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Abstract

We present an approach to enhancing information access through webstructuremining in contrast to
traditional approaches involving usage mining. Specifically, we mine the hardwired hierarchical hyper-
link structure of websites to identify patterns of term-term cooccurrences we callweb FDs(functional
dependencies). Intuitively, a web FD ‘x→ y’ declares that all paths through a site involving a hyperlink
labeledx also contain a hyperlink labeledy. The complete set of FDs satisfied by a site help character-
ize (flexible and expressive) interaction paradigms supported by a site, where a paradigm is the set of
explorable sequences therein. We describe algorithms for mining FDs, results from mining several hier-
archical websites, and present several interface designs that can exploit such FDs to provide compelling
user experiences.

†Contact author



1 Introduction

Web mining is an established area of research (Kolari & Joshi, 2004) that seeks to uncover patterns in
site structure, usage patterns, and navigation schemas. The end effectors for web mining are primarily in
electronic commerce, typically manifested as personalized experiences for users or better targeting of site
content.

Our goal is to enhance browsing experiences for users (Narayan, Williams, Perugini, & Ramakrishnan,
2004; Perugini & Ramakrishnan, 2003) by developing interaction techniques that more directly address the
user-site impedance mismatch. We differ from prior work (Chen, Park, & Yu, 1998; Eirinaki & Vazirgiannis,
2003; Kamdar & Joshi, 2005) in both the type of information wemine and the uses we find for the patterns
mined. Specifically, we analyze site structure to recover persistent properties of the domain modeled, in-
dependent of user interactions. At the same time, we presentways to harness the results of data mining to
realize more responsive dialogs between users and websites.

The basic approach adopted here is to think of site structureas exposing dialog completion paths, or
interaction sequences that capture the sequential ordering of information inputs, en route to a target page.
Patterns in these interaction sequences, calledweb FDs, expose important relationships which can be har-
nessed to create adaptive dialogs that situate the user’s partial input in the context of the site, without dis-
rupting the site’s basic navigation schema. We show that webFDs are ubiquitous and suggest many natural
information-seeking interfaces. We focus on primarily hierarchical sites as they present the greatest benefit
for the techniques presented here.

2 Web Functional Dependencies

A web functional dependency(FD) of the formx → y declares something about the relationship between
the termsx andy wrt their co-occurrence (or lack thereof) along the structure of a website. Intuitively, a web
FD x → (¬)y indicates thatall (no) sequences involvingx also involvey. We describe two classes of web
FDs — negative and positive — which have complementary uses in information-seeking. Negative web FDs
help prune a website, while positive web FDs suggest a way to conduct query expansion and approximate
information retrieval. Each class can be further decomposed into path and leaf web FDs.

Positive Web FDs

A positive-path web FDx → y, wherex and y are terms, exists when the complete set of sequences
containingx is a subset of the complete set of sequences containingy. The complete set of positive-path
web FDs which hold in the website shown in Fig. 1 is

{2003 → {Ford, Taurus},
2006 → {Civic, Honda},

Accord → Honda,
Camry → Toyota,

Civic → Honda,
Corolla → Toyota,

Focus → {2005, Ford},
Taurus → Ford,

{2004, Ford} → Taurus,
{2004, Honda} → Accord}

In Fig. 1, edge-labels model hyperlink labels (i.e., the text between<a href="..."> and</a>) or, in
other words, choices made by a navigator en route to a leaf. Werefer to an edge-label as atermeven though
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Figure 1: Example (DAG) model of a hierarchical automobile web directory with characteristics similar to
those in Edmunds.com.

it may contain more than one word (i.e., any string of characters except space). For instance, ‘side airbags’
would be a term in our viewpoint if it were the anchor text for some hyperlink.

We borrow thesplitting/combiningrule (Garcia-Molina, Ullman, & Widom, 2002) from relational
database theory to simplify our presentation of these web FDs. For instance, ‘2003→ {Ford, Taurus}’
expresses two individual web FDs in one expression: ‘2003→ Ford’ and ‘2003→ Taurus.’ However, the
web FD ‘{2004, Ford} → Taurus’ isnot a simplification of the ‘2004→ Taurus’ and ‘Ford→ Taurus’ web
FDs (neither are satisfied by the site), but rather states that all sequences through the site involving 2004and
Ford also involve Taurus. In total, 13 positive-path web FDshold in theDAG shown in Fig. 1 (discounting
trivial web FDs such as ‘Civic→ Civic’, ‘ {2005, Civic} → Civic’, and ‘{2005, Civic} → Honda’), though
we require only 10 expressions to present them.

A positive-leaf web FDx→ y specifies thatall of the leaves classified by sequences involvingx also are
classified by all sequences involvingy. For instance, ‘Accord→ Honda’ is a positive-leaf web FD satisfied
by site depicted in Fig. 1. Positive-leaf web FDs are more general than positive-path web FDs in that all
positive-path web FDs also are positive-leaf web FDs, but the reverse is only true in trees, e.g., such as
that shown in Fig. 1, in which there is only one path from the root to each leaf. Thus, the complete set of
positive-leaf web FDs which hold in Fig. 1 is the complete setof positive-path web FDs given above.

Notice also that a positive (-path or -leaf) web FDx→ y does not necessarily mean thaty → x.

Negative Web FDs

A negative-path web FDx → ¬y indicates thatnoneof the sequences through the site involvingx involve
y. Considering only negative-path web FDs with one term on theleft, a total of 103 FDs are satisfied by the
DAG shown in Fig. 1, though we require only 13 expressions to capture them:
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Table 1: Two instances of a relation with schemaR(A1, A2). (left) Satisfies the database FDA1 → A2 as
well as 4 web FDs:{a→ c, b→ c, d→ e, e→ d}. (right) Does not satisfy the database FDA1 → A2, but
does satisfy 2 web FDs:{b→ c, e→ d}.

A1 A2

a c

b c

d e

A1 A2

a c

a d

b c

d e

{2003 → ¬ {2004, 2005, 2006, Accord, Camry, Civic, Corolla, Focus, Honda, Toyota},
2004 → ¬ {2003, 2005, 2006, Civic, Focus},
2005 → ¬ {2003, 2004, 2006},
2006 → ¬ {2003, 2004, 2005, Accord, Camry, Corolla, Focus, Ford, Taurus, Toyota},

Accord → ¬ {2003, 2006, Camry, Civic, Corolla, Focus, Ford, Taurus, Toyota},
Camry → ¬ {2003, 2006, Accord, Civic, Corolla, Focus, Ford, Honda, Taurus},

Civic → ¬ {2003, 2004, Accord, Camry, Corolla, Focus, Ford, Taurus, Toyota},
Corolla → ¬ {2003, 2006, Accord, Camry, Civic, Focus, Ford, Honda, Taurus},

Focus → ¬ {2003, 2004, 2006, Accord, Camry, Civic, Corolla, Honda, Taurus, Toyota}
Ford → ¬ {2006, Accord, Camry, Civic, Corolla, Honda, Toyota},

Honda → ¬ {2003, Camry, Corolla, Focus, Ford, Taurus, Toyota},
Taurus → ¬ {2006, Accord, Camry, Civic, Corolla, Focus, Honda, Toyota},
Toyota → ¬ {2003, 2006, Accord, Civic, Focus, Ford, Honda, Taurus}}.

