Evaluating the Use of Search Engine Development

Tools in IT Education

Michael Chau and Cho Hung Wong

School of Business, The University of Hong Kong, Pokfulam, Hong Kong.
E-mail: mchau @business.hku.hk; joewch @ graduate.hku.hk

Yilu Zhou

Information Systems and Technology Management, George Washington University,

Washington, DC. E-mail: yzhou @ gwu.edu

Jialun Qin

Department of Management, University of Massachusetts Lowell, Lowell, MA.

E-mail: jialun_gin@uml.edu

Hsinchun Chen

Department of Management Information Systems, The University of Arizona, Tucson, AZ.

E-mail: hchen @eller.arizona.edu

It is important for education in computer science and
information systems to keep up to date with the lat-
est development in technology. With the rapid devel-
opment of the Internet and the Web, many schools
have included Internet-related technologies, such as Web
search engines and e-commerce, as part of their curric-
ula. Previous research has shown that it is effective to
use search engine development tools to facilitate stu-
dents’ learning. However, the effectiveness of these tools
in the classroom has not been evaluated. In this article,
we review the design of three search engine development
tools, SpidersRUs, Greenstone, and Alkaline, followed by
an evaluation study that compared the three tools in the
classroom. In the study, 33 students were divided into 13
groups and each group used the three tools to develop
three independent search engines in a class project. Our
evaluation results showed that SpidersRUs performed
better than the two other tools in overall satisfaction and
the level of knowledge gained in their learning experi-
ence when using the tools for a class project on Internet
applications development.

Introduction

To develop an information system (IS), information tech-
nology (IT) professionals need all-rounded skills. First, they
need to be proficient in various technical areas including

Received July 30, 2008; revised July 23, 2009; accepted August 6, 2009

© 2009 ASIS&T e Published online 5 November 2009 in Wiley InterScience
(www.interscience.wiley.com). DOI: 10.1002/asi.21223

databases, networking, and mathematics. On top of that, as
real-world systems are having more components and, thus,
become more complex, IT professionals should possess skills
that let them choose the best components available and inte-
grate them into system development. To do this, knowledge
and experience in system design, project management, and
personal communication are desired. In particular, as a result
of the rapid growth of e-business and e-commerce, profi-
ciency and knowledge related to the Internet and World Wide
Web are becoming essential; these include more advanced
technologies such as Web interface, script languages, and
Internet protocols. Moreover, IT professionals may find it
challenging to keep pace with the rapid evolving rate of these
technologies.

To prepare students for the above-mentioned challenge,
many educational institutions have designed projects and
assignments that require students to develop systems by
integrating various software or hardware components. A suc-
cessful example has been demonstrated in a project called
“Build Your Search Engine in 90 Days” (Chau, Huang, &
Chen, 2003), which was started in Fall 1999 in a data
structures and algorithms course taught in the Department
of Management Information Systems at the University of
Arizona. In the project, students were asked to form groups
of four to six students and each group had to develop a topic-
specific Web search engine within 3 months. The search
engine should focus on a topic of interest (e.g., soccer,
medicine, painting) chosen by the students rather than the

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 61(2):288-299, 2010

entire Web like what Google does. Students were offered
hands-on experience and developed better project manage-
ment and teamwork skills by working on the “small-scale
but complete version of real-life projects.”

Based on the success of the above-mentioned project, we
have designed a similar project for a course called Internet
Applications Development at the University of Hong Kong
(HKU). Students in the course were asked to form groups of
at most three students. Each group was responsible for the
design, development, and maintenance of a search engine in
a specific topic at students’ own choice.

Although the above-mentioned two projects share a num-
ber of similarities, they have different focuses. The previous
project at the University of Arizona was offered as a grad-
uate level class with prerequisites of Java programming. To
build a search engine, students were offered two basic com-
ponents of a Web search engine: a Web spider and an indexer,
both of which can be used directly to collect and process Web
pages or can be modified according to project needs. They
put major efforts in creating a database, developing search
algorithm, and integrating Web applications. Emphasizing
heavily on system development, database management, user
interface design, and system integration, the Arizona project
was a great experience for students with some programming
experience.

At HKU, students attending this class were undergrad-
uate students with IS majors. Besides the technical devel-
opment side of Web search engines, we decided to also
focus on the ability to analyze user requirements, develop
evaluation criteria, and conduct experiments to choose the
best tool. There were a number of additional requirements
that made this project more challenging. First, in the HKU
project, the students were offered three packaged versions
of their topic-specific search engine tools (Alkaline, Green-
stone, and SpidersRUs) that were freely available for creating
search engines. These tools provide integrated functions
including spider, index, search, and a basic interface. Each
group of students had to build three versions of their search
engine in the same topic by using these three tools. In addi-
tion, students in the HKU project were encouraged to develop
a search engine that supports multiple languages.

After the search engines have been completed, each group
had to submit a written report, which was a part of the assess-
ment in the project. In the report, students were asked to
describe their search engines, including information such as
reasons for choosing the specific topic and a detailed compar-
ison between the three versions of search engines. However, it
should be noted that technical details were not the major con-
sideration in the HKU project. Students were instead assessed
on correctness and quality (e.g., search results, interface) of
their work.

