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Abstract

P2P applications are rapidly gaining acceptance among users of Internet-based services,
especially because of their capability of exchanging resources while preserving the anonymity
of both requestors and providers. However, concerns have been raised about the possibility
that malicious users can exploit the network to spread tampered-with resources (e.g., malicious
programs and viruses). A considerable amount of research has then focused on the development
of trust and reputation models in P2P networks.

In this paper, we propose to use fuzzy techniques in the design of reputation systems based
on collecting and aggregating peers’ opinions. Fuzzy techniques are used in the evaluation
and synthesis of all the opinions expressed by peers. The behavior of the proposed system is
described by comparison with probabilistic approaches.

1 Introduction

Peer-to-Peer (P2P) networks have rapidly achieved an important role in the Internet experience
of millions of users [Oram, 2001]. P2P applications allow users to connect directly to other users’
machines to exchange files and other resources. Interaction among peers is usually carried out
by preserving some degree of anonymity, for example, by using opaque identifiers or nyms rather
than full names or IP network addresses when communicating with each other. For this reason,
Internet users increasingly find P2P applications a convenient solution for the anonymous exchange
of resources. The success of P2P applications has produced a significant impact in the research
community, which has started to investigate the many open issues arising in this new environment,
including peers’ complete lack of accountability. In a traditional client/server system (like the
HTTP-based Web) the provider of a service vouches for its integrity. In anonymous P2P systems,
nyms are non-persistent and can be dropped and exchanged at will. In other words, most of the
time the peers one encounters when accessing the P2P network are unknown and it is therefore

* A preliminary version of this paper appeared under the title “Fuzzy Logic Techniques for Reputation Management
in Anonymous Peer-to-Peer Systems,” in Proc. of the International Conference in Fuzzy Logic and Technology, Zittau,
Germany, September 10-12, 2003 [Damiani et al., 2003a).



difficult to assess their trustworthiness. Questions such as: “how much can I rely on the informa-
tion or service I am receiving?” are frequently asked by participants in P2P networks. For a user
connecting to an anonymous P2P network in particular, information about other peers involves
much more than their pseudonyms or even the list of the resources they can provide. Indeed,
each peer would like to know a priori whether the resources advertised as available by other peers
will be actually provided in the end and, above all, the extent to which they will suit the re-
ceiver’s expectations. This quantitative estimation can be seen as an operational definition for
trust and is subjective, dynamic, and often uncertain [Rasmusson and Jansson, 1996]. Some ap-
proaches [Yahalom et al., 1993] try to deal with multiple types of trust based on a set of different
interaction pragmatics; others [Yu and Singh, 2000] dynamically assign to each peer a trust rating,
that is, a reputation based on the peer’s previous performance on the network and store it at a
suitable place. Any peer wishing to interact with another peer can make an informed decision
based on such a rating. Note that there is a clear distinction between trust and reputation. In
general, the trust 7" in a peer can be computed based on its reputation R, but also on a number of
other environmental factors, such as the time ¢ elapsed since when reputation was last modified. If
trust and reputation are modeled numerically (see Section 4), then T' = ¢(R, t), with the constraint
T = ¢(R,0) = R. For instance, a simple functional model for the relation between trust and repu-
tation is (R, t) = Re~(*=%) where tg is the system’s start-up time [Carter et al., 2002]. However,
while functional models linking trust and reputations are interesting in theory, in our opinion no
closed formula can fully capture the changing views of a user community.

There are therefore two fundamental challenges in designing a reputation management system
of anonymous P2P networks.

A first challenge is the design of a protocol able to provide secure placement of (and ready
access to) reputation information. From the point of view of collecting and aggregating multiple
opinions, P2P network as fundamentally different from centralized environments, inasmuch some
basic assumptions, for example, opinion veridicity cannot be made without specific countermeasures
against forgery.

Another fundamental challenge is defining a suitable means to represent reputations and syn-
thesizing a set of opinions collected by the protocol in a unique aggregated value. As we shall
discuss in the following, most approaches use numbers to express reputation values; but additional
assumptions are needed to decide which numerical domain is more suitable for a given application
field. In centralized reputation-based systems, for example, reputations can be either positive or
negative. In principle, using negative values for reputation seems rather natural, since it mirrors
the fact that individuals and businesses have certain roles within society. If society judges that
they have met their roles, they are rewarded with a positive reputation. On the other hand, loss of
esteem held in society leads to a negative reputation [Carter et al., 2002]. In the P2P anonymous
setting, however, the situation is different: no peer can be forced to retain an identity linked to a
negative reputation. Therefore, only positive values are meaningful. Zero reputation corresponds
either to a newcomer or to a peer who has decided to use a brand new identity, perhaps to avoid
being recognized as someone who previously misbehaved. Characterizing what is a good reputa-
tion is also non trivial. A possible approach consists in the identification of a threshold that would
permit to discriminate the outcome of the poll as representing a good or bad reputation. However,
a crisp value is clearly not adequate, as it would characterize in the same way a positive reputation
produced by the collection of only positive opinions by many users and a reputation built with a



limited number of heterogeneous opinions that produce a value immediately above the threshold;
the same reasoning can be applied to negative reputations.

