined
by the W3C (Chamberlin, Florescu, Robie, Siméon, &
Stefanescu, 2001). XQuery core is based on Quilt, a Turing-
complete query language for XML designed by Don
Chamberlin, Daniela Florescu, and Jonathan Robie
(Chamberlin, Robie, & Florescu, 2000). XQuery combines
ideas borrowed from XML-QL, such as the ability to perform
general transformations, from XQL, such as the use of XPath
patterns instead of generalized path expressions, and from
XSLT.

Given its Turing-completeness, XQuery proved to be the
most expressive XML query language, meeting all W3C
requirements (Chamberlin, Fankhauser, Marchiori, & Robie,
2000).

XQuery inherits the textual operators of XQL, which i t
combines with a clear support for external functions; this
might be exploited for extending the language with
functions that take care of tags with different behavior (see
Section 4 for a similar solution in the context of Tequyla-
TX).

Nevertheless, XQuery suffers the same difficulties in
handling the previously described requirements as XML-QL
and XQL, since it does not support match points, nor it i s
able to express char-based searches. We stress that XQuery
definition is currently in-progress, hence its features are
subject to change.

4. Tequyla-TX By Examples

Tequyla-TX is an extension of Tequyla, a typed query
language for XML documents. Tequyla is based on the SSD
paradigm, and even though it satisfies most of the technical
requirements expressed in (Chamberlin, Fankhauser,
Marchiori, & Robie, 2000)., it is quite different from other
XML query languages. First of all, unlike XML-QL, Tequyla
supports XPath patterns, in order to lower the evaluation cost
of path expressions. Moreover, Tequyla is typed, which
means that queries are statically checked against the database

schema in order to determine their correctness, and that the
type of the result of a correct query is statically computed by
the system (further details on Tequyla can be found in
(Albano, Colazzo, Ghelli, Manghi, & Sartiani, 2000b)).

In order to fulfill the requirements described in Section 2,
Tequyla has been extended with match point variables, and
with operators for binding and manipulating them.

In the following sections, after a brief overview, Tequyla-TX
will be introduced by means of examples, some of which
come from the W3C XML Query Requirement SGML Use Case
(Chamberlin, Fankhauser, Marchiori, & Robie, 2000).

4.1 Language Overview

A Tequyla-TX query Q is written as a free nesting of from -
select binders, path expressions, and forest construction
operators, such as l(a)[Q1,…,Qn], which builds an XML
element tagged with l, whose attributes are specified in a, and
whose content is the concatenation of the results of queries
Q1, …,Qn.

For example, the constructor

instrument(type = “ER”)[“Foley catheter”]

return the following XML element:

<instrument type = "ER"> Foley catheter
</instrument>

A query Q always denotes a forest, i.e., a sequence of trees,
which may consist of one tree only.

from x in Q where W select Q’ evaluates Q’ once for each
different binding x = t, where t ranges over the trees that
compose the forest denoted by Q; all the forests fi produced
by these evaluations of Q are collected to obtain the query
result f1,…., fn. The where clause cancels all those bindings
that do not satisfy W.  In general, the subquery Q is a pattern
expression Q’’p, which denotes the sequence of all subtrees
that are reached by starting from a tree in Q’’ by following
the path p. Paths p are expressed through a simplified form of
XPath patterns.

Example 7. Consider the following Tequyla-TX query
(applied to an XML document describing medical
procedures (Chamberlin, Fankhauser, Marchiori, & Robie,
2000)):

from x in instrument,

where x.value() = "Hasson trocar"

select strange_instrument[x.value()]

The from clause binds x in turn to each instrument; the
where clause, then, checks whether the content of x is equal
to ‘Hasson trocar’, cutting off the other bindings.

The select clause, finally, builds a new XML element, whose
content is the content of x.
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from x = Q select Q’ evaluates Q’ only once, and substitutes x
with the whole forest denoted by Q.

Tequyla-TX from-where-select expressions are very similar
to Quilt and XQuery FLWR expressions.

We abbreviate a from select pair with a comma, hence a nested
query

from A select (from B select Q)

will be written as from A,B select Q.

4.2 W3C’s SGML Use Case

The example document and queries in this Use Case are based
on the W3C’s SGML Use Case. A simplified DTD is given
below.

4.2.1 DTD
This use case is based on an implicit (unnamed) input data
set, using the DTD shown below.

<!NOTATION cgm PUBLIC "Computer Graphics
Metafile">

<!NOTATION ccitt PUBLIC "CCITT group 4
raster">

<!ENTITY % text "(#PCDATA | emph)*">

<!ENTITY infoflow SYSTEM "infoflow.ccitt"
NDATA ccitt>

<!ENTITY tagexamp SYSTEM "tagexamp.cgm" NDATA
cgm>

<!ELEMENT report (title, chapter+)>

<!ELEMENT title %text;>

<!ELEMENT chapter (title, intro?, section*)>

<!ATTLIST chapter shorttitle  CDATA #IMPLIED>

<!ELEMENT intro (para | graphic)+>

<!ELEMENT section (title, intro?, topic*)>

<!ATTLIST section  shorttitle CDATA #IMPLIED>

<!ELEMENT topic (title, (para | graphic)+)>

<!ATTLIST topic  shorttitle CDATA #IMPLIED>

<!ELEMENT para (#PCDATA | emph)*>

<!ATTLIST para security (u | c | s | ts) "u">

<!ELEMENT emph %text;>

<!ELEMENT graphic EMPTY>

<!ATTLIST graphic  graphname ENTITY #REQUIRED>

4.2.2 Queries

The following query shows the use of from and select
clauses, the two kinds of variable binders of Tequyla-TX as
well as the use of XML constructors.

Example 8. “Locate all paragraph elements in an
introduction (all para elements directly contained within an
intro element).”

result[

   from report = document("report.xml"),

        introduction in report//intro,

        paragraph in introduction/para

   select paragraph

]

result[...] is an XML constructor, which builds an XML
element tagged result, whose content is specified within the
square brackets.
The from clause introduces variable bindings, which will be
exploited in the select clause. In Tequyla-TX, a variable can
be bound to a forest of XML trees as well as to a single tree.
As in XML-QL, variable bindings are organized in tuples;
hence, the result of the  from clause is a set of bindings
tuples.

In this particular query, the from clause first binds report to
the root of the document, whose URI is specified in the
document function; next, it builds the set of all intro
elements descendant of report, and binds each of them in
turn to the introduction variable.

The following query shows the use of indexes in Tequyla-TX
paths. Indexes, as well as inline conditions, are exploited to
filter the nodes in the current evaluation node set (context in
XPath jargon); indexes, in particular, select nodes by their
position in the current evaluation context.

Example 9. “Locate the second paragraph in the third
section in the second chapter (the second para element
occurring in the third section element occurring in the
second chapter element occurring in the report).”

result[

   from report = document("report.xml"),

        chapter = report/chapter[2],

        section = chapter/section[3],

        paragraph = (section//para)[2]

   select paragraph

]

Hence, report/chapter[2] selects exactly the second
chapter element in the report subtree.

The following query shows the use of the where clause as
well as how attributes can be examined.

The where clause is used, as in SQL and other languages, to
filter the bindings built by the from clause; the where clause
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evaluates its condition for each binding tuple in the
environment, and discards every tuple not satisfying it.

Example 10. “Locate all classified paragraphs (all para
elements whose security attribute has the value C).”

result[

   from report = document("report.xml"),

        paragraph in report//para

   where paragraph/@security = "C"

   select paragraph

]

In this particular example, the where condition examines the
security attribute for each paragraph element, and checks
whether its value is C; this is done by translating
@security = "C" into @security.value() = "C",
hence using the value extraction function value().

