
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 59(7):1073–1092, 2008

Received July 2, 2007; revised December 11, 2007; accepted December 11,
2007

© 2008 ASIS&T • Published online 14 March 2008 in Wiley InterScience
(www.interscience.wiley.com). DOI: 10.1002/asi.20811

Current model-driven Web engineering approaches pro-
vide methods and compilers for the effective design and
development of Web applications. However, these pro-
posals also have some limitations, especially when it
comes to exchanging model specifications or adding
further concerns such as architectural styles, technol-
ogy independence, or distribution. One solution to these
issues is based on the possibility of making Web pro-
posals interoperate, being able to complement each
other, and to exchange models between their tools. We
analyze how a common reference model shared by Web
engineering proposals can be effectively used to achieve
the desired interoperability. We also examine how such a
common reference model can be used to combine mod-
els coming from different proposals, and discuss the
problems that can occur when integrating these sepa-
rate models. Finally, we show how high-level model trans-
formations allow to efficiently solving these problems.

Introduction 

Over the last two decades, a significant number of 
approaches for Web applications development have been pro-
posed to help developers master the complexity of Web appli-
cation design and development. Prominent examples include
Web Modeling Language (WebML; Ceri et al., 2002), Unified
Modeling Language-based (UML) Web Engineering (UWE;
Koch, 2001), Object-Oriented Hypermedia Design Method
(OOHDM; Baresi, Colazzo, Mainetti, & Morasca, 2006a),
W2000 (Baresi, Colazzo, Mainetti, & Morasca, 2006b), or
Object-Oriented Hypermedia Method (OO-H; Gómez &
Cachero, 2003), among others. Although most of them were
developed in academic contexts, they have also been suc-
cessfully applied in several industrial settings, including e.g.,
ACER in Europe, the Middle East, Africa and Pan American
regions, several banking institutions across Spain, etc. 

These proposals are model-based because each of them
follows a particular separation of concerns for structuring a

system specification into separate viewpoints and adopts
a specific notation for describing the each of the viewpoints
in terms of models. Furthermore, each initiative provides its
own proprietary tool and storage format, normally incom-
patible with the rest of the notations and tools being used by
the other proposals. However, in this context, customers
increasingly demand modeling solutions that could interop-
erate with their current modeling notations and environ-
ments, such as the UML, Eclipse, etc. 

In addition, most of these Model-Based Web Engineering
(MDWE) proposals do not fully exploit all the potential ben-
efits of Model-Driven Engineering (MDE), e.g., complete
platform independence or tool interoperability. Furthermore,
they also have some limitations, especially when it comes to
exchanging models or expressing further concerns, such as
architectural styles or distribution. One possible solution to
these problems is based on the use of synergies, offering the
possibility of making these proposals interoperate, being
able to complement each other, and exchanging models 
between the different existing tools. This would allow each
approach to complement its weakest points with the nota-
tions, models, or tools from other proposals, hence offering
better services and support to customers. 

The Institute of Electrical and Electronics Engineers
(IEEE) defines interoperability as “the ability of two or more
systems or components to exchange information and to use
the information that has been exchanged” (Institute of Elec-
trical and Electronics Engineers [IEEE], 1990). One way to
achieve the required interoperability between MDWE
proposals is by defining a common reference model that will
enable the conceptual integration of Web engineering ap-
proaches (i.e., integration focused on the use of common
concepts, artefacts, and models and model-relationships
shared by Web modeling proposals) and in which most devel-
opment methods can be naturally embedded. Such a unified
approach will leverage the strengths of the existing proposals
by extending their individual models and tools with effective
interoperability bridges (transformations) that would allow
their seamless integration. Furthermore, in terms of develop-
ment, it would allow designers to work on a combination of
models (not necessarily defined using the same notation or

Towards Interoperable Web Engineering Methods 

Nathalie Moreno and Antonio Vallecillo 
Dpto. de Lenguajes y Ciencias de la Computación, Universidad de Málaga, ETSI Informatica, Campus de
Teatinos, 29071, Malaga, Spain. E-mail: {vergara, av}@lcc.uma.es



1074 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2008
DOI: 10.1002/asi

terminology) with well-established interrelations, which
could be processed now in a uniform way, e.g., for their visu-
alization, storage, or transformation. 

In this article, we present the Web Engineering Interoper-
ability (WEI) common reference metamodel for model-
driven Web engineering. WEI has been developed based on
our previous joint work with other Web engineering groups,
including the OO-H, WebML and UWE teams. With them
we have been working on the incorporation of further mod-
eling concerns to their proposals, defining metamodels and
profiles for their notations, and restructuring their approaches
according to the Model Driven Software Development
(MDSD) principles. Based on these experiences, the need for
a common reference model that could allow them to interop-
erate was clear. The resulting reference model, WEI, is also
expected to serve as a key input to the emerging MDWEnet
initiative (Vallecillo et al., 2007), whose goal is to improve
current practices and tools for the model-driven develop-
ment of Web applications for better interoperability.

Furthermore, the Model Driven Architecture (MDA) ini-
tiative (Miller & Mukerji, 2003; Object Management Group,
2001) and their associated standards, technologies, and tools
play a cornerstone role in WEI. In fact, interoperability is
one of the major goals of MDA, and it has inspired a new
approach for organizing the design of an application into
different models so that portability, interoperability, and
reusability can be obtained through architectural separation of
concerns. MDA covers a wide spectrum of topics and issues
ranging from Meta-Object Facility-based (MOF) metamod-
els to UML profiles, model transformations, and modeling
languages. Thus, following the MDA guidelines, we will ex-
amine how different modeling approaches and tools can be
combined and complemented in the context of WEI to sup-
port and facilitate the development of a single Web applica-
tion. In this sense, the required interoperability bridges can
be naturally defined as straightforward model-to-model
transformations. These interoperability bridges will allow
resolving different kinds of problems including, e.g., inter-
operability conflicts such as those related to syntactical
heterogeneities, or the integration of models which repre-
sent different concerns of the same system. Finally, we are
aware of the current lack of mature tools to support MDA
and some of its constituent standards, such as the Object
Constraint Language (OCL) or Query/View/Transformation
(QVT). Until these tools become available, we have imple-
mented a tool called “GlueWeb” to support and validate
some of the features of our proposal. GlueWeb implements
a noncomplete OCL and QVT parser for a subset of these
two languages and it is able to translate OCL constraints
and QVT relations into the appropriate code in the final
implementation. 

The remainder of this document is structured as follows.
After this introduction, the A Generic Framework for Web
Applications section describes the WEI metamodel, a generic
framework for Web application development that can be con-
sidered as a common reference metamodel for Web engineer-
ing proposals. Then, the Designing Web Applications by

Reusing Models From Other Methodologies section analyzes
a set of problems encountered when interoperating models
coming from different methodologies. These problems are
addressed, allowing us to instantiate WEI to match and gen-
erate a “complete” specification of complex Web systems by
reusing preexisting models. After that, the WEI Tool Support
section studies the practical viability of assisting the MDA-
based WEI development process by reusing available design
and code generation tools. Next, the benefits of our approach
are illustrated, as a proof of concept, with the well-known
Web application example of the Conference Review System.
This system is designed and developed in the Proof of Con-
cept: The Conference Review System section, reusing differ-
ent models and tools coming from different MDWE
approaches, namely OO-H and WebML. Then, the Related
Work section relates our work to other similar proposals and,
finally, the Conclusions section draws some conclusions
and outlines some future research activities. 