The objective of this study is to evaluate the value of
the three search engine building tools chosen, i.e., Spider-
sRUs, Alkaline, and Greenstone, in the classroom. The rest
of the article is structured as follows. The Background sec-
tion reviews the components of a Web search engine and the
corresponding resources for each component. The section

that follows introduces three search engine development
tools for the project and explains how they can be used to
develop Web search engines. The Evaluation section gives
some examples of Web search engines developed by our stu-
dents. The Evaluations section discusses an evaluation study
on the effectiveness of the tool in the classroom, while the
last section suggests some potential adaptation of the project
for future use.

Background
Teaching Software Development and Programming

In the past, courses in most computer science and infor-
mation systems curricula, such as software development and
programming, were assessed using individual programming
and written assignments. Recently, educational institutions
have stressed the importance of teamwork, as we see that
group projects or group programming exercises are becoming
more and more popular.

There are several reasons for such a shift. First, when stu-
dents work in a group, they can learn how to cooperate with
their team members, thus forming a positive learning environ-
ment among them (Dutt, 1994; McConnell, 1996). Another
reason is that group projects let students improve their writ-
ten and oral skills (Harris, 1995). Moreover, group exercises
help students develop soft skills. In particular, it has been
shown that group programming exercise improved students’
problem solving abilities, knowledge gain, and interpersonal
skills (Granger & Lippert, 1999; Poindexter, 2003).

Covering a broad range of technical topics, from Web page
design to spidering and indexing algorithms, search engine
development not only provides students with the opportu-
nity to work in a group but also allows them to apply their
knowledge gained from fundamental disciplines such as data
structures and algorithms. On top of that, working on a search
engine exposes students to a number of Web technologies,
which is often stressed in computer science and information
systems education (Hickey et al., 2002), and the exposure
further motivates students to go on to take more advanced
courses such as algorithmic complexity and pattern matching
(Bird & Curran, 2006).

In our study, students were asked to work in groups to
develop their own Web search engines. However, unlike
courses taught at other universities that focused more on pro-
gramming and implementation, our course focused on system
integration, enhancing students’ creativity and arousing their
interest in later courses. As a result, students were not asked
to implement the core engine of the system, which would
be demanding. Instead, we encouraged them to integrate
existing tools to build their systems.

Components of a Web Search Engine

A typical search engine is made up of a set of spiders, a
repository of Web page, an indexer, search indexes, a query
engine, and a user interface. Each of these components is

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 2010 289

DOI: 10.1002/asi

described in the following. For details, please refer to the
work of Brin and Page (1998) and Arasu, Cho, Garcia-
Molina, Paepcke, and Raghavan (2001).

o Spiders (also known as Web crawlers or Web bots) are
programs that retrieve Web pages for search engines using
HyperText Transfer Protocols (HTTP) by recursively follow-
ing URL (Uniform Resource Locator) links in pages (Cheong,
1996; Chau & Chen, 2003). First, the spiders download some
Web documents from a list of starting seed URLs. The URLs
contained within these downloaded documents are extracted
and added to the queue. The spiders then select the next URL
from the queue and retrieve the corresponding documents.

e The downloaded documents are stored in a repository of Web
pages, which may be compressed in advance to save storage
space. The repository can be in the form of a database (which
is common used in large-scale search engines) or file system.

e An indexer builds a search index for the repository of Web
pages. The occurrence of each word in the pages is recorded.
The data can then be used to calculate scores, such as the
term frequency and document frequency of each word. A list
of indexing results is then generated.

e Search indexes (which are stored in databases) are actually
an “inverted version” of the indexing results generated by
the indexer mentioned above. Although the original indexing
results map a document to a list of words in the document,
search indexes map a word to a list of documents containing
the word.

e A query engine is an intermediary between the search indexes
and the user interface. It performs several important tasks:
accepting search queries from users, performing searches on
the search indexes, ranking the search results, generating
search summaries, and storing search logs (Chau, Fang, &
Yang, 2007). In some search engines, the query engine is also
responsible for caching the results of popular search queries.

o A Web user interface is a front-end component that allows
users to submit their search queries and view the search
results.

Depending on the scope of search results, there are two
types of search engines: general-purpose and topic-specific
ones. General-purpose search engines such as Google
(www.google.com) allow users to search for any pages on
the Web. However, these search engines may not be able to
satisfy the needs of users looking for specific information.
As a result, many topic-specific search engines were devel-
oped and made available online. For example, LawCrawler
(www.lawcrawler.com) allows users to search for legal infor-
mation. BuildingOnline (www.buildingonline.com), SciSeek
(www.sciseek.com), and BioView (www.bioview.com) are a
few other examples.

Review of Three Tools for Creating Topic-Specific
Search Engines

There are several existing digital library tools that pro-
vide all the necessary components (i.e., spider, indexer, query
engine, Web user interface) for creating small to medium-
scale search engines. Most of them provide a simple way for
creating topic-specific search engines. For example, the Alka-
line Search Engine is acommercial tool specially designed for

businesses to build their search engines. The Greenstone Dig-
ital Library Software is an open-source software package
developed by the New Zealand Digital Library Project at the
University of Waikato (Witten, Bainbridge, & Boddie, 2000;
Witten, McNab, Boddie, & Bainbridge, 2001). In addition,
we have also developed a tool called the SpidersRUs Digi-
tal Library Toolkit with an aim to address the problems in
existing tools (Chau, Qin, Zhou, Tseng, & Chen, 2008).