The following query shows how the value of attributes and
simple elements can be extracted and manipulated, as well as
how to test the existence of optional attributes.

Example 11. “List the short titles of all sections (the values
of the shorttitle attributes of all section elements,
expressing each short title as the value of a new element).”

result[

from report = document("report.xml"),

   section in (report//section)[@shorttitle],

select shorttitle[section/@shorttitle.value()]

]

In the from clause, the condition [@shorttitle] checks
whether the shorttitle is present in the current section
element; this control is required since the shorttitle
attribute was declared as optional in the DTD (<!ATTLIST
... shorttitle CDATA #IMPLIED ...>).

The value of the shorttitle attribute can be extracted by
using the value() function; this function retrieves the value
of attributes as well as simple elements, i.e., elements
without mixed or element content. The value() function does
not make any normalization of text, nor it can be used on
complex elements.

4.2.3 Text Retrieval Use Case

The following query shows the use of the textual operator
CONTAINS in the where as well as the function textof().

The textof() function applies to a tree and returns a sequence
of strings. This sequence is built by traversing the tree, and
merging CDATA sections and the values of simple elements.

During the merging process, the behavior of tags is taken
into account. As already stated, three kinds of tags are used:
hard tags, soft tags, and jump tags. A different behavior i s
associated to each kind of tags: hard tags delimit strings that
cannot be merged; soft tags, instead, are invisible to the
merging function; jump tags, finally, delimit new strings, as
hard tags, but do not halt the construction of the previous
string.

The textof() function also accomplishes the normalization
task, by applying transformations to white spaces,
punctuation marks, etc.

It should be noted that the semantics of the textof() function
is not fixed in Tequyla-TX, but it can be customized to be
adapted to the user’s needs, without the need to modify the
core language: hence, it is possible to define specialized
version of textof(), as long as typing constraints, described
in Section 6, are satisfied. Moreover, confining tags behavior
and normalization issues into the textof() function made the
data model and semantics Tequyla-TX less complex.

Example 12. “Find the entries referring to the definition o f
the word ‘ANITRACCIO’.”

results[

from dict =

   document("www.cribecu.sns.it/crusca.xml"),

   en in dict//entry,

   xr in entry//xr

where xr.textof() contains $"ANITRACCIO"$

select entry

]

The CONTAINS operator looks for the word ‘ANITRACCIO’
($ is a word delimiter) in the string sequence returned by the
textof() function. By default, the CONTAINS operator does
not take care of the case, i.e., string matching is case-
insensitive.

The following query shows the use of wildcards in textual
operators. The ? symbol is a wildcard matching any
character; hence, the expression ”Anner”?”re” matches both
‘ANNERARE’ and ‘ANNERIRE’.

Example 13. “Find the definitions of the words ‘ANNERIRE’
or ‘ANNERARE’.”

results[

from dict =

   document("www.cribecu.sns.it/crusca.xml"),

   en in dictionary//entry,

   form in en/form

where en.textof() contains $"Anner"?"re"$

select en

]
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The following query introduces the use of match points. A
match point is a pointer to an occurrence of a given string
into a document. Match points are bound to variables by
means of textual operators in the from clause.

A match point is represented as a rooted tree with the
following structure, shown in Figure 3. The tree is labeled
with tags coming from the Tequyla-TX namespace
(    http://tequyla.di.unipi.it   ).

��+ ���,�������
��

��+ ���,��� ���� ��+ ���,����� ��+ ���,��� ��+ ���,����

Figure 3. Structure of a match point

The document element is a pointer to the root of the XML
document containing the match point; the start and end
elements identify the position of the string into the
document, by specifying the position of the first and last
character of the string into the document; the word element,
finally, identifies the position of the string into the word-
based representation of the text, and it is meaningful for
word-based searches only.

Example 14. “Locate the occurrences of the word ‘E’.”

results[

from dict =

   document("www.cribecu.sns.it/crusca.xml"),

   en in dict//entry,

   occur in en CONTAINS case-sensitive $"E"$

select occur

]

The CONTAINS operator looks for the word ‘E’ in the textual
representation of en (i.e., the result of the textof() function);
for each occurrence of the word ‘E’ (case-sensitive), a match
point describing it is created.

Each match point is then bound in turn to the variable
occur.

The result of this query is an XML element results containing a
sequence of match points.
They are then used by a post-processing tool, which
displays the related occurrences in the context of their
original documents. Moreover, they are standard Tequyla-
TX entities, which implies that they can be manipulated by
Tequyla-TX operators, as it is shown in the following
example.

The following query shows the use of the textual operator
before(). It compares the position of the first operand (a
match point) with the position of the match points that

correspond to the second operand: it returns true if there
exists at least one match point (described by the second
operand) in the desired position w.r.r the first operand
(existential semantics). The before() operator is a word based
operator. The language also offers a char-oriented operator
beforechar(), which compares operand positions by chars, as
well as their complementary operators after() and
afterchar().

Example 15. “Locate all the occurrences of the word
‘signific.’ preceding the word ‘pass.’ by one word.”

results[

from dict =

document("www.cribecu.sns.it/crusca.xml"),

     en in dict//entry,

     sen in en//sense,

     occur in sen contains $"signific."$

where before(occur, "pass.", 1)

select occur

]

The following query shows a way to avoid text
normalization.

Example 16. “Find all entries defining the word
‘ANNEGAMENTO’.”

results[

from dict =

    document("www.cribecu.sns.it/crusca.xml"),

    en in dict//entry,

    form in en//form

where form.value() = "ANNEGAMENTO"

select en

]

The where clause contains a call to the value() function,
which extracts the un-normalized value of simple elements
and attributes; this value is then compared with the string
‘ANNEGAMENTO’.

The expression form.value() = "..." is not
semantically equivalent to form = "...", since Tequyla-TX
by default applies the textof() function whenever the content
of an element has to be compared with a string. Hence, form
= "..." is equivalent to form.textof() = "...", which
normalizes the content of the form element.

The following query is based on an XML fragment showed
below.
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…

<lb n="8"><name type="Fonti">AENEA</name>

<name type="Fonti">VICO</name> PARMENSI</lb>

<lb n="9">OLIM</lb>

<lb n="10">EDITA</lb>

<lb n="11">Noviter additis eorumdem

   <hi>C</hi>AESARUM  imaginibus  maiori

</lb>

<lb n="12">forma a praestantioribus

    Calchographis aeri incises </lb>

<lb n="13">Eminentissimo ac Reverendissimo

    Principi Domino</lb>

…

The query shows the use of the contains-start operator. This
textual operator takes as argument an XML element and a
string, and verifies that the string is contained in the textual
representation of an ancestor of the element, and that i t
begins in such element.

Example 17. “Locate all highlighted occurrences of the
word ‘CAESARUM’ (all occurrences of ‘CAESARUM’ which
begin inside a hi element).”

results[

from bellorii =

  document("www.cribecu.sns.it/bellorii.xml"),

  div1 in bellorii/div1,

  caesar in div1//hi contains-start

$"CAESARUM"$

select caesar

]

The contains-start operator goes back to the father of the
selected hi element (which denotes an highlighting), and
builds its textual representation by calling the textof()
function, whose result is shown below:
{“Noviter additis eorundem CAESARUM imaginibus
maiori”}.

Then, it tests whether the string ‘CAESARUM’ is contained in
this textual representation, and, finally, whether this string
begins within the hi element.