A Generic Framework for Web Applications 

The unification of several Web modeling languages into a
common metamodel may form the basis of a generic frame-
work that can be instantiated for different choices of notations.
In fact, we can also provide a new notation and methodology
to that common metamodel, resulting a new proposal with
many advantages from the perspective of interoperability. In
addition, we can extend the common metamodel to cover
advanced requirements and features that current Web design
methods support weakly (e.g., the integration of third-party
systems or modeling behavioral features). The following sub-
sections describe these issues in more detail. 

The WEI Architecture

WEI is a model-driven Web engineering architectural
framework for organizing the models that address the differ-
ent concerns of Web application development. In the context
of this article, the term “framework” is used to refer to an
architectural design describing the major artefacts or models
of a system and the way they interact. Thus, at a high archi-
tectural design level, the whole WEI concept space is cap-
tured by means of three levels or viewpoints, which comprise
up to 13 models (see Figure 1). Of course, while no more than
five or six models are normally used to represent the various
facets of a system by the existing proposals, WEI defines 13
models not only for completeness but also to facilitate the
integration and reusability of external designs. This does not
mean that all the 13 models need to be defined for every sin-
gle Web application design. The emphasis of each level will
depend on the kind of Web application being modeled and on
the particular project requirements, as we shall see later. 

The central element of our architecture is the Conceptual
model, which can be used for specifying the basic structure
and content of the Web application as well as to maintain
the consistency of the model specifications, establishing the
correspondences between the different models. This Concep-
tual model plays a relevant role when the Web application



JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2008 1075
DOI: 10.1002/asi

design integrates third party system models using
heterogeneous notations, terminology, or even different
platforms, as will be explained in more detail in Designing
Web Applications by Reusing Models from other Method-
ologies section. 

Leaving out the conceptual model, WEI models are orga-
nized into three main packages corresponding to three dif-
ferent viewpoints of the same system: the Data Structure,
the User Interface, and the Business Logic viewpoint. 

• The Data structure package describes the organization of the
information managed by the application by means of, e.g.,
database systems or Lightweight Directory Access Protocol
(LDAP) directories, and provides a mechanism for storing
information persistently. This level is organized in two mod-
els: Information Structure and Information Distribution. 

• The User Interface focuses on the facilities provided to the
end user for accessing and navigating through the informa-
tion managed by the application and how this information is
presented depending on the context and the user profile.
Originally, Web applications were specifically conceived 
to deal with Navigation and Presentation concerns, but

currently they also need to address other relevant models or
concerns at this level, such as Adaptation, User, or Context. 

• Finally, the Business Logic package encapsulates the busi-
ness logic of the application, i.e., how the information is
processed and how the application interacts with other com-
puterized systems. This level is organized in six models:
Business Logic Structure, Internal Processes, Choreography,
Component, Distribution, and Architectural style. 

Each of these metamodels constitutes a part of the com-
mon reference metamodel. They have not been arbitrarily
chosen; they are based on the concerns covered by existing
Web engineering proposals and our previous experience
with the development of large distributed applications. Con-
sequently, there is a correspondence between WEI concerns
and those established by other modeling approaches. This
correspondence is summarized in Table 1. 

In addition to the models, the framework predefines some
dependencies between them, which determine those cases in
which the definition of a model requires the previous speci-
fication of some other models. At a different level, the de-
pendencies may also imply how the framework instantiation

FIG. 1. Models representing the different concerns involved in the development of Web applications.



1076 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2008
DOI: 10.1002/asi

process should be carried out. Furthermore, these dependen-
cies also specify correspondences between the elements
from different models of the framework, especially when they
may have been independently developed by different parties
or when they represent the system from different viewpoints,
and therefore the same element is specified in different ways
in different models (each one offering a partial view of the
whole). In these cases, correspondences between model
elements may be also subject to certain consistency rules,
which check that the views do not impose contradictory
requirements on the elements they share. 

Modeling WEI Concerns

In order to formally define the framework, we have built a
MOF metamodel for each model, which describes its entities

and their relationships. (These metamodels are available at
http://www.lcc.uma.es/~nathalie/WEI/.) MOF was selected
as metamodeling language because of our interest in being
MDA-compliant. Other alternatives were of course possible
(using, e.g., KM3 or Ecore), but it was important for us to try
to use OMG’s notations and tools to exercise the MDA
approach and see whether it was indeed valid or not. As an
example of these metamodels, Figure 2 describes the WEI
presentation metamodel. 

However WEI metamodels provide just the abstract syn-
tax for the domain concepts. Unlike other approaches, OMG
does not provide a solution for directly building correct
models from metamodels. Instead, designers have to define
their own Domain Specific Language (DSL) associated with
these metamodels. OMG offers three possible approaches
for defining domain-specific languages: (a) to specify a new

TABLE 1. Concerns and models covered by Web engineering methodologies.

Layer WEI model OOHDM W2000 UWE WebML WSDM OO-H WAE

User interface UI structure √ � √ � � √
User � √ √ √
Context � √ √
Adaptation √ √
Navigation √ √ √ √ √ √ √
Presentation √ √ √ √ √ √ √

Business logic Structure √ � � √ √
Int. processes √ √ √ �
Choreography
Architecture √ √ √ √
Distribution √

Data Inf. structure √ √ √ √ √
Inf. distribution

FIG. 2. An excerpt of the metamodel for the WEI presentation concern.



JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2008 1077
DOI: 10.1002/asi

domain language, an alternative to UML, using the MOF
metamodeling facilities provided by OMG for defining
object-based visual languages; (b) to extend the UML meta-
model (heavyweight extension), modifying the original
UML metamodel and its semantics; (c) to define a UML
profile (lightweight extension) based on the extension mecha-
nisms provided by UML (OMG, 2005b; Fuentes & Vallecillo,
2004) (stereotypes, tag definitions, and constraints) for 
specializing UML metaclasses but without breaking their
original semantics.

The problem with the first and second solution is that
standard UML tools will not be able to deal with such a new
language (to edit models that conform to the metamodel,
compile them, etc.). In consequence, we defined lightweight
extensions of UML, i.e., UML profiles, for representing
these models. These profiles provide the concrete syntax for
each of the WEI metamodels, i.e., WEI concepts have been
represented as stereotyped UML elements, using the standard
extension mechanisms provided by UML for developing
new domain-specific languages. WEI stereotypes are more
than mere notational variations of the concrete syntax or
visual representation of the UML language elements. From
the Web application developer viewpoint, WEI stereotypes
are first-class members in the UML language that extend
UML with a new vocabulary and semantic restrictions on
the added language elements. 

As an example, Figure 3 shows the profile for the WEI
presentation model and its associated stereotypes, using the
notation prescribed by UML to specify profiles. Each stereo-
type definition specifies the UML 2 metaclass extended, the
tag definitions (described as properties of the stereotype),
and constraints (described as constraints on the stereotype).
The whole set of profiles and their complete description
can be found at the WEI Web site, http://www.lcc.uma.es/
~nathalie/WEI/. 

WEI profiles have been successfully applied to define and
implement several kinds of Web applications, such as a Con-
ference Review System or a Travel Agency, as documented in
detail in Moreno and Vallecillo, 2005a, 2005b, and 2005c.
Profiles were also designed to support the current trends
in the development of distributed Web applications based on
the principles of reusing and assembling preproduced com-
ponents, such as Web services or portlets, in order to reduce
development costs and efforts while improving software
quality. Currently, this particular capability of WEI profiles is
being exploited to generate rapid prototypes of rich user 
interfaces on top of Web services and existing business ap-
plications, in projects that require different kinds of front-ends
to interact with the underlying business logic. In particular,
this strategy is being applied to integrate three Maude tools,
such as CiME (http://cime.lri.fr/), MuTerm (http://www.
dsic.upv. es/~slucas/csr/termination/muterm/), and AProVE

FIG. 3. Profile for the WEI presentation model.