In our class project, we asked students to create a search
engine using the three tools mentioned, namely, Alkaline,
Greenstone, and SpidersRUs. Our intention here was to let
students try different types of tools to understand the pros and
cons of each tool. It also made it possible for us to study
and compare the educational value of the three tools. In the
following, we will give an overview of the three tools with
sample user sessions.

Alkaline

Overview of Alkaline. Alkaline is a commercial search
engine building toolkit and was developed using the C++
language by the Vestris Inc. (http://alkaline.vestris.com/docs/
pdf/alkaline.pdf) based in Switzerland. It was designed
to build a middle-scale search engine that covers 50,000 to
500,000 documents and is compatible to the Windows
98/NT/2000, Unix, MacOS, and all variations of Linux oper-
ating systems. Alkaline comprises two major components: a
spidering/indexing component and a searching component
(Vestris, 2004). The spidering/indexing component com-
prises a stand-alone Web spider that collects data from local
or remote Web sites based on a given set of starting URLSs.
It allows the users to set up a series of constrains on the
spidering process, such as the maximum downloading lev-
els or specific URLs to exclude, etc. It also has limited
ability to download and index CGI-powered dynamic Web
pages and password-protected documents. Downloaded doc-
uments are automatically parsed and a word index is built
for search purposes. Alkaline can index multiple types of
documents such as PDF, MS Word, and LaTex files. It can
also index multimedia files, such as Flash and MP3 files,
if proper metadata is available. The searching component
incorporates several searching and ranking algorithms. It gen-
erates a script-based search interface that can be inserted into
existing Web pages. The user can also customize the format
to present search results. These features were designed to
meet the needs of those users who want to incorporate search
engine functionalities into their own Web sites.

Sample user session of Alkaline. Alkaline does not provide
a graphics user interface (GUI) for the development pro-
cess. The collection building operations must be performed
by entering DOS commands into a command console. This
makes it much harder for users without strong technical
backgrounds to use Alkaline.

To create a new collection, the user must first create a
folder in his or her file system to store the data that are going
to be collected. In this folder, the user first creates a file called

290 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 2010

DOI: 10.1002/asi

L WINDOWS | system 32, crmid.exe

edu,http://qs

FIG. 1.

“asearch.cnf” in which the user specifies the configurations
of the collection, such as the starting URL list. Then the user
must issue the command “asearch” with the path of the afore-
mentioned folder and keyword “reindex” as parameters to
start the spidering and indexing process. For example, the user
wants to create a demo collection called “Test” that includes
Web pages from the following three Web sites: www.hku.hk,
www.gwu.edu, and www.uml.edu. The user should first create
a folder called “Test” and create a file named “asearch.cnf”
containing the three starting URLs.

After the asearch.cnf file is created, the user should
issue the following command in the command console to
initiate the spidering and indexing process: “asearch.exe Test
reindex”. Figure 1 shows the results of successfully issuing
the “asearch” command.

Alkaline automatically downloads the documents in the
starting URLs and creates the word index. The index data will
be stored in the same collection folder. After the spidering and
indexing process has finished, the user can issue the “asearch”
command again to enable the search service on the collection.
Two parameters need to be provided: the port number on
which the search service will be running on and the path of
the folder where the index data are stored.

Once the search service is enabled, the user can navigate
to the default search page in a regular Web browser such
as the Microsoft Internet Explorer and start searching in the
collection. In our example, the URL to the default search page
is “http://localhost:9999.” Figure 2 shows a screenshot of a
search in the Test collection.

Greenstone

Overview of Greenstone. The main purpose of Green-
stone is to organize existing information and make it
maintainable, searchable, and browsable (Witten et al.,
2000). Greenstone provides interfaces in multiple languages
such as English, French, Spanish, Russian, and Kazakh.
It also supports multiple platforms including Windows,
Linux, and Mac OS. Figure 3, extracted from Greenstone’s

Result of issuing the “asearch” command in Alkaline.

developer’s guide, illustrates the implementation architecture
(Bainbridge, McKay, & Witten, 2004). To use Greenstone to
build a search engine, one can either use a preestablished
collection or download a collection from the Web or from
a digital library database. Because Web spidering is not the
focus of this toolkit, implementation of downloading function
is quite simple. Once the collections are imported into Green-
stone, word index can be built to facilitate search function.
Greenstone supports multiple types of documents including
plain text, word, and PDF files. Additional document types
can be added with implementation of additional plugins. It
indexes multimedia files if appropriate metadata are avail-
able. Browsing function is another feature of Greenstone with
appropriate document classification and hierarchy structure
identified in metadata. End users can access indexed collec-
tions directly through Greenstone Web server. A developer
can also write his or her own interface to connect to Green-
stone Web server. Readers can refer to Bainbridge, McKay
and Witten (2004) for detailed technical specifications.

Sample user session of Greenstone. Figure 4 presents the
user interface creating new collections in Greenstone. First
the user creates a new collection and specifies the seed URLs
to be used. Greenstone offers a range of options in design-
ing the index of documents. After specifying the seed URLs
and the search options the user can start the spidering and
indexing process.

After the pages have been downloaded and indexed,
the user will see a page summarizing the details, such as the
number of pages downloaded, of the collection. The user can
then search in the collection using the search box provided on
the page. A sample search result page is shown in Figure 5.