5. Tequyla-TX Type System

The Tequyla-TX type system extends that of Tequyla with
rules for typing textual operators.

A formal presentation of the type system is given in
Appendix C. In this section we give an overview of its main
features.

5.1 Motivations

Unlike traditional query languages and databases, most XML
query languages are generally untyped, and documents are
assumed without a description of their structure. The absence
of meta-information deprives these languages of the benefits
typically associated with static type information in DBMSs,
i.e. the possibility of checking for query correctness and
many query optimizations.

Tequyla-TX has been designed to exploit the benefits of type
checking. The language type system is used to check whether
XML documents conform to schema descriptions, and to
check whether queries are valid with respect to the type of
queried documents.

 Tequyla-TX type system presents several differences w.r.t.
recent typed approach to query XML data (Fankhauser et al.,
2001) (Hosoya & Pierce, 1999) (Chamberlin, Fankhauser,
Marchiori, & Robie, 2000) (Milo, Suciu, & Vianu, 2000).

Our type system is very similar to the one in Xduce (Hosoya
& Pierce, 1999), but we use it to support a language which i s
quite different: we study a query language, characterized by a
bounded complexity and by the possibility of efficient
execution, while (Hosoya & Pierce, 1999) defines a Turing-
complete programming language, where types are also  used
as a matching tool. Moreover, Tequyla-TX pattern language
is based on XPath and inherits its semantics (many-matches),
while  (Hosoya & Pierce, 1999) is based on a ML-like pattern
language whose semantics (one-match) is quite different
from the one of XPath.

The main feature of our type system is the presence of
mechanisms able to individuate incorrect queries, that i s
queries containing paths that cannot be present in the data
being queried. This is the main difference w.r.t. (Fankhauser
et al., 2001), where this kind of queries are considered as
correct.

Moreover, (Fankhauser et al., 2001) is a Turing complete
XML query algebra, and the type of functions has to be
declared by the user. In particular, (Fankhauser et al., 2001)
uses recursive functions to express the XPath deep path  //.
This means that, for  (Fankhauser et al., 2001) queries which
make use of //, the query type has to be declared by the user.
Differently, Tequyla-TX is a pure query language (it is not
Turing-complete) but, as we have seen in previous sections, a
form of structural recursion is built-in in its pattern
language. In particular, the type of queries, which make use
of structural recursion, must not be declared by the user,
since Tequyla-TX computes the query type.

We have to observe that (Fankhauser et al., 2001) is a W3C
work in progress, hence some of the above observations may
not hold for future versions of that work.

Regarding XQuery type system (Chamberlin, Florescu,
Robie, Siméon, & Stefanescu, 2001), the same consideration
made about (Fankhauser et al., 2001) hold, since typing for
XQuery heavily relies on the typing system of its core
language, which essentially consists of the system in
(Fankhauser et al., 2001).

Finally, our approach is different from (Milo, Suciu, &
Vianu, 2000) where the typechecking problem is studied for
a particular class of XML transformation programs. In
particular, given a transformation program and a DTD for the
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input documents, it is considered the problem of checking
whether every output of the program conforms to a given
output DTD. To this end, the given output DTD plays a
crucial role since typechecking is performed by a kind of
backward type inference mechanism, which takes as argument
the transformation program and the output DTD. Instead, in
Tequyla-TX type system the focus is on input documents
type, and outputs type are inferred.

5.2 Type System Overview

Tequyla-TX  exploits typing for two different aims:

� to check query correctness;

� to compute the type of query results (the query type).

This two features are strictly related, since to check
correctness of a query with subqueries, the types of
subqueries are needed.

To introduce the notion of query correctness that i s
supported by Tequyla-TX type system, in the following we
will refer to some examples of correct and incorrect queries
over typed XML data. For simplicity, we will use DTDs as a
formalism to describe data and query types. However, the
actual system relies on a type language which strictly
resembles the one of (Hosoya & Pierce, 1999) and is more
expressive than DTDs.

The semantics of queries has already been explained in the
previous section. To better understand the notion of
correctness, recall that, in Tequyla-TX, the from clause
specifies the structural requirements of the query, that is, the
structure of the document tree to be searched, and the where
clause specifies the logical properties to be satisfied by
nodes bound to variables in the from clause.

Tequyla-TX type system considers a query as correct when
there is a successful match between the query structural
requirements and the type of data to be queried. In other
words, the structure that the query expects to find in the data
conforms to the actual structure of the queried data declared
in its type (DTD).

As we will see, actually, our notion of query correctness is a
notion of partial query correctness, in the sense that if
alternative paths are present in a query, then the query i s
correct if at least one alternative is present in the data (see the
query example Q7).  Observe that this is an arbitrary choice,
and the system can be easily modified in order to consider
queries with alternative paths as correct only if all the
alterative paths exist in the data.

Only correct queries will be executed over typed data. If a
query is incorrect w.r.t. to a DTD, then it will be rejected and
notified to the user. In particular, for incorrect queries, the
system can be implemented so that incorrect paths can be
indicated to the user in order to easily allow query
corrections.

To give some example of correct queries, we consider
documents typed by the following DTD.

DTD1=

<!DOCTYPE Person[

<!ELEMENT Person (firstname,secondname) >

<!ELEMENT firstname #PCDATA>

<!ELEMENT secondname #PCDATA >]>

This simple DTD describes documents containing one
person element whose content is given by a firstname
element followed by a secondname element.

Let d  be an XML document satisfying the DTD above. An
example of correct query over d is the following.

Q1 = result[

from x in d/firstname

select name[x.value()]]

Indeed, according to the previous definition of correctness,
the structural properties of Q1 require that the root of d
contains some firstname element. These structural
requirements successfully match with the type of d.

Tequyla-TX type system also computes the type of Q. In this
case the computed type is

<!DOCTYPE result[

<!ELEMENT name #PCDATA>

]>

In the following case we consider a query Q2 over documents
d typed by the following slightly different DTD.

DTD2=

<!DOCTYPE Person[

<!ELEMENT Person

 (firstname, secondname, tel_list)>

<!ELEMENT tel_list (tel_number)*>

<!ELEMENT firstname #PCDATA>

<!ELEMENT secondname #PCDATA >

<!ELEMENT tel_number #PCDATA >]>

Now, a person element also contains a sequence of zero or
more tel_number elements.

The query Q2 is  

Q2  = result[

from x  in d/tel_list/tel_number

select number[x.value()]]

This query is correct, and now we have iteration over an
arbitrary sequence of tel_number, as described by the DTD2.
Hence, the system returns the following type for Q2:

<!DOCTYPE result[

<!ELEMENT result number*>

<!ELEMENT number #PCDATA >

]>
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If in  DTD2 we impose that at least one tel_element has to be
present,

…

<!ELEMENT tel_list (tel_number)+>

…

then the type of Q2 changes accordingly:

<!DOCTYPE result[

<!ELEMENT result number+>

…]>

For documents d typed by DTD2, the following two queries
are considered incorrect:

Q3= result[

from x in d/name

select name[x.value()]]

Q4= result[

from x  in d/tel_number

select number[x.value()]]

Q3 is incorrect since it searches for name elements inside a
person element. As stated by the DTD, this requirement i s
not valid since a person element contains no name elements.

Q4 is incorrect because path for tel_number  elements i s
wrong, since it  assumes tel_number  elements as children of
person element. If we slightly modify Q4, we obtain the
following correct query:

Q5= result[

from x  in d//tel_number

select number[x.value()]]

Now, the query requires tel_number elements at an arbitrary
depth from the root element, and this is valid for the DTD2.