A negative-leaf web FDx → ¬y specifies thatnoneof the leaves classified by sequences involvingx

are classified by sequences involvingy. Negative-leaf and -path web FDs also are equivalent in treemodels
of websites, e.g., such as that shown in Fig. 1. Further, any negative-leaf web FD satisfied by a site is a
negative-path web FD satisfied by that site, though the reverse only holds in trees.

Notice further that negative (-path and -leaf) and positive(-path and -leaf) web FDs are not complements
of each other, i.e., the presence ofx→ y does not necessarily imply the presence ofx→ ¬ {T − y}, where
T represents the complete set of terms in the site. Similarly,a site that satisfiesx → ¬y may not satisfy
x→ {T − y}. However, it is true that any negative web FDx → ¬ y considered here impliesy → ¬ x.

3 Reasoning with Web FDs

Relationship between Web FDs and Database FDs

Web FDs can be viewed as both generalizations (in one sense) and specializations (in another) of database
FDs. In relational database theory, an FD of the formA → B means that all tuples which agree on their
value(s) forA mustagree on their value(s) forB. Here,A andB are attributes of the relational schema, and
therefore, we refer to such FDs asschema FDs. In contrast, the left and right sides of a web FD constitute
values rather than attributes. Therefore, we say that web FDarevalue FDs. This caveat implies that web
FDs are less restrictive than database FDs. Specifically, web FDs can exist between values of two attributes
A1 andA2 of a relation instanceR even if no database FDs betweenA1 andA2 are satisfied byR. For
instance, consider the two instances in Table 1 of the relation with schemaR(A1, A2). The schema FD
A1 → A2 holds in the instance on the left. In addition, several valueFDs hold as well:{a → c, b → c,
d→ e, e→ d}. However, while the schema FDA1 → A2 does not hold in the instance on the right, notably
some value FDs are still satisfied by that instance:{b→ c, e→ d}.
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In the above example of Table. 1 (right), observe that the webFDsa → c andd → e arenot satisfied.
The violation of the first web FD is an example that violates the underlying database FD (A1 → A2) as
well. However the reason the second does not hold in more subtle. Hered is a legal value for either of the
attributesA1 andA2 and it is not generally true that all sequences involvingd also involvee. Nevertheless,
it is true that all sequences involvingd as a value ofA1 also involvee as a value ofA2. Therefore, since
web FDs are silent on the relationship between schema and attribute values, their requirements can be more
stringent than database FDs.

The above discussion reiterates that web FDs can be simultaneously more restrictive and less restrictive,
in different aspects, than database FDs. We can extend the complete set of inference rules for reasoning with
database FDs, known asArmstrong’s axioms(reflexivity, augmentation, andtransitivity) (Garcia-Molina et
al., 2002), from relational database theory to reason aboutweb FDs as well, by focusing on relationships
between values rather than attributes. Moreover, this deductive apparatus is alsosoundandcompletefor
web FDs (outside the scope of this paper).

The emphasis on values rather than attributes also implies that there are more ways for a web FD to be
trivial. In a database, an FDA→ B is trivial if the right side (B) is a subset of the attributes on the left (A).
Similarly, in the web context, a (positive) FDA → B can be trivial for this reason and, in addition, when
the number of interaction sequences supporting the left side is zero. Moreover, in the database world, an FD
A → B is said to benontrivial if at least one of theB’s is not among theA’s andcompletely nontrivialif
none of theB’s is also one of theA’s (Garcia-Molina et al., 2002). The first of these definitions also applies
to web FDs. For example, the web FD ‘Accord→ {Accord, Honda}’ is nontrivial. However, we strengthen
the definition of completely nontrivial in the web setting byaugmenting it: a web FDA→ B is completely
nontrivial if none of theB’s is also one of theA’s and if no proper subsetS of A functionally determinesB.
The database community calls the attributes inA−S extraneous(Silberschatz, Korth, & Sudarshan, 2006).
For instance, the web FD ‘{2005, Accord} → Honda’ is not completely nontrivial in the site shown in Fig.1
since the site also satisfies the ‘Accord→ Honda’ web FD. Notice that above we only show the completely
nontrivial web FDs satisfied by the site in Fig. 1. As we will see when we discuss uses of web FDs, we are
only interested in all completely nontrivial web FDs.

Relationship between Web FDs and Association Rules

The ideas between web FDs and association rules are more aligned if we view interaction sequences as
transactions and terms as items. In this modeling, web FDs are simply association rules with a confidence of
1 (Agrawal, Imielinski, & Swami, 1993). However, we hasten to add that, later in this paper, we will view
web FDs in the context of a real website interaction, so that the terms are time-indexed with an arrival stamp.
Hence, the use of terms in a web FD will imply an ordering basedon relationships between their arrival time
in an interaction sequence (whereas the items of a transaction are unordered). Furthermore, we will relax
the confidence threshold to less than1 and suggest potential uses in information retrieval. In addition, we
will discuss term-similarity metrics, beyond the containment of one set of sequences in another, which yield
web FDs bearing little similarity to association rules. Also, note that association rules in web mining are
predominantly mined from web usage logs and, as a result, have been used in web modeling primarily to
study and understand site usage patterns.
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4 Mining Web Functional Dependencies

Recall a web FD of the formx→ Y , wherex is an edge label (Y may represent an edge label or several edge
labels), exists when the complete set of sequences containing x is a subset of the complete set of sequences
containing (all of the terms in)Y . We call thesesingle-step web FDsand those of the formX → Y , where
X is a set of edge labels,multi-step web FDs. Notice that since a set may contain only one element, every
single-step FD is a multi-step FD. Here, asequenceis an ordered list of terms from the root of a website to
a leaf.

To mine all multi-step web FDs, we build a multi-level, recursive index and walk it in a recursive, depth-
first fashion. While recursing deep into the index, we repeatedly identify single-step web FDs on subgraphs
of the website and when backing out of the recursion, we grow those single-step web FDs into multi-step
web FDs.

Algorithm 1 illustrates the functions for mining multi-step positive-path, web FDs from aDAG repre-
sentation of a website. The functionbuild−index in Algorithm 1 builds the multi-level, recursive index.
Each entry in the index is a (key, set of sequences, multi-level recursive index) triple. The key is a term. The
set of sequences are those which contain the key term. The third component of the triple is a multi-level,
recursive index of a site consisting only of the sequences from the second component (of this triple) after
removing the key term from each (see functionselectSequences). Thus, the third component points to a
multi-level, recursive index of a reduced version of the website. Each index contains exactly one entry for
each term in the site. The worst case running time ofbuild−index is potentiallyO(|T |!), whereT is the
complete set of terms in the website (but see discussion later about how it is more instructive to study algo-
rithmic complexity in output-sensitive terms and why this is practical). Table 2 shows the index resulting
from applying thebuild−index function to theDAG shown in Fig. 1. Notice that the recursive nature of the
index is evident in the third component of every element. Since positive web FDs can only exist between
terms which co-occur, this index helps us prune the search space.

Traversal of this index, and thus the discovery of all multi-step web FDs, is an induction on the size of
the index.

BASIS: A site with an empty index satisfies no multi-step web FDs. Since our algorithm is not linear-
recursive, the basis is reached often, i.e., whenever we encounter an index entry of the form (x, {s1, s2, . . . , sn},
nil).