1078 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2008
DOI: 10.1002/asi

(http://www-i2.informatik.rwth-aachen.de/AProVE/), into one
unified, rich user interface. 

The WEI Methodology 

In short, the WEI development process involves the def-
inition of at least three Platform Independent Models, each
one corresponding to a viewpoint as illustrated in Figure 4a.
How to develop each PIM is graphically represented by the
activity diagram depicted in Figure 4b in which activities
can have inputs and outputs (i.e., pins in the UML terminol-
ogy, which represents input and output models in our con-
text). By means of object flow edges, we show how the
model provided by some action is received, refined, and en-
riched with new information by another activity to produce
an output model. Currently, this process is only partially au-
tomated because there are certain steps that require manual
intervention and some decisions to be made by the software

engineer (for example, how to combine and merge the in-
ternal processes and choreography models into a single
model). Therefore, Figure 4b should be interpreted as a set
of systematic guidelines to develop Web applications using
WEI.

The transformation of our top-level Platform Indepen-
dent Models to Platform Specific Models requires the
definition of a set of dedicated mapping rules. Before
applying the mappings, the designer has to mark the PIMs
using the appropriate profile for the target platform and
technology. The result of the application of such mapping
rules is a set of UML 2.0 models of the application
according to the target platform technologies (e.g. Java,
JSP, Oracle, etc.). Finally, the PSMs are translated to code
by applying a transformation process again, where special
care should be taken with the bridges between the three
PIMs and their corresponding PSMs, for which transforma-
tions are also required. 

FIG. 4. The WEI methodology process.



The interested reader may refer to (Moreno and Vallecillo,
2005a, 2005b, and 2005c) for more details about the
straightforward application of the framework in the context
of MDA to develop Web systems. In this article, we focus on
how to use this framework as a common reference meta-
model to achieve interoperability between Web engineering
proposals, so that the design of a Web application can be
addressed by reusing models coming from different model-
ing approaches. 

Designing Web Applications by Reusing Models
From Other Methodologies

In addition to using WEI to build Web applications from
scratch, one of the major advantages of our proposal is its
ability to design and implement Web applications reusing
existing models and tools (e.g., model compilers) from other
methodologies. Thus, a Web application developer could
use, for instance, UWE or OO-H notations to design the
models of the User Interface layer and WebML to design
the Data layer or vice versa. Furthermore, models already
defined for other applications could be reused here for fast
prototyping of Web applications. 

Reusing models from other Web methodologies requires
the definition of interoperability bridges between these mod-
els and the appropriate models of our framework (Table 1
summarized the concerns and models covered by Web engi-
neering methodologies with regard to WEI). Usually, the
concepts and artefacts used by existing Web modeling lan-
guages do not differ much. In addition, neither the models
nor the concepts described in our framework were arbitrarily
chosen; instead, they try to generalize the concepts and
models defined by most Web engineering proposals. Thus,
the interoperability bridges between models from different
approaches are feasible a priori and even quite straightfor-
ward using WEI as a reference metamodel. 

There are however some issues that need to be addressed,
which are similar to the traditional problems that appear
when integrating models that represent different views of the
same system. In the first place, we may find models using
different names to refer to the same element. Second, we
may find that one model may assume the existence of other
models that either provide some services or operations (e.g.,
the precise behavior that needs to be executed when a navi-
gation link is traversed) or represent external systems or
legacy applications that our Web system should be able to
work with (by, for example, exchanging data or invoking
services). Third, the majority of Web engineering proposals
apply (almost the same) separation of concerns, but the
problem is that their levels of abstraction and granularity do
not always coincide. Fourth, some of the models that we
want to reuse may deal with more than one of our framework
concerns. And finally, we may find some aspects and con-
cerns that have not been explicitly modeled by one of the
proposals because they are implicitly assumed (the most typ-
ical example is behavior). 

The way in which we address the first four issues is 
by specifying bridges between the elements living in dif-
ferent models. Such bridges will normally be specified in 
terms of model transformations (e.g., QVT relations), as
described in the following paragraphs. The last issue, i.e., 
the lack of models for representing some concerns, needs
to be addressed by the explicit specification of such elements
in order to supply the “missing” information. This case
happens when the models to be reused come from method-
ologies that do not have all their information explicitly
modeled but hard-wired into their supporting CASE tools.
Thus, the models to be reused assume the existence of
some information and semantics that is not available if we
try to use them in a different environment. This problem is
alleviated by the explicit representation of all concerns in
the WEI framework because all the information has to be
supplied there. We show an example of this and how to
deal with it in Proof of Concept: The Conference Review
System section. 

Issue 1: Different Names for the Same 
Modeling Element

We cannot suppose that software developed by independent
parties will assign the same names to the same entities. Hence,
a common problem when relating separate views of a system is
the use of different names for modeling elements that repre-
sent the same system element. These modeling elements need
to be related by the appropriate correspondences. 

UML 2.0 abstraction dependencies, possibly constrained
by OCL statements (OMG, 2006), are the natural mecha-
nisms provided by UML to represent a relationship that 
relates two elements or sets of elements that represent the
same concept at different levels of abstraction. However,
UML dependencies cannot store all the required information
about the correspondence they represent and cannot guaran-
tee the enforcement or propagation of information that is
required in some situations (e.g., in change or evolution
management). 

The solution adopted here is the use of QVT relations
(OMG, 2005a) to represent the correspondences between el-
ements in different models. In most cases, instead of directly
relating the elements from two separate models, we go
through the WEI Conceptual model. Although this might
add certain complexity in some situations, it also facilitates
the process when there is the need to specify correspon-
dences between elements with more than two models. In
fact, this strategy decreases significantly not only the num-
ber of possible conflicts due to semantic differences but also
the number of model transformations to be developed (be-
cause going through WEI can bring the gap between both
languages).

For instance, the following QVT relation solves a name
mismatch between classes person and user of two WebML
and OO-H models, and also between their corresponding
attributes.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2008 1079
DOI: 10.1002/asi



1080 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2008
DOI: 10.1002/asi

relation USLPerson2ISUser{

/* maps person to user */

checkonly domain webml.WebML_Metamodel e1:

WebMLEntity {

name � ‘Person’,

attribute � a1:WebMLAttribute{

name � a1n,

type � p1:WebMLDataType {name � p1n}}};

enforce domain ooh.OO-H_Metamodel e2: 

OOHEntity {

name � ‘User’,

attribute � a2:OOHAttribute{

name � a2n,

type � p2:OOHDataType{name � p2n}}};

where{

sameNameEntity(e1,e2);

sameNameAttribute(e1,e2);

equivalentTypeAttribute(e1,e2);}

}

Issue 2: Need for Explicit Bridges

A model may also implicitly assume the existence of an-
other model, which provides some required services or oper-
ations. These other models may be local (for example, those
models specifying the required behavior of the application)
or may even represent external systems (e.g., external Web
services or legacy applications). 

In the proposal by Mellor and Balcer (2002), these kinds
of correspondences are called explicit bridges, and they can
be used to link application and intermediate abstraction do-
mains to real domains that represent external systems and
legacy software. More precisely, these bridges are repre-
sented as signals to and from external entities (of a model) or
invocation of operations on such entities. 

In the WEI context, the typical example is an element
representing a NavigationLink in the Navigation model,
which may require the invocation of a method of the Busi-
ness Logic Structure model. Thus, NavigationLinks have to
be related to Transitions located in time and space in the
Presentation model and also have to be related with Events
in the Internal Processes models triggering the execution of
an associated behavior. 