Tequyla-TX type system always terminates in checking query
correctness, even in the presence of recursive DTDs and of
path expressions containing the deep path operator //. To
guarantee termination, standard techniques used in type
systems dealing with recursive types have been adopted (see
(Amadio & Cardelli, 1993) (Colazzo & Ghelli, 1999)).

For incorrect queries, Tequyla-TX returns an output validity
parameter with the value “no”, to indicate that some query
patterns are not valid w.r.t. the type of queried documents.
Moreover, Tequyla-TX also returns the type of documents
produced by the query; typically this is the empty sequence
type, but it can also be a different type when query
incorrectness is due to an incorrect subquery with empty
sequence type.

The validity output parameter is needed since it may happen
that a correct query has the empty type. Consider documents
d typed by the following simple DTD:

DTD3=

<!DOCTYPE root[

<!ELEMENT root empty_element>

<!ELEMENT empty_element EMPTY>

and the query

Q6=    from x  in d/empty_element

select x.value()

This query is correct. Indeed, the query path is valid with
respect the type of d. However the type of its result is the
empty type. In this case the type system will return the “yes”
value for the valid parameter.

Due to the presence of union types in DTD, some further
considerations about correctness have to be done.

Consider documents d typed by this DTD.  

DTD4=

<!DOCTYPE root[

<!ELEMENT root (ele1 | ele2)>

<!ELEMENT ele1 #PCDATA >

<!ELEMENT ele2 #PCDATA >

]>

If we consider the query

Q6= result[

from x  in d/ele1

select element[x.value()]]

even if a document d may not contain an ele1 element, the
type system consider this query as correct, since the query
path can be traversed on those valid documents that contain
the required ele1 element. Of course, no values are bound to
x in the case of absence of the ele1 element. Indeed, in this
case Tequyla-TX returns the following type for the query:

<!DOCTYPE result[

<!ELEMENT result element?>

<!ELEMENT element #PCDATA >]>

that indicates that result content may be empty.

If we consider the query

Q7= result[

from x  in d/(ele1+ele3)

select element[x.value()]]
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the query is considered correct since in the alternative path
there is at least one case (i.e., ele1) that matches the type of d.
In this case, the type of Q6 remains the same as Q7.

Instead, the following query is not correct.

 Q8= result[

from x  in d/(ele3+ele4)

select element[x.value()]]

For this query, all the possible alternatives expressed in the
path expression are not valid w.r.t. the document type.

Regarding the typing for Tequyla-TX textual operators, the
most significant are queries returning sequences of match
points, such as

result[Q contains $“word”$]

where Q is a generic query. The system consider this query as
correct if Q is correct, and the result type is

<!DOCTYPE result[

<!ELEMENT result match_point *>

<!ELEMENT match_point (document, start,

end, word )>

<!ELEMENT document #PCDATA>

<!ELEMENT start #PCDATA>

<!ELEMENT end #PCDATA>

<!ELEMENT word #PCDATA>]>

This result type can be useful to develop a visualization tool
for the query result. Of course, the user can also navigate
through the list of match points by means of a query, which
includes the one above. Correctness of this query is checked
w.r.t. the type above.

6. Tequyla-TX Query Algebra

Tequyla-TX queries are mapped into algebraic
expressions before their execution. The starting point of the
Tequyla-TX algebra (TTX algebra in the following) is the
Xtasy query algebra, described in (Colazzo, Manghi, Sartiani,
& Albano, 2001), which has been extended in order to
support the textual operators of Tequyla-TX.

The key features of TTX algebra are the manipulation of
relational-like intermediate structures (hence extending to
XML common relational and OO optimization strategies), as
well as the presence of frontier operators, which insulate the
other ones from the technicalities of XML.

In the following subsections, the main features of TTX
algebra will be described, as well as the translation of
Tequyla-TX queries into algebraic expressions.

6.1 Data model and term language

XML documents are modeled as rooted, node-labeled trees.
Internal nodes are labeled with constants, while leaves
contain atomic values. Thus, XML documents are represented

as terms conforming to the following grammar (very close to
the term grammar of XDuce (Hosoya & Pierce, 1999)):

(1) t: := t1,…,tn | label[t] | @label[vB] | vB

(2) label ::= as defined by XML specifications

(3) vB ::= Integer | String | Char | Boolean | …

Example 18. Consider the XML fragment shown below:

<book class = “OpSys”>

   <author> Stuart Madnick </author>

   <author> John Donovan </author>

   <title> Operating Systems </title>

   <year> 1974 </year>

</book>

This fragment can be represented by the following term:

book[

     @class[“OpSys”],

     author[“Stuart Madnick”],

     author[“John Donovan”],

     title[“Operating Systems”],

     year[1974]

]

6.2 Intermediate structure

Algebraic operators of TTX algebra manipulate relational-
like structures, which contain the variable bindings collected
during query evaluation: a variable can be bound to a tree, or
to a whole forest. In order to apply useful optimization
properties (e.g., vertical and horizontal decomposition of
binding operators), these structures (called Env structures)
are themselves represented as XML trees, as shown in Figure
4.
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Figure 4. An intermediate structure

The Env structure is modeled as a rooted tree; each tuple
element describes a binding tuple, where labeli are variable
names and tji the corresponding values.
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The Env structure depicted above can also be represented by
the following term:

e = env[

tuple[label1[t11],…,labeln[t1n]],…,

tuple[label1[tk1],…,labeln[tkn]]

]

Thus, an Env structure is basically an environment of variable
bindings, which are organized into tuples. TTX algebra
operators are defined on unordered Env structures; to
preserve the ordering of XML trees, a Sort operation i s
applied during query results materialization. This allows the
query optimizer to apply useful algebraic equivalences (e.g.,
reordering of join operations), which instead are not true on
ordered structures. The same approach is employed in other
XML query algebras, such as (Jagadish, Lakshmanan,
Srivastava, & Thompson, 2001). For the sake of simplicity,
unordered Env structures will be denoted by the following
notation (similar to YAT (Cluet, Delobel, Siméon, & Smaga,
1998) Tab representation):

e = {[label1:t11, … , labeln:t1n], … , [label1:tk1, … , labeln:tkn]}

6.3 Algebra operators

TTX algebra operators can be divided into three classes:
‘traditional’ operators; frontier operators; textual operators.

6.3.1 Traditional and frontier operators

Traditional operators manipulate Env structures only, and
perform quite common operations. They resemble very
closely their relational or object-oriented counterparts; this
allows the query optimizer to employ usual algebraic
optimization strategies. This class contains Map, Join,
TupJoin, DJoin, Selection, Projection, GroupBy, Sort, as well
as Union, Intersection, and Difference.

Frontier operators insulate the other ones from the
technicalities of XML, in particular, from the (possibly)
deeply nested structure of XML documents. This class
consists of two operators only: path and return (which are
very close to YAT bind and tree operators (Cluet, Delobel,
Siméon, & Smaga, 1998)).

path takes as input an XML forest and an input filter, which
is a tree representation of XPath-like expressions,  and i t
returns a corresponding environment. This Env structure i s
built up by traversing the input forest according to the input
filter, and by performing the required variable bindings. The
path operator, hence, expresses horizontal navigation,
vertical navigation, as well as variable binding.

Example 19. Consider the following XML document:

<book class = “OpSys”>

   <author> Stuart Madnick </author>

   <author> John Donovan </author>

   <title> Operating System </title>

   <year> 1974 </year>

</book>

Assume that we want to bind the title of the book to a
variable t, and each author in turn to a variable a. We can
use the input filter depicted in Figure 5.
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Figure 5. A simple input filter

This input filter is a tree, whose nodes are labeled with
structural information, and whose edges are labeled with
navigational operators (/ or //). Each node can also contain
binding information (the variable to be bound and the
binder).