INDUCTION: When we encounter an index entry with a non-nil third component, we check, as described
above, if a single-step web FD exists between the key of the triple (i.e., its first component) and the key of
the first entry of the index in its third component. If a dependency exists, we add it to a list of web FDs local
to this recursive instance of the problem and then recurse with the entire sub-index. When the most recent
recursive call returns, we have a list of all of the multi-step web FDs from that problem instance. To achieve
the complete set of multi-step web FDs for the prior instancewe simply have to prepend the key term of the
index entry from the prior instance to each multi-step FD of the current instance.

Intuitively, our approach involves progressively removing terms, one at a time, from the original site,
i.e., removing it from every sequence containing it. We can think of this new set of sequences as constituting
a new siteS′. We then can compute the complete set of single-step web FDs satisfiedS′. By adding the
term removed to the lhs of each of the resulting (single-step) web FDs, we have identified aportion of
the two-step web FDs, i.e., those with only two terms on the lhs. For example, the following is the set of
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sequences from Fig. 1 involving ‘Ford’ (with the term ‘Ford’then removed from those):{≺Focus, 2005≻,
≺Taurus, 2003≻, ≺Taurus, 2004≻, ≺Taurus, 2005≻}. The complete set of single-step web FDs satisfied
by only these sequences is{2003→ Taurus, 2004→ Taurus}. We can now add the term ‘Ford’ to the lhs
of each to attain a portion of the two-step web FDs from Fig. 1:{{2003, Ford} → Taurus,{2004, Ford} →
Taurus}. Since the single-step web FD ‘2003→ Taurus’ is satisfied by the original site, the web FD ‘{2003,
Ford} → Taurus’ is trivial (i.e., it adds no new information) and canbe safely omitted. Therefore, we have
a portion of the complete set of two-step web FDs from the original site: ‘{2003, Ford} → Taurus’.

Functionsmine−multi−step−webFDsHelper andmine−multi−step−webFDs in Algorithm 1
illustrate how to mine multi-step positive-path web FDs from a multi-level, recursive index using this pro-
cedure.

Table 3 shows the multi-step positive-path web FDs resulting from applyingmine−multi−step−webFDs

to theDAG shown in Fig. 1, which involves building and using the index shown in Table 2. The function
walk collects the web FDs encapsulated within this data structure into a bag. Walking the data structure
shown in Table 3 results in 45 web FDs and 17 of them are duplicates (e.g., ‘{Ford, 2003} → Taurus’ and
‘{2003, Ford} → Taurus’). The functionuniq removes duplicates from the resulting bag. Furthermore, we
can safely reduce the 28 unique web FDs to 13 FDs by removing all web FDs which are not completely
nontrivial (e.g., ‘{2004, Accord} → Honda’ and ‘{2005, Accord} → Honda’). The functionsimplify

further prunes out all webs FDs which are not completely nontrivial. Notice that these simplifications of the
complete set of web FDs isnot analogous to computing a minimal basis of a set of relationaldatabase FDs
using a canonical cover algorithm (Silberschatz et al., 2006). A minimal basis of a set of FDs is desired for
each relation in a relational database to reduce the number of FDs which must be checked for satisfaction
by the relation after an update to it. In stark contrast, herewe desireall completely nontrivial web FDs, not
just a minimal set from which the complete set follows, for reasons related to our application of them in a
web user interface discussed in section 6.

Algorithm 1 is sound and complete. It is levelwise like theApriori algorithm from association rule
mining (Agrawal & Srikant, 1994) and, hence, its complexitycan be studied in similar terms. The number of
web FDs (sayp) in a site is potentially exponential in its size but, just asin traditional data mining algorithms,
the number of web FDs reduces dramatically as we drill through the levels. This makes Algorithm 1 to be
output-sensitive with complexityO(p). The section below covering the uses of web FDs discusses howtheir
discovery is practical in a web user interface as the user traverses through the levels.

Identifying the complete set of negative web FDs satisfied bya site is straightforward (see Algorithm 2).
The rhs of negative web FDs with lhsx is the difference between the entire set of terms in the site and those
terms with whichx co-occurs (in some sequence). Note that the rhs of a negativeweb FD is not simply the
complement of terms that occur in its positive counterparts: for a term to be used in the rhs of a positive
web FD, it must co-occur inall sequences involving the lhs, whereas for a term to be used in the rhs of a
negative web FD, it must not co-occur inanyof the sequences involving the lhs. Algorithm 2 is linear in the
total number of terms in the website.

Notice that whileArmstrong’s axiomshold in the web FD context, a closure algorithm (involving ap-
plications of them) (Garcia-Molina et al., 2002) is insufficient to discover all web FDs satisfied by a site.
This is because a closure algorithm must start with abasisset of FDs to determine the complete set of
FDs (Garcia-Molina et al., 2002). Algorithm 1 discovers allweb FDs and is thus functionally equivalent to
discovering a basis set of FDs followed by computing the closure of that basis.
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Name: build−index

Type: set of sequences→ Index{a list of (term, set of sequences, Index) triples}
Parameters: set of sequencesS

if S = nil then
return nil

else
T ← getT erms(S) {returns the set of terms inS}
for i← 0 to |T | do

S
′

← selectSequences(T [i], S) {selects all sequences fromS containing the termT [i], removesT [i] from
each sequence in that set, and returns the resulting set}
index[i]← (T [i], S

′

, build−index(S
′

))
end for

end if
return index {a list of (term, set of sequences, Index) triples}

Name: mine−multi−step−webFDsHelper

Type: Index→ multi-step-webFDs{a list of (term, set of terms, multi-step-webFDs) triples}
Parameters: Indexindex

for i← 0 to |index| do
multi−step−webFDs[i](#1)← index[i](#1)
if index[i](#3) = nil then

multi−step−webFDs[i](#2) = nil
multi−step−webFDs[i](#3) = nil

else
for j ← 0 to |index[i](#3)| do

if index[i](#2) ⊂ index[i](#3)[j](#2) then
multi−step−webFDs[i](#2)← multi−step−webFDs[i](#2) ∪ index[i](#3)[j](#1)

end if
multi−step−webFDs[i](#3)←
multi−step−webFDs[i](#3) ∪mine−multi−step−webFDsHelper(index[i](#3)[j](#1))

end for
end if

end for
return multi−step−webFDs {a list of (term, set of terms, multi-step-webFDs) triples}

Name: mine−multi−step−webFDs

Type: DAG→ multi-stepwebFDs{a set of completely nontrivial multi-step web FDs}
Parameters: DAG D

S ← sequencize(D) {returns the set of sequences fromD}
index← build−index(S)
multi−step−webFDsIntermed1 ← mine−multi−step−webFDsHelper(index) {a list of (term, set of
terms, multi-step-webFDs) triples}
multi−step−webFDsIntermed2← walk(multi−step−webFDsIntermed1) {a bag of multi-step web FDs}
multi−step−webFDsIntermed3← uniq(multi−step−webFDsIntermed2) {a set of multi-step web FDs}
multi−step−webFDs ← simplify(multi−step−webFDsIntermed3) {a set of completely nontrivial multi-
step web FDs}
return multi−step−webFDs {final set of completely nontrivial multi-step webFDs}

Algorithm 1: Mine completely nontrivial multi-step positive-path web FDs, simplified for purposes of
presentation.
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Table 2: Multi-level, recursive index of the sample automobile website in Fig. 1.