In this paper we address the two challenges above-mentioned and present a P2P reputation
system based on a two-step-technique: i) we poll the community of P2P users for collecting the
different reputations on a candidate peer p, and i) we merge the different opinions in a single
value by means of a fuzzy aggregation [Klir and Folger, 1988]. Our proposal aims at computing
reputations as fuzzy predicates, with a truth value belonging to the interval [0, 1] expressing the
reputation one (or the community) has on a given peer. Note that while in this paper we assume
reputations to be associated with peers, the approach can also be applied to the exchange of opinions
on resources [Damiani et al., 2002] and on many other aspects (e.g., quality of resources, opinions
on specified parameters, and so on).

The remainder of the paper is organized as follows. Section 2 discusses related work. Section 3
presents the protocol for collecting distributed opinions which includes a vote checking procedure
aimed at providing a degree of assurance on the veridicity of the opinions received in response
to a polling. The resulting system thus provides an environment reasonably close to classical
decision making based on multiple opinions [Carter et al., 2002]. Section 4 describes our fuzzy-
based approach for expressing and aggregating reputations. Section 5 presents experimental results
illustrating the behavior of our solution with respect to protection against downloads from malicious
peers. The simulation also compares our solution with analogous experiments we have run on a
probabilistic approach [Kamvar et al., 2003], where reputation is defined as a probability (e.g., of
being deceived) and can be computed by an event-driven method using a Bayesian interpretation.
Finally, Section 6 presents our conclusions.

2 Related work

A considerable amount of research has focused on the development of trust and reputation models
in open environments such as e-commerce and P2P networks [Aberer and Despotovic, 2001,
Damiani et al., 2003b, Damiani et al., 2002, Dellarocas, 2000, Dingledine et al., 2001,

Dingledine and Syverson, 2002, Friedman and Resnick, 2001, Kamvar et al., 2003,
Kinateder and Pearson, 2003, Oram, 2001, Rahman and Hailes, 2000, Wang and Vassileva, 2003,
Xiong and Liu, 2003, Yu and Singh, 2000, Zacharia et al., 1999]. Reputations are ef-

fectively used in electronic marketplaces as a measure of the reliability of partici-
pants [Dellarocas, 2000, Rahman and Hailes, 2000, Yu and Singh, 2000, Zacharia et al., 1999].
For instance, the eBay reputation system (www.ebay.com) allows users to express feedback about
interactions with each other [eBay Feedback Forum, 2003]. The system is transaction-based,
meaning that to express feedback for each other, two users must actually have completed an
auction. After the auction ends, the buyer and seller can express a vote (-1, 0, or 1) on its
counterparts. Users’ net reputation scores are calculated as the count of distinct users who
gave positive feedback minus the count of those who gave negative feedback. The seller’s net
reputation score is then automatically displayed on the auction page. A user can click on the
net score to see a division of the score into positive, negative, and neutral scores over a series
of time periods. In systems like eBay, reputations are associated with physical identities and
are centrally managed at the eBay server. More in line with the peer-to-peer paradigm, several



proposals worked around the notion of web of trust where single peers can rate each other
according to the quality of their past transactions with each other. KaZaA (www.kazaa.com)
is an example of P2P file sharing application which has implemented a reputation management
system based on two concepts: participation levels and integrity rating. Each user rates the
integrity of the files it shares as excellent, average, poor, or delete file. The participation level
is a value associated with each peer that is based on the quality and amount of files that it
shares (see www.kazaa.com/us/help/glossary.htm). The participation level is calculated as