The result of the application of this input filter is shown
below.
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Figure 6. Application of an input filter

The return operator takes as input an Env structure and an
output filter, and it builds a corresponding data model
instance. This instance is build up by filling the XML
skeleton, described by the output filter, with variable values
taken from the Env structure: this substitution is performed
once per each tuple contained in the Env structure, hence
producing one skeleton instance per tuple. Output filters
must satisfy the following grammar:

(1) OF  ::= OF1,…, OFn | label[OF] | @label[val] | val

(2) val ::= vB | var

Example 20. Consider the Env structure built in the
previous example, and assume that we want to produce a
document containing the authors only. We can use the
following return operator:

return ($a) (e)

where the output filter is just the variable a.
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The resulting document is shown below:

<author> Stuart Madnick </author>

<author> John Donovan </author>

6.3.2 Textual operators

The third class of algebraic operators contains the textual
operators added to support text retrieval queries. The Xtasy
query algebra has been extended with three main textual
operators: contains, containsword, and contains_start.
These operators, given a data model instance t and a string s,
return the set of match points corresponding to the
occurrences of s inside the text contained into t. They differ
in the way occurrences are selected and search contexts are
formed: contains searches for occurrences into a char-based
representation of the text, while containsword performs this
search on a word-based version of the text; contains_start,
finally, mimics the behavior of its language counterpart,
both on a char-based and on a word-based representation of
the text, i.e., it searches for occurrences contained into an
ancestor t’ of t and whose starting point is contained into t.

contains: DataModelInstance �

DataModelInstance �

String -> Seq(Matchpoint)

contains(t)(t’)(s) = {mi}i∈I, where t is the data model instance
defining the search context, t’ is a data model instance
containing t, s is the string being searched, and mi is a match
point of s in t.

containsword: DataModelInstance �

DataModelInstance �  

String -> Seq(Matchpoint)

containsword(t)(t’)(w) = {mi}i∈I, where t is the data model
instance defining the search context, t’ is a data model
instance containing t, w is the word being searched, and mi i s
a match point of w in t.

contains_start: (DataModelInstance �

 DataModelInstance �

String -> Seq(Matchpoint)) �

DataModelInstance �

DataModelInstance �

String -> Seq(Matchpoint)

contains_start(f)(t)(t’)(s) = {mi}i∈I, where f is the search
function being used (contains or containsword), t is the data
model instance containing the beginning of the string s, t’ i s
the ancestor of t that should contain the occurrences of s, s i s
the string being searched, and mi is a match point of s into t’.

The algebra also contains predicates for comparing match
point positions: before, after, beforechar, and afterchar.

before takes as input a match point m, a word w, a data model
instance t, and a positive integer dist; it generates  the set of

match points of the word w into t, and compares their
positions with the one of m. This predicate returns true if
there exists a match point of w, following m by dist words.

after takes the same input as before, and it returns true if
there exists a match point of w preceding m by dist words.

beforechar and afterchar are defined in a similar way, with
the only difference that the comparison is performed on a
char basis.

before: Matchpoint �

String �

DataModelInstance �

DataModelInstance �

Integer -> Boolean

before(m)(w)(t)(t’)(dist) = bool, where m is a match point, w
is a word, t is the data model instance defining the search
context, t’ is the data model instance containing t, dist is the
required distance between m and w, and bool is a Boolean
value.

after: Matchpoint �

String �

DataModelInstance �

DataModelInstance �

Integer -> Boolean

after(m)(w)(t)(t’)(dist) = bool, where m is a match point, w i s
a word, t is the data model instance defining the search
context, t’ is the data model instance containing t, dist is the
required distance between w and m, and bool is a Boolean
value.

beforechar: Matchpoint �

String �

DataModelInstance �  

DataModelInstance �

 Integer -> Boolean

beforechar(m)(s)(t)(t’)(dist) = bool, where m is a match point,
s is a string, t is the data model instance defining the search
context, t’ is the data model instance containing t, dist is the
required char distance between m and s, and bool is a Boolean
value.

afterchar: Matchpoint �

String �

DataModelInstance �

DataModelInstance �  

Integer -> Boolean

afterchar(m)(s)(t)(t’)(dist) = bool, where m is a match point, s
is a string, t is the data model instance defining the search
context, t’ is the data model instance containing t, dist is the
required char distance between s and m, and bool is a Boolean
value.
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The definition of these operators and predicates requires the
introduction of some support functions, as well as functions
and operators for string manipulation.

A string s is modeled as an ordered sequence of chars:

S ≡ <char(s)(1), … , char(s)(length(s))>, where char(s)(k)
extracts the k-th char from a string s, and length(s) returns
the length of a string s.

To extract arbitrary sub-strings from strings the substring
operator is provided:

substring(s)(i)(j) = <char(s)(i), … , char(s)(j)>, where i,j ≤
length(s).

In order to perform textual searches, operators for building
up search contexts are needed; the TTX algebra supports two
context-forming operators: textof and wordof. The former,
given a data model instance,  returns a sequence of search
contexts, endowed with their offset into the document; the
latter returns a sequence of search contexts, each one in turn
divided into words, in order to allow the evaluation of word-
based operations. These operators are not part and parcel of
the query algebra, and they can be adapted by the database
administrator to the application requirements: the TTX
algebra only imposes typing constraints on these operators.

textof: DataModelInstance -> Seq(Int � String)

textof(t) = {(ij,sj)}j∈J, where ij is the offset of the j-th context
search w.r.t t and sj is the j-th context search.

wordof: DataModelInstance ->

Seq(Integer � Integer �

Seq(Integer � Integer � String))

wordof(t) = {(i1
j,i2

j,{(i3
k,i4

k,sk)}k∈K
j)}j∈J, where i1

j is the offset
of the j-th search context w.r.t to t, i2

j is the word offset of the
j-th search context w.r.t to t, i3

k is the position of the k-th
word inside the current search context, and i4

k is the offset of
the k-th word inside the current search context.

A formal definition of these textual operators can be found in
Appendix B.

6.4 Mapping Tequyla-TX Queries
This section describes the mapping of Tequyla-TX queries
into algebraic expressions by showing the translation of a
Tequyla-TX query, containing both textual predicates and
operators, as well as structural constraints.

Consider the following Tequyla-TX query:

from dictionary =

   document("www.cribecu.sns.it/crusca.xml"),

   e in dictionary//entry,

   s in e//sense,

   occur in s contains $"signific."$

where before(occur, "pass.", 1)

select occur

This query returns all the occurrences of the word ‘signific.’,
inside sense elements, that precede ‘pass’ by one word.

The translation process consists of two phases. During the
first phase, the query compiler applies to the parse tree of the
query a syntactical preprocessing, consisting of three steps.
First of all, path expressions, which occur free in any clause,
are bound to variables, and the corresponding binders are
introduced in the from clause. Second, nested queries
occurring in any clause are bound to variables, and the
corresponding binders are inserted into the from clause.

These transformations produce a query without nested
queries in any clause but the from clause, and are required in
order to exploit the algebraic rewritings described in (Cluet
& Moerkotte, 1993). Since the sample query does not contain
nested queries at all nor free XPath patterns, these two steps
leave the query untouched.

The third transformation applied during this phase is the
construction of input and output filters. While the
construction of output filters is straightforward, building
input filters requires to transform each path into a filter-like
expression, and then to merge together paths referring to  the
same persistence root. This transformation is not applied to
textual operators, which are handled at the algebraic level
only.