Ford {11, 12, 13, 14}

Focus {11} 2005 {11} nil

Taurus {12, 13, 14}
2003 {12} nil
2004 {13} nil
2005 {14} nil

2003 {12} Taurus {12} nil

2004 {13} Taurus {13} nil

2005 {11, 14}
Focus {11} nil
Taurus {14} nil

Honda {15, 16, 17, 18}

Accord {15, 16}
2004 {15} nil
2005 {16} nil

Civic {17, 18}
2005 {17} nil
2006 {18} nil

2004 {15} Accord {15} nil

2005 {16, 17}
Accord {16} nil
Civic {17} nil

2006 {18} Civic {18} nil

Toyota {19, 20, 21, 22}

Camry {19, 20}
2004 {19} nil
2005 {20} nil

Corolla {21, 22}
2004 {21} nil
2005 {22} nil

2004 {19, 21}
Camry {19} nil
Corolla {21} nil

2005 {20, 22}
Camry {20} nil
Corolla {22} nil

Focus {11}
Ford {11} 2005 {11} nil

2005 {11} Ford {11} nil

Taurus {12, 13, 14}

Ford {12, 13, 14}
2003 {12} nil
2004 {13} nil
2005 {14} nil

2003 {12} Ford {12} nil

2004 {13} Ford {13} nil

2005 {14} Ford {14} nil

Accord {15, 16}
Honda {15, 16}

2004 {15} nil
2005 {16} nil

2004 {15} Honda {15} nil

2005 {16} Honda {16} nil

Civic {17, 18}
Honda {17, 18}

2005 {17} nil
2006 {18} nil

2005 {17} Honda {17} nil

2006 {18} Honda {18} nil

Camry {19, 20}
Toyota {19, 20}

2004 {19} nil
2005 {20} nil

2004 {19, 21} Toyota {19, 21} nil

2005 {20, 22} Toyota {20, 22} nil

Corolla {21, 22}
Toyota {21, 22}

2004 {21} nil
2005 {22} nil

2004 {21} Toyota {21} nil

2005 {22} Toyota {22} nil

2003 {12}
Ford {12} Taurus {12} nil

Taurus {12} Ford {12} nil

2004 {13, 15, 19, 21}

Ford {13} Taurus {13} nil

Honda {15} Accord {15} nil

Toyota {19, 21}
Camry {19} nil
Corolla {21} nil

Taurus {13} Ford {13} nil

Accord {15} Honda {15} nil

Camry {19} Toyota {19} nil

Corolla {21} Toyota {21} nil

2005 {11, 14, 16, 17, 20, 22}

Ford {11,14}
Focus {11} nil
Taurus {14} nil

Honda {16, 17}
Accord {16} nil
Civic {17} nil

Toyota {20, 22}
Camry {20} nil
Corolla {22} nil

Focus {11} Ford {11} nil

Taurus {14} Ford {14} nil

Accord {16} Honda {16} nil

Civic {17} Honda {17} nil

Camry {20} Toyota {20} nil

Corolla {22} Toyota {22} nil

2006 {18}
Honda {18} Civic {18} nil

Civic {18} Honda {18} nil
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Table 3: Data structure storing the complete set of multi-step web FDs satisfied by the sample automobile
website in Fig. 1.

Ford nil
Focus {2005} nil
2003 {Taurus} nil
2004 {Taurus} nil

Honda nil
2004 {Accord} nil
2006 {Civic} nil

Toyota nil nil

Focus {Ford, 2005}
Ford {2005} nil
2005 {Ford} nil

Taurus {Ford}
2003 {Ford} nil
2004 {Ford} nil
2005 {Ford} nil

Accord {Honda}
2004 {Honda} nil
2005 {Honda} nil

Civic {Honda}
2005 {Honda} nil
2006 {Honda} nil

Camry {Toyota}
2004 {Toyota} nil
2005 {Toyota} nil

Corolla {Toyota}
2004 {Toyota} nil
2005 {Toyota} nil

2003 {Ford, Taurus}
Ford {Taurus} nil
Taurus {Ford} nil

2004 nil

Ford {Taurus} nil
Honda {Accord} nil
Taurus {Ford} nil
Accord {Honda} nil
Camry {Toyota} nil
Corolla {Toyota} nil

2005 nil

Focus {Ford} nil
Taurus {Ford} nil
Accord {Honda} nil
Civic {Honda} nil
Camry {Toyota} nil
Corolla {Toyota} nil

2006 {Honda, Civic}
Honda {Civic} nil
Civic {Honda} nil

Name: mine−negative−path−webFDs

Type: DAG→ negative-path-webFDs{a list of (term, set of terms) pairs}
Parameters: DAG D

S ← sequencize(D) {returns the set of sequences fromD}
T ← getT erms(S) {returns the set of terms fromS}
term−termIndex← build−term−term−index(T , S)
for i← 0 to |T | do

negative−path−webFDs[i](#1)← T [i]
negative−path−webFDs[i](#2)← T − term−termIndex[i]

end for
return negative−path−webFDs {a list of (term, set of terms) pairs}

Algorithm 2: Mine negative-path web FDs, simplified for purposes of presentation.
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Table 4: Structural characteristics of sites mined for web FDs. Key: Nl-x=non-leaf crosslink, L-x=leaf
crosslink, F=faceted,T-n=total nodes, Nl-n=non-leaf nodes, L=leaf nodes, and S=sequences. ODP is not a
DAG because some of its crosslinks create cycles.

Website Name URL Type Nl-x? L-x? Depth F? #T-n #Nl-n #L=#S #Terms µ Fan-out

Project Vote Smart vote-smart.org tree × × [4]
√

856 316 540 116 2.71
Citidel DL citidel.org DAG × √

[2–4] × 6,066 551 5,515 4,715 11.00
Epicurious Recipes epicurious.com DAG × √

[2–7]
√

86,488 26,102 60,386 127 3.31
Edmunds Autos edmunds.com tree × × [6]

√
15,826 11,326 4,500 5,195 1.40

ODP (Home) dmoz.org graph
√ √

[2–8] × 2,059 493 2,026 1,667 5.11

5 Results

We mined web FDs in five hierarchical-oriented sites using animplementation1 of the algorithm presented
in the previous section. We chose these sites for the varietyof structural characteristics they provide as well
as their differences in size (see Table 4). Before providingthe details of the web FDs mined from each
site, we briefly discuss various characteristics of each dataset, how and when we collected them, and their
structural differences.

