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Abstract	
  

Document similarity measures are crucial components of many text analysis tasks, 

including information retrieval, document classification, and document clustering. 

Conventional measures are brittle: they estimate the surface overlap between 

documents based on the words they mention and ignore deeper semantic connections. 

We propose a new measure that assesses similarity at both the lexical and semantic 

levels, and learns from human judgments how to combine them by using machine 

learning techniques. Experiments show that the new measure produces values for 

documents that are more consistent with people’s judgments than people are with 

each other. We also use it to classify and cluster large document sets covering 

different genres and topics, and find that it improves both classification and clustering 

performance. 
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Introduction	
  

Accurate assessment of the topical similarity between documents is fundamental to 

many automatic text analysis applications, including information retrieval, document 

classification, and document clustering. Choosing a good similarity measure is no less 

important than choosing a good document representation (Hartigan, 1975). 

Commonly used techniques such as the Cosine and Jaccard metrics rely on surface 

overlap: in order to be related, documents must use the same vocabulary.  

These existing measures treat words as though they are independent of one 

another, which is unrealistic. In fact, words are not isolated units but always relate to 

each other to form meaningful structures and to develop ideas. When reading, our 

thoughts constantly utilize relations between words to facilitate understanding 

(Altmann & Steedman, 1988). Without resolving word-level redundancies (i.e. 

synonymy) and ambiguities (i.e. polysemy), a similarity computation cannot 

accurately reflect the implicit semantic connections between words.  

The alternative we investigate in this paper is to use concepts instead of words to 

capture the topics of documents, by creating a concept-based document representation 

model. “Concepts” are units of knowledge (ISO, 2009), each with a unique meaning. 

They have three advantages over words as thematic descriptors. First, they are less 

redundant, because synonyms such as U.S. and United States unify to the same 

concept. Second, they disambiguate terms such as apple and jaguar that have multiple 

meanings. Third, semantic relations between concepts can be defined, quantified, and 

taken into account when computing the similarity between documents—for example, 

a document discussing endangered species may relate to one on environmental 

pollution even though they may have no words in common. 
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The value of concepts and their relations has been recognized and exploited in 

many text processing tasks, including information retrieval (Milne, Witten, & 

Nichols, 2007), semantic analysis (Mihalcea, Corley, & Strapparava, 2006), document 

classification (Gabrilovich & Markovitch, 2005), and document clustering (Hu, et al., 

2008; Huang, Milne, Frank, & Witten, 2008). Some authors even enrich document 

similarity measures based on lexical or conceptual overlap with semantic relations 

between concepts (Mihalcea, et al., 2006; Hu, et al., 2008). However, this is done in 

an ad hoc fashion, and the best way to employ such rich semantic knowledge remains 

unknown. To establish a more principled approach, we use supervised machine 

learning techniques to determine how to combine concepts and their semantic 

relations into a document similarity measure that reflects human judgment of thematic 

similarity.  

We evaluate the learned measure in two types of tasks. First, we compare it with 

human judgments of document similarity in terms of the consistency it achieves with 

human raters. Empirical results show that it produces values for documents that are 

more consistent with people’s judgments than people are with each other. Second, we 

use it to classify and cluster documents from different sources. Empirical results show 

that it outperforms existing overlap-based similarity measures by obtaining better 

classification accuracy and document clusters with greater cohesion. Our results 

provide strong support for the learned measure’s generality: it can be used effectively 

on documents with different topics and genres, from different subject domains, and 

with varying lengths. 

The next section reviews related work. Then we introduce our framework and its 

key components: how concepts in documents can be identified and used to represent 

them, and how their semantic relations can be quantified and exploited to calculate 
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document similarity. Next we present a new approach for automatically learning the 

document similarity measure from human judgments. Finally we describe the 

evaluations performed and discuss the results. 

Related	
  Work	
  

The standard document representation technique is the vector space model (Salton, 

Wong, & Yang, 1975). Each document is expressed as a weighted high-dimensional 

vector, the dimensions corresponding to individual features such as words or 

concepts. When words are used, the result is called the bag-of-words model. It is 

brittle because of redundancy, ambiguity and orthogonality; the first because 

synonyms are not unified, the second because no account is taken of polysemy—one 

word can have different meanings—and the third because semantic connections 

between words are neglected, which not only encompass the synonymy and polysemy 

relations but extend to the more general sense of two words being semantically 

related.  