dgglrﬁiiszmMﬁB x 100 and ranges from 0 to 1000. Note that in the “uploads in MB field”, non
integrity rated files are counted as half the size of a rated file. Based on the ratio of Mbytes
uploaded and downloaded and the integrity rating of the files, the peers are assigned to three
categories: low, medium, and high. A new user starts at a medium participation level of 100. The
security aspects in peers modifying their locally stored participation level values are not addressed.
Some other approaches are based on the concept of community-based feedbacks: peers rate each
other according to the quality of their past transactions. Once a peer has been rated, its rating
needs to have a way of propagating around the network so that all peers have a wide view of the
reputations of all other peers in the network. The proposed approaches use different techniques
for combining and propagating the ratings [Aberer and Despotovic, 2001, Damiani et al., 2003b,
Damiani et al., 2002, Gupta et al., 2003, Wang and Vassileva, 2003, Xiong and Liu, 2003]. Here
we describe a few related examples. In [Aberer and Despotovic, 2001] a trust model is proposed,
where, after each transaction, and only in case of malicious behaviors, peers may file a complaint.
Before engaging an interaction with others, peers can inquire the network about existing complaints
on their counterparts. One limitation of this model is that it is based on a binary trust scale (i.e.,
an entity is either trustworthy or not). Hence, once there is a complaint filed against a peer p,
p is considered untrustworthy even though it has been trustworthy for all previous transactions.
In [Wang and Vassileva, 2003] a Bayesian network-based trust model is proposed, where peers
are evaluated with respect to different capabilities (e.g., capability in providing music files or
movies). Basically, peers develop a naive Bayesian network for each peer with which they have
interacted and modify their corresponding Bayesian networks after each interaction. When a
peer has no experience with another one, it can ask other peers to make recommendations for
it. Such recommendations are partitioned in two groups, recommendations from trustworthy
peers and recommendation from unknown peers, and are combined by taking a weighted sum.
In [Xiong and Liu, 2003] an adaptive reputation-based trust model for P2P electronic communities
is presented. It is based on five trust parameters: feedbacks, number of transactions, credibility of
feedbacks, transaction context factor, and community context factor. The trust value associated
with a peer is then defined as a weighted sum of two parts. The first part is the average amount
of credible satisfaction a peer receives for each transaction. The second part increase or decrease
the trust value according to community specific characteristics or situations (e.g., the number
of files a peer shares can be seen as a type of community context factor that has to be taken
into consideration when evaluating the trustworthiness of a peer). In [Gupta et al., 2003] two
schemes are presented: Debit-Credit Reputation Computation (DCRC) and Credit-Only Reputation
Computation (CORC). DCRC uses different parameters for computing the reputation score
associated with peers. More precisely, the average query-response message size, the ration of
Mbytes uploaded, and the amount of content shared are used to give credits to peers while the




Protocol 1 P2PRep protocol

INITIATOR: Servent p
Peers: Participants in the message broadcasting, among which a set O of offerers and a set V' of voters

Initiator
Phase 1: Resource searching
1.1 Start a search request by broadcasting a Query message
Query(min_speed, search_string)
1.2 Receive a set of offers from offerers O
QueryHit (num_hits,port,IP,speed, Result, trailer,servent_id;)
Phase 2: Polling
2.1 Select the best offerer o € O
2.2 Generate a pair of public, secret keys (PKpou1, SKpoit )
2.3 Poll peers about the reputations of offerer o
POll(O,PKpo”)
2.4 Receive a set V of votes
PollReply({(IP, port, PKpou, Votes) }PK, o)
Phase 3: Vote cleaning
3.1 Remove from V votes that appear suspicious (e.g., checking IP addresses)
3.2 vote_verification(V)
Phase 4: Vote aggregation
4.1 compute_network_reputation(o, V)
Phase 5: Resource downloading
5.1. If offerer o has a good network reputation, download the resource and update experience repository
PEERS
Q.1 Upon receiving a search request (Query message), check if any locally stored files
match the query and if so send a QueryHit message
Q.2 Broadcast the query through the P2P network

P.1 Upon receiving a poll request (Poll message), check if know any of the servents listed in
the poll request and express an opinion on them by sending a Pol1Reply message

P.2 Broadcast the poll request through the P2P network

P.3 Upon receiving a TrueVote message, confirm the votes by sending a TrueVoteReply

Figure 1: Sequence of messages and operations in the P2PRep protocol

ratio of Mbytes downloaded is used to give debits. The reputation score is then computed as
a weighted sum of credits minus the weighted debits. CORC computes the reputation score in
the same way as DCRC; the only difference is that the debit component of DCRC is not used in
CORC. Peers that are interested in enrolling in the reputation computations have to generate a
(public, private) key pair and register them with a central Reputation Computation Agent (RCA).
Debits and credits are then computed by contacting the RCA.

3 The protocol for collecting reputations

Before illustrating the protocol it is worth pointing out a few requirements that are peculiar to
anonymous P2P environments (in contrast to centralized systems):

e the system has to maintain user anonymity, as this is a fundamental aspect of current P2P



file-sharing networks;

e reputation computation must be as transparent as possible to the user and user participation
must be minimized;

e the reputation must be the result of the outcomes of previous interactions with the network;

e the reputation must be robust against malicious attacks that might try to attribute a bad
reputation to well-behaved peers and good reputation to malicious ones.