SpidersRUs

Overview of SpidersRUs. SpidersRUs was developed by
the Artificial Intelligence Lab, a research group at the Uni-
versity of Arizona. It was designed to provide modular

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 2010 291

DOI: 10.1002/asi

7~ alkaline Search Engine Administration - Windows Internet Explorer i -Igill
@ ;= | hitp:jlocalhost:9999 adminf w2 | & | [oooq Ol
Wi R g8 Alkaline Search Engine Administration o v E) - i v - ~Page * | Todls *

_Alkaline _

Management Console

&) Alkaline Search Engine alkaline Search Engine | Server Parameters | Configurations | Test | Search =
=2 Server Parameters
@ Main Page Search Test
Performance Counters

¥+, Global Configuration
- K Search
= /_J Server Configurations [Hong Kong —l

t‘__ Test [T match all terms
= Server Operations [T casze senzitive
#» Runtime Commands [whole words anly
- Add. Delete, Reindex T wde summacas
3..5—, Centification and Registration —
] General and Help Results
Alkaline has found 1764 page(s) in 0.016 seconds
database size: 2775 decuments 12345678910 pext
sort results: [relevance] [date] [title] [size] [url]

i i i o 4 i 78%
l}si_l'r pramiar canter Fo_r lagal odu_:oﬁan and research ...

urts http://www hku edu hk/law/faculty/staff/cheng thomas.htmi

Faculty of Law, The University of Hong Kong ?Faculty ?Academic Staff 78%
lwl 4 prl-rmcr center for lugil !du:lnan Ind research .

htt [, hku edu. hk"law facult staff ch ng michelle.html

Faculty of Law, The University of Hong Kong ?Faculty ?Academic Staff 78%
Azin's premier center for lagel education snd resesrch ... ll

FIG. 2. Searching the Test collection in Alkaline.

@M@

I Database & Indexes | | Database & Indexes | Database & Indexes |

Clumant GBD Camport

7 . |2
O] L]

FIG. 3. System architecture of Greenstone (Bainbridge, McKay, & Witten, 2004).

292 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 2010
DOI: 10.1002/asi

=%] %

SEE WHE eAD SHAEW IAD NAD [|
=N -= -4 Ome Lanss Jee 3 5
WD) () by pemtivnislgail x| s -
The
collector
Source data
You may base your collechon on either
s The default strocture
The new collection may contam himl docaments: [him, himl), plam text
documents (b, bed), S Ward documents (doc), PDF documents (pdf)
o “m-beoe” format email documents { mbag)
= An emstng collechon
The files n your new collechion misst be exactly the same ype as those used
to bailld the exasting one
Base the collection on [defaul strcture =
Input sources:
[http:ar =] [ntap: tpwww alzports cominba
[hargear] [ntep:thomww nbadrat mets
[hatp-t =] [ntap irsports espn go. cominbasndes] m"':‘_!-ﬂ
1 you use Beif or fip ! to specify a file, that fle will be downloaded
I you use bitp it depends on whethes the URL gwes 7ou a nommal web page n your B
browser, or a Est of Bles Ifa page. that page will be downloaded -- and so will ol pages
it inks to, and all pages they bk 1o, ste. - prownded they reside on the same site, belew
the TRL.
I you use Beilf or fipilf to specify a folder or directory, or ge a hitpf URL that leads to
a st of Bles, swerything i the folder and all s sub-folders will be mcheded in the
collechon
Clhick the "more sources” button to get more mput boxes =

FIG. 4. Creating a new collection in Greenstone.

tools for building digital libraries in multiple languages in
a simple way.

SpidersRUs was written in the Java programming lan-
guage. There are three reasons for this particular choice. First,
Java is platform-independent, which implies that any pro-
grams written in Java can run on all computer platforms that
support Java Virtual Machine (JVM). Second, Java supports
multiple natural language encodings. This is made possible
by the use of double-byte character in Unicode to store each
character. Such a standard is especially useful for developing
multilingual systems (Czarnecki & Deitsch, 2001). Last, it
has been suggested that Java is suitable for building search
engine development tools (Heydon & Najork, 1999).

In addition, all intermediate files of SpidersRUs, such as
Web pages and search indexes, are stored as files (e.g., text
files, html files). By this way all the files can be accessed
easily by the users.

The architecture of SpidersRUs is depicted in Figure 6,
and then the main components are discussed.

Spider: The Spider component comprises a prespecified
number of “small spiders” that are controlled by a “spider
master.” Initially, each small spider is assigned an URL that
links to the document to be downloaded. All downloaded

documents are checked to avoid duplicates, which may oth-
erwise result in duplicated links in the search results. Each
valid document will be assigned a unique ID and stored to
the local disk as the Spidered Files.

Indexer: The main role of the Indexer is to create an index
about the terms extracted from the list of documents in the
Spidered Files. First, each document is converted to plain text
format. A preliminary index will then be created for all the
documents. Words are extracted from the documents to give a
word index that specifies the relative position and frequency
of each word.

After the preliminary index has been created, it goes
through a sorting process, which converts the preliminary
index into an inverted index. Note that all index files are stored
as plain text for easier reuse and access by the search engine
developers, and that these files are stored in their original
language encoding.