We collected each dataset, except that from ODP (Open Directory Project at dmoz.org), by conduct-
ing a depth-first crawl of the site and extracting each hyperlink label during the traversal. ODP, on the other
hand, makes its entire hierarchical hyperlinked structurein RDF2 format available for free download through
http://rdf.dmoz.org/rdf/structure.rdf.u8.gz. We collected the Edmunds dataset in August 2005, the Citidel
and Epicurious datasets in December 2005, and the PVS dataset in March 2006. We extracted the dataset
for ODP from the RDF structure file downloaded in November 2005. The dataset from PVS represents the
entire Congressional hierarchy and that from Epicurious represents the entire recipe browsing classification.
Citidel indexes documents through four popular classification schemes and the dataset we collected repre-
sents the unity of the complete hierarchy for each of the fourthrough a common root and an edge to the
root of each individual scheme labeled with the name of the scheme to which it links (e.g., CCS – ACM
Computing Classification System). We mined web FDs between all four schemes and not just within each
individual scheme. The Edmunds dataset contains a sequencefor each automobile from 1990–2004 with
attributes year, make, model, size, price, and fuel efficiency (miles per gallon). Due the immense size of
ODP (i.e., approximately 690,000 nodes, over 218,000 distinct terms, and a maximum depth of 14), we only
mined web FDs from theHomecategory.

We can draw several distinctions between hierarchical websites. For instance, some sites are modeled
as trees, where there is only one path from the root to any leaf(i.e., a node which is the source of no edge).
Others are modeled by non-treeDAGs (directed acyclic graphs), where there may be more than onepath
from the root to any leaf owing to the presence ofcrosslinks(sometimes calledsymbolic links). A crosslink
is a special type of hyperlink which makes a directed connection between a webpage along one path through
a site to a page along another path. Crosslinks are typicallyemployed in human-compiled directories of
websites, such as Yahoo! or ODP which are popular hubs to web resources. In these sites, crosslinks, whose
labels end with@, are used to provide multiclassification, shortcuts deeperinto the directory, and backlinks
out of sub-categories or, in short, to make information access flexible. TheArts category of ODP has a
crosslink labeled ‘Museums@’ whose target is a page in theReferencecategory. We distinguish between a
non-leaf crosslink, whose target is a non-leaf node (i.e., the source of some edge) and aleaf crosslink, whose

1We implemented the multi-step web FD mining algorithm in Standard ML using less than 600 lines of code.
2Resource Description Framework, a data interchange formatcommonly used to describe web metadata for machine processing.
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target is a leaf. This distinction is motivated by sites, especially those whose pre-leaf nodes represent a flat
list of search results (e.g., Citidel, Epicurious, and ODP), which use crosslinks originating from nodes at the
pre-leaf level to classify terminal objects through multiple sequences.

Since Citidel uses four tree-structured classification schemes it, as shown in Table 4, has only leaf
crosslinks, i.e., only the documents themselves which it indexes may have more than one parent. Similarly,
Epicurious only has leaf crosslinks. ODP has both non-leaf and leaf crosslinks. Thus, the leaf nodes of these
sites have more than one parent. Leaves in Citidel, Epicurious, and ODP correspond to documents, recipes,
and websites, respectively, while nodes at their pre-leaf levels correspond to sets of these items. Links into
these leaves are labeled with the particular document title, recipe name, or website name/URL and this label
is typically a key for the sequence. Thus, when mining web FDsin these sites, we consider sequences from
the root down to only the pre-leaf level in order to foster a fair basis for comparison to the web FDs mined
in the other sites considered here.

The hierarchies of the sites we mined also vary in depth. We define thelevel of an edge-label as the
depth of the source of the edge it labels. Theminimum depthof aDAG D is the level of an edge-label inD
which is less than or equal to the level of all other edge-labels in D. In other words, minimum depth is the
minimum number of clicks required to access a leaf, i.e., thedepth of that leaf. Themaximum depthof a
DAG D is the level of an edge-label inD which is greater than or equal to the level of all other edge-labels in
D. In other words, maximum depth is the maximum number of clicks required to access a leaf, i.e., again,
the depth of that leaf. The column labeleddepthin Table 4 provides the minimum and maximum depth
(or, in other words, depth range or sequence-length range) of each site; in some sites, each sequence has a
consistent length (see PVS and Edmunds) and, thus, require only a single number to represent depth. The
sample website given Fig. 1 has a consistent sequence length.

We can also distinguish sites based on the relationship of the hyperlink labels on each webpage of the
hierarchy. Infacetedsites (Hearst et al., 2002), all of the hyperlink labels on a single webpage belong
to only one facet of information assessment. The facets of PVS are≺state, branch, party, seat/district≻
while those of Epicurious are≺main ingredient, preparation method, cuisine, season/occasion, course/meal,
dish, special considerations≻. Moreover, notice that the sample website illustrated in Fig. 1 is faceted
(≺make, model, year≻ are its facets). In some sites however, such as Citidel and ODP, all of the hyperlink
labels on each page have no discernible relationship and thus lack the concept of a facet. We called these
sitesunfaceted. Notice from Table 4 that a faceted site does not imply a consistent sequence length (see
Epicurious).

Faceted sites present the opportunity to compress dependencies between values of facets (i.e., traditional
web FDs) using dependencies between facets themselves. Essentially, web FDs become synonymous with
database FDs. For example, we can say that the site in Fig. 1 and Edmunds satisfy FDs of the formmodel →
make because a total, onto function exists between the values of the facets model and make, where model
is the domain and make is the codomain.

The values for the number of nodes, non-leaf nodes, leaf nodes, and terms in Table 4 capture the volume
of each site. Each term count does not include duplicates. Again, note that we define a term as a hyperlink
label (e.g., ‘Information Storage and Retrieval’ is one term in Citidel) and this viewpoint is reflected in our
terms counts. Lastly, we define average fan-out as the total fan-out (i.e., the total number of nodes minus
one) divided by the total number of non-leaf nodes in the site.

Table 5 provides statistics on the number of completely nontrivial (positive- and negative-path) web FDs
mined from each site. The column labeled ‘#Pos. web FDs’ captures the number of completely nontrivial
positive-path web FDs with only one term on the rhs. The column labeled ‘#Neg. web FDs’ gives the
number of negative-path web FDs with only one term on both thelhs and rhs. We provide the average,

12



Table 5: Statistics on the number of completely nontrivial (positive- and negative-path) web FDs mined
from each website.

Website #Pos. web FDs #Neg. web FDs µ #Neg. web FDs σ
2 #Neg. web FDs σ #Neg. web FDs

Project Vote Smart 715 11,556 99.62 342.15 18.50
Citidel DL 13,266 1,798,016 191,353.48 1.42× 1012 1,189,953.43

Epicurious Recipes 41,653 4,932 42.52 306.29 17.50
Edmunds Autos 49,304 26,919,082 232,061.05 2.31× 1012 1,518,303.92

ODP (Home) 6,188 2,765,444 23,840.03 7,070,405,517.77 84,085.70

variance, and standard deviation of the number of negative web FDs involving the same term on the lhs in
the columns labeled ‘µ #Neg. web FDs’,‘σ2 #Neg. web FDs’, and ‘σ #Neg. web FDs’, respectively. These
are better motivated later.