To satisfy these requirements, a few assumptions must be made that are essential to the construc-
tion of a working system. Our first hypothesis is that the underlying TCP /IP network architecture
is trusted and that it is not possible to falsify the IP address of a party involved in a TCP/IP
connection. Although this assumption is not yet realistic on the current Internet (although much
more so on corporate WANSs), our aim is providing an application-level solution strong enough that
the best (and perhaps the only) way to circumvent it is to challenge the infrastructure at an entirely
different level. Attacks may be brought below or even above the application level but our solution
limits substantially the palette of techniques available to the attacker. We then assume that mali-
cious users may have considerable resources in terms of computational power and bandwidth, but
they can control only a limited portion of the global network resources, and in particular a small
fraction of the network nodes addresses. Moreover, we consider the goal to represent correctly
only the reputations of nodes and resources that are known by a significant number of peers in the
network. The protocol must then be able to correctly reconstruct the reputation in presence of
malicious attacks.

3.1 P2PRep protocol

P2PRep is a reputation-based protocol, where each peer keeps track and shares with others the
reputation of their peers [Damiani et al., 2003b]. Peers are identified using self-appointed opaque
identifiers that are the digest of a public key for which only the peer knows the corresponding private
key. Figure 1 illustrates the operations executed and the messages exchanged in the context of a
P2PRep interaction. The figure reports the operations of the protocol’s initiator p and of the other
peers in the network.

Peers locate available resources using Query and QueryHit messages (Phase 1). Upon receiving
a set of QueryHit messages, the network is polled for any available reputation information on the
selected offerer 0.! Poll messages are broadcasted in the same way as Query messages. All peers
maintain an experience repository of their experiences of peers with whom they have interacted.
When a peer receives a Poll message, it checks its local repository. If it has some information to
offer and wants to express an opinion on the selected offerer o, it generates a vote based on its
experiences, and returns it to the initiator p of the protocol as a Pol1Reply message. As a result
of Phase 2, p receives a set V of votes, where some votes can express a good opinion while some
others can express a bad opinion.? In Phase 3, p evaluates the votes to collapse any set of votes that

!The original algorithm assumes a set of top offerers is chosen based on network performances. For simplicity, in
the remainder of the paper we assume that a single offerer is chosen.
2We will elaborate on this in Section 4.1.



may belong to a clique and explicitly selects a random set of votes for verifying their veridicity (see
Section 3.2) [Damiani et al., 2003b]. In Phase 4 the set of collected reputations is then synthesized
into an aggregated network reputation value (see Section 4.2). Based on this reputation value, the
initiator p can take a decision on whether to initiate a download (Phase 5), and, when a set of
offerers is chosen, from which peer to download the resource. After the download, the initiator
p can update its local recording of the offerer (recording whether the downloaded resource was
satisfactory or not).

While the implementation of the P2PRep protocol requires a certain amount of resources (storage
capacity and bandwidth), this cost is limited and justified in many situations. The amount of
storage capacity is proportional to the number of servents with which the servent has interacted.
With respect to the bandwidth, it is easy to see that the P2PRep protocol increases the traffic of the
P2P network by requiring both direct exchanges and broadcast requests. It is however reasonable to
assume that the major impact of the protocol on network performance is due to broadcast messages
and their answers. To overcome this issue, several optimizations can be applied. For instance,
intelligent routing techniques can be applied for enabling custom forwarding of poll packets to the
“right” peers. Vote caching is another techniques that can be applied to improve the effectiveness
of the P2PRep protocol.

3.2 Vote verification

The assessment of the correctness of the votes received in a poll is a fundamental step of the
P2PRep. P2PRep provides a first protection against fake votes by requiring poll replies to be
encrypted with a public key associated with the poll so to guarantee the confidentiality of votes in
transit. In addition, the protocol chooses a portion of voters that are then directly contacted to
detect possible vote spoofing. The goal of this process is to protect vote veridicity against attacks
where malicious peers inject false votes into the network to modify the protocol outcome.

Since in current P2P networks it would be impractical, for performance reasons, to check all
the votes, the protocol selects randomly a subset of votes to verify. The fraction of verified votes
is a critical configuration parameter for the protocol and a tradeoff has to be considered between
bandwidth consumption on one side, that requires to minimize the number of verifications, and
protection against attacks on the other, that requires to evaluate a great portion of the votes. Our
solution is based on selecting a vote for verification if the extraction of a random value, uniformly
distributed between 0 and 1, exceeds a given threshold. More precisely, our approach makes use of
two threshold parameters: Threshold, which represents the current threshold value; and Delimiter,
which represents the stable threshold that has been reached by the previous verifications.