Query Engine: In addition to basic single-keyword search-
ing, the Query Engine component supports Boolean
searching (i.e., “AND”, “OR” and “NOT”’) and phrase search-
ing (specified using double quotes). Search results are ranked
according to the frequencies of the matching keywords as
indicated in the search indexes.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 2010 293

DOI: 10.1002/asi

T o1 x|
EEED WRE BsaD SHAEW TAD KD
=N e= - DA 4 Dme ussex Jnw I O I

BRD I..l ity pemtimare- s o g el] B -0-00- b0 -0- O~ Oiperoomegpe- § 04— 111 e 50— 20-aboot-rermon—000.1 -001 -1 -hatfZz-B-00 e tedirte | Asylvemcn

=] PuE wa

HOME HELP PREFERENCES

search

filenames

NBA

search titles a-z

Search for |teut ¥ | which contam | 50me *| of the werds

[ivessn Begin Search

results

Waord count: brerson: 373

More thas 50 docusnents matched the query.
Allen Iverson mformation mchadng biography pactares stats books and posters
(Alles-Iverson. hitmd)

NEA Dralt net — Aben Iverson profie
(allemverson.agp)

NEA Draft net - Dajuan Wagner profile
(dafucwagner. itn)

[MEA Draft net | Post of the Week 5
(postoflreeekl S hin)

[NEADraft net - Polls
(poilisd. him}

WEA Draft ret -- Juan Docon profie
(reamatiza fitw)

NEA Draft net — Eddie House profle
fecdchiehouse.htw)

|5} WBA Draft et | Butter ve. Parkay
(2002 slvepers him)

[} WEA Drat net | October 2000 Hews =
(el 0-00.htm)

MEA Dradt net - Rashad Phillps profle
(rashadphillips hteg)

WEA Dralt net | August 2000 Hews
froevrs-00 himg)

[5) MBA Draft net | Amico Report 10/03
farmica024.him)

(5 MBA Draft et — Guillermo Diaz profile
(uillermodiaz.)
NBA Draft net - Guillermo Diaz profile
(muiilermodiar.asp) =|

FIG. 5. User search result page in Greenstone.

Web User
Interface

Java GUI

Spider Indexer

Dommen/

Spidered Files

Query Engine |-

Indexe/

Indexed Files

The Web —

FIG. 6. System architecture of SpidersRUs.

Sample user session of SpidersRUs. The SpidersRUs toolkit
provides the necessary components for developing search
engines efficiently. This section describes each of the steps
involved in the development. First, a user (i.e., a search
engine developer) needs to create a new project for storing
a collection of documents (see Figure 7). A new project can
be created by selecting either “New” or “Advanced New”
under the “File” menu in the toolbar. Both methods allow

the user to specify the name, path, language encoding, and a
short description of the collection. In the “Advanced New”
option, the user can also specify settings for various compo-
nents of the toolkit, which can include components developed
by the users themselves.

After a new collection has been created, the project name
will be added to the list of projects indicated on the left panel
together with any existing projects. On the “Collection” tab

294 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 2010

DOI: 10.1002/asi

File Yiew Help

~_ Spaders "R” Us Digital Library Toolkit, Al Lab, The University of Anizona

¢ Create a new collection

1= ::nj:ﬁu"echon' :'CDM
Nune: MyCollection]
Nod Pt collectionsh
Encoding Western European (1S0) v
Dewsialion My new collection
| @ Indexlosder | ailabdlibrary index FieBasedlndexd.osder
| W SpidesMastr | ailab dlibrory spider DefaultSpiderMaster
| FE IndewmMasts | ailsb dlibrary indexes Defoultndexeraster
| M Seacher | ailsbdlibrory sesscher DefunlSensches
| URLFiller | ailab dlibracy filer DefaultURL Filer
| HTMLFilr | ailab dlibrary filter Defanlt TML Filx —m
;
s
| S

FIG. 7. Creating a new project in SpidersRUs.

inside the right panel, the user will see a list of basic infor-
mation of the collection such as number of items collected
and indexed. As the Spider component has not been started,
these values should be O at this stage.

The next step is to add the seed URLSs to the Spider com-
ponent. This can be done by first clicking the “Add Seeds”
button on the “Spidering” tab. A list of seed URLs can be
typed in one by one or by specifying a text file containing the
list. If users want to specify other parameters for spidering,
then they can click on the “Advanced” button. In the pop-
up window, users can change the settings for the following
parameters:

1. Number of spiders: number of threads used to download
documents from the Web simultaneously.

2. Maximum levels: maximum depth that each spider will
visit starting from the seed URLSs

3. Timeout (sec): Maximum time allowed for downloading
any document

4. Pages required: Number of pages to be downloaded

5. Only in same Web site: To limit the spiders to download
documents only in the Web domain specified in the seed
URLs.

6. Observes robots.txt exclusion: To specify that the tool will
observe the Robot Exclusion Protocol.

7. Use Proxy Server: To specify the details of proxy server,
if any.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 2010

After the user has added all seed URLs and set all param-
eters, the Spider component can be executed by clicking
the “Start” button. The Spider component stops when it has
downloaded enough documents (as specified in settings), or
the spidering process has been manually stopped by the user.
The user can then start the forward indexing process by click-
ing on the “Start Indexing” button on the “Indexing” tab. After
that, the user can continue with generating the inverted index
using the “Start Sorting” button.

After the search indexes have been generated, the search
engine is ready to serve. If the user does not specify a port
number, the default port number will be assigned. The search
engine can be started by clicking the “Start Service” button
on the “Start Service” tab. After that, the search service can
be accessed through a Web browser by clicking the “Launch
Browser” button. Any users can then submit queries to the
search engine through the Web interface and start the search.
A sample search result screen is shown in Figure 8.