Alternative features, such as phrases (Caropreso, Matwin, & Sebastiani, 2001), 

term clusters (Slonim & Tishby, 2000), and statistical topic models (Hofmann, 1999; 

Blei, Ng & Jordan, 2003) have been proposed to solve these problems. However, 

phrases, being sequences of words, can also be ambiguous, although they are usually 

more specific than single word terms. For example, access point usually refers to a 

device used to connect to a wireless network, yet it can also mean a rocky point on the 

Anvers Island of Antarctica.  

Term clustering and topic modeling techniques seek groups or combinations of 

terms that are strongly associated with one another in a given document collection, 

each cluster or combination presumably representing a latent topic hidden in the 
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documents. Their effectiveness depends heavily on the input data. Also, it is hard to 

interpret which topic a term cluster or combination represents (Hofmann, 1999), let 

alone connect the topics. Therefore these techniques cannot easily be generalized to 

fresh data, particularly documents with previously unseen terms and ones from 

different document collections. 

Concepts—units of knowledge—provide a neat solution to these problems. Each 

one represents a unique meaning and is thus unambiguous, and because of this, 

semantic relations between concepts can be defined and quantified in order to address 

the orthogonality problem. Concepts make more succinct descriptors than words.  

Concepts, organized and structured according to the relations among them, form a 

concept system. Given the standard definition of concepts as units of knowledge, 

encyclopedias like Britannica (Britannica, 2011) and Wikipedia (Wikipedia, 2011) are 

promising sources of concept knowledge. They provide extensive coverage of almost 

every branch of knowledge, with a particular focus on factual explanations of the 

concepts (Hartmann & James, 1998). Britannica is available only commercially, so 

we focus on the freely accessible Wikipedia. Some resources such as the Medical 

Subject Headings (MeSH) and Agrovoc are domain dependent. Research and 

applications of these systems are usually restricted to processing texts from that 

domain (Zhu, Zeng, & Mamitsuka, 2009; Bloehdorn & Hotho, 2004). Thus, they are 

not considered in this paper, although the techniques developed here can be directly 

applied to such resources. 

Wikipedia is a collaboratively developed online encyclopedia in which each article 

succinctly describes a single topic that we treat as a “concept.” The English version 

contains 3.7 million articles.1 Because of its open accessibility and comprehensive 

world knowledge, Wikipedia has been extensively and effectively exploited to 
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facilitate better understanding of documents. Studies show that Wikipedia-based 

concept representations are more effective than word vectors when assessing the 

semantic relatedness between documents (Gabrilovich & Markovitch, 2007; Yeh, 

Ramage, Manning, Agirre & Soroa, 2009), and have been applied successfully to 

information retrieval (Milne, et al., 2007; Potthast, Stein, & Anderka, 2008), text 

classification (Gabrilovich & Markovitch, 2005; Wang & Domeniconi, 2008), and 

document clustering (Hu et al., 2008; Huang, et al., 2008). 

Lexical resources have also been exploited to identify concepts in running text. 

These provide information about individual words, rather than general conceptual 

knowledge (Gabrilovich & Markovitch, 2009). In particular, WordNet (Miller, 1995) 

is a lexical ontology of common English word knowledge expressed in terms of 

concepts called synonym sets (synsets), maintained by experts at Princeton 

University. The most recent version (3.0) contains about 118,000 concepts. It also 

encodes semantic relations among concepts, such as generic (hypernymy) and 

partitive relations (meronymy). Concept representations based on WordNet have been 

utilized to quantify semantic relatedness between documents (Mihalcea, et al., 2006; 

Mohler & Mihalcea, 2009), and in information retrieval (Gonzalo, Verdejo, Chugur, 

& Cigarran, 1998; Voorhees, 1998), text classification (Scott & Matwin, 1999; 

Gabrilovich & Markovitch, 2004), and document clustering (Hotho, Staab, & 

Stumme, 2003; Recupero, 2007). 

Concept-based document representations solve the redundancy and the ambiguity 

problems but are still basically orthogonal. To address this problem, some expand the 

representation to incorporate concