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Abstract

We present an approach to enhancing information accessghneebstructuremining in contrast to
traditional approaches involving usage mining. Specificale mine the hardwired hierarchical hyper-
link structure of websites to identify patterns of termatecooccurrences we calleb FDs(functional
dependencies). Intuitively, a web FB - 3’ declares that all paths through a site involving a hypérlin
labeledz also contain a hyperlink labeled The complete set of FDs satisfied by a site help character-
ize (flexible and expressive) interaction paradigms sujegdoy a site, where a paradigm is the set of
explorable sequences therein. We describe algorithmsifungiFDs, results from mining several hier-
archical websites, and present several interface dedighsan exploit such FDs to provide compelling
user experiences.

fContact author



1 Introduction

Web mining is an established area of research (Kolari & Jdab04) that seeks to uncover patterns in
site structure, usage patterns, and navigation schemaserid effectors for web mining are primarily in
electronic commerce, typically manifested as persondleegeriences for users or better targeting of site
content.

Our goal is to enhance browsing experiences for users (ldarddilliams, Perugini, & Ramakrishnan,
2004; Perugini & Ramakrishnan, 2003) by developing intvadechniques that more directly address the
user-site impedance mismatch. We differ from prior workd@Park, & Yu, 1998; Eirinaki & Vazirgiannis,
2003; Kamdar & Joshi, 2005) in both the type of informationmi@e and the uses we find for the patterns
mined. Specifically, we analyze site structure to recovesigent properties of the domain modeled, in-
dependent of user interactions. At the same time, we pregzyg to harness the results of data mining to
realize more responsive dialogs between users and websites

The basic approach adopted here is to think of site stru@srexposing dialog completion paths, or
interaction sequences that capture the sequential ogdefimformation inputs, en route to a target page.
Patterns in these interaction sequences, caliell FDs expose important relationships which can be har-
nessed to create adaptive dialogs that situate the usetial paput in the context of the site, without dis-
rupting the site’s basic navigation schema. We show thatkizbare ubiquitous and suggest many natural
information-seeking interfaces. We focus on primarilyrarehical sites as they present the greatest benefit
for the techniques presented here.

2 Web Functional Dependencies

A web functional dependengiD) of the forma — y declares something about the relationship between
the termse andy wrt their co-occurrence (or lack thereof) along the strietaf a website. Intuitively, a web
FD z — (—)y indicates thaall (no) sequences involving also involvey. We describe two classes of web
FDs — negative and positive — which have complementary usie$darmation-seeking. Negative web FDs
help prune a website, while positive web FDs suggest a wapriduct query expansion and approximate
information retrieval. Each class can be further decomphas® path and leaf web FDs.

Positive Web FDs

A positive-path web FDx — y, wherex andy are terms, exists when the complete set of sequences
containingz is a subset of the complete set of sequences containifihe complete set of positive-path
web FDs which hold in the website shown in Fig. 1 is

{2003 —  {Ford, Tauru$,
2006 —  {Civic, Hond&,
Accord —  Honda,
Camry —  Toyota,
Civic — Honda,
Corolla —  Toyota,
Focus — {2005, Ford,
Taurus —  Ford,
{2004, For¢ —  Taurus,
{2004, Hondd —  Accord}
In Fig. 1, edge-labels model hyperlink labels (i.e., the ttween<a href ="...">and</ a>) or, in

other words, choices made by a navigator en route to a leafef#deto an edge-label agermeven though
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Figure 1. Example[AG) model of a hierarchical automobile web directory with @weristics similar to
those in Edmunds.com.

it may contain more than one word (i.e., any string of chamscéxcept space). For instance, ‘side airbags
would be a term in our viewpoint if it were the anchor text forrse hyperlink.

We borrow thesplitting/combiningrule (Garcia-Molina, Ullman, & Widom, 2002) from relatidna
database theory to simplify our presentation of these web. HEbr instance, ‘2003~ {Ford, Tauru$’
expresses two individual web FDs in one expression: ‘2808ord’ and ‘2003— Taurus.” However, the
web FD {2004, Ford — Taurus’ isnota simplification of the ‘2004~ Taurus’ and ‘Ford— Taurus’ web
FDs (neither are satisfied by the site), but rather statestifgequences through the site involving 2@
Ford also involve Taurus. In total, 13 positive-path web FDEl in theDAG shown in Fig. 1 (discounting
trivial web FDs such as ‘Civie~ Civic’, {2005, Civig — Civic’, and ‘{2005, Civig — Honda’), though
we require only 10 expressions to present them.

A positive-leaf web FIr — y specifies thadll of the leaves classified by sequences involvirajso are
classified by all sequences involvigg For instance, ‘Accord- Honda’ is a positive-leaf web FD satisfied
by site depicted in Fig. 1. Positive-leaf web FDs are moresgarthan positive-path web FDs in that all
positive-path web FDs also are positive-leaf web FDs, batréverse is only true in trees, e.g., such as
that shown in Fig. 1, in which there is only one path from thetto each leaf. Thus, the complete set of
positive-leaf web FDs which hold in Fig. 1 is the completecafgiositive-path web FDs given above.

Notice also that a positive (-path or -leaf) web ED- y does not necessarily mean that> x.

Negative Web FDs

A negative-path web F@ — —y indicates thahoneof the sequences through the site involvingwolve
y. Considering only negative-path web FDs with one term ondfiga total of 103 FDs are satisfied by the
DAG shown in Fig. 1, though we require only 13 expressions touceghem:



Table 1: Two instances of a relation with sche®@4;, As). (left) Satisfies the database FQ — A, as
well as 4 web FDs{a — ¢, b — ¢, d — e, e — d}. (right) Does not satisfy the database Bp — A,, but
does satisfy 2 web FDgb — ¢, e — d}.

A A A A

a C a C
b c a d
d e b c
d e
{2003 — - {2004, 2005, 2006, Accord, Camry, Civic, Corolla, Focus, tnToyotg,
2004 —  —{2003, 2005, 2006, Civic, Fochs
2005 —  —{2003, 2004, 200p
2006 —  — {2003, 2004, 2005, Accord, Camry, Corolla, Focus, Ford, 0gufoyota,
Accord — - {2003, 2006, Camry, Civic, Corolla, Focus, Ford, Taurus cotal,
Camry —  —{2003, 2006, Accord, Civic, Corolla, Focus, Ford, Honda,rliak
Civic —  — {2003, 2004, Accord, Camry, Corolla, Focus, Ford, Taurugo®,
Corolla — = {2003, 2006, Accord, Camry, Civic, Focus, Ford, Honda, Tsjyru
Focus —  — {2003, 2004, 2006, Accord, Camry, Civic, Corolla, Honda,rliauToyotg
Ford — - {2006, Accord, Camry, Civic, Corolla, Honda, Toypta
Honda —  —{2003, Camry, Corolla, Focus, Ford, Taurus, Toyota
Taurus — = {2006, Accord, Camry, Civic, Corolla, Focus, Honda, Toyota
Toyota —  — {2003, 2006, Accord, Civic, Focus, Ford, Honda, Tajyijus

A negative-leaf web FD: — -y specifies thahoneof the leaves classified by sequences involving
are classified by sequences involvipgNegative-leaf and -path web FDs also are equivalent innregels
of websites, e.g., such as that shown in Fig. 1. Further, agative-leaf web FD satisfied by a site is a
negative-path web FD satisfied by that site, though the sevenly holds in trees.