Referring to our sample query, the result of this
preprocessing phase is the following abstract query:

from (input_filter, document(“…”)),

    occur in s contains $"signific."$

where before(occur, "pass.", 1)

select output_filter,

where output_filter = $occur and

input_filter =
(_,_,_)dictionary[(//,e,in)entry[(//,s,in)sense[φ]]].

The second phase of the translation process takes as input an
abstract query parse tree, and it returns an algebraic
expression. This expression is built up by translating where
clauses into Selection operators, select clauses into return
operators, and from clauses into path operators.

These operators are then combined in a compositional
fashion, or by using DJoin, Join, and Union operators.

Referring to the sample query, the query compiler maps the
first from clause into a path operator path(input_filter)(db),
where db denotes the document being queried. Then, the
query compiler translates the second  from clause (occur in s
contains $“signific.”$) into an applications of the
containsword operator to each instance of the variable s; the
binding of the variable occur is performed by means of a
Map operation:
Map([occur:x])(containsword($s)(db)(“signific.”)).

These two subexpressions are then combined by using DJoin
operation, as shown in Figure 7.
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Figure 7. Partial query plan

The result of the DJoin operation is an Env structure,
containing bindings for variables dictionary, e, s, and occur.

The query compiler, then, applies to this Env structure a
Selection operation, in order to discard the tuples that do not
satisfy the predicate before(occur,“pass.”,1):
σ(before($occur)(“pass.”)($s)(db)(1))(…).

Finally, the query compiler builds a return operation, which,
given the previously built output filter and the current Env
structure, produces an XML document. The resulting
algebraic expression is shown in Figure 8.
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Figure 8. Query  plan

7. Conclusions

A statically typed query language for XML documents has
been presented. This language is able to perform both word-
based and char-based text searches, in order to support the
requirements of literary applications.

A prototype implementation of Tequyla-TX is in-progress to
experiment with the integration of database access structures
and those provided by the underlying search engine, and
with optimization techniques for XML data.
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A.  Tequyla-TX Grammar

Queries:
Q ::=

() empty query

| m(a) [Q] element constructor

| Q1, Q2 forest constructor

| value base value of type B

| from x =Q1 where W select Q2 binding

| from x in Q1 where W select Q2 iteration

| x variables

| QP path selection

| Q optext union occpos textual operator

application

Textual operator
optext ::=

contains cs start cstring end contains the string

| contains-start cs start cstring end

contains the beginning of
the string

Union of textual operator

union ::= ε

| ∪  optext union

Occurrences position
occpos ::=

ε all occurences

| [positions] occurrences in positions

Case sensitive operator

cs ::= ε | case - sensitive

Word beginning operator

start ::= ε | $

Word ending operator

end ::= ε | $

String sequences
cstring ::=

vB

| value ? cstring

| value * cstring

Element positions
positions ::=

integer, positions

| integer - integer , positions

Attributes list
a ::=

( )

| m = vB , a base value

Conditions
W ::=

W1 and W2 logical conjuction

| W1 or W2 disjunction

| not W negation

| value compop value value comparision

| value optext value textual comparison

| exists (Q) emptiness condition

| fn (Q1, ...,Qn) general boolean function
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with n parameters

Value extraction
value ::=

Q.value () simple element and

attribute

value extraction

| Q.textof () string conversion and

normalization

| Q.prefix () namespace component

| Q.local () local label component

| vB base value

Comparison operator
compop ::= < | <= | > | >= | = | ! =

Path
P ::=

ε empty path

| / ls direct descendants

| //ls descendants

| P1 P2 concatenation

| P1 + P2 alternative

Labels selector
ls ::=

m elements labelled m

| m[positions] elements labelled m in

positions

| @m attributes labelled m

| * all elements

Labels
m ::=

p : l namespace and label

| l label

A.1 Some external operators
fun ::=

before

| after

| both

| beforchar

| afterchar

| distance

| times

B. TTX Algebra Operators

B.1 String manipulation operators

S ≡ <char(s)(1), … , char(s)(length(s))>, where char(s)(k)
extracts the k-th char from a string s, and length(s) returns
the length of a string s.

substring(s)(i)(j) = <char(s)(i), … , char(s)(j)>, where i,j ≤
length(s).

B.2 Support operators

offset: DataModelInstance � DataModelInstance -> Integer

offset(t)(t’) = offset of t in t’

wordoffset: DataModelInstance � DataModelInstance ->
Integer

wordoffset(t)(t’) = word offset of t w.r.t t’

B.3 Search context forming operators

textof: DataModelInstance -> Seq(Int � String)

textof(t) = <(int,string)>, where int is the offset of each
context search w.r.t t and string is the context search.

wordof: DataModelInstance -> Seq(Int � Int � Seq(Int �
Int � String))

wordof(t) = <(int1,int2,<(int3,int4,string)>)>, where int1 i s
the offset of the search context w.r.t to t, int2 is the word
offset of the search context w.r.t to t, int3 is the position of
the word inside the current search context, and int4 is the char
offset of the word inside the current search context.

B.4 String and word comparison operators

like: Seq(Integer� String) � String -> Seq(Integer �
Integer)

like(ts)(s) = {(i+first(ts),j+first(ts)) | i ≤  length(snd(ts)) and

j ≤  length(snd(ts)) and j-i+1 = length(s) and
substring(snd(ts))(i)(j) = s}

likeword: Seq(Integert � Integer � Seq(Integer � Integer �
String)) � String -> Seq(Integer � Integer � Integer)

likeword(ws)(s) = { (i+first(ws[z]), j+first(ws[z]), k
+snd(ws[z]) | (((ws[z])[3])[z’])[3] = s and i =
(((ws[z])[3])[z’])[2] and j =i + length(s) and k
=(((ws[z])[3])[z’])[1]}
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B.5 Textual operators and predicates

contains: DataModelInstance �

DataModelInstance �

String -> Seq(Matchpoint)

contains (t) (t’)(s) = Map(matchpoint[document[uri(t’)],
start[first(x)+ offset(t)(t’)],end[second(x) + offset(t)(t’)],

word[0]]) ( 

  ts textof ti ∈ ( )
U like(tsi)(s))

containsword: DataModelInstance �

DataModelInstance �

String -> Seq(Matchpoint)

containsword (t) (t’)(s) =
Map(matchpoint[document[uri(t’)], start[first(x)+
offset(t)(t’)], end[second(x) + offset(t)(t’)], word[x[3] +

wordoffset(t)(t’)]]) ( 
ws wordof ti ∈ ( )

U likeword(wsi)(s))

contains_start: (DataModelInstance �

DataModelInstance �

String -> Seq(Matchpoint)) �

DataModelInstance �

DataModelInstance �

String -> Seq(Matchpoint)

contains_start(f)(t)(t’)(s) = {o | o in f(t’)(t’)(s) and
Pred(t)(t’)(o)},  where:

Pred(o) = o.matchpoint.start >= offset(t)(t’) and

o.matchpoint.start <= offset(t)(t’) + 
ts textof ti ∈
∑

( )

length(tsi[2])

and

f ∈ {contains, containsword}

before: Matchpoint �

String �

DataModelInstance �

DataModelInstance �

Integer -> Boolean

before(m)(s)(t)(t’)(dist) = ∃occ∈containsword(t)(t’)(s):
occ.word – m.word >= dist

after: Matchpoint �

String �

DataModelInstance �

DataModelInstance �

Integer -> Boolean

after(m)(s)(t)(t’)(dist) = ∃occ∈containsword(t)(t’)(s):
m.word – occ.word >= dist

beforechar: Matchpoint �

String �

DataModelInstance �

DataModelInstance �

Integer -> Boolean

beforechar(m)(s)(t)(t’)(dist) = ∃occ∈contains(t)(t’)(s):
occ.end – m.end >= dist

afterchar: Matchpoint �

String �

DataModelInstance �

DataModelInstance �

Integer -> Boolean

afterchar(m)(s)(t)(t’)(dist) = ∃occ∈contains(t)(t’)(s): m.end –
occ.end >= dist

C. Tequyla-TX Type System

The formalization of the type system we present refers to a
core part of Tequyla-TX. We consider only the main
mechanisms of the language, as the extension to the full
language does not present significant technical problems.