Evaluation

To study the effectiveness of our class project and compare
the educational effectiveness with the three search engine
building tools, every student was asked to complete a survey
at the end of the project. The survey was related to experi-
ence and opinion of using each of the tools, including such

295
DOI: 10.1002/asi

a Al Lab Spiders“R"Us Digital Library Toolll .I.I.!I!I
Fle Edt Vew Favorkes Toos Help -
back + = - Q[A Qoewrch [GiPavorites Peda F |5 HE - D
Address [€] htp:flocabost:9999(TT1=nbs x| Pw
SPIDERS“R”US
Digital Library Toolkit
Enter Keyword Submit
Search Resulis
Taotal 4147 results found. Showning 1-20.
1. HEA com MNBA com Network Pnvacy Policy
http ffwrwrw. nba cominews/prvacy_pobcy. himl
Score: 147
2. 2004 NEA AWARDS PREDICTIONS Pro Basketball Blog Archives
http/fprobasketball about comMb/archives htm
Scare: 130
3. HEA com NEA TV
http ffwrww nba cominba_tw
Score: 110
' =

FIG. 8.

areas as user friendliness, system capability, as well as overall
impression of the tools. In addition, items about the knowl-
edge gained from using each of the tools were included. For
each item, students had to give scores to the tools respectively
using a 0 to 9 scale, with 9 indicating the best score. In the
following, we will focus on two areas of our findings, which
are overall reactions to the tools (Chin, Diehl, & Norman,
1988) and knowledge gained from the tools (Chen, Fan,
Chau, & Zeng, 2003). The corresponding items are shown
in the Appendix.

Overall Reactions to the Tools

The results of the survey concerning overall reactions
to the tools are summarized in Tables 1 and 2. As shown
in Table 1, SpidersRUs obtained the highest mean score in
each of the six areas (i.e., user friendliness, being interesting,

TABLE 1. Overall reactions to the tools: Mean scores.
Alkaline Greenstone SpidersRUs

User friendliness 5.500 2.429 6.000
Being interesting 5.071 2.679 5.964
Ease of use 5.143 4.250 6.519
Powerfulness 5.741 4.393 6.222
Flexibility 5.778 3.821 5.893
Overall impression 5.750 2.321 6.071

Sample session of the search engine built using SpidersRUs.

TABLE 2. Overall reactions to the tools: p values of pairwise ¢ test
comparison.

Alkaline vs. Greenstone vs.

SpidersRUs SpidersRUs
User friendliness 0.270 <0.001***
Being interesting 0.034* <0.001***
Ease of use 0.011* 0.001**
Powerfulness 0.199 <0.001***
Flexibility 0.834 0.001**
Overall impression 0.375 <0.001***

*<0.05, **<0.01, **<0.001.

ease of use, powerfulness, flexibility, and overall impression).
Pairwise ¢ tests were further conducted to compare the three
tools in these areas. Table 2 suggests that SpidersRUs was
significantly better than Greenstone in all the six areas. In
addition, SpidersRUs’ scores were comparable to those of
Alkaline, except for the attributes of being interesting and
ease of use, where SpidersRUs was significantly better than
Alkaline.

Knowledge Gained From Using The Tools

In terms of knowledge gained from the tools, SpidersRUs
scored highest among all six areas of knowledge (i.e., devel-
opment of search engines, architecture of search engines,

296 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 2010

DOI: 10.1002/asi

TABLE 3. Knowledge gained from the tools: Mean scores.

Area of knowledge Alkaline Greenstone SpidersRUs
Development of search engines 5.964 4.714 6.429
Architecture of search engines 5.464 4.821 5.929
World Wide Web 5.107 4.750 5.607
‘Web application development 4.821 4.286 5.643
Application design 5.107 4.643 5.750
Overall knowledge gained 6.107 4.929 6.500

TABLE 4. Knowledge gained from the tools: p-values of pairwise ¢ test
comparison.

Alkaline vs. Greenstone vs.
Areas of knowledge SpidersRUs SpidersRUs
Development of search engines 0.263 0.001**
Architecture of search engines 0.278 0.027*
World Wide Web 0.233 0.064
Web application development 0.034* 0.003**
Application design 0.092 0.006**
Overall knowledge gained 0.338 0.002**

World Wide Web, Web application development, application
design, and overall knowledge gained); Table 3). Similarly,
pairwise 7 tests were used to compare the statistical signif-
icance of these scores. As indicated in Table 4, SpidersRUs
was significantly more useful than Greenstone in helping stu-
dents to gain knowledge in almost all six areas, except for the
area of World Wide Web, in which no significant difference
was found. As for the comparison between Alkaline and Spi-
dersRUs, a significant difference was seen only in the area of
Web application development.

We suggest that the students were able to gain more knowl-
edge from SpidersRUs and Alkaline than from Greenstone
because of two reasons. First, Greenstone is more “technical-
oriented” and its user interface appears to be more complex
than the other tools. Students, thus, input only the required
parameters without fully understanding the details of the
search engine development process. On the other hand,
SpidersRUs and Akaline are more user-friendly and allow
students to monitor and understand the development progress
more easily, thus improving their understanding of the related
areas. Another possible reason for the higher levels of knowl-
edge gained in using SpidersRUs is the modular design of
the tool. Because each component is more clearly sepa-
rated from each other, students were able to learn the details
of each component more easily, and thus a better overall
understanding.