Notice further that negative (-path and -leaf) and positipath and -leaf) web FDs are not complements
of each other, i.e., the presencerof> y does not necessarily imply the presence ef — {7 — y}, where
T represents the complete set of terms in the site. Similarkite that satisfies — —y may not satisfy
x — {7 — y}. However, itis true that any negative web ED— — y considered here impliegs— — z.

3 Reasoning with Web FDs

Relationship between Web FDs and Database FDs

Web FDs can be viewed as both generalizations (in one sendegpgcializations (in another) of database
FDs. In relational database theory, an FD of the fotm— B means that all tuples which agree on their
value(s) forA mustagree on their value(s) fd8. Here,A and B are attributes of the relational schema, and
therefore, we refer to such FDs sshema FDsIn contrast, the left and right sides of a web FD constitute
values rather than attributes. Therefore, we say that welrfeRalue FDs This caveat implies that web
FDs are less restrictive than database FDs. Specifically,Rids can exist between values of two attributes
A; and A, of a relation instance? even if no database FDs betwedn and A, are satisfied byR. For
instance, consider the two instances in Table 1 of the oelatith schemaR(A;, A2). The schema FD
A1 — As holds in the instance on the left. In addition, several vée hold as well:{a — ¢, b — ¢,

d — e, e — d}. However, while the schema FB;, — A, does not hold in the instance on the right, notably
some value FDs are still satisfied by that instarfée ¢, e — d}.



In the above example of Table. 1 (right), observe that the Meba — ¢ andd — e arenot satisfied.
The violation of the first web FD is an example that violates timderlying database FDI{ — A,) as
well. However the reason the second does not hold in mordesutdered is a legal value for either of the
attributesA, and A5 and it is not generally true that all sequences involvirgso involvee. Nevertheless,
it is true that all sequences involvinjas a value of4; also involvee as a value ofd;. Therefore, since
web FDs are silent on the relationship between schema aituligdgtvalues, their requirements can be more
stringent than database FDs.

The above discussion reiterates that web FDs can be sirealialy more restrictive and less restrictive,
in different aspects, than database FDs. We can extend tyglete set of inference rules for reasoning with
database FDs, known @&smstrong’s axiomsreflexivity, augmentationandtransitivity) (Garcia-Molina et
al., 2002), from relational database theory to reason alvebtFDs as well, by focusing on relationships
between values rather than attributes. Moreover, this deguapparatus is alssoundand completefor
web FDs (outside the scope of this paper).

The emphasis on values rather than attributes also impla<gtiere are more ways for a web FD to be
trivial. In a database, an FB — B istrivial if the right side B) is a subset of the attributes on the lef)(
Similarly, in the web context, a (positive) FB — B can be trivial for this reason and, in addition, when
the number of interaction sequences supporting the ledtisidero. Moreover, in the database world, an FD
A — B is said to benontrivial if at least one of thé3’s is not among thed’s andcompletely nontriviaif
none of theB’s is also one of thed’'s (Garcia-Molina et al., 2002). The first of these definis@iso applies
to web FDs. For example, the web FD ‘Accord {Accord, Hond&’ is nontrivial. However, we strengthen
the definition of completely nontrivial in the web setting dygmenting it: a web FDI — B is completely
nontrivial if none of theB’s is also one of thel’s and if no proper subsét of A functionally determines3.
The database community calls the attributesl in S extraneougSilberschatz, Korth, & Sudarshan, 2006).
For instance, the web F 2005, Accord — Honda’ is not completely nontrivial in the site shown in Flg.
since the site also satisfies the ‘AccerdHonda’ web FD. Notice that above we only show the completely
nontrivial web FDs satisfied by the site in Fig. 1. As we wilesghen we discuss uses of web FDs, we are
only interested in all completely nontrivial web FDs.

Relationship between Web FDs and Association Rules

The ideas between web FDs and association rules are moree@liwe view interaction sequences as
transactions and terms as items. In this modeling, web F®sianply association rules with a confidence of
1 (Agrawal, Imielinski, & Swami, 1993). However, we hasteradd that, later in this paper, we will view
web FDs in the context of a real website interaction, so tiatérms are time-indexed with an arrival stamp.
Hence, the use of terms in a web FD will imply an ordering basettlationships between their arrival time
in an interaction sequence (whereas the items of a transaaté unordered). Furthermore, we will relax
the confidence threshold to less thiaand suggest potential uses in information retrieval. Intexd we
will discuss term-similarity metrics, beyond the contaamhof one set of sequences in another, which yield
web FDs bearing little similarity to association rules. @&lsiote that association rules in web mining are
predominantly mined from web usage logs and, as a resule baen used in web modeling primarily to
study and understand site usage patterns.



4 Mining Web Functional Dependencies

Recall aweb FD of the forma — Y, wherex is an edge labell( may represent an edge label or several edge
labels), exists when the complete set of sequences cargains a subset of the complete set of sequences
containing (all of the terms iny". We call thesesingle-step web FDand those of the fornrX’ — Y, where

X is a set of edge labelsyulti-step web FDsNotice that since a set may contain only one element, every
single-step FD is a multi-step FD. Heresegquencés an ordered list of terms from the root of a website to
a leaf.

To mine all multi-step web FDs, we build a multi-level, resive index and walk it in a recursive, depth-
first fashion. While recursing deep into the index, we repaigtidentify single-step web FDs on subgraphs
of the website and when backing out of the recursion, we ghmsd single-step web FDs into multi-step
web FDs.

Algorithm 1 illustrates the functions for mining multi-gteoositive-path, web FDs from BAG repre-
sentation of a website. The functiémild—index in Algorithm 1 builds the multi-level, recursive index.
Each entry in the index is a (key, set of sequences, muliti@cursive index) triple. The key is aterm. The
set of sequences are those which contain the key term. Tiiedbinponent of the triple is a multi-level,
recursive index of a site consisting only of the sequencas fihe second component (of this triple) after
removing the key term from each (see functiatiectSequences). Thus, the third component points to a
multi-level, recursive index of a reduced version of the sieh Each index contains exactly one entry for
each term in the site. The worst case running timéwfd—index is potentiallyO(|7|!), where7 is the
complete set of terms in the website (but see discussiondbtaut how it is more instructive to study algo-
rithmic complexity in output-sensitive terms and why ttespractical). Table 2 shows the index resulting
from applying thébuild—index function to theDAG shown in Fig. 1. Notice that the recursive nature of the
index is evident in the third component of every element.c&ipositive web FDs can only exist between
terms which co-occur, this index helps us prune the seamtesp

Traversal of this index, and thus the discovery of all msiép web FDs, is an induction on the size of
the index.

BASIS: A site with an empty index satisfies no multi-step web FDs.c&iaur algorithm is not linear-
recursive, the basis is reached often, i.e., whenever wauater an index entry of the forme ({s1, s2, ..., sn},
nil).