In particular, in this version of the type system we
concentrate on checking that path specifications in the from
clauses of queries are valid with respect to the type of
queried data and types of nested queries. Accordingly, we
consider queries without the where clause. Moreover, we
consider a restricted path language, where only the main
constructs are present, namely single step /ls, structural
recursion //ls, and alternative (union) paths P1 + P2.

In the following, we present the type language, data
language, data typing rules, and query typing rules. For the
syntax of queries and patterns see Appendix A.

C.1 Types
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T ::= () empty sequence type

B base type

T, T sequence type

T + T union type

m(A)[T] element type

X type variable

B :: = Char

Integer

…..

C.2 Data

D ::= () empty document

m(a) [D] element constructor

D, D sequence constructor

 vB base value of type B

C.3 Attributes list

a ::= ( )

m = vB , a 

C.4 Type Environment

E ::=  ()

x: T, E variable typing

 X=T, E type definition

C.5 Data Typing

E |-- D: T, data D has type T according to the type
environment  E.

(Empty)

E |-- () : ()

(BaseValue)

E |-- vB : B

(ValueElement)

E |--  a : A   E |-- D : T

E |-- m(a) [D]  : m(A)[T]

(Seq)

E |--  D1 : T1    E |-- D2 : T2

E |-- D1, D2 : T1,T2

(UnionType)

E |-- D : T1    or  E |-- D : T2

E |-- D: T1+T2

(AttrType)

 E |-- a : A    E |-- vB : B

E|-- m = vB , a:  m:B, A

C.6 Query Typing

C.6.1 Type Judgements

E |-- Q : (T, yes),  with respect to the type declarations in E for
Q,  Q has type T and patterns in Q are valid (Q is correct).

Observe that correct queries may have empty type, which we
shall define in the following.

E |-- Q : (T, no),  with respect to the type declaration in E for
Q,  patterns in Q are not valid (Q is incorrect). In this case T i s
an empty type.

C.6.2 Types Of Empty Documents

A type T is a type of empty documents (TOED in the
following) if all documents D such that E |--D : T are empty
documents, such as D=() or D=(),(),(). By definition, the type
() is a TOED. However, due to the presence of union, sequence
and recursive types, other more complex types may respect
this definition: for example, the type X = () + (),X  is a TOED 

too.

TOEDs could be defined as all types equivalent to ()
according to a given set of equivalence rules. For brevity,
however, we only give a characterization of TOEDs.

The definition of TOEDs requires the operator ReachE(S)
which, given a set of type definitions E and a set of types S,
returns the set of types reachable from types in S by
following the definitions in E (we assume that E defines all
variables occurring in types in E and S):

ReachE({ () }) = { () }
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ReachE(Ø) = Ø

ReachE({ X }) = ReachE({ E(X) }) ∪ { X }

ReachE({ m(a)[T] }) = ReachE({ T }) ∪ { m(a)[T] }

ReachE({ T,U }) = ReachE({ T }) ∪  ReachE({ U })

∪ { T,U }

ReachE({ T+U }) = ReachE({ T }) ∪  ReachE({ U })

∪ { T+U }

ReachE({ T }∪S) = ReachE(S) ∪ ReachE(T)

ReachE is defined as the minimum funtion (w.r.t. the point
wise ordering on functions) that satisfies the above
equations.

We say that, according to E, T is a TOED if and only if each
type in ReachE({ T }) is a type defined by the following
grammar:

Empty ::=    ()

| Empty + Empty

| Empty, Empty

| X.

Our notion of query correctness guarantees that, whenever

E |-- Q : (T, yes)

and T is not a TOED, the set of documents returned by Q i s
not empty, and each data D returned by Q is of type T, i.e. E |--
D : T.

C.6.3 Trails

To type a query

from x  in  Q1 select Q2

our system proceed as follows. It first finds the type of Q1,
say T1, and then it makes the following case distinction on
T1.

If T1 is an element, base or empty sequence type then this
type is assigned to x and this information is used to
determine the type of Q.

 If T1 is a union T2+T3 or a product T2,T3 then the systems
computes the types of the two queries

from x  in  y1 select Q2

from x  in  y2 select Q2

where y1 and y2 are respectively assigned to have types  T2

and T3. The two computed types are then opportunely
recombined to have the type of the initial query.

The remaining case is when T1 is a recursion variable X that i s
defined in the current type environment E. In this case, the
type of the query is given by the type of

from x  in  y select Q2

where y is assigned to have type E(X), the type that defines X.
Due to the presence of recursive types, this process may not

terminate. To avoid this, for from-in queries we consider a
particular judgment

E; Σ |-- from x  in  Q1 select Q2 : (T, valid)

Note that a second environment Σ is present. We call it trail
environment and its task is to keep track of information that
can be useful to avoid loops. More precisely, if Q1 has type X,
a triple (x, X, Z) is added to the trail. Such triple keeps track
of the fact that the variable x has iterated on the type X and
assumes that the iteration query has type Z. The actual
definition of Z will be computed by the subsequent typing
steps, where, as already stated, the iteration according to x
continues on the definition of X in the current type
environment. If the type X is encountered once again in the
same iteration on x, the iteration stops and returns Z,
associated to x and X in the triple (x, X, Z) contained in the
trail environment. In this case, the value returned for the
valid parameter is “no” so that this typing cannot determine
the entire typing of the initial query. Observe that, had
iteration continued on the definition of X, it would have
infinitely repeated the same steps following the first
iteration of x on X.

Regarding queries Q P, the system behaves in a similar way,
that is by case distinction on the type of Q. Essentially, the
type of QP is computed by traversing the type of Q according
to the path  P.  In particular,  for queries QP, the system may
loop for two reasons. The first one is essentially the same of
the previous case: iteration over a recursive type. The second
reason is that P may contain structural recursion and, if the
type of Q is a recursive type then the system may loop in
traversing this type according to P. Think, for example, of a
query

Q//a

where Q has type X= () + a[X].

To avoid looping, we consider trails also for typing queries
QP, with the only distinction that in this case triples (P,X,Z)
are added to the trail. A triple  (P,X,Z) indicates that the type
of Q is X and that the type of QP is assumed to be Z.

Trails are defined as follows:

      Σ ::= ()  |  (x, X, Z), Σ  |  (P,X, Z), Σ

C.6.4 Query Typing Rules

The following set of rules defines our query typing system.
In the following, we consider yes and no as boolean values
true and false.