For illustration purposes let us consider a simplified ex-
ample that shows an excerpt of a login page containing
fields for a username and password and that should be able
to go to the registered user screen. Aligning the Web page
concept with the structured class concept of UML 2.0,
Figure 5 specifies a Web page as a structured UML class
with internal “parts,” some of which can be references to
external objects (i.e., not owned by the enclosing object)
shown in the diagram by a dashed rectangle. One benefit of
using a structured classifier in this case allows the internal
structure (decomposition) of Web pages to be represented in
a new and visual way. The manner in which WEI connects
the User Interface and Business Logic viewpoints is shown

in Figure 5. The bridge between the user interface and busi-
ness logic is defined by the UML dependency relationship
between the LoginMenu and UserInformation classes in
that figure, with an added OCL expression in the conceptual
model. This constraint establishes that the behavior of the
method login() in the user interface side is provided by
method login() of class UserInformation in the Business
Logic side:

context LoginLink::

login(uid:String,pwd:String):Boolean 

body: ui.login(uid,pwd)

Issue 3: Different Levels of Abstraction

As shown in Table 1, not all methodologies provide the
explicit representation of all of our framework’s models. For
instance, UWE does not define an Information Structure
model. However, UWE’s Content model is used for both
representing the structure of persistent data, and to provide
support to other models such as Navigation and Presentation
(which belong to WEI’s User Interface level). 

The most natural way to populate WEI’s models with
those coming from other approaches is by defining QVT
relations that generate the appropriate model elements in all
the corresponding WEI models from the model elements of
other approaches. 

QVT transformations can specify single direction and
bidirectional transformations, verify that models are related
in a specified way, and establish relationships between al-
ready preexisting models. Thus, when a transformation is in-
voked, it first checks whether the relations hold and, if not, it
attempts to enforce them by creating, deleting, or modifying
the target model. 

Consider the example in Figure 6b that reports a simple
WebML hypertext, containing a page entitled recommended
CDs. This WebML page consists of an index unit defined for
the Recommended_CD data model entity, which shows a list
of most popular CDs of the previous month and a data unit
also defined over the CD entity, which displays the details 
of the CD selected from the index. Two selectors ([Year �
System. year()], [Month � System.month()]) are
defined to restrict the selection only to the CDs of the current
month and year. The arrow between the two units is a contex-
tual link, carrying the parameter CurrentCd, containing
the object identifier (OID) of the selected item. The data unit
includes a parametric selector ([OID5CurrentCD]), which
uses the input OID parameter to retrieve the data of the spe-
cific movie. 

The corresponding model in the WEI framework is derived
by applying a set of relations. In particular, the relation
WHDataUnit2MNNavigationUnit establishes a relationship
between Data Units in the WebML approach and Navigatio-
nUnits in WEI models, whereby every Data Unit in the
WebML hypertext model generates one NavigationUnit with
the same name, attributes and constraints as its native WebML
Data Unit.



JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2008 1081
DOI: 10.1002/asi

modeltype SC uses “ webml.WebML_Metamodel”

modeltype TG uses “ WEI.WEI_Metamodel” 

transformation WebMLHypertext2WEINavigation ( mdsc:

SC, mdtg: TG) {

top relation WHPage2MNGroupUnit{...} 

top relation WHIndexUnit2MNIndex{...} 

top relation WHContextualLink2MNAssociation-

Class{...} 

top relation WHDataUnit2MNNavigationUnit{...} 

relation WHSelector2MNMethodParameter{...} 

...

}

top relation WHDataUnit2MNNavigationUnit{

/* maps WebML data units to WEI navigation units */ 

checkonly domain mdsc du: ContextUnit{

view � p:HypertextPackage{} , 

type �’DataUnit’, 

attribute � a:WebMLAttribute{

name � a1n, 

type � p1:WebMLDataType{name � p1n},

condition � s:SelectorCondition{

cond � c1, 

type � Boolean}, 

name � x

} 

enforce domain mdtg nu: NavitationUnit{

view � c: NavigationModel{}, 

name � x, 

when {HypertextPackage2NavigationModel(p,c);}

where {nu.stereotypedBy(“NavigationUnit”); 

sameAttributes(du,nu); 

sameConstraint(du,nu);

}

}

Issue 4: Different Separation of Concerns

Many Web engineering approaches group several con-
cerns in a unique view. This strategy produces more compact
representations, although for medium/large applications,
these views can be very complex and difficult to maintain. In
these cases, it should be desirable to change the system
model to improve its internal structure without altering its
external behavior, that is, to a apply a refactoring process
(Mens & Tourwe, 2004) that allows us to reorganize

FIG. 5. An excerpt of the PIMs for the user interface and business logic viewpoints.



1082 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2008
DOI: 10.1002/asi

representations that mix different concerns, achieving both a
greater modularization in accordance with our framework’s
separation of concerns and a reduction of the complexity and
understanding of their representations. In WEI, the refactor-
ing process is performed by interoperability bridges, which
are also defined here in terms of QVT transformations. 

To illustrate this issue, let us go back to Figure 6b. The
reader can already infer from it that the WebML hypertext
view encapsulates several WEI concerns. Thus, given a
WebML hypertext view, the following QVT relation is de-
fined to generate its equivalent WEI view and check that
every WebML hypertext element has its counterpart in the
corresponding Navigation, Presentation, Business Logic, In-
ternal Processes, or Component models of the WEI frame-
work, as shown pictorially in Figure 6a. 

modeltype SC uses “webml.WebML_Metamodel”

modeltype TG uses “WEI.WEI_Metamodel”

transformation WebMLHypertext2WEIBusiness 

(mdsc: SC, mdtg: TG) {

top relation WHContextualLink2MBMethod{...}

...

}

transformation WebMLHypertext2WEIPresentation 

(mdsc: SC, mdtg: TG) {

top relation WHPage2MPGroupUnit{...}

...

}

transformation WebMLHypertext2WEIComponent 

(mdsc: SC, mdtg: TG) {

top relation WHIndexUnit2MComponent{...}

...

}

...

WEI Tool Support

One of the most common shortcomings of many of the
model-driven Web engineering proposals is the use of pro-
prietary notations and tools for designing and developing
Web applications. This issue can be addressed, for example,
by adopting standard notations and tools, which aim at guar-
anteeing the interoperability between separate vendors and
service providers. In particular, UML is an OMG standard
widely used and adopted as a standard in the software indus-
try for modeling software, and therefore we decided to use it

FIG. 6. Correspondences between UWE/WebML and WEI.



generate specific code for Web platforms. Moreover, we
have seen that using certain MDA-based tools for automat-
ing the code generation process may imply one further trans-
formation step because current MDA-based tools always
rely upon some clearly defined preconditions (modeling
conventions). This usually means that our annotated PIMs
have to be restructured to adhere to the way in which these
tools work. We hope this will change in the near future
as tools are packaged as MDA-components, so they can
be easily integrated into the MDA chain. But in the mean-
time, this is a drawback of current MDA tools. 

The most important drawback however is the lack of a
standard syntax for specifying actions in UML. There are
currently (as of year 2007) clear semantics specified for UML
action languages, but no syntax has been agreed for them
yet. Instead, there is a variety of action languages, but they
are incompatible and supported by proprietary tools. Exam-
ples include the BridgePoint Object Action Language (OAL;
Mellor & Balcer, 2002), the Kennedy Carter Ltd. Action
Specification Language (ASL; Raistrick, Francis, Wright,
Carter, & Wilkie, 2006), the Shlaer-Mellor Action Language
(SMALL; Shlaer & Mellor, 1992), the Xion language (Muller,
Studer, Fondement, & Bézivin, 2005), etc. Each action lan-
guage (and its supporting CASE tool) is focused on a certain
set of requirements and concrete application domain, so we
need to select the one that best fulfils our Web application
requirements. Please notice that we need to make use of at
least one of them because we explicitly need to represent be-
havior, in contrast to most Web engineering proposals, that
implicitly specify it in their modeling entities and then hard-
wire such behavior into their code-generation tools. 