Figure 2 illustrates the algorithm for executing the vote verification. Here, Threshold,,;, and
Threshold,,q, identify the range of values that are accepted for the threshold, depending on the
number n of received votes. In this way the threshold can increase as the number of votes increases
(with Thresholdy,q, growing faster than Threshold,,;,) because the probability that an attack that
creates false votes goes undetected becomes lower as the absolute number of verified votes increases.
Also, fast and slow are two constant values that in our experiments were set to 0.05 and 0.005,
respectively. Note that Threshold reaches the value Thresholdy, (Thresholdy.;, resp.) after several
consecutive negative (positive, resp.) verifications. In other words, a single individual negative
(positive, resp.) verification has a limited impact. An analysis of the behavior of the algorithm



Algorithm 3.1 (of Phase 3: Vote cleaning)

VOTE_VERIFICATION(V)

/* Verify the reliability of votes V by selecting a subset of them and contacting the corresponding voters
directly to check whether they actually expressed that vote */

Threshold min =1 — m; Threshold maz == 1 — mm
Veheek := { } /* votes to be checked */
For v; € V do /* i is the voter */
Generate a random number r
/* Threshold establishes how many verifications are carried out */
If r > Threshold then Vineer := VeneekU 04
Viocheck := V' — Veneer /™ votes that will not be checked */
For v; € Vi peer do
Check v; by sending message TrueVote(v;)
Expect back confirmation message TrueVoteReply (response)
Case response of
positive: If Threshold < Delimiter then Threshold := min(Thresholdmqs, Threshold + fast)
else Threshold := min( Threshold maz, Threshold + slow)
/* Delimiter is the stable threshold reached by the previous verifications */
Delimiter := min(Delimiter + 0.075, Threshold maz)
negative: Threshold := max(Threshold — 0.1, Threshold min )
Delimiter := max(Delimiter-0.075, Threshold min )
Vcheck = Vcheck — U
Remove m votes from Viocheck
V = Veneek U Viocheck
return V /* returns votes explicitly verified or not removed due to negative verifications */

Figure 2: Vote verification

shows that when the number of votes is large, the percentage of the verified votes is reduced to a
relatively small value (e.g., it can reach 2% after 1000 votes); at first sight, this could appear a low
value, but it is important to observe that the quantity of the verified votes is significant, enough
to draw a conclusion on vote reliability. Note that if a vote verification fails, we assume that it
is a false vote and we subtract from the number of the votes that had been expressed that vote
multiplied by the inverse of the difference between 1 and the threshold value used for the random
choice. For instance, let us suppose we received the 100-th vote, which is positive; the Threshold
is equal to 0.95; the random value is greater than 0.95 and the vote is verified. If the vote is
not successfully verified, we mark the vote as invalid and remove 20 positive votes from the total
(1/(1 —0.95)). The goal is to make vote falsification a zero-sum game, that statistically neither
improves nor decreases the outcome of the poll.

4 Reputation model

As already noticed, in our approach, reputations are viewed at two levels: local and network
reputation. Local reputations represent direct experience of interactions between two peers, where
network reputations represent the synthesis resulting by aggregating multiple opinions about a
peer. In the remainder of this section, we illustrate our fuzzy-based approach to computing local
and network reputations.



4.1 Local Reputation

Local reputation r; ; is the result of direct interactions between peer i and peer j, where i downloads
a resource from j, and expresses i’s satisfaction for past interactions with j. We use a Boolean
value to express the satisfaction of each single transaction. Specifically, for each download we
(n ) as follows: t( ") — 1 if the outcome was satisfactory, ¢; ¢ -) =0
otherwise. By contrast, we use a fuzzy value to express local reputations to take into con81dérat10n
the fact that transactions can be heterogeneous for importance, resource value, and so on. Each
local reputation is initialized after the first interaction by taking the value of tz(lj). At any time
n > 1, local reputation is updated based on the outcome of the n-th transaction as follows.

T3 =Y D +(1—aM)t" ifn > 2

Z

model the transaction outcome ¢;

where o™ a value between 0 and 1, is the aggregation freshness,® that is, the importance of
past transactions in relation with the last one. If o™ ~ 1 past experience will have a very high
importance and the last transaction has a little role in reputation evaluation; if o™ ~ 0 then
last experience is merely forgotten. Note that our freshness value is not static, but can change at
any single interaction, according to circumstances. In particular, for the first experiences of i with
j, (i-e., for low values of n), freshness should remain high while it can decrease as n grows and
therefore i has acquired enough experience on j. Note however that freshness should never become
too low, since this would mean having a blind trust in other peers.