INDUCTION: When we encounter an index entry with a neiithird component, we check, as described
above, if a single-step web FD exists between the key of thketfi.e., its first component) and the key of
the first entry of the index in its third component. If a depeamd; exists, we add it to a list of web FDs local
to this recursive instance of the problem and then recurtietive entire sub-index. When the most recent
recursive call returns, we have a list of all of the multigsteeb FDs from that problem instance. To achieve
the complete set of multi-step web FDs for the prior instameesimply have to prepend the key term of the
index entry from the prior instance to each multi-step FDhef turrent instance.

Intuitively, our approach involves progressively remayierms, one at a time, from the original site,
i.e., removing it from every sequence containing it. We ¢amkt of this new set of sequences as constituting
a new siteS’. We then can compute the complete set of single-step web &i3$ied S’. By adding the
term removed to the lhs of each of the resulting (singlejstegh FDs, we have identified gortion of
the two-step web FDs, i.e., those with only two terms on tlse FFror example, the following is the set of



sequences from Fig. 1 involving ‘Ford’ (with the term ‘Fottien removed from those]:<Focus, 2005,
<Taurus, 2008, <Taurus, 2004, <Taurus, 2005 }. The complete set of single-step web FDs satisfied
by only these sequences{i2003 — Taurus, 2004— Taurug. We can now add the term ‘Ford’ to the lhs
of each to attain a portion of the two-step web FDs from Figf.{2003, For¢ — Taurus,{2004, Ford —
Taurug. Since the single-step web FD ‘2003 Taurus’ is satisfied by the original site, the web RR003,
Ford} — Taurus’ is trivial (i.e., it adds no new information) and dasafely omitted. Therefore, we have
a portion of the complete set of two-step web FDs from theimeigsite: {2003, For¢ — Taurus’.

Functionsmine—multi—step—webF DsH elper and mine—multi—step—webF Ds in Algorithm 1
illustrate how to mine multi-step positive-path web FDsira multi-level, recursive index using this pro-
cedure.

Table 3 shows the multi-step positive-path web FDs reguftom applyingmine—multi—step—webF Ds
to the DAG shown in Fig. 1, which involves building and using the indéxwn in Table 2. The function
walk collects the web FDs encapsulated within this data strediuo a bag. Walking the data structure
shown in Table 3 results in 45 web FDs and 17 of them are dupicg.g., {Ford, 2003 — Taurus’ and
‘{2003, Ford — Taurus’). The functionuniq removes duplicates from the resulting bag. Furthermore, we
can safely reduce the 28 unique web FDs to 13 FDs by removingetl FDs which are not completely
nontrivial (e.g., {2004, Accor¢ — Honda’' and {2005, Accor¢ — Honda’). The functionsimplify
further prunes out all webs FDs which are not completely maat. Notice that these simplifications of the
complete set of web FDs it analogous to computing a minimal basis of a set of relatidatdbase FDs
using a canonical cover algorithm (Silberschatz et al. 6208 minimal basis of a set of FDs is desired for
each relation in a relational database to reduce the nunifE@d®which must be checked for satisfaction
by the relation after an update to it. In stark contrast, meralesireall completely nontrivial web FDs, not
just a minimal set from which the complete set follows, faigens related to our application of them in a
web user interface discussed in section 6.

Algorithm 1 is sound and complete. It is levelwise like tApriori algorithm from association rule
mining (Agrawal & Srikant, 1994) and, hence, its complexian be studied in similar terms. The number of
web FDs (say) in a site is potentially exponential in its size but, jusirasaditional data mining algorithms,
the number of web FDs reduces dramatically as we drill thnaihg levels. This makes Algorithm 1 to be
output-sensitive with complexit§) (p). The section below covering the uses of web FDs discusses$Heimw
discovery is practical in a web user interface as the useersas through the levels.

Identifying the complete set of negative web FDs satisfied bige is straightforward (see Algorithm 2).
The rhs of negative web FDs with Ihsis the difference between the entire set of terms in the sitetfaose
terms with whichz co-occurs (in some sequence). Note that the rhs of a negedivd-D is not simply the
complement of terms that occur in its positive counterpdiis a term to be used in the rhs of a positive
web FD, it must co-occur iall sequences involving the lhs, whereas for a term to be usdteirhs of a
negative web FD, it must not co-occurany of the sequences involving the lhs. Algorithm 2 is linearha t
total number of terms in the website.

Notice that whileArmstrong’s axiom#$old in the web FD context, a closure algorithm (involving ap
plications of them) (Garcia-Molina et al., 2002) is insu#iat to discover all web FDs satisfied by a site.
This is because a closure algorithm must start withaaisset of FDs to determine the complete set of
FDs (Garcia-Molina et al., 2002). Algorithm 1 discoversvadb FDs and is thus functionally equivalent to
discovering a basis set of FDs followed by computing thewle®f that basis.



Name: build—index
Type: set of sequences Index{a list of (term, set of sequences, Index) trigles
Parameters: set of sequences

if S=nil then
return ni |
else

T — getTerms(S) {returns the set of terms ifi}
fori<— 0to|7]|do
S — selectSequences(T[i], S) {selects all sequences frafncontaining the tern¥ [i], removes7 [i] from
each sequence in that set, and returns the resultifig set
index[i] — (Ti], S, build—index(S"))
end for
end if
return index {a list of (term, set of sequences, Index) trigles

Name: mine—multi—step—webF DsH elper
Type: Index— multi-step-webFD4ga list of (term, set of terms, multi-step-webFDs) trigles
Parameters. Indexindex
for i < 0 to |index| do
multi—step—webF Ds[i](#1) < index[i](#1)
if index[i](#3) =ni | then
multi—step—webF Dsli](#2) = ni |
multi—step—webF Dsli](#3) = ni |
else
for j < 0to |index[i](#3)| do
if index[i](#2) C index[i](#3)[j](#2) then
multi—step—webF Dsli](#2) «— multi—step—webF Ds[i](#2) U index[i](#3)[1](#1)
end if
multi—step—webF Ds[i](#3) «
multi—step—webF Dsi](#3) U mine—multi—step—webF DsHelper (index[i](#3)[j](#1))
end for
end if
end for
return multi—step—webF Ds {a list of (term, set of terms, multi-step-webFDs) trigles

Name: mine—multi—step—webF Ds
Type: DAG — multi-stepwebFDs{a set of completely nontrivial multi-step web FPs
Parameters. DAG D
S «— sequencize(D) {returns the set of sequences fr@m
index «— build—index(S)
multi—step—webF DsIntermedl «— mine—multi—step—webF DsHelper(index) {a list of (term, set of
terms, multi-step-webFDs) triplgs
multi—step—webF DsIntermed2 «— walk(multi—step—webF DsIntermedl) {a bag of multi-step web FDs|
multi—step—webF DsIntermed3 — uniq(multi—step—webF DsIntermed2) {a set of multi-step web FDs
multi—step—webF Ds «— simpli fy(multi—step—webF DsIntermed3) {a set of completely nontrivial mult
step web FD5
return multi—step—webF Ds {final set of completely nontrivial multi-step webFPs

Algorithm 1. Mine completely nontrivial multi-step positive-path weld$; simplified for purposes of
presentation.



Table 2: Multi-level, recursive index of the sample autoitetvebsite in Fig. 1.