Comments From Students

After all the three versions of search engines had been
developed, we asked each group of students to compare the
three tools based on their experience. In particular, the fol-
lowing comments were obtained from the group that built

the NBA Search Engine shown in Figure 8. First, Alkaline
was the most difficult to use among the three tools as it could
run only in command prompt and the parameters, such as
seed URLSs, and number of required pages had to be specified
using a configuration file. According to the students, it was a
tedious process for them to configure the tool, although the
large number of available parameters had offered the largest
degree of flexibility in customization.

As for Greenstone, the students said it was the least flex-
ible tool because some of the parameters such as number of
spiders were either not available or required comprehensive
study of documentation. In addition, Greenstone required the
longest building time because all types of files in a Web page,
including photo and sound, had to be downloaded before the
search engine could be built.

The third tool, SpidersRUs, provided a user-friendly inter-
face and offered some useful features such as importing
seed URLs as a text file. Moreover, the search engine built
using SpidersRUs had a relatively high search speed and a
well-designed layout. However, the students added that Spi-
dersRUs was not a very efficient tool because it took a long
time (about 5 minutes) to start the search engine. Another con-
cern was the large size of the collection (i.e., search indexes),
which sized over 500 megabytes for the NBA Search Engine.

In general, the group explained that all the three tools
offered a similar set of components needed to build a search
engine and provided similar search results (except for Green-
stone, which gave more limited results as a smaller number
of seed URLs were used). In terms of building time, Alkaline
was the fastest and Greenstone was the slowest.

Conclusions
Implications

In this article, we have discussed a project that was carried
out with an intention to compare the educational value of
the three search engine development tools, namely, Alkaline,
Greenstone and SpidersRUs.

From the students’ comments obtained after the project,
we observed that SpidersRUs had certain features that dis-
tinguished it from the other two tools. In particular, it
offered a well-designed graphical user interface that was
not available in Alkaline. Moreover, it supported search-
ing documents written in multiple languages by utilizing its
Java-based platform. According to the survey, SpidersRUs
was ranked favorably by most students who had used all the
three tools. In terms of knowledge gained from the tools, it
outperformed the others for areas including search engine
development and architecture, the World Wide Web, appli-
cation design, and Web application development. In terms of
reactions to the tools, not only were its mean scores higher
than the others, but it also was significantly better than Green-
stone. In summary, the results showed that SpidersRUs was,
among the three tools, the most favorable one and the best in
helping students gain the necessary skills and knowledge on
topics such as World Wild Web and application development.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 2010 297

DOI: 10.1002/asi

TABLE 5. Comparison of three search engine building tools.

Alkaline

Greenstone

SpidersRUs

Main purpose

Development language C++

Collection Building (spidering) Basic Web spidering functions

Parsing/Indexing Function

for multimedia files)

Searching
search

GUI not available for the collection
building process

Windows, Linux, Mac OS, Unix
English

User Interface

Platform Supported
Human Languages Supported

Building small-mid scale search engines

Parses plain texts, HTML, PDF, MS Word,
MS Rich Text, LaTex, Word Perfect, and
multimedia files (only metadata is indexed

Supports Boolean, metadata, and numeric

Organizing existing information

C++, Java

Customizable Web spidering
functions

Parses plain texts, HTML, and
multimedia files (only metadata
is indexed for multimedia files)

Supports Boolean expressions
and phrase search

‘Web-based Interface

‘Windows, Linux, Mac OS
All UTF supported languages

Building small-mid scale search
engines

Java

Customizable Web spidering
functions

Parses plain texts, HTML, PDF,
MS Word, MS Rich Text.

Supports Boolean expressions
and phrase search

Client-side GUI

Windows

All UTF supported languages

A summary of the main features of the three search engine
development tools is provided in Table 5. We can see that each
tool has its own features that may be suitable for different pur-
poses. Based on the experimental results discussed above, it
is preferable to use SpidersRUs for a class project in terms of
helping students obtain knowledge in search engine and the
Web. On the other hand, if the purpose is to provide students
with hands-on experience on command-prompt tools, then
Alkaline may be a better choice. If the main teaching purpose
is to explore non-English systems, then Greenstone and Spi-
dersRUs will be more appropriate. For courses with a digital
library and information management orientation, Greenstone
may be a better choice because it was designed with this
perspective.

In general, the evaluation results show that the students
were able to gain more knowledge about different areas of
search engines and the Web from using the three tools in
the project. These areas include the development of search
engines, the architecture of search engines, the Web, Web
application development, and application design. Because
many of these topics are important for computer science and
information systems curricula, we believe that this search
engine development project is useful in IT education.

We suggest that the application of this project may need
to be adjusted according to the nature and timeframe of
the adopting course. To achieve the best learning result for
a course focusing on applications and system analysis, we
suggest that this project can be applied in the same way as
discussed in this article. This will allow students to gain useful
knowledge about the Web and search engines. On the other
hand, for a course focusing on programming, a project that
emphasizes more on coding (e.g., Chau et al., 2003) would
be more suitable.

Future Work

There are some areas of SpidersRUs that can be improved.
First, the building and starting process of search engines can

be made more efficient. This problem may be caused by the
large size of downloaded files and indexed files to be pro-
cessed. In addition, some students suggested that the tool
could be made more powerful if there were more configurable
options available for the users.

In addition, all the tools discussed only have limited
capabilities for dynamic Web pages, which are becoming
increasingly popular. It is important to continue the research
on Web spider for dynamic pages. This will allow students
to create search engines for different sites, e.g., social net-
working sites more easily, thus enabling them to get more
knowledge about different Internet-related topics through the
search engine project.