Based on our experiences and findings, most of the exist-
ing action languages and tools are not Web-oriented, but they
can be successfully used to model most of the behavioral parts
of a Web application, such as the business logic layer, and then
provide good implementations because these tools generally
give explicit support for statechart diagrams (generating Web
services or software components at the implementation level).
In our case, we have successfully used Netsilon and Kennedy
Carter’s iUML Product Suite to develop, integrate, and simu-
late executable UML models. However, we admit that other
tools specific to the Web domain can be more appropriate
for implementing other WEI viewpoints, such as the User
Interface layer. So, why not use them jointly to generate the
implementation of a single Web application? 

Reusing proprietary tools of other Web engineering method-
ologies. At first glance, there is nothing to prevent us from
reusing the compilers of other Web engineering methodolo-
gies. For instance, we could start from the models defined
using our framework as PIMs and then use the interoperabil-
ity bridges previously defined (in the opposite direction) to
derive, e.g., the PIM for the Presentation layer in the OO-H
notation and the PIM for the Data layer in the WebML nota-
tion (see Figure 7). 

Once we have the corresponding WebML and OO-H
models (we could have also started with them), we can use

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2008 1083
DOI: 10.1002/asi

as a basis for our proposal. Furthermore, MDA and its sup-
porting tools provide the separation of concerns and interop-
erability mechanisms that we need to integrate models and
tools coming from different proposals. 

In the next subsections, we explain how to assist the WEI
development process in order to generate the design and the
implementation of a Web application. We analyze how well
current UML and MDA-based CASE tools fit into our
methodology requirements. 

UML-Based Tools to Support WEI Applications Design

One advantage of WEI over other Web methodologies is
that all standard UML modeling tools that support UML pro-
files or UML extension mechanisms can be used to create
WEI models of Web applications. Therefore, we have not
developed a specific tool to draw the UML diagrams of an
application. Instead, software developers can use any avail-
able UML editor able to generate the corresponding WEI
models (e.g., MagicDraw or Eclipse UML2). 

Due to the fact that most code generation tools use XMI as
the interchange and storage format, it is desirable that the UML
editor provides exporting facilities to this format. Choosing the
most appropriate UML editor for our project is extremely im-
portant as they do not interoperate well, and consequently, this
choice may contribute to the success or failure of the project. 

Code Generation Support for WEI Applications Design

Once WEI models have been exported to the appropriate
XMI format, we have studied two alternative paths for as-
sisting the WEI code generation process: (a) taking advan-
tage of existing MDA-based CASE tools and (b) reusing
proprietary tools of other Web engineering methodologies. 

Regarding the first option, there are at least 80 tools right
now (including commercial, free and open source tools) that
support one or more major features of the MDA, including
design models, transformation rules, automatic transforma-
tion, mapping, integration, code generation, reverse engi-
neering, and platforms support. If it is technically possible,
these CASE tools will be further extended to automatically
perform some steps of the WEI methodology process shown
in Figure 4b (Moreno & Vallecillo, 2005c). 

However, we are aware that most MDA tools are cur-
rently still immature. This is why we have explored other
ways to produce code for the WEI application design (see
the Reusing Proprietary Tools of Other Web Engineering
Methodologies section). It should be noted that one of the
advantages of achieving interoperability between Web engi-
neering proposals is that both application models and tools
from other approaches can be reused. Let us study the via-
bility of reusing tools in the following subsections. 

Reusing UML and MDA-based CASE tools. Although
there are tools that are already based on MDA principles and
produce code for different platforms, most of them are not
Web-oriented in the sense that their compilers are not able to



1084 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2008
DOI: 10.1002/asi

both the Visual Wade and the WebRatio compilers to pro-
duce the application Web pages and the physical database,
respectively. 

Finally, we need to compile several PSMs into a single
system. This is where the correspondences (i.e., bridges) de-
scribed in the previous section need to be defined between
elements at each level of abstraction. This is illustrated in the
next section, which provides the description of this process
in the particular case of a prototypal Web application, the
Conference Review System. 

The reader should note that the selection of these target
methodologies (WebML and OO-H in this case) probably
implies tying the implementation to particular architectural
styles or technologies, e.g., client-server configurations or
relational databases because these are the fixed technologies
supported by the selected methodology. In addition, the in-
teroperability bridges that we had to specify at all levels are
usually developed by most Web engineering proposals at the
implementation level only and are dependent on the model
compiler and the code generation tool. However, they need
to be explicitly represented at all levels in order to be both
technology and platform independent. 

Gluing implementations generated reusing Web engineering
proprietary tools. In order to overcome the problem of the

current lack of proper tool support for implementing QVT
transformations (i.e., WEI bridges), we have developed the
GlueWeb tool. It has been implemented as an Eclipse plugin
on the Eclipse v3.3 platform that provides a project wizard
allowing the creation of “glue projects” with a predefined
structure. Basically, the GlueWeb plugin performs two main
tasks. The first one is focused on collecting the technical in-
formation about the three WEI viewpoints. More precisely,
for each WEI viewpoint the designer provides information
about the physical location in which implementation files are
stored, the platform technology that has been used for it
(e.g., HTML, PHP, JavaScript, Java.), and the XMI represen-
tation corresponding to its model specification (see Figure 8).
Then, a local copy of these files is stored so that they can be
used later. 

Once this task has been completed, GlueWeb carries out
an internal step that is only necessary in those cases in which
several heterogeneous technologies have to interact. This in-
ternal step consists of validating whether the provided im-
plementation platform technologies are compatible or not
(see Figure 8). If this is the case, GlueWeb performs the
analysis of the interoperability bridges. Currently GlueWeb
solves, to a certain extent, many of the problems pointed out
in the Designing Web Applications by Reusing Models
from other Methodologies section. To be precise, GlueWeb

FIG. 7. Code generation with compilers from other proposals.



JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2008 1085
DOI: 10.1002/asi

includes a noncomplete OCL and QVT relation parser which
is able to read and process OCL constraints and QVT corre-
spondences assuming they are syntactically and semanti-
cally correct. 

A relevant feature of this plugin is that its OCL parser
appropriately modifies the initial implementation corre-
sponding to each WEI viewpoint to allow the correct com-
munication between the different layers. To illustrate how
GlueWeb and its OCL parser work, let us suppose that we
need to connect the User Interface with the Business Logic
viewpoints, where both have been implemented with com-
patible platform technologies. Then, our tool analyses the
XMI file of the User Interface PIM looking for transitions
that invoke processes of the Business Logic. For every
detected transition, the OCL parser finds the source page of
the transition and includes in its implementation the call
to the precise method that has been declared in the OCL
constraint. This process is required to implement the
bridges between the different viewpoints that we mentioned
in previous sections. 

The other kinds of conflicts cited in the Designing Web
Applications by Reusing Models from other Methodologies
section (i.e., name mismatches, different levels of abstrac-
tion and separation of mixed concerns) are solved by the
QVT parser, which modifies the appropriate models to re-
solve the conflicts. 

Proof of Concept: The Conference 
Review System

This case study was proposed for the First International
Workshop on Web Oriented Software Technology (IWWOST
2001) and developed following several Web engineering
methodologies (including UWE, WSDM, WebML, OO-H,
and OOHDM, among others). To facilitate the exchange of
ideas and the comparison of experiences among the different
proposals, a common system specification was given to 
the authors (see http://www.dsic.upv.es/west/iwwost01/files/
ConferenceReviewSystem.pdf ).

Let us just remember that the purpose of the system is to
support the process of submission, evaluation, and selection
of papers for a conference. For the sake of simplicity, we
will keep the example as small as possible, only considering
the “manage conference” functionality carried out by the
PC-Chair of the conference. 

In order to support this functionality, we are going to del-
egate to OO-H/Visual Wade the design and PHP code gener-
ation of the User Interface level, while WebML/WebRatio
will support the design and management of a MySQL data-
base at the Data level. Finally, we shall use our framework
to design the Business Logic level of this application, lean-
ing on the Netsilon tool to assist the code generation process.
Netsilon provides implementations for PHP and Java as two
possible target platforms and also supplies Web developers

FIG. 8. A snapshot of the GlueWeb eclipse plugin.



1086 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2008
DOI: 10.1002/asi

with facilities to specify the behaviour of an application by
means of the Xion action language (Muller et al., 2005).

The previous combination of tools and methodologies
will allow us, on the one hand, to preserve the separation of
concerns proposed by WEI and, on the other hand, to gener-
ate code reusing different models and tools. In particular, we
will reuse the OO-H and WebML models for this example,
faithfully taken from the proceedings of IWWOST’01, to rep-
resent the User Interface and Database designs of the applica-
tion. The only task that is required is to specify the Business
Logic layer with the behavior of the application. More pre-
cisely, the Netsilon design architecture groups in a single class
diagram which WEI separates in two concerns: Business
Logic Structure and Internal Processes models. However,
this fact does not represent any problem from the WEI 
viewpoint because it is possible to move the WEI behaviour
specification of each method (i.e., the Internal Processes 
description) to a Xion specification for the Netsilon class 
diagram. 

The following subsections describe how to deal with each
layer and how to connect, by means of bridges; both the
models and the implementations generated using Visual

Wade, Netsilon, and WebRatio. We assume at this point that
readers are familiar with these tools and have a certain
knowledge and understanding of their corresponding model-
ing languages. For further information about them the reader
is referred to (Ceri et al., 2002; Gómez & Cachero, 2003;
Koch, 2001; Muller et al., 2005).

Generating the Database With WebML and WebRatio

From the WebML viewpoint, the basic information 
objects and relationships that emerge from the case study
specification are shown in the E/R diagram of Figure 9. The
reader should note that this model is a faithful and accurate
copy of the one presented by the WebML group at IW-
WOST’01 (Ceri, Fraternali, Matera, & Maurino, 2001). 

Using this WebML design, it is possible to generate 
the database application code, and run it on a MySQL data-
base management environment using the automatic database 
generation facility of WebRatio. For this purpose, a JDBC
connection to MySQ and a properly configured data source
must be available so that WebRatio finally produces an
error-free database.

FIG. 9. The WebML PIM for the data layer.



JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2008 1087
DOI: 10.1002/asi

Generating the User Interface With OO-H and Visual Wade

The User Interface design is reflected in OO-H by a set of
navigation Access Diagrams (NADs), one for each actor
identified in the system. Because we are only focusing on the
PC Chair user, Figure 10 shows the NAD diagrams corre-
sponding to this actor of the system (taken from Cachero,
Gómez, Párraga, & Pastor, 2001). Visual Wade not only pro-
vides a set of parameterized translators that enable the auto-
matic generation of the PHP User Interface pages supporting
the navigation but also prepares for the generation of con-
nection modules by external modules, an aspect that will
allow us to connect the code generated for the Business
Logic layer with the User Interface implementation. More-
over, the OO-H method specifically provides mechanisms
for describing filters that check and evaluate part of the busi-
ness logic. In this way, an architecturally significant amount
of business logic is executed on the client machine. How-
ever, we have opted for a thin Web client whereby all of the
business logic will be executed on the server. 

Using the model shown in Figure 10, Visual Wade pro-
duces a functional prototype of the application interface (see
Figure 11) without needing to perform (at this point) a map-
ping process between navigation and the database schema.
This does not mean that there is no need to maintain the con-
sistency between the User Interface and the Data levels; on
the contrary, integrating them requires that correspondences
and relationships between the models be explicitly defined
in the WEI Conceptual model. 

At the last stage of the process, the abstract presentation
diagrams (APDs) are collected by the Visual Wade model
compiler which has knowledge of the target platform result-
ing in an operational PHP Web interface managed by a
Mediator Object. The mediator manages user interface
requests, and a request can consist of a transition of a navi-
gation link or the invocation of a logic process. In the latter
case, it recovers information about the objects involved and
then sends the request to the corresponding business mod-
ule, together with any other type of information of context
(and the values of the parameters if needed). The specifica-
tion of the behavior of these invocations is precisely the con-
cern of the Business Logic layer described below. 

Generating the Business Logic With WEI and Netsilon

Bearing in mind the correspondences between the OO-H
and WEI models, we can take advantage of the OO-H
conceptual domain diagram and use it as our WEI Business In-
formation model because there is a direct relationship between
both models. Furthermore, the WEI Business Information is a
UML model, and therefore it can be directly fed into the Net-
silon tool. In addition, Netsilon uses this model to automate
Web specific concerns, such as session management, person-
alization, profiling, search, or statistics. Despite their poten-
tial interest we will not make use of such facilities here. 

The implementation of methods is specified with the ac-
tion language Xion, a platform independent action language
that augments OCL with Java-like structures to describe the

FIG. 10. The OO-H navigation access diagrams for the user interface.



1088 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2008
DOI: 10.1002/asi

behavior of the methods. Considering the Business Model
shown in Figure 12, an example of Xion code for imple-
menting the login() operation of the PC_Chair class is
provided below. The purpose, here, is to verify that there is
“only” one user using the p_login and p_passwd parame-
ters as its login and password, respectively. 

return PCChair.allInstances()-�

select(i:i.login��p_login&&i.passwd��
p_passwd)-�size()�1;

The following example shows the implementation of the
newConference() method of the Conference class, illus-
trating the use of Xion’s Java-like constructs such as condi-
tional control blocks, return statements, and special variables
such as this or self. 

Set (CRS::Conference) c � CRS::Conference.

allInstances();

if (c-�size() � � 0) {

this.name�p_name;

this.abstractSubmissionDL�p_aDL;

this.paperSubmissionDL�p_pDL;

this.reviewDL�p_rDL;

this.notificationDL�p_nDL;

this.cameraReadyDL�p_crDL;

this.processStatus�p_status;

this.conferenceDate�p_date;

this.conferenceURL�p_URL;

}

else {

error(“This system only support the man-

agement of ONE conference”);

}

Please notice how in this way we are able to specify, in a
platform independent manner, all the actions that need to be

performed when “transitioning” between pages modeled at
the User Interface level, as well as the verification of predi-
cates that lead to the selection of a particular path between
pages according to the current context and the requirements
expressed in the Business model. From this point, the Net-
silon tool can then generate and deploy the fully executable
code for the PHP platform. In addition to a set of PHP files,
one for each method of the Business Structure Information
model, an administrator process is generated for the purpose
of managing the objects stored in the database.

Now all that is left is to “glue” the three layers, that is, to
define the bridges among the different levels and to trans-
form those specifications to code. 

Generating the Bridges

As mentioned in A Generic Framework for Web Applica-
tions section, the aim of the Conceptual model is twofold:
first, it permits a common vocabulary shared among the dif-
ferent models, and second, it allows the description about
how the different layers are related to each other. 