Focus {11} 2005 11 ni |
2003 12 ni |
Taurus {12,13,14 2004 13 nil
Ford 11,12, 13. 1. 2005 14 ni |
or 11,1213, 13 2003 | {12} Taurus | {12] | nil
2004 {13} Taurus 13 ni |
Focus 11 ni |
2005 111,14 Taurus 14 ni |
2004 5 ni |
Accord | {15, 16} 5005 6 o
. 2005 17 ni |
Hond 15, 16, 17, 1 e uras 2006 18 ni!
onda | {15.16.17.1% 2004 | {15} Accord | {15] ] il
Accord 16 ni |
2005 | {16,17 Civic 77 | il
2006 {18} Civic | {18 il

2004 19 ni |
2005 20 ni |
2004 21 ni |
2005 22 ni |

Camry {19, 20}

Corolla | {21,22

Toyota {19, 20, 21, 22

Camry 9 nil
2004 {1928 Corolla 21 ni |
Camry 20 ni |
2005 {2023 Corolla 22 ni |
Ford | {11} 2005 | {11} | nil |
Focus | {11} 2005 | {11} | [ Ford | {10 ] ni1 ]
2003 12 ni |
Ford | {12,13,14 2004 | {13 nil
2005 14 ni |
Taurus {12,13,14 2003 | {12} Ford 12 ni |
2004 | {13} Ford 13 ni |
2005 | {14} Ford 14 i |
2004 | {15} | nil |
e 16 Honda | {15, 16} 2005 | {16} | mil |
ccor {15, 16} 2004 | {15 Honda | {15 nil ]
2005 {16} Honda 16 nil |
2005 | {17} | nil ]
o s Honda | {17, 18} 2006 | {18} | mil |
ivic {17, 18 2005 {17y Honda | {17 nil ]
2006 {18} Honda 18 nil |
2004 | {19} | nil ]

Toyota | {19, 20}

2005 | {20} | mil |
2004 {19, 21} Toyota 19, 21 nil |
2005 {20, 22 Toyota 20, 22] nil |
2004 | {21} | nil |
2005 | {22} | nil |

Camry {19, 20+

Toyota | {21,22
Corolla | {21,224

2004 {21} Toyota 21 nil ]
2005 {22} Toyota 22 nil |
Ford {12} Taurus | {12} [ nil |
2003 {12} Taurus | {12} Ford | {12} [ nil |
Ford {13} Taurus | {13} [ nil |
Honda {15} Accord | {15} nil
Camry | {19} ni |
2004 13,15,19,2 Tovora | 119,28 Corolla | {21} [ nil
{13,15,19,23 Taurus | {13} Ford T {13} [ nil ]
Accord | {15} Honda 15} nil ]
Camry {19} Toyota 19 nil |
Corolla | {21} Toyota 21 nil |
Focus 11 nil |
Ford {1114 Taurus | {14 nil |
Accord | {16} ni |
Honda | {16.1% | —&yic | {17y | nil
Camry | {20} [ nil
Toyota (20,22 Corolla | {22} ni |
2005 {11, 14, 16,17, 20, 22 Focus | 111} Ford T {11 [T ]
Taurus | {14} Ford | {14} [ nil |
Accord | {16} Honda | {16} | nil |
Civic {17} Honda 17 nil |
Camry {20} Toyota 20 nil |
Corolla | {22} Toyota 22 nil |
Honda | {18} Civic | {18} [ nil |
2008 {18} Civic {18} Honda | {18} [ nil |




Table 3: Data structure storing the complete set of mutipsteb FDs satisfied by the sample automobile
website in Fig. 1.

Focus 2005} ni |
Ford ni | 2003 Taurus ni |
2004 Taurus ni |
. 2004 | {Accord} nil |
Honda | nil 2006 | {Cwic] | niT |
Toyota ni | ni |

Ford 2005} | nil |
2005 Ford ni |
2003 Ford ni |
Taurus {Ford} 2004 Ford ni |
2005 Ford ni |
2004 Honda] ni |
2005 Honda) ni |
2005 Honda) ni |
2006 Honda) ni |
2004 Toyota ni |
2005 Toyota] nil
2004 Toyota] nil
2005 Toyota] nil

Focus {Ford, 2003

Accord {Honda}

Civic {Honda}

Camry { Toyota}

Corolla | {Toyota}

Ford | {Taurug [ nil |
2003 {Ford, Tauru$ Taurus | {Ford] | niT ]
Ford Taurug ni |
Honda Accord} ni |
- Taurus Ford} ni |
2004 nil Accord Honda} ni |
Camry Toyota] ni |
Corolla Toyotal ni |
Focus Ford} ni |
Taurus Ford} ni |
. Accord Honda] ni |
2005 nil Civic Honda] ni |
Camry Toyota ni |
Corolla Toyota] ni |
2006 | {Honda, Civi¢ Honda | {Civic} I |

Civic_ | {Honda nil |

Name: mine—negative—path—webF Ds
Type: DAG — negative-path-webFD& list of (term, set of terms) paifs
Parameters. DAG D
S« sequencize(D) {returns the set of sequences fr@m
T — getTerms(S) {returns the set of terms fro$i}
term—termIndex — build—term—term—index(7T, S)
for i — 0to|7]| do
negative—path—webF Dsli](#1) « T i
negative—path—webF Dsli](#2) « T — term—termIndex]i]
end for
return negative—path—webF Ds {a list of (term, set of terms) paifs

Algorithm 2: Mine negative-path web FDs, simplified for purposes of prten.
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Table 4. Structural characteristics of sites mined for wéls.F Key: NI-x=non-leaf crosslink, L-x=leaf
crosslink, F=faceted, T-n=total nodes, NI-n=non-leafemd_=leaf nodes, and S=sequences. ODP is not a
DAG because some of its crosslinks create cycles.

[ Website Name | URL | Type [ NI-x? [ L-x? [ Depth | F? [ #T-n [ #NI-n [ #L=#S | #Terms [ u Fan-out |
Project Vote Smart| vote-smart.org | tree X X [4] Vv 856 316 540 116 2.71
Citidel DL citidel.org DAG X V4 [2-4] X 6,066 551 5,515 4,715 11.00
Epicurious Recipes| epicurious.com| DAG X Vv [2-71 | +/ | 86,488 | 26,102 | 60,386 127 3.31
Edmunds Autos edmunds.com | tree X X [6] v | 15,826 | 11,326 | 4,500 5,195 1.40
ODP (Home) dmoz.org graph Va V4 [2-8] X 2,059 493 2,026 1,667 5.11

5 Results

We mined web FDs in five hierarchical-oriented sites usingngriementatioh of the algorithm presented
in the previous section. We chose these sites for the vasfetiructural characteristics they provide as well
as their differences in size (see Table 4). Before providivegdetails of the web FDs mined from each
site, we briefly discuss various characteristics of eachsgat how and when we collected them, and their
structural differences.