In our approach, freshness evolution relies on feedback, by checking whether the current reputa-
tion value of a peer would give an accurate prediction of the result of the next transaction with it. If
this is the case, reputation is just right and freshness should not increase; otherwise, the current rep-
utation is considered unreliable and « is incremented. Our approach follows a well-known heuristic
technique for feedback control, that quickly stabilizes to a fair and efficient setting [Jacobson, 1988].
While other feedback strategies such as MIMD (Multiplicative Increase/Multiplicative Decrease)
could be adopted, they are known to be less robust and need careful tuning to avoid oscillatory
behavior [Chiu and Jain, 1989].

More specifically, if we consider the reputation 7"1(371) to be a prediction of the outcome of 7’s
next download from j, the accuracy of this prediction can be computed with a Boolean function
which returns 0 (wrong prediction) if the value of 'r( i Y differs from the actual outcome t( ") more
than a given error threshold E, and returns 1 (right prediction) otherwise. Namely,

(2)

n 1 if |T(n 1)—t(n) < E
Acc™ —
i { 0 otherw1se

This accuracy value is then used to determine a coefficient 3 (n) taking into account past experience
and the outcome of the last transaction as follows. The coefficient is initialized to 5(0) = 0 and is
updated at subsequent times as:

3Different values of freshness are used for different peers and therefore a peer i will use a different o for each
different peer j. For readability, we omit the subscripts when they are clear from the context.



. B(nfl) —i—ACCEn-)
B = SR (3)

. o)
Finally, o(®) = 5.

If the degree of similarity Accg;-) ~ 1, a(™ will increase granting more importance to past
history. Note that, of course, the accuracy could also be defined as a fuzzy function, for example,
by considering that not all transactions have the same importance. We shall not elaborate on this

possibility in this paper, assuming that the [ coefficient summarizes all context representation.

4.2 Network Reputation

If a peer has no previous experience on a peer j or the local reputation is still considered not
mature (i.e., for low values of n), the peer will, by using P2PRep, run a poll and inquire other peers
about j’s reputation for them. Here, we assume the vote expressed by each peer k participating
in the poll on j to be its local reputation 7 ; of j. The question now is how the poller should
aggregate the different votes received to produce a synthesized value.* A basic requirement for
aggregating opinions is that if the pool peers is stable and they maintain identical beliefs across all
transactions from a given instant ¢y onwards, then all interactions will asymptotically conform to
these beliefs. In other words, if the majority of peers considers that peer j has a bad reputation,
then j will be in the end excluded from all transactions.® This property, called unanimity, is often
considered a minimal standard of acceptability for an opinion pool aggregator, and is held both
by the weighted mean and the geometric mean [Aczél and Alsina, 1986]. The simplest aggregation
available is the arithmetic average of the votes received. However, arithmetic average performs
a rough compensation between high and low values, not taking into account different variations
between individual opinions that may characterize different polls. Luckily, arithmetic means are
not the only aggregation functions usually used in opinion pooling and many other combination
methods had been studied.

The OWA (Ordered Weighted Average) operator, introduced by Yager in [Yager, 1988], allows
the decision maker to give different importance to the values of a criteria. The main difference
between OWA and the arithmetic means consists in the separability of the aggregation function:
OWA considers that the influence of each contribution on the result is not directly separable, but
depends on the other contributions. For instance, a very good reputation value in the midst of
low ones should be treated differently than a good value accompanied in the poll by fair ones.
Technically, an OWA operator is a weighted average that acts on an ordered list of arguments and
applies a set of weights to tune their impact on the final result. Namely, in our setting,

Aow A = ZZ:l WETty,,5 (4)
22:1 W

where n is the number of reputations to be aggregated considered in decreasing order, that is,
assuming ¢, j > 74, j > ... > 1y, 5 and [wy wa ... wy] is a weighting vector. The behavior of this

“Note that since the individual’s reputations are fuzzy, their fuzzy aggregation will also be a value in the unit
interval.
50f course, the delay can be arbitrarily long if communications on the network are slow.

10



operator is largely determined by the choice of weights. For instance, the result could be based
on the most frequent values simply by assigning lower weights to extreme ones. Alternatively,
high weights can be given to extreme values to increase the operator responsiveness to them.® In
our case, we set the OWA weights asymmetrically, since our aggregation operator needs to be
biased toward the lower end of the interval, increasing the impact of low local reputations on the
overall result. The reason is that we assume that peers are usually trustworthiness and a malicious
behavior is the exception. According to this assumption, low local reputations should be considered
as relevant and their impact on the overall reputation should be significant. Of course, there are
many ways to do this, for example, by increasing weights linearly or non-linearly with the position
k of the corresponding opinion 7, ; in the OWA ordered set of arguments. Also, it is possible to
give a bonus to multiple occurrences of the same weight (group votes). This can be done by defining
the operator on a (usually small) set of different reputation values d rather than on the (usually
large) number of peers, as follows:

)= Dy wi(w) -
S | Vi w
where Vi,...,Vy is a partitioning of the set of votes grouping together votes with the same value
v;, and where v; are considered ordered, that is, v; > ... > vg.