Acknowledgment

This project has been supported in part by funding from
the HKU Seed Funding for Basic Research (#10207565,
#10208140) and the NSF National SMETE Digital Library
Program (DUE-0121741).

References

Arasu, A., Cho, J., Garcia-Molina, H., Paepcke, A., & Raghavan, S. (2001).
Searching the Web. ACM Transactions on Internet Technology, 1(1),2-43.

Bainbridge, D., McKay, D., & Witten, I.H. (2004). Greenstone digital
library developer’s guide. Retrieved October 14, 2009, from University
of Waikato, New Zealand, Department of Computer Science Web site:
http://www.greenstone.org/developers-guide

Bird, S., & Curran J.R. (2006). Building a search engine to drive problem-
based learning. In Proceedings of the 11th Annual SIGCSE Conference
on Innovation and Technology in Computer Science Education, Bologna,
Italy.

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web
search engine. In Proceedings of the 7th International Conference on
the World Wide Web (WWW 07) (pp. 107-117). Amsterdam, Elsevier
Science.

Chau, M., & Chen, H. (2003). Personalized and focused Web Spiders.
In N. Zhong, J. Liu, & Y. Yao (Eds.), Web intelligence (pp. 197-217).
Heidelberg, Germany: Springer-Verlag.

298 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 2010

DOI: 10.1002/asi

Chau, M., Fang, X., & Yang, C.C. (2007). Web searching in Chinese: A study
of a search engine in Hong Kong. Journal of the American Society for
Information Science and Technology, 58(7), 1044-1054.

Chau, M., Huang, Z., & Chen, H. (2003). Teaching key topics in computer
science and information systems through a search engine project. ACM
Journal on Educational Resources in Computing (JERIC), 3(3), 1-14.

Chau, M., Qin, J., Zhou, Y., Tseng, C., & Chen, H. (2008). SpidersRUs: Cre-
ating specialized search engines in multiple languages. Decision Support
Systems, 45(3), 621-640.

Chen, H., Fan, H., Chau, M., & Zeng, D. (2003). Testing a cancer meta spider.
International Journal of Human-Computer Studies, 59(5), 755-776.

Cheong, F.C. (1996). Internet agents: Spiders, wanderers, brokers, and bots.
Indianapolis, IN: New Riders Publishing.

Chin, J., Diehl, V., & Norman, K. (1988). Development of an instrument
measuring user satisfaction of the human-computer interface. Proceed-
ings of the SIGCHI conference on Human Factors in Computing Systems
(pp. 213-218). New York: ACM Press.

Czarnecki, D., & Deitsch, A. (2001). Java internationalization. Sebastopol,
CA: O’Reilly & Associates.

Dutt, J. (1994). A cooperative learning approach to teaching an introduc-
tory programming course. Proceedings of the 9th International Academy
for Information Management (pp. 225-230). Location unknown: Inter-
national Academy for Information Management.

Appendix

Survey Items in the Questionnaire

Granger, M., & Lippert, S. (1999). Peer learning across the undergraduate
information systems curriculum. Journal of Computers in Mathematics
and Science Teaching, 18(3), 267-285.

Harris, A.L. (1995). Developing the systems project course. Journal of
Information Systems Education, 6(4), 192-197.

Heydon, A., & Najork, M. (1999). Mercator: A scalable, extensible Web
crawler. World Wide Web, 2(4), 219-229.

Hickey, T., Kumar, A., Wilkens, L., Beiderman, A., Mahadev, A., &
Ellis, H. (2002). Internet-centric computing in the CS curriculum. Pro-
ceedings of the 33rd SIGCSE Technical Symposium on Computer Science
Education (pp. 50-51). New York: ACM Press.

McConnell, J. (1996). Active learning and its use in computer science.
Proceedings of the SIGCSE/SIGCUE Conference on Integrating Tech-
nology into Computer Science Education (pp. 52-54). New York: ACM
Press.

Poindexter, S. (2003). Assessing active alternatives for teaching program-
ming. Journal of Information Technology Education, 2, 257-266.

Witten, I.LH., Bainbridge, D., & Boddie, S.J. (2001). Greenstone: Open-
source DL software. Communications of the ACM, 44(5), 47.

Witten, I.LH., McNab, R.J., Boddie, S.J., & Bainbridge, D. (2000). Green-
stone: A comprehensive open-source digital library software system.
Proceedings of the ACM Digital Libraries Conference (pp. 113-121).
New York: ACM Press.

Overall Reactions to the Tool
— (terrible/wonderful)

— (frustrating/satisfying)
— (dull/stimulating)
— (difficult/easy)

— (inadequate power/adequate power)

Knowledge Gained from the Tool
— Is the system helpful in your learning process in the course

— You have learned more about the process of search engine development after using the system
— You have learned more about the design and architecture of search engines after using the system
— You have gained more knowledge about the World Wide Web after using the system

— You have learned more about Web application development after using the system

— You have learned more about application design after using the system

terrible wonderful
0123456789
frustrating satisfying
0123456789
dull stimulating
0123456789
difficult easy
0123456789
inadequate adequate

0123456789

unhelpful helpful
0123456789
not at all very much
0123456789
not at all very much
0123456789
not at all very much
0123456789
not at all very much
0123456789
not at all very much
0123456789

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—February 2010 299

DOI: 10.1002/asi