We collected each dataset, except that from ODP (Open Dime&roject at dmoz.org), by conduct-
ing a depth-first crawl of the site and extracting each hypletbbel during the traversal. ODP, on the other
hand, makes its entire hierarchical hyperlinked strudtuRDF? format available for free download through
http://rdf.dmoz.org/rdf/structure.rdf.u8.gz. We calied the Edmunds dataset in August 2005, the Citidel
and Epicurious datasets in December 2005, and the PVS tlatadarch 2006. We extracted the dataset
for ODP from the RDF structure file downloaded in November30Dhe dataset from PVS represents the
entire Congressional hierarchy and that from Epicuriopsa®ents the entire recipe browsing classification.
Citidel indexes documents through four popular classificatschemes and the dataset we collected repre-
sents the unity of the complete hierarchy for each of the tforough a common root and an edge to the
root of each individual scheme labeled with the name of thes®e to which it links (e.g., CCS — ACM
Computing Classification System). We mined web FDs betwédawur schemes and not just within each
individual scheme. The Edmunds dataset contains a seqfi@neach automobile from 1990-2004 with
attributes year, make, model, size, price, and fuel effayigmiles per gallon). Due the immense size of
ODRP (i.e., approximately 690,000 nodes, over 218,000ndisterms, and a maximum depth of 14), we only
mined web FDs from thelomecategory.

We can draw several distinctions between hierarchical iesbsFor instance, some sites are modeled
as trees, where there is only one path from the root to anyileafa node which is the source of no edge).
Others are modeled by non-tr@AGs (directed acyclic graphs), where there may be more tharpatie
from the root to any leaf owing to the presencecrfsslinks(sometimes calledymbolic link$. A crosslink
is a special type of hyperlink which makes a directed conoedtietween a webpage along one path through
a site to a page along another path. Crosslinks are typieatigloyed in human-compiled directories of
websites, such as Yahoo! or ODP which are popular hubs to @gglurces. In these sites, crosslinks, whose
labels end with@ are used to provide multiclassification, shortcuts deayerthe directory, and backlinks
out of sub-categories or, in short, to make information ssdéexible. TheArts category of ODP has a
crosslink labeled ‘Museums@’ whose target is a page irRiberenceategory. We distinguish between a
non-leaf crosslinkwhose target is a non-leaf node (i.e., the source of sone) eahgl deaf crosslink whose

IWe implemented the multi-step web FD mining algorithm inrierd ML using less than 600 lines of code.
2Resource Description Framework, a data interchange farammonly used to describe web metadata for machine progessi
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target is a leaf. This distinction is motivated by sites,eesglly those whose pre-leaf nodes represent a flat
list of search results (e.g., Citidel, Epicurious, and ORHich use crosslinks originating from nodes at the
pre-leaf level to classify terminal objects through muéipequences.

Since Citidel uses four tree-structured classificationesus it, as shown in Table 4, has only leaf
crosslinks, i.e., only the documents themselves whichdigxes may have more than one parent. Similarly,
Epicurious only has leaf crosslinks. ODP has both non-ledfl@af crosslinks. Thus, the leaf nodes of these
sites have more than one parent. Leaves in Citidel, Epigsyiand ODP correspond to documents, recipes,
and websites, respectively, while nodes at their pre-eadl$ correspond to sets of these items. Links into
these leaves are labeled with the particular document it#é@pe name, or website name/URL and this label
is typically a key for the sequence. Thus, when mining web FRRBese sites, we consider sequences from
the root down to only the pre-leaf level in order to fosteriali@sis for comparison to the web FDs mined
in the other sites considered here.

The hierarchies of the sites we mined also vary in depth. Vilaal¢helevel of an edge-label as the
depth of the source of the edge it labels. Tii@imum deptlof aDAG D is the level of an edge-label i
which is less than or equal to the level of all other edgetaleD. In other words, minimum depth is the
minimum number of clicks required to access a leaf, i.e. diygth of that leaf. Thenaximum deptlof a
DAG D is the level of an edge-label i which is greater than or equal to the level of all other eddeels in
D. In other words, maximum depth is the maximum number of sli@quired to access a leaf, i.e., again,
the depth of that leaf. The column labelddpthin Table 4 provides the minimum and maximum depth
(or, in other words, depth range or sequence-length rarfgegah site; in some sites, each sequence has a
consistent length (see PVS and Edmunds) and, thus, requlireasingle number to represent depth. The
sample website given Fig. 1 has a consistent sequence length

We can also distinguish sites based on the relationshipeofyiperlink labels on each webpage of the
hierarchy. Infacetedsites (Hearst et al., 2002), all of the hyperlink labels oringle webpage belong
to only one facet of information assessment. The facets & Bk <state, branch, party, seat/district
while those of Epicurious aremain ingredient, preparation method, cuisine, seasoagimg, course/meal,
dish, special considerations Moreover, notice that the sample website illustrated ig. Bi is faceted
(<make, model, year are its facets). In some sites however, such as Citidel anig, @IDof the hyperlink
labels on each page have no discernible relationship arsdidlold the concept of a facet. We called these
sitesunfaceted Notice from Table 4 that a faceted site does not imply a abest sequence length (see
Epicurious).

Faceted sites present the opportunity to compress depeaddietween values of facets (i.e., traditional
web FDs) using dependencies between facets themselvemntially, web FDs become synonymous with
database FDs. For example, we can say that the site in Figl E@munds satisfy FDs of the formodel —
make because a total, onto function exists between the valudsedhtets model and make, where model
is the domain and make is the codomain.

The values for the number of nodes, non-leaf nodes, leafsy@ahel terms in Table 4 capture the volume
of each site. Each term count does not include duplicatesinrigote that we define a term as a hyperlink
label (e.g., ‘Information Storage and Retrieval’ is onertén Citidel) and this viewpoint is reflected in our
terms counts. Lastly, we define average fan-out as the ttabt (i.e., the total number of nodes minus
one) divided by the total number of non-leaf nodes in the site

Table 5 provides statistics on the number of completelymoat (positive- and negative-path) web FDs
mined from each site. The column labeled ‘#Pos. web FDs'uraptthe number of completely nontrivial
positive-path web FDs with only one term on the rhs. The coldabeled ‘#Neg. web FDs’ gives the
number of negative-path web FDs with only one term on bothltkeand rhs. We provide the average,
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Table 5: Statistics on the number of completely nontrivigdgjtive- and negative-path) web FDs mined

from each website.
| Website | #Pos. web FDs | #Neg. web FDs | p #Neg. web FDs | o2 #Neg. web FDs | o #Neg. web FDs |

Project Vote Smart] 715 11,556 99.62 342.15 18.50
Citidel DL 13,266 1,798,016 191,353.48 1.42x 1012 1,189,953.43
Epicurious Recipes 41,653 4,932 42.52 306.29 17.50
Edmunds Autos 49,304 26,919,082 232,061.05 2.31x 10'? 1,518,303.92
ODP (Home) 6,188 2,765,444 23,840.03 7,070,405,517.77 84,085.70

variance, and standard deviation of the number of negatele MDs involving the same term on the lhs in
the columns labeleds #Neg. web FDs' 52 #Neg. web FDs’, ands #Neg. web FDs’, respectively. These
are better motivated later.