Given our experimental results (Table 5), we draw no conclusion about the relationship between the
number of sequences through a site and the number of positiveweb FDs it satisfies. This re-affirms that
web FDs are a function of the term-term co-occurrences alongthe sequences of the site and an artifact
of the underlying domain rather than simply of the number of sequences through the site. Notice that the
(#sequences, #positive web FDs) point provided by the Edmunds dataset appears to be an outlier wrt number
of sequences vs. number of positive web FDs. The Edmunds dataset contains only 4,500 sequences, yet
satisfies nearly 50,000 positive web FDs. Without that point, the number of sequences and positive web FDs
are correlated linearly withr2=0.95. Similarly, we draw no conclusion about the relationship between the
number of sequences through a site and the number of negativeweb FDs it satisfies. When analyzing the
relationship between the number of sequences through a siteand the number of negative FDs it satisfies,
the (#sequences, #negative web FDs) data points provided byEpicurious and Citidel appear to be outliers.
The Epicurious dataset contains over 60,000 sequences, butless than 5,000 negative web FDs. On the other
hand, the Citidel dataset contains less than 6,000 sequences, yet satisfies nearly 2 million negative web FDs.
As we will see later, terms in sites with many negative FDs, and particularly a high average number of
negative FDs per term, can be used as a basis to perform a greatdeal of website pruning. Without those
points, the number of sequences and negative web FDs are linearly correlated withr2=0.92. Overall, our
results indicate that web FDs occur naturally in a variety ofsites across the web. Moreover, our results
show that the presence (not to be confused with volume or length) of FDs is not affected by the distinctions
between these sites.

6 Uses of Web Functional Dependencies in Information Seeking

Web FDs serve multiple uses, from enhancing interaction experiences of users, to helping communicate the
structure of a website by capturing relationships between site facets. We now showcase some of the more
promising of these uses.

6.1 Real-time Query Expansion

Implicit Expansion

One use of web FDs is as a means to conduct query expansion while a user is searching or browsing a
web hierarchy. We useout-of-turn interaction, a technique for integrating browsing and searching a web
hierarchy, to illustrate this use of web FDs. Out-of-turn interaction permits the user, at any point while
browsing a hierarchy, to supply terms corresponding to their information need. These terms are then matched
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→ → . . .

Figure 2: Use of an out-of-turn interaction interface through a voice-enabled browser. (left) The user decides
to not pursue any of the presented hyperlinks and instead speaks ‘Accord’ out-of-turn. This triggers the
Accord→ Honda web FD. The query is thus expanded to ‘Accord Honda’ andresults in the webpage (right)
with links representing the only two remaining car years. The dialog continues in this manner.

against all of the hyperlink labels in the hierarchy rooted at the current page to select the sequences through
the site in which they appear. Out-of-turn interaction returns a hierarchy containing only these sequences to
sustain the semblance of hierarchy and the progressive drill down it.

There are multiple interpretations for an out-of-turn interaction. A simple interpretation is to retain only
those sequences through the site containing a hyperlink labeled with the out-of-turn input, prune all others,
and shrink those remaining by removing the edges labeled with the out-of-turn input. For instance, when a
user supplies ‘Accord’ out-of-turn to the site depicted in Fig. 1, we would return a tree with a root with only
one link to the sub-site rooted at page 7, i.e.,{(1, Honda, 7), (7, 2004, 15), (7, 2005, 16)}3. We support the
user in supplying out-of-turn inputs through two interfaces: a toolbar embedded into a web browser, and not
the site’s pages, and a voice-user interface. We have applied out-of-turn interaction to several websites. We
refer the reader interested in the details of out-of-turn interaction, including a software framework supporting
it as well as these user interfaces for it, to (Narayan et al.,2004; Perugini & Ramakrishnan, 2006).

The nature of the website pruning conducted with out-of-turn interaction often results in hierarchies
with several pages containing only one hyperlink, as is seenin the prior example. Using web FDs to expand
the user query addresses this situation. For instance, whena user supplies ‘Accord’ out-of-turn to the site
depicted in Fig. 1, we would use the web FD ‘Accord→ Honda’ (satisfied by that site) to expand the query
to ‘Accord Honda’. This query would result in the tree rootedat page 7, which has more than one hyperlink.
Fig. 2 depicts this web interaction using a voice modality tosupply terms out-of-turn. Such expansions
produced using web FDs ensures that the user will never be presented with a webpage containing only
one hyperlink (because all others were pruned out) in response to a query. Moreover, expansions in effect
provide severalshortcutsthroughout a web hierarchy. The shortcut induced through the prior interaction
bypasses 2 successive hardwired hyperlinks – (1, Honda, 3) and (3, Accord, 7). Shortcuts induced by web
FDs will sometimes lead the user directly to terminal information. For example, a query for ‘Focus’ in Fig. 1

3Here a tree is represented as a set of edges, where an edge is a (source, label, target) triple.
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Figure 3: Illustration of explicit, real-time query expansion built-in into theExtemporetoolbar (see top of
each browser window) for out-of-turn interaction. The user’s query is expanded from ‘50mpg’ (left) to
‘50mpg hybrid’ (right) because ‘hybrid’ is inferred by functional dependency.

retrieves page 11 in one stroke by triggering the ‘Focus→ {2005, Ford}’ web FD. Also, notice that web
FDs can be used, in the same manner, to expand a query implicitly initiated through a simple hyperlink click
(i.e., the label of the hyperlink is the query; this can be called in-turn interaction). Since any hyperlink label
contained in the hierarchy rooted at the current page is a candidate for the lhs of a web FD and available as
out-of-turn input, we can use the complete set of web FDs satisfied by a site for query expansion.

Explicit Expansion

Notice that the query expansion discussed above is internalto the system and only apparent to the attentive
user who notices that after supplying ‘Accord’, e.g., out-of-turn, the system never solicits for automobile
make (because it was inferred by functional dependency). Thus, the user is only able to discern that expan-
sion has taken placeafter their query has been processed. Alternatively, we can expand the queryin situ.
For instance, in the example given above, when the user enters the final ‘d’ in the specification of the term
‘Accord’, in real-time the system would expand that query to‘Accord Honda’ prior to submission and this
expansion would be visible in, e.g., the textbox in which theoriginal query was entered by now containing
the fully-expanded query ‘Accord Honda’.

Such expansion built directly into the interface provides an additional layer of information exploration
and discovery independent of that provided by the underlying (site pruning, transformation) system. For
instance, consider the following information-seeking goal:

“I am only interested in cars whose fuel efficiency is greaterthan 50 miles per gallon. However,
I don’t want a hybrid engine.”

A user pursuing this goal, upon entering the final ‘g’ in ‘50mpg’ into the out-of-turn toolbar (see Fig. 3,
left), which we callExtempore, observes that the query expands to ‘50mpg hybrid’ (see Fig.3, right) and
thus realizes that the site contains no cars meeting the current specification. The revelation of this constraint
at this point may compel the user not to submit the query.

Readers may be familiar with the use of similarin situexpansion in the popularauto-completionfeature
now standard in many e-mail clients and web browsers. The presence of this feature in an e-mail application
means that while a user is entering an e-mail address in the ‘To:’ field, the system searches the user’s
personal history cache, containing the address of individuals to whom the user has previously sent mail, for
an e-mail with a prefix matching the partially-completed address. When a match is found, the partial address
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Figure 4: Automobile-make lookup service provided by Kelley Blue Book online. Here a user searches for
an automobile make based on the model. This service exploitsFDs of the formmake→ model.

is expanded into the matching address. Web browsers employ asimilar technique to expand partial URLs
into those of sites previously visited. While the concept ofsuch real-time,in situ expansion is ubiquitous in
these desktop applications, the real-time query expansionbased on web FDs is fundamental different. The
expansion in the auto-completion feature depends on the current status of the individual user’s cache. In
other words, two different users are not guaranteed the sameexpansion for the same initial input. On the
other hand, real-time query expansion depends on the set of web FDs currently satisfied by the (currently
instance of the) site. Therefore, we say auto-completion isuser-dependentand real-time query expansion is
user-independent.