Since our local opinions range in the unit interval, in principle there is no reason to favor group
votes; however, computational efficiency and values’ rounding to a fixed number of decimal may
make this a viable solution for practical implementations. In the algorithm shown below, we simply
partition the unit interval in d + 1 sub-intervals and use their extreme values (discarding 0 and
1) as a (linearly increasing) set of weights for aggregating the d distinct reputation values to be
aggregated via the OWA operator. In other words, we set

d
> d+1”z | Vi
Zz 1 d+1 |V |

We include local reputation in the computation by adding a new class V311 = 7, ; and associate
with it the highest possible weight, with weights now computed for d 4+ 1 values. Our operator is
now defined as follows:

A:

(6)

d+1 4
vtk i
Zz 1d+2|V|

Figure 3 illustrates the algorithm performing this computation.

SWith the OWA operator the decision makers can express their preferences in relation of the values of the criteria,
they cannot express preferences between criteria. This drawback is important when criteria are heterogeneous and is
usually solved using the WOWA (Weighted OWA) operator [Torra, 1997] instead of OWA. Here, however, we are in
a homogeneous scenario, so using OWA looks perfectly safe.
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Algorithm 4.1 (of Phase 4: Vote aggregation)
COMPUTE_NETWORK_REPUTATION(o, V)
/* Compute the network reputation of the offerer o by aggregating the received votes V*/

Compute the number d of distinct values in V

Let v1,...,vq be the order sequence of distinct values in V (Vi,k € [1,2,...,d] : i < k = v; > vg)
Partition the set V of votes into d subsets Vi,..., Vy such that V; = {v |v € V Av =v;} and V=L, Vi
Va1 = {rp.o}

Ry S Vil

ad+1 _
21:1 alJ1r2|Vi|

Figure 3: Computing network reputation

5 Evaluation

In this section, we investigate the behavior of our solution by highlighting its features with respect
to EigenTrust [Kamvar et al., 2003], a probabilistic approach to trust computation.

5.1 Overview of EigenTrust

In EigenTrust, each peer i rates another peer j from which it tries to download a file by keeping
track of the numbers of successful sat(7,7) and unsuccessful unsat(i,j) downloads. A local trust value
si; is then defined as the difference between sat(i,j) and unsat(s,j). To aggregate these local trust
values around the P2P network, they are normalized so that malicious peers will not be able to
assign arbitrarily high trust values to other malicious peers and subvert the EigenTrust algorithm.
The normalized local trust value c;; is defined as:

max(s;j,0)
“j = > maxzjs-- 0) (8)

j 7
The normalized trust values are aggregated using the concept of transitive trust: peer i can
know about the trust of peer k by asking all peers j with which peer ¢ has interacted. However,

since not all peers j are trustworthy, their opinions is weighed with the trust peer i places in them:
lik = Zcijcjk 9)
J

In other words, if C'is defined as the matrix [c;j], ¢; is defined as a local trust vector containing
ci; values for all peers j that peer ¢ has interacted with, and t_Z is the vector containing the values ¢;z,
then t_z =cTe. By generalizing this approach to include the opinions that “friends of our friends”
have about peer k£ and so on, we obtain a trust vector ¢t = (CT)"E}. As n gets larger, the global
trust vector ¢ for all peers converges to the same value. To compute the global trust value ¢, the
authors of EigenTrust propose two approaches: i) a basic non-distributed EigenTrust algorithm
and a i) distributed EigenTrust algorithm. The first solution is based on the observation that the
global trust vector does not depend on ¢ and therefore ¢; can be replaced with any distribution. A
uniform distribution €, where e; = % and m is the number of peers in the P2P network is chosen.

The definition of the global trust vector 7 is then ¢ = (CTY"€. The Basic EigenTrust algorithm
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consists in setting 70 equals to € and computing T+ = (CT)"?(’“) until it converges. This
simple algorithm does not take into consideration two important issues: the lack of a prior notion
of trust, and the fact that malicious peers can form a group and can try to increase the trust
associated with them and to decrease the trust associated with all the other peers. To overcome
these drawbacks, the authors propose to introduce the notion of pre-trusted peers, that is, peers in
the network that _can be trusted. Let P be the set of pre-trusted peers, the global trust vector can
be computed as t T+ = = (1 —a)(CT)" ¢ T® 4 a7, where a is a constant less than 1 and 7 is a
distribution with p; = 7 if ¢ € P; p; = 0, otherwise. By writing this equation component-wise,
the following formula is obtained:

5D = (1= a) (et + .+ enit®) + ap; (10)

Therefore, each peer needs its local trust vector and its global trust value. This observation
results in a distributed EigenTrust algorithm that works as follows.