Given our experimental results (Table 5), we draw no commtusbout the relationship between the
number of sequences through a site and the number of pogidbeFDs it satisfies. This re-affirms that
web FDs are a function of the term-term co-occurrences albagsequences of the site and an artifact
of the underlying domain rather than simply of the numbereazfugnces through the site. Notice that the
(#sequences, #positive web FDs) point provided by the Edisidataset appears to be an outlier wrt number
of sequences vs. number of positive web FDs. The Edmundsedatantains only 4,500 sequences, yet
satisfies nearly 50,000 positive web FDs. Without that polire number of sequences and positive web FDs
are correlated linearly with?=0.95. Similarly, we draw no conclusion about the relatiopsetween the
number of sequences through a site and the number of negalyd-Ds it satisfies. When analyzing the
relationship between the number of sequences through arsitéhe number of negative FDs it satisfies,
the (#sequences, #negative web FDs) data points providé&gioyrious and Citidel appear to be outliers.
The Epicurious dataset contains over 60,000 sequencegsbkuhan 5,000 negative web FDs. On the other
hand, the Citidel dataset contains less than 6,000 segsigretesatisfies nearly 2 million negative web FDs.
As we will see later, terms in sites with many negative FDgl particularly a high average number of
negative FDs per term, can be used as a basis to perform adg@abf website pruning. Without those
points, the number of sequences and negative web FDs aggljirerrelated with-?=0.92. Overall, our
results indicate that web FDs occur naturally in a varietysitds across the web. Moreover, our results
show that the presence (not to be confused with volume oth¢d FDs is not affected by the distinctions
between these sites.

6 Usesof Web Functional Dependenciesin Information Seeking

Web FDs serve multiple uses, from enhancing interactioreepces of users, to helping communicate the
structure of a website by capturing relationships betwéenfacets. We now showcase some of the more
promising of these uses.

6.1 Real-time Query Expansion

Implicit Expansion

One use of web FDs is as a means to conduct query expansioa avher is searching or browsing a
web hierarchy. We useut-of-turn interaction a technique for integrating browsing and searching a web
hierarchy, to illustrate this use of web FDs. Out-of-turtemaction permits the user, at any point while
browsing a hierarchy, to supply terms corresponding to thearmation need. These terms are then matched
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Figure 2: Use of an out-of-turn interaction interface thyloa voice-enabled browser. (left) The user decides
to not pursue any of the presented hyperlinks and insteaakspgaccord’ out-of-turn. This triggers the
Accord— Honda web FD. The query is thus expanded to ‘Accord Hondaresdlts in the webpage (right)
with links representing the only two remaining car yearse @lalog continues in this manner.

against all of the hyperlink labels in the hierarchy rootetha current page to select the sequences through
the site in which they appear. Out-of-turn interaction me$ua hierarchy containing only these sequences to
sustain the semblance of hierarchy and the progressiveldwin it.

There are multiple interpretations for an out-of-turn ratgion. A simple interpretation is to retain only
those sequences through the site containing a hyperlirgtddlwith the out-of-turn input, prune all others,
and shrink those remaining by removing the edges labelddthé out-of-turn input. For instance, when a
user supplies ‘Accord’ out-of-turn to the site depicted ig.F, we would return a tree with a root with only
one link to the sub-site rooted at page 7, i{¢1, Honda, 7), (7, 2004, 15), (7, 2005, }8) We support the
user in supplying out-of-turn inputs through two interfsica toolbar embedded into a web browser, and not
the site’s pages, and a voice-user interface. We have dpplieof-turn interaction to several websites. We
refer the reader interested in the details of out-of-tutarawction, including a software framework supporting
it as well as these user interfaces for it, to (Narayan e2@D4; Perugini & Ramakrishnan, 2006).

The nature of the website pruning conducted with out-ofi-tunteraction often results in hierarchies
with several pages containing only one hyperlink, as is g®e#me prior example. Using web FDs to expand
the user query addresses this situation. For instance, wiuser supplies ‘Accord’ out-of-turn to the site
depicted in Fig. 1, we would use the web FD ‘AccerdHonda’ (satisfied by that site) to expand the query
to ‘Accord Honda’'. This query would result in the tree rootggage 7, which has more than one hyperlink.
Fig. 2 depicts this web interaction using a voice modalitystipply terms out-of-turn. Such expansions
produced using web FDs ensures that the user will never Eempied with a webpage containing only
one hyperlink (because all others were pruned out) in resptma query. Moreover, expansions in effect
provide severashortcutsthroughout a web hierarchy. The shortcut induced throughptior interaction
bypasses 2 successive hardwired hyperlinks — (1, Hondayd3}3& Accord, 7). Shortcuts induced by web
FDs will sometimes lead the user directly to terminal infation. For example, a query for ‘Focus’ in Fig. 1

3Here a tree is represented as a set of edges, where an edgelisae( label, target) triple.
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Figure 3: lllustration of explicit, real-time query exp&s built-in into theExtemporaoolbar (see top of
each browser window) for out-of-turn interaction. The (sguery is expanded from ‘50mpg’ (left) to
‘50mpg hybrid’ (right) because ‘hybrid’ is inferred by fulmenal dependency.

retrieves page 11 in one stroke by triggering the ‘Foeug 2005, Ford’ web FD. Also, notice that web
FDs can be used, in the same manner, to expand a query imyphditited through a simple hyperlink click
(i.e., the label of the hyperlink is the query; this can béechih-turn interactior). Since any hyperlink label
contained in the hierarchy rooted at the current page is didate for the lhs of a web FD and available as
out-of-turn input, we can use the complete set of web FDsfeadiby a site for query expansion.

Explicit Expansion

Notice that the query expansion discussed above is intasrie system and only apparent to the attentive
user who notices that after supplying ‘Accord’, e.g., ofitton, the system never solicits for automobile
make (because it was inferred by functional dependencys,Tihe user is only able to discern that expan-
sion has taken placafter their query has been processed. Alternatively, we can ekg@queryin situ.
For instance, in the example given above, when the usersafierfinal ‘d’ in the specification of the term
‘Accord’, in real-time the system would expand that queryAtocord Honda'’ prior to submission and this
expansion would be visible in, e.g., the textbox in whichdhiginal query was entered by now containing
the fully-expanded query ‘Accord Honda'.

Such expansion built directly into the interface providasadditional layer of information exploration
and discovery independent of that provided by the undeglysite pruning, transformation) system. For
instance, consider the following information-seekinglgoa

“I am only interested in cars whose fuel efficiency is gre#ttan 50 miles per gallon. However,
| don’'t want a hybrid engine.”

A user pursuing this goal, upon entering the final ‘g’ in ‘5aghpto the out-of-turn toolbar (see Fig. 3,
left), which we callExtempore observes that the query expands to ‘50mpg hybrid’ (seeZFigght) and
thus realizes that the site contains no cars meeting therdwspecification. The revelation of this constraint
at this point may compel the user not to submit the query.