We feel that the feedback provided by simply interacting with a real-time query expansion interface
(without perhaps even ever submitting a query) to out-of-turn interaction can be helpful in decomposing
and solving a complex constraint satisfaction problem suchas planning a vacation. Moreover, we feel that
due to its rapid query–expand–feedback loop and ability to naturally expose dependencies in, including
those most central to, the underlying domain, it has use as aninstrument to help users assimilate a new
information domain in an exploratory setting. For example,in PVS, this interface makes dependencies, such
as ‘Democrat→ ¬Republican’, ‘Republican→ ¬Democrat’, ‘House→ ¬Senate’, ‘Senate→ ¬House’,
‘Senior seat→ ¬Junior seat’, and ‘Junior seat→ ¬Senior set’, which are at the core of the structure of the
US government, salient. For this reason we say the set of web FDs satisfied by a site operationalizes domain
knowledge encoded its hierarchy.

Lastly, note that since the website is pruned and reduced as the user interacts with it, through techniques
such as out-of-turn interaction and browsing, it is practical and efficient to compute web FDs satisfied by (the
most recent version of) the site inreal-time. For instance, the web FD ‘Ohio, Senate→ Republican’ holds
in the pristine PVS site because both Ohio Senators are Republicans4. After a user communicates ‘Ohio’
to PVS, the site contains only those (20) sequences involving Ohio congresspeople. These 20 sequences
satisfy the ‘Senate→Republican’ web FD (not satisfied by the original site) amongothers. However, due to
the real-time query expansion application of web FDs, we need not mine the complete set of FDs satisfied
by this reduced set of sequences ever! Rather we can take a greedy approach and mine only the one web FD

4This was the scenario during the 2006 congressional landscape.
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Figure 5: Slider-bar interface to approximate retrieval inweb hierarchies. Here ‘least expansion’ means the
strictest interpretation of a web FD, i.e., confidence equalto 1, which results in less website pruning. (left)
User enters ‘travel’ and all links at the top level remain because there is a sequence beginning with each
of their labels which contains the term ‘travel.’ (right) Asthe user slides the dial to the right, expansions
are considered where the web FDs triggering them are computed with confidence less than 1. This cause
more expansion — the term ‘international’ is added – and moresite pruning. Only links labeled ‘Business,’
‘Recreation,’ ‘Science,’ and ‘Society’ remain because they are the only categories of the site which contain
sequences involving both terms ‘travel’ and ‘international.’

applicable to the expansion immediately before it is required. For example, should the user enter ‘Senate’
next, after processing the input and retaining only those (2) sequences which contain that term, we identify
terms contained in every remaining sequence, one of which isthe term ‘Republican.’ This mining for web
FDs in real-time islinear in the number of remaining sequences, which in this case is two. Notice further
that the ‘Senate→Republican’ web FD is also attainable by simply removing thesupplied term (Ohio) from
the lhs of the ‘{Ohio, Senate} → Republican’ FD satisfied by the unaltered site.

6.2 Approximate Retrieval in Web Hierarchies

By generalizing the notion of a web FD, we can make retrieval in web hierarchies approximate. Consider
that the definition of a web FD — a positive-path web FDx → y indicates thatall sequences involvingx
also involvey — is rigid at two levels: first, in the specific metric used to compute a score for the candidate
FD (i.e., confidence), and, second, in the threshold that thescore must meet to be considered a web FD (i.e.,
100%). We can generalize this notion by parameterizing the definition by the metric and threshold. Thus,
we say that a positive-path web FDx → y holds if M(x, y) > T , whereM is a similarity metric andT is
a threshold between 0 and 1. With this more general definition, a host of similarity metrics from IR, such
as cosine orJaccard’s(Srehl, Ghosh, & Mooney, 2000), each with different properties (e.g., symmetry, i.e.,
a → b implies b → a and vice versa), and threshold values are available for use in computing a complete
set of web FDs. We can experiment to test the effect of various(metric, threshold) pair on the nature of web
FDs mined and, ultimately, on retrieval in web hierarchies.

Making retrieval in web hierarchies approximate is particularly helpful in voluminous web directories
such as ODP. Since such sites are predominately unfaceted, supplying 1–2 terms (out-of-turn) may only
reduce the sequences of the hierarchy by 5–10%. Using a threshold less than 100% when mining web
FDs will increase the size of the query and reduce the size of answer and, thus, information overload. The
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It is course scheduling time again and you need to develop your schedule of courses for the following semester. You have a full-time job and are working on your undergraduate degree asa part-time
student. You will complete your degree next semester. Your task is to develop a schedule of courses which meetsall of the following requirements.

Hint: This problem is a puzzle. Please read the entire set of conditions completely and carefully before you begin to develop your schedule. Not only must the schedule you develop meet allof
the following conditions, but it also must have no time/day conflicts (i.e., the schedule must permit you to attend every class meeting in full). You may assume that you have the prerequisite(s) and
corequisite(s) for any course.

1. You are an undergraduate student and therefore are eligible for only undergraduate courses.

2. To accommodate your full-time work schedule you want to take as many online courses as possible. However, a departmental policy states that no student may take more than one online
course per semester.

3. You do not want to take more than 4 courses.

4. Your work schedule permits you to come to campus only twiceper week:

• Tuesdays at or after 4p.

• Thursdays at any time after 10a.

5. A departmental policy forbids you from taking more than 2 math courses in one semester.

6. In an effort to minimize your trips to campus, you want a course that meets only on Tuesday. The course must start at 4p or later & should not be a lab or recitation.

7. You only need 11 more credits to graduate. You are on a strict budget. Since tuition is proportional to number of creditsand costly, you can only afford to register for the minimum
number of credits necessary to fulfill your credit requirement for your degree.

8. You want to take a statistics course as you feel it will be useful in the future.

9. You are not keen on taking courses ‘for fun’ and therefore do not want to schedule any 0-credit courses.

10. You are not pursuing a thesis of any form and therefore arenot eligible for research credits.

11. You have been told that independent studies are flexible,but consume an enormous amount of time. Since you work full-time, you cannot afford to trade time for flexibility, and therefore
do not want to take an independent study.

12. You are very busy with your full-time job and don’t want tobe bothered by arranged courses.

Provide your answers in the following table:

Course Abbrev. and No. Day(s) Time Credit(s)

1. online online
2. Tuesday
3.
4.

Total: 11

Figure 6: An ambitious problem-solving task involving constraints and dependencies.

generalization of web FDs in our framework not only makes retrieval approximate, but also leads to novel
user interface designs, especially those which give the user control over the query expansion threshold (or
metric).