By looking at the OO-H and WebML models (Ceri et al.,
2001; Cachero et al., 2001), we find some name mismatches:
what is called person or name at the user interface level, is
named user and username, respectively, at the Data level.
Analogously, some of the signatures of the methods specified
at different layers do not match. These inconsistencies are
the ones that need to be resolved by the bridges, which in this
case were defined in terms of QVT relations that modified
the code generated by Visual Wade and Netsilon, ensuring the
use of common names and therefore resolving the name
inconsistencies. An example of such bridges follows: 

context UserInterface::Person

inv: self.name.equivalent(Data::

User.userName)

inv: self.affiliation.equivalent(Data::

User.affiliation)

...

FIG. 11. The OO-H APD and Web page for the user interface.



JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2008 1089
DOI: 10.1002/asi

modeltype SC uses “ooh.OOH_Metamodel”

modeltype TG uses “webML.WebML_Metamodel”

. . .

relation Person2User{

/* match Persons with Users */

domain mdsc pe: Instance {

classifier � “Person”

name � X

affiliation � Y

email � Z

. . .

}

domain mdtg us: Instance {

classifier � “User”

name � X

affiliation � Y

email � Z

. . .

}

}

At this point, the GlueWeb tool is used. The bridge defin-
itions and the XMI representations of the three viewpoints
of the Conference Review system are loaded into the tool,
together with the information about their implementation
(e.g., physical location in which implementation files are
stored, the platform technology that has been used for it, the
location of the actual models, etc.) Based on this information,

FIG. 12. The Netsilon representation for the WEI business Information model.



GlueWeb performs the compatibility test of implementation
platform technologies and then, if the results are positive,
the GlueWeb QVT and OCL parsers read and process the
bridge specifications. At the end of this step, we have a com-
plete and functional implementation for the application
under development.

Related Work

Our work is related to the emerging research area of Web
engineering called model-driven web engineering (MDWE)
and, in particular, to the works that try to use standards (e.g.,
UML, MDA, etc.) for Web application development. 

First, we find some approaches that are defining UML-
compliant DSLs (by means of UML profiles) for represent-
ing proprietary Web engineering modeling languages. This
is the case of WebML, which has recently defined a meta-
model and a UML profile (Moreno, Fraternalli, & Vallecillo,
2007; Schauerhuber, Wimmer, & Kapsammer, 2007) for its
notation. This allows the WebML language and its develop-
ment process (supported by the WebRatio tool) to be
smoothly integrated with standard UML development envi-
ronments. In addition, having a metamodel for WebML will
allow its integration with other MDA tools and also with
other MDSD approaches and tools. 

We are also witnessing how other approaches that were
originally UML-based are making use of the new MDA
principles to reorganize their models in a modular manner in
such a way that each model focuses on one specific concern,
and they then formulate their development processes in
terms of model transformations and merges. Probably the
most representative example is UWE, which has success-
fully restructured its original set of models (which repre-
sented the different concerns involved in the design and
development of a Web application) in terms of metamodels
and the UWE development process in terms of transforma-
tions between them (Koch, 2006). This has significantly
enhanced the original proposal with better modularity,
expressiveness, and reuse. Furthermore, the use of specifica-
tion techniques for the transformations will allow UWE to re-
define and improve many of the aspects of its development
process, especially those that were originally hard-coded in the
UWE supporting CASE tool in order to benefit from model
transformation rules defined at a higher abstraction level, e.g.,
using graph transformations or transformation languages. 

Another interesting outcome of the work done by the UWE
group when adopting the MDA principles into their proposal
is the analysis of the models (and model transformations) that
comprise the MDSD process for Web applications, focusing
on the classification of the model transformations in terms 
of type, complexity, number of source models, involvement of
marking models, implementation techniques, and execution
type (Koch, 2006). This analysis could be very useful to
other model-based Web engineering methods if they decide
to reformulate their proposals in terms of independent mod-
els and transformations between them. Other proposals,
such as MIDAS, have also started to adopt such an approach

by successfully specifying the development process of
Web information systems in terms of (meta)models and
transformations between them (Cáceres, de Castro, Vara, &
Marcos, 2006). 

The reformulation of model-based Web engineering pro-
posals is also providing other benefits, such as the modular
addition of further aspects into their designs. Most of these
concerns were not contemplated originally and integrating
them was difficult because of the (usually ad-hoc) internal
structure of their supporting processes and tools. One repre-
sentative example is OO-H, whose authors realized that they
had to be able to deliver Web applications with different
software architectures and different platforms, depending on
the customers’ specific requirements in this case the cus-
tomers were the ones demanding such features. The OO-H
team managed to successfully reformulate part of their inter-
nal structure and methods, making the representation of the
software architecture of the system a separate concern that
could be captured as a separate model and then merged
(using QVT transformations) with the rest of the models of
the system (such as navigation, presentation, etc.) (Meliá and
Gómez, 2006). 

UWE and OO-H have also investigated the explicit rep-
resentation of the business processes of a Web application as
separate models (Koch, Kraus, Cachero, & Meliá, 2004).
Their joint findings are very encouraging because they man-
aged to define a common way of modeling them for both
proposals. This shows that reuse of metamodels across 
Web engineering proposals is feasible. Finally, UWE has
also shown recently how other concerns, such as the user 
requirements (Koch, Zhang, & Escalona, 2006), can be 
expressed as UML models and connected to the approach.
This is one of the benefits they have obtained once they have
fully reorganized their proposal as a set of separate models,
related through model transformations. All these findings sup-
port the thesis that a common metamodel is possible for Web
engineering, as originally proposed in (Koch, 2001), and as
demonstrated by our proposal.

OOWS and OOHDM have also complemented their ini-
tial approaches to incorporate the MDA principles, models,
and transformations. In the particular case of OOHDM, the
changes have resulted in a new proposal called OOHDMDA
(Schmid & Donnerhak, 2005). It proposes the behavioural
OOHDM semantics specification to serve as a PIM, which is
partitioned in conceptual and navigational PIMs. Additionally,
a set of transformation rules describe the transformation
from the PIM to a servlet-based PSM and also generates ex-
ecutable Java servlets and classes from the PSM model.
Similarly, OOWS is also improving its original proposal to
support a complete MDA-based process that allows the
transformation of platform-independent models and the gen-
eration of code for the frontend of a Web application (Pastor,
Fons, Pelechano, & Abrahao, 2006). 

Last but not least is a study by the group of Alfonso
Pierantonio at the University of L’Aquila (Cicchetti, Ruscio, &
Pierantonio, 2006) that we find very interesting. The study
shows how model weaving can be effectively used to specify

1090 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2008
DOI: 10.1002/asi



and implement bridges, to connect the different artefacts and
models produced during the development of Web
applications—in particular, the models describing the data,
navigation, and presentation aspects whose connections are
usually defined in an ad-hoc manner and whose consistency
is manually maintained. Although their work is carried out
using non-OMG notations and standards, it can be easily
ported to the MDA context using MOF metamodels and
QVT transformations for establishing correspondences
between elements from different views, in a similar way to
the proposal we have presented here. 

In summary, our work complements these approaches, pro-
viding a complete framework that can serve as an umbrella for
all of them under which they can interoperate and exchange
models and tools. 

Conclusions 

This article has presented a model-based interoperability
framework for Web application design that may be consid-
ered as a step to harmonize as much as possible the models
and semantics that current approaches use to address Web
concerns. In this sense, the framework can be considered a
common reference metamodel shared by most of the current
Web methodologies. It provides mechanisms that enable the
smooth integration of Web methodologies to be complemen-
tary in such a way that those concerns not covered initially
by a methodology can be modeled in a next phase by trans-
forming their models into their equivalent models in WEI
and completing the original design within it. 