Foreach peer ¢ do:

1. query all peers 7 who have downloaded files from ¢ for their opinions about him (t§0) =pj)

2. repeat
2a. compute 7’s current global trust value tgkﬂ) =(1- )(cht(k) .cmt%k) + ap;
D ¢ peers j from which ¢ has downloaded files

2c. wait for all such peers j to send their updated trust values cjitg-kﬂ)

until | t(kH)

2b. send opinion c;;t;

(k) |< e

5.2 Experiment setting and results

We now describe the experiments we performed to evaluate the behavior of our P2PRep protocol
and EigenTrust, as a representative of probabilistic approaches, against downloads from malicious
peers. Our simulation model refers to a P2P network where each peer is reachable from all others’
and does not take into account delays due to message routing. In other words, all peers are
considered to be at one hop from one another. Over this network, we simulate a set of queries, each
asking for a randomly chosen resource. For each query, the peer querying the network is randomly
chosen (with a uniform probability distribution) over all available peers. Then, a preferred offerer
o is selected, randomly choosing some peers among those having the resource required. In our
simulation, a malicious peer is more likely to be selected as o than a well-behaved one.
The main settings of our experiments are as following:

e number of peers P in the network: uniformly distributed in [300,400];
e number of malicious peers M C P: 40% of | P |;
e number of pre-trusted peers (for EigenTrust): 5% of | P |;

e number of different kinds of resources: 20;

"In real P2P systems this condition is only verified within a fixed horizon.
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Reputation Number of queries
model 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000
Random 37.41 38.28 38.04 37.81 38.38 3859 37.24 37.23 3749 37.78
EigenTrust 16.82 1854 1736 1592 1649 16.70 15.58 16.33 15.72 17.49
P2PRep 30.60 27.84 2287 21.01 1855 16.59 14.92 1441 12.82 12.98

Table 1: Percentage of malicious downloads

40

P2PRep —+——|
3B EigenTrust ---x--~
Random ------

percentage of malicious downloads

10 | | | | | | | |
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
number of queries

Figure 4: Percentage of malicious downloads for the random, P2PRep, and EigenTrust reputation
model

e max poll cardinality (for P2PRep): uniformly distributed in [5, 15].

We run the experiments for three different approaches: random, P2PRep, and FigenTrust. The
random policy simply chooses the offerer randomly and does not perform any reputation check;
while the other two approaches are as illustrated in the paper. As for P2PRep, we assume all
genuine peers ¢ participate in a poll on offerer o by returning the local reputation r; , if such a value
is recorded; no response is returned otherwise. Moreover, we modeled the behavior of malicious
peers in M by assuming that: 1) malicious peers provide only malicious resources; 2) malicious
peers respond to the polling on a peer o by always providing a (malicious) 1 reputation if o € M,
and by providing a genuine opinion otherwise.

Our simulation consists of a number of repeated experiments, each one evaluating a different,
randomly generated scenario. In this paper, we have set the total number of experiments to 50
while the number of queries for each experiment ranges from 1,000 to 10,000 with an increment
of 1,000. Higher values are not infrequent on real P2P systems like Gnutella[Damiani et al., 2002];
however we chose this range to enforce the assumption that the set of peers remains more or less
stable across the experiments.

The results of our experiments are reported in Table 1 as well as in graphical form in Figure 4.
The EigenTrust algorithm uses the eigenvalues of the matrix C to take transitivity into account
when computing the trustworthiness of a candidate offerer. The low complexity of this closure
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computation ensures good performance of the EigenTrust algorithm even for a small number of
transactions. However, being the overall knowledge over the peers’ trustworthiness stored in a
matrix, a single variation of s;; has a small impact in Equation (8) and the algorithm cannot
improve much over time. The fuzzy solution has a slower start but the percentage of malicious
downloads steadily decreases for the fuzzy solution as the quality of the network reputation increases
following the diffusion of information about malicious peers.®

6 Conclusions

We have introduced a fuzzy reputation approach for P2P capable to increase the overall accountabil-
ity of the network without imposing a high computational burden. The behavior of our algorithm
has been assessed in comparison with the probabilistic approach of [Kamvar et al., 2003]. Further
research will be aimed at improving the proposed fuzzy technique by taking into account other
aspects relevant for computing the reputation (e.g., the timing) and at investigating the effects
of the high mortality rates typical of P2P environments and assuming more complex behavior of
malicious peers.
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