(TypeEmpty)

E; Σ |-- () : ((); yes)

(TypeValueElementMatch)

E |--  a : A       E|-- Q : (T; yes)

E|-- m(a) [Q]  : ( m(A)[T]; yes)
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(TypeValueElementNotMatch)

E |--  a : A       E|-- Q : (T; no)

E|-- m(a) [Q]  : (m(A) [T]  ; no)

(TypeValueValExtr)

E|-- Q : (m(A)[B]; yes)

E |-- Q.value () : (B; yes)

(TypeValueTextOf)

E |-- Q : (T;  yes)

     E|-- Q.textof () : (String; yes)

(TypeValuePrefix)

E |-- Q : (m(A)[B]; yes)

E |-- Q.prefix () : (String; yes)

(TypeValueLocal)

E |-- Q : (m(A)[B]; yes)

E |-- Q.local () : (String;  yes)

(TypeValueBaseValue)

E |-- vB : (B;  yes)

(TypeVar)

E, x:T, E’ |-- x : (T; yes)

(TypeSeqMatch)

     E |-- Q1 : (T1;  valid1)     E |-- Q2 : (T2; valid2)

E|-- Q1, Q2 : (T1,T2; valid1 And valid2)

(TypeFromEq)

E |-- Q1: (T1; valid1)

E, x:T |--  Q2: (T2; valid2)

E|--  from x = Q1  select Q2 : (T2; valid1 And valid2)

For iteration performed by queries of the form

from x  in Q1  select Q2

we consider the following rules, which distinguish on the
type of Q1  and make use of trails to guarantee finite proofs in
the cases that the type of Q1 is recursive.

(TypeFromIn)
E |-- Q1: (T1; valid1)

  E, y:T1; () |--  from x  in y  select Q2 : (T2; valid2 )

E  |--  from x  in Q1  select Q2 : (T2; valid1 And valid2 )

(TypeFromInUnitTOED)

 E |-- Q1: ((); valid)

E; Σ  |--  from x  in Q1  select Q2 : ((); valid)

 (TypeFromInUnit)

 E |-- Q1: (T; valid1)

T =  B or T =  m(A)[T’]

            E,  x:T |-- Q2: (T1; valid2)

E; Σ  |--  from x  in Q1  select Q2 : (T1; valid1 And valid2)

(TypeFromInSeq)

E |-- Q1: (T,U; valid0)

             E, y:T; Σ |-- from x  in y  select Q2: (T1; valid1)

      E, y:U; Σ |-- from x  in y  select Q2: (T2; valid2)

valid = valid0 And (valid1 Or valid2)
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E ; Σ|--  from x  in Q1  select Q2 : (T1,T2; valid)

(TypeFromInUnion)

E|-- Q1: (T +U; valid0)

      E, y:T; Σ  |-- from x  in y  select Q2: (T1; valid1)

      E, y:U; Σ  |-- from x  in y  select Q2: (T2; valid2)

valid = valid0 And (valid1 Or valid2)

E; Σ |--  from x  in Q1  select Q2 : (T1+T2;  valid)

(TypeFromInVarUnfMatch)

E  |-- Q1: (X; valid1 )

(x, X, _) ∉Σ

 E, y: E(X); Σ, (x, X, Z)  |--

from x  in y  select Q2: (T1;  valid2)

E , Z=T1; Σ |--  from x  in Q1 select Q2 : (Z; valid1 And valid2)

(TypeFromInVarEnd)

E |-- Q1: (X; valid)

(x, X, Z)  ∈Σ

E; Σ |--  from x  in Q1  select Q2 : (Z; no)

C.6.5 Path Rules

In the following rules, the auxiliary path syntax |ls p is used,
for typing Q /ls p: given a sequence of elements, |m returns
all elements tagged as m, while |@a returns all element
attributes named as a.

(Path)

E|-- Q: (T1; valid1)

E, y: T; () |-- y P: (T2; valid2)

E |--   Q P : (T2; valid1 And valid2)

(PathEmpty)

E  |-- Q: (T; valid)

E; Σ  |--   Q ε : (T; valid)

(PathVarUnf)

E |-- Q : (X; valid1)

(P,Z,X) ∉Σ

E, y: E(X); Σ, (P,X,Z)  |-- yP : (T1;  valid2)

E, Z=T1; Σ |--   Q P : (Z; valid1 And valid2)

(PathVarEnd)

E|-- Q : (X;  valid)           (P, X,Z)  ∈ Σ

E; Σ |--   Q P : (Z;  no)

(PathDeepMatch)

E|-- Q : (m(A)[T]; valid0)

E; () |-- Q|lsP : (T1;  valid1)

E, z: T; Σ  |-- z//ls P : (T2;  valid2)

valid = valid0 And (valid1 Or valid2)

E; Σ |--   Q//ls P : (T1,T2;  valid)

(PathDeepNotMatch)

E |-- Q : (T; valid)

T =  B    or   T =   ()

E; Σ |--   Q //ls P : (();  no)

(PathSingleMatchElAux)
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E |-- Q : (m(A)[T]; valid1)

ls= m or ls=*

E, z: T; () |-- z |ls P : (T1; valid2)

E; Σ |--   Q /ls P : (T1; valid1 And valid2 )

(PathSingleMatchAttrAux)

E |-- Q : (T; valid1)

T = m’(A)[T’]  or  T = B  or  T= ()

E, z: T; () |-- z |@m P : (T1; valid2)

E; Σ |--   Q /@m P : (T1; valid1 And valid2 )

 (PathSingleMatchEnd)

E |-- Q : (m(A)[T]; valid1)

ls= m or ls=*

E; Σ |--   Q |ls  : (m(A)[T];; valid1 And valid2 )

(PathSingleMatch)

E |-- Q : (m'(A)[T]; valid1)

ls= m or ls=*

E, z: T; () |-- z P : (T1; valid2)

E; Σ |--   Q |ls P : (T1; valid1 And valid2 )

(PathSingleLableNotMatch)

E |-- Q : (T; valid)

 T = m’(A)[T’]  and m ≠ m’

or  T= B   or  T=| ()

E; Σ |--   Q |m P : ((); no)

(PathSingleStarNotMatch)

E |-- Q : (T; valid)

 T =  B  or T=()

E; Σ  |--   Q |* P : (();  no)

(PathSingleAttrMatch)

E |-- Q : (m’(A)[T]; valid1)

A = A’,( m: B), A’’

E , z: B; Σ  |--   z P : (T;  valid2)

E; Σ   |--   Q |@m P : (T;  valid1 And valid2)

(PathSingleAttrNotMatch)

E |-- Q : (T; valid)

T = m’(A)[T’]  and  (m: B) not in A

or  T = B  or  T= ()

E; Σ |--   Q |@m P : (();  no)

(PathTypeUnion)

E|-- Q : (T + U; valid0)

E,  z: T; Σ |--  z P : (T1;  valid1)

E,  z: U; Σ |--  z P : (U1;  valid2)

valid = valid0 And (valid1 Or valid2)

E; Σ |--   Q P : (T1+U1; valid )

(PathProductType)

E |-- Q : (T ,U; valid0)

E, z: T; Σ |--  z P : (T1,  valid1)

E, z: U; Σ |-- z P : (U1,  valid2)

valid = valid0 And (valid1 Or valid2)

E; Σ |--   Q P : (T1, U1; valid)

(PathUnion)

E|-- Q : (T ; valid0)

E, z: T; Σ |--  z P1 P : (T1;  valid1)

E, z: T; Σ |--  z P2 P: (T2;  valid2)

           valid = valid0 And (valid1 Or valid2)
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E; Σ |--   Q (P1+P2) P : (T1 , T2; valid )

(OptextType)

E |-- Q : (T ;  yes)

E, (X=()+MPType, X) |--   Q optext union occpos  : (X; yes)

where

MPType = matchpoint[ document[String],

start[Integer],

end[Integer],

word[Integer]]