Readers may be familiar with the use of similasitu expansion in the populauto-completiorfeature
now standard in many e-mail clients and web browsers. Theepce of this feature in an e-mail application
means that while a user is entering an e-mail address in thé field, the system searches the user’s
personal history cache, containing the address of indalglto whom the user has previously sent mail, for
an e-mail with a prefix matching the partially-completedr@dd. When a match is found, the partial address
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Figure 4: Automobile-make lookup service provided by KeBiue Book online. Here a user searches for
an automobile make based on the model. This service expiDissof the formmake — model.

is expanded into the matching address. Web browsers em@oyilar technique to expand partial URLs
into those of sites previously visited. While the concepswth real-timein situ expansion is ubiquitous in
these desktop applications, the real-time query exparmsed on web FDs is fundamental different. The
expansion in the auto-completion feature depends on therdustatus of the individual user’s cache. In
other words, two different users are not guaranteed the sapansion for the same initial input. On the
other hand, real-time query expansion depends on the setlwfRs currently satisfied by the (currently
instance of the) site. Therefore, we say auto-completiasés-dependerdand real-time query expansion is
user-independent

We feel that the feedback provided by simply interactinghvétreal-time query expansion interface
(without perhaps even ever submitting a query) to out-ai-tateraction can be helpful in decomposing
and solving a complex constraint satisfaction problem sasplanning a vacation. Moreover, we feel that
due to its rapid query—expand—feedback loop and abilityaimnally expose dependencies in, including
those most central to, the underlying domain, it has use d@astiiment to help users assimilate a new
information domain in an exploratory setting. For exampld?VS, this interface makes dependencies, such
as ‘Democrat— —Republican’, ‘Republican~ —Democrat’, ‘House— —Senate’, ‘Senate~ —House’,
‘Senior seat— —Junior seat’, and ‘Junior seat —~Senior set’, which are at the core of the structure of the
US government, salient. For this reason we say the set of Wels&tisfied by a site operationalizes domain
knowledge encoded its hierarchy.

Lastly, note that since the website is pruned and reducdutkasser interacts with it, through techniques
such as out-of-turn interaction and browsing, it is pradtand efficient to compute web FDs satisfied by (the
most recent version of) the site i@al-time For instance, the web FD ‘Ohio, SenateRepublican’ holds
in the pristine PVS site because both Ohio Senators are Regnd). After a user communicates ‘Ohio’
to PVS, the site contains only those (20) sequences inl@hio congresspeople. These 20 sequences
satisfy the ‘Senate~Republican’ web FD (not satisfied by the original site) amotigers. However, due to
the real-time query expansion application of web FDs, welmeg mine the complete set of FDs satisfied
by this reduced set of sequences ever! Rather we can take@dygpproach and mine only the one web FD

“This was the scenario during the 2006 congressional lapdsca
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Figure 5: Slider-bar interface to approximate retrievavigb hierarchies. Here ‘least expansion’ means the
strictest interpretation of a web FD, i.e., confidence etdl, which results in less website pruning. (left)
User enters ‘travel’ and all links at the top level remaindiese there is a sequence beginning with each
of their labels which contains the term ‘travel.” (right) A user slides the dial to the right, expansions
are considered where the web FDs triggering them are comhpuite confidence less than 1. This cause
more expansion — the term ‘international’ is added — and rsitegpruning. Only links labeled ‘Business,’
‘Recreation, ‘Science,” and ‘Society’ remain becauseytaee the only categories of the site which contain
sequences involving both terms ‘travel’ and ‘internationa

applicable to the expansion immediately before it is resglirFor example, should the user enter ‘Senate’
next, after processing the input and retaining only tho}sdéguences which contain that term, we identify
terms contained in every remaining sequence, one of whittieiserm ‘Republican.” This mining for web
FDs in real-time idinear in the number of remaining sequences, which in this caseads Netice further
that the ‘Senate-Republican’ web FD is also attainable by simply removingghpplied term (Ohio) from
the Ihs of the {Ohio, Senatk — Republican’ FD satisfied by the unaltered site.

6.2 Approximate Retrieval in Web Hierarchies

By generalizing the notion of a web FD, we can make retriavaléb hierarchies approximate. Consider
that the definition of a web FD — a positive-path web ED- y indicates thatll sequences involving
also involvey — is rigid at two levels: first, in the specific metric used torqmute a score for the candidate
FD (i.e., confidence), and, second, in the threshold thatdbee must meet to be considered a web FD (i.e.,
100%). We can generalize this notion by parameterizing #fmition by the metric and threshold. Thus,
we say that a positive-path web ED— y holds if M (z,y) > T, whereMM is a similarity metric and” is

a threshold between 0 and 1. With this more general definitidmost of similarity metrics from IR, such
as cosine odaccard’s(Srehl, Ghosh, & Mooney, 2000), each with different projesr{e.g., symmetry, i.e.,

a — bimpliesb — «a and vice versa), and threshold values are available forrusemputing a complete
set of web FDs. We can experiment to test the effect of varfmgdric, threshold) pair on the nature of web
FDs mined and, ultimately, on retrieval in web hierarchies.

Making retrieval in web hierarchies approximate is patdy helpful in voluminous web directories
such as ODP. Since such sites are predominately unfacetpplysg 1-2 terms (out-of-turn) may only
reduce the sequences of the hierarchy by 5-10%. Using ehtiidekess than 100% when mining web
FDs will increase the size of the query and reduce the sizesker and, thus, information overload. The
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Itis course scheduling time again and you need to developsahedule of courses for the following semester. You hawldifne job and are working on your undergraduate degreeepst-time
student. You will complete your degree next semester. Yask is to develop a schedule of courses which maétsf the following requirements.

Hint: This problem is a puzzle. Please read the entire set of tondicompletely and carefully before you begin to developryschedule. Not only must the schedule you develop meef all
the following conditions, but it also must have no time/dapfticts (i.e., the schedule must permit you to attend evigscmeeting in full). You may assume that you have the puisig(s) and
corequisite(s) for any course.

1. You are an undergraduate student and therefore arelelfgibonly undergraduate courses.

2. Toaccommodate your full-time work schedule you want ke @s many online courses as possible. However, a depaetpefity states that no student may take more than one online
course per semester.

3. You do not want to take more than 4 courses.
4. Your work schedule permits you to come to campus only tyw&ewveek:

e Tuesdays at or after 4p.

e Thursdays at any time after 10a.
5. A departmental policy forbids you from taking more than &imcourses in one semester.
6. In an effortto minimize your trips to campus, you want arsetthat meets only on Tuesday. The course must start at 4peo®@l should not be a lab or recitation.

7. You only need 11 more credits to graduate. You are on & buiiget. Since tuition is proportional to number of creditsl costly, you can only afford to register for the minimumn
number of credits necessary to fulfill your credit requireifer your degree.

8. You want to take a statistics course as you feel it will befulsn the future.
9. You are not keen on taking courses ‘for fun’ and therefar@ot want to schedule any O-credit courses.
10. You are not pursuing a thesis of any form and thereforeatreligible for research credits.

11. You have been told that independent studies are flexibteonsume an enormous amount of time. Since you workifukistyou cannot afford to trade time for flexibility, and tatare
do not want to take an independent study.

12. You are very busy with your full-time job and don’'t wantite bothered by arranged courses.

Provide your answers in the following table:

|| CourseAbbrev.andNo. | Day(s) | Time | Credit(s)
1 online online
2. Tuesday
3.
4.
Total: 11

Figure 6: An ambitious problem-solving task involving ctrasits and dependencies.

generalization of web FDs in our framework not only makedeeal approximate, but also leads to novel
user interface designs, especially those which give theags@rol over the query expansion threshold (or
metric).