Unlike other methodologies, WEI does not assume that
the design of a Web application will always start from
scratch. The separation of concerns and levels it distinguishes
allow developers to use the framework also to design and im-
plement applications by reusing models and tools (e.g.,
model compilers and code generation environments) coming
from other Web methodologies. Regarding the reuse of mod-
els coming from other proposals, we think that the develop-
ment of Web applications is a specific domain in which both
model and code reuse can be successfully applied. 

To be able to achieve this goal, we have identified and
solved some of the issues that need to be addressed. The prob-
lems we have pointed out are similar to the traditional
problems that appear when integrating models that represent
different views of the same system. WEI distinguishes three
complementary viewpoints and establishes correspondences
between the appropriate viewpoint elements using the con-
ceptual model. We have explored the use of MOF QVT rela-
tions for representing WEI correspondences showing that it
can be expressive enough to represent them and to maintain
the consistency between the different concerns. 

Finally, tool support is another essential element of any
software development methodology. Being MOF and UML-
compliant allows WEI process to be fully supported by MOF
and UML (generic) tools such as design and code generation
environments. However, the majority of these CASE tools
are not Web-specific and do not allow the smooth integration

of all OMG tools (OCL, QVT, etc). Thus, we plan to continue
actively working on the GlueWeb plugin in order to integrate
all the notations and engines that we need. 

Acknowledgement

This research is funded by the Spanish MCYT Project
TIN2005-09405-02-01. 

References

Baresi, L., Colazzo, S., Mainetti, L., & Morasca, S. (2006a). Web engineer-
ing: Model–based Web application development (pp. 303–334). Germany:
Springer-Verlag.

Baresi, L., Colazzo, S., Mainetti, L., & Morasca, S. (2006b). W2000: 
A modelling notation for complex Web applications (pp. 335–408). 
Germany: Springer-Verlag.

Cáceres, P., de Castro, V., Vara, J. M., & Marcos, E. (2006). Model trans-
formations for hypertext modeling on Web information systems. 
Proceedings of the ACM Symposium on Applied computing (SAC ‘06),
pp. 1232–1239. NY.

Cachero, C., Gómez, J., Párraga, A., & Pastor, O. (2001). Conference
review system: A case of study. Proceedings of the 1st International
Workshop on Web-Oriented Software Technology (IWWOST’01).

Ceri, S., Fraternali, P., Matera, M., & Maurino, A. (2001). Designing multi-
role, collaborative Web sites with WebML: A conference management
system case study. Proceedings of the 1st International Workshop on
Web-Oriented Software Technology (IWWOST’01).

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., & Matera, M.
(2002). Designing data–intensive Web applications. San Francisco: 
Morgan Kaufmann.

Cicchetti, A., Ruscio, D. D., & Pierantonio, A. (2006). Weaving concerns
in model based development of data-intensive Web applications. Proceed-
ings of the ACM Symposium on Applied Computing (SAC ‘06),
pp. 1256–1261. NY.

Fuentes, L., & Vallecillo, A. (2004). An introduction to UML profiles. UP-
GRADE, The European Journal for the Informatics Professional, 5(2), 5–13.

Gómez, J., & Cachero, C. (2003). OO-H method: Extending UML to model
Web interfaces (pp. 144–173). Bloomington, IN: Idea Group Publishing.

Institute of Electrical and Electronics Engineers. (1990). Standard Com-
puter Dictionary: A compilation of IEEE Standard Computer Glossaries.
New York: IEE.

Koch, N. (2001). Software engineering for adaptive hypermedia systems:
Reference model, modeling techniques and development process. Un-
published doctoral dissertation, Reihe Softwaretechnik- Trends, Munich.

Koch, N. (2006). Transformations techniques in the model-driven develop-
ment process of UWE. Proceedings of the 2nd Workshop on Model-driven
Web Engineering (MDWE 2006), Palo Alto, California.

Koch, N., Kraus, A., Cachero, C., & Meliá, S. (2004). Integration of busi-
ness processes in Web application models. Journal of Web Engineering,
3(1), 22–49.

Koch, N., Zhang, G., & Escalona, M. J. (2006). Model transformations
from requirements to Web system design. Proceedings of fhe 6th Interna-
tional Conference on Web Engineering (ICWE ‘06), (pp. 281–288), NY.

Meliá, S. & Gómez, J. (2006). The WebSA approach: Applying model-
driven engineering to Web applications. Journal of Web Engineering,
5(2),121–149.

Mellor, S. J. & Balcer, M. (2002). Executable UML: A foundation for
model-driven architectures. Boston, MA: Addison-Wesley.

Mens, T. & Tourwe, T. (2004). A survey of software refactoring. IEEE
Transactions on Software Engineering, 30(2),126–139.

Miller, J. & Mukerji, J. (2003). The MDA guide (ab/2003-06-01). Object
Management Group.

Moreno, N. & Vallecillo, A. (2005a). A model-based approach for integrat-
ing third party systems with Web applications. Proceedings of the 5th 
International Conference on Web Engineering (ICWE’05), pp. 441–452,
Sydney, Australia.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2008 1091
DOI: 10.1002/asi



1092 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2008
DOI: 10.1002/asi

Moreno, N. & Vallecillo, A. (2005b). Incorporating cooperative portlets in
Web application development. Proceedings of the 1st Workshop on Model-
driven Web Engineering (MDWE 2005), (pp. 70–79), Sydney, Australia.

Moreno, N. & Vallecillo, A. (2005c). Modeling interactions between Web
applications and third party systems. Proceedings of the 5th International
Workshop on Web Oriented Software Technologies (IWWOST2005),
Porto, Portugal.

Moreno, N., Fraternalli, P., & Vallecillo, A. (2007). WebML modelling in
UML. IET Software, 1(3), 67–80, 

Muller, P.-A., Studer, P., Fondement, F., & B´ezivin, J. (2005). Platform
independent Web application modeling and development with Netsilon.
Software and System Modeling, 4(4), 424–442.

Object Management Group. (2001). Model driven architecture. A technical
perspective (ab/2001-01-01).  Needham, MA, USA. 

Object Management Group (2005a). MOF QVT final adopted specification
(ptc/05-11-01). Needham, MA, USA.

Object Management Group (2005b). UML 2.0 Superstructure specification
(formal/05-07-04). Needham, MA, USA.

Object Management Group (2006). OCL 2.0. (ptc/06-05-01). Needham,
MA, USA.

Pastor, O., Fons, J., Pelechano, V., and Abrahao, S. (2006). In E. Mendes
and N. Mosley (Eds.), Web engineering: Theory and practice of 
metrics and measurement for Web development (pp. 277–302). New
York: Springer.

Raistrick, C., Francis, P., Wright, J., Carter, C., & Wilkie, I. (2006). Model
driven architecture with eXecutable UML. Cambridge, UK: Cambridge
University Press. 

Schauerhuber, A., Wimmer, M., & Kapsammer, E. (2007). Bridging WebML
to Model-Driven Engineering: From DTDs to MOF. IET Software, 1(3):
81–97.

Schmid, H. A. & Donnerhak, O. (2005). OOHDMDA–An MDA approach
for OOHDM. Proceedings of the 5th International Conference on Web
Engineering (ICWE’05), pp. 569–574, Sydney, Australia.

Shlaer, S. & Mellor, S. J. (1992). Object lifecycles: Modelling the world in
states. Yourdon Press.

Vallecillo, A., Koch, N., Cachero, C., Comai, S., Fraternali,  P., Garrigós,  I.,
et al. (2007). MDWEnet: A practical approach to achieving interoper-
ability of model-driven Web engineering methods. Proceedings of the 3rd
International Workshop on Model Driven Web Engineering (MDWE
2007),  Como, Italy.