For example, we have designed a slider bar interface (see Fig. 5) which allows the user to control
the amount of query expansion used and concomitantly observe how links on the current webpage are
dynamically pruned out (as the sequences containing them are removed). When the slider is flush to the left
(‘least expansion’), we use confidence of 1 to compute web FDsand, therefore, there is still some expansion.
As the user shifts the slider to the right, the confidence withwhich we compute web FDs is reduced, thereby
inducing more query expansion and, as a result, more pruning. Notice that dynamic link pruning obviates
the need for a ‘Submit’ button; the query is submitted in real-time (i.e., as the user types or shift the slider).
The reader will notice that positive- and negative-path webFDs are a continuum of the same concept and
difference between the two only depends on where one draws the threshold.
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6.3 User Studies

We have conducted user studies of various interface designs(e.g., a non-interactive, flat HTML table; a
web hierarchy; a faceted classification, and out-of-turn interaction), some of which exploit web FDs, for
interacting with a variety of hierarchical-oriented websites. A user study of out-of-turn interaction applied
to PVS and its results are reported in (Perugini, 2004). In this study, twenty-four users were given eight
information-finding tasks about US politicians and were free to use either in-turn interaction (browsing)
or out-of-turn interactions to complete these tasks. Half of these tasks werenon-oriented(meaning they
could be performed with browsing alone, if desired) and the other half wereout-of-turn-oriented(meaning
they would be cumbersome to perform via plain browsing). This experimental design generated 192 (=
24× 8) interaction sequences (participant, task) pairs. We found that 100% of the users utilized out-of-
turn interaction when presented with an out-of-turn-oriented task. Since the task type was not discloseda
priori , this result demonstrates that users are adept at discerning when out-of-turn interaction is desirable
and actively interleaved it with browsing. However, one task of this study — find the political party of
the senior senator representing the only state which has congresspeople from the Independent party — was
completed successfully by only half of the participants. Notice that this task is procedural in nature. The
user must first find the only state with a congressperson from the Independent party and then use that state
to find the party of the senior senator from that state.

The pursuit of constraint-satisfaction problems, which are common on the web (e.g., consider com-
parison shopping or planning travel), tend to be proceduralas well. For instance, consider the constraint-
satisfaction problem given in Fig. 6 which we have used in a pilot study. In this problem, the user’s task
is to develop a schedule of courses which meet all of the givenconstraints. In response to the challenge of
completing such procedural tasks, we are now developing continuation-based interfaces for them which not
only expose/exploit web FDs as espoused in this paper, but also permit the user to cascade the output from
one thread of information-seeking to the input of another (Perugini & Ramakrishnan, 2006).

7 Related Research

Our work lies in the area of web mining. The predominant thrust in most web mining research focuses
on the discovery of patterns in site usage data, e.g., a web log, (referred to asweb usage mining) (Eirinaki
& Vazirgiannis, 2003). Our work differs from this in that we examine site structure and the relationships
between terms, labeling hyperlinks, implicit along that structure, and would be consideredweb structure
mining. Existing approaches based on usage mining rely on the availability of usage data, whereas our
techniques are applicable more readily. The patterns resulting from web usage mining, often association
rules, are typically used to induce new paths, such as shortcuts, through the sites as well as index pages. We,
on the other hand, use web FDs primarily for query expansion (which under certain circumstances creates
shortcuts as well) and the feedback it provides for the user.Moreover, association rules mined from web
logs areusage-dependent; web FDs areusage-independent. In short, we mine different data and offer an al-
ternate, but complementary, use. Despite these differences, the two approaches can complement each other.
For example, the expansions induced by web FDs create sequences in the web log that would otherwise
not exist (because they are not hardcoded into the site) and,therefore, expand the scope of usage data from
which to mine. Furthermore, since the patterns resulting from both approaches are most similar to associa-
tion rules, we can draw from similar algorithms. An algorithm which mines traversal patterns in web usage
logs is relevant and given in (Chen et al., 1998). Algorithmsfor mining approximate FDs from databases
are also helpful (Huhtala, Krkkinen, Porkka, & Toivonen, 1999). Others (Nambiar & Kambhampati, 2004)
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offer similar algorithms for mining approximate FDs and usethe approximate FDs to create precise queries
from imprecise web queries. In addition, algorithms for mining positive- and negative association rules (Wu,
Zhang, & Zhang, 2004) are helpful for identifying positive-and negative-path web FDs.

Others have studied term and item similarity in hierarchies. For instance, (Resnik, 1999) studies term
similarity to help resolve syntactic and semantic ambiguity in natural language processing. The focus of
other work has been on collaborative-filtering and item recommendation. For example, (Ganesan, Garcı́a-
Molina, & Widom, 2003) study the similarity of users throughhierarchical representations of their item
sets. We primarily use web FDs for query expansion. Query expansion is a well studied area of information
retrieval research. However, most of the methods used to expand query terms are probabilistic (Carpineto,
DeMori, Romano, & Bigi, 2001; Cui, Wen, Nie, & Ma, 2002) and based on the queries of prior users, again,
emphasizing the role of usage logs in these approaches, or use terms from initially-retrieved, top-ranked
documents to expand the query (Mano & Ogawa, 2001). Recently, term relationships in languages models
have been used for query expansion (Bai, Song, Bruza, Nie, & Cao, 2005). In addition, others have used
navigation as a means to expand queries in an approach calledquery by navigation(Bruza & Dennis, 1997).
However, this approach still relies on logs for requirements. Some research (Ruthven, 2003) has found
that interactive query expansion needs mechanisms forusersto explore and discover relationships between
terms. This work highlights the importance of interfaces such as thein situ, real-time query expansion
interface illustrated in this article.

Other user interfaces for information search and exploration on the web are starting to incorporate similar
uses of query expansion. We direct the reader toGoogle Suggest(http://www.google.com/webhp?complete
=1&hl=en) and Stanford’s auto-completeSearch on TAP(http://sp06.stanford.edu) systems for two popular
examples. Moreover, Kelley Blue Book online (kbb.com) provides an automobile-make lookup (by auto
model) service that exploits functional dependencies of the formmodel → make (see Fig. 4). In summary,
we distinguish our work from that of others by mining a similar type of pattern (associations), however,
from a different type of data (hyperlink structure) and for alternate use (query expansion and out-of-turn
interaction).

8 Discussion

We have presented several classes of web FDs and situated them for the many roles they play in enhancing
information access. As discussed here, web FDs achieve two goals: they generalize schema FDs by mod-
eling value dependencies and, when used for facilitating web interactions, also introduce a temporal aspect
(i.e., arrival time of terms) as consideration for capturing dependencies. We have presented direct uses of
web FDs in pruning sites based on partial input, and incrementally communicating the structure of the site
to the user, as the interaction progresses.

An emerging area of research is to be able to communicate richer constraints underlying the site and,
in this way, provide more complex tools for problem solving.In this vein, two promising avenues of future
research arise. First, we intend to study how web functionaldependencies can be used as building blocks
to more expressive patterns, which we callwebsite axioms. An example of an axiom in a university’s
online timetable of courses might be: ‘it is impossible to develop a schedule of classes which meet only on
Mondays and Thursdays.’ Once identified, we are optimistic that such axioms will be helpful in constraint-
satisfaction problems given an appropriate method of exposing them to users. Second, we plan to study how
the dependencies underling a site can be harnessed to help a user decompose a complex problem-solving task
into a sequence of information-seeking procedures for pursuit through a procedural-oriented interface. In
other words, can web FDs be used to compose or reveal interactive workflows? Since constraint-satisfaction
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is ingredient central to several web interactions, we feel that this line of future research is particularly
worthwhile.
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