For example, we have designed a slider bar interface (seeSFigyhich allows the user to control
the amount of query expansion used and concomitantly obdeow links on the current webpage are
dynamically pruned out (as the sequences containing themearoved). When the slider is flush to the left
(‘least expansion’), we use confidence of 1 to compute webdfidstherefore, there is still some expansion.
As the user shifts the slider to the right, the confidence wiiich we compute web FDs is reduced, thereby
inducing more query expansion and, as a result, more prumiogice that dynamic link pruning obviates
the need for a ‘Submit’ button; the query is submitted in-teak (i.e., as the user types or shift the slider).
The reader will notice that positive- and negative-path WBls are a continuum of the same concept and
difference between the two only depends on where one drathitbshold.
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6.3 User Studies

We have conducted user studies of various interface de¢@gs a non-interactive, flat HTML table; a
web hierarchy; a faceted classification, and out-of-tuteraction), some of which exploit web FDs, for
interacting with a variety of hierarchical-oriented websi A user study of out-of-turn interaction applied
to PVS and its results are reported in (Perugini, 2004). is ¢khudy, twenty-four users were given eight
information-finding tasks about US politicians and wereefte use either in-turn interaction (browsing)
or out-of-turn interactions to complete these tasks. Hhathese tasks weraon-oriented(meaning they
could be performed with browsing alone, if desired) and timeiohalf wereout-of-turn-orientedmeaning
they would be cumbersome to perform via plain browsing). sTéxXperimental design generated 192 (=
24 x 8) interaction sequences (participant, task) pairs. Wadahat 100% of the users utilized out-of-
turn interaction when presented with an out-of-turn-deentask. Since the task type was not discloaed
priori, this result demonstrates that users are adept at disgenhien out-of-turn interaction is desirable
and actively interleaved it with browsing. However, onektas$ this study — find the political party of
the senior senator representing the only state which hagesspeople from the Independent party — was
completed successfully by only half of the participants.tibethat this task is procedural in nature. The
user must first find the only state with a congressperson fhenintdependent party and then use that state
to find the party of the senior senator from that state.

The pursuit of constraint-satisfaction problems, whice eemmon on the web (e.g., consider com-
parison shopping or planning travel), tend to be procedasalell. For instance, consider the constraint-
satisfaction problem given in Fig. 6 which we have used inlaet gitudy. In this problem, the user’s task
is to develop a schedule of courses which meet all of the gireastraints. In response to the challenge of
completing such procedural tasks, we are now developintire@tion-based interfaces for them which not
only expose/exploit web FDs as espoused in this paper, soifpa@rmit the user to cascade the output from
one thread of information-seeking to the input of another(Bini & Ramakrishnan, 2006).

7 Related Research

Our work lies in the area of web mining. The predominant thimsmost web mining research focuses
on the discovery of patterns in site usage data, e.g., a veglfrieferred to asveb usage mining(Eirinaki

& Vazirgiannis, 2003). Our work differs from this in that weamine site structure and the relationships
between terms, labeling hyperlinks, implicit along thatisture, and would be considerageb structure
mining EXisting approaches based on usage mining rely on theahudy of usage data, whereas our
techniques are applicable more readily. The patternstimegiffom web usage mining, often association
rules, are typically used to induce new paths, such as shsrtitirough the sites as well as index pages. We,
on the other hand, use web FDs primarily for query expansidrich under certain circumstances creates
shortcuts as well) and the feedback it provides for the uSkreover, association rules mined from web
logs areusage-dependeniveb FDs araisage-independenin short, we mine different data and offer an al-
ternate, but complementary, use. Despite these diffesgitive two approaches can complement each other.
For example, the expansions induced by web FDs create sesgi@nthe web log that would otherwise
not exist (because they are not hardcoded into the site)tlackfore, expand the scope of usage data from
which to mine. Furthermore, since the patterns resultinghfboth approaches are most similar to associa-
tion rules, we can draw from similar algorithms. An algonitkivhich mines traversal patterns in web usage
logs is relevant and given in (Chen et al., 1998). AlgoritHorsmining approximate FDs from databases
are also helpful (Huhtala, Krkkinen, Porkka, & Toivonen999 Others (Nambiar & Kambhampati, 2004)
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offer similar algorithms for mining approximate FDs and tlse approximate FDs to create precise queries
from imprecise web queries. In addition, algorithms for imgnpositive- and negative association rules (Wu,
Zhang, & Zhang, 2004) are helpful for identifying positivaeid negative-path web FDs.

Others have studied term and item similarity in hierarchiesr instance, (Resnik, 1999) studies term
similarity to help resolve syntactic and semantic ambiguntnatural language processing. The focus of
other work has been on collaborative-filtering and item nec@ndation. For example, (Ganesan, Garcia-
Molina, & Widom, 2003) study the similarity of users througkerarchical representations of their item
sets. We primarily use web FDs for query expansion. Quergmesipn is a well studied area of information
retrieval research. However, most of the methods used tanekguery terms are probabilistic (Carpineto,
DeMori, Romano, & Bigi, 2001; Cui, Wen, Nie, & Ma, 2002) andskd on the queries of prior users, again,
emphasizing the role of usage logs in these approachesederms from initially-retrieved, top-ranked
documents to expand the query (Mano & Ogawa, 2001). Receaetiy relationships in languages models
have been used for query expansion (Bai, Song, Bruza, Niead, €005). In addition, others have used
navigation as a means to expand queries in an approach gakey by navigatioriBruza & Dennis, 1997).
However, this approach still relies on logs for requirersensome research (Ruthven, 2003) has found
that interactive query expansion needs mechanismsskensto explore and discover relationships between
terms. This work highlights the importance of interfaceshsas thein situ, real-time query expansion
interface illustrated in this article.

Other user interfaces for information search and explomatin the web are starting to incorporate similar
uses of query expansion. We direct the readé€sdogle Suggeghttp://www.google.com/webhp?complete
=1&hl=en) and Stanford’s auto-complesearch on TARhttp://sp06.stanford.edu) systems for two popular
examples. Moreover, Kelley Blue Book online (kbb.com) pdeg an automobile-make lookup (by auto
model) service that exploits functional dependencies @fthmmodel — make (see Fig. 4). In summary,
we distinguish our work from that of others by mining a similgpe of pattern (associations), however,
from a different type of data (hyperlink structure) and ftiemate use (query expansion and out-of-turn
interaction).

8 Discussion

We have presented several classes of web FDs and situateddhéhe many roles they play in enhancing
information access. As discussed here, web FDs achieve @als:gthey generalize schema FDs by mod-
eling value dependencies and, when used for facilitatinly wiractions, also introduce a temporal aspect
(i.e., arrival time of terms) as consideration for captgrdependencies. We have presented direct uses of
web FDs in pruning sites based on partial input, and incréaligrcommunicating the structure of the site
to the user, as the interaction progresses.

An emerging area of research is to be able to communicaterrimnstraints underlying the site and,
in this way, provide more complex tools for problem solvihgthis vein, two promising avenues of future
research arise. First, we intend to study how web functidegendencies can be used as building blocks
to more expressive patterns, which we ca#bsite axioms An example of an axiom in a university’s
online timetable of courses might be: ‘it is impossible toalep a schedule of classes which meet only on
Mondays and Thursdays.” Once identified, we are optimisit such axioms will be helpful in constraint-
satisfaction problems given an appropriate method of ergdeem to users. Second, we plan to study how
the dependencies underling a site can be harnessed to redpdacompose a complex problem-solving task
into a sequence of information-seeking procedures forytutisrough a procedural-oriented interface. In
other words, can web FDs be used to compose or reveal interaairkflows? Since constraint-satisfaction

20



is ingredient central to several web interactions, we fhat this line of future research is particularly
worthwhile.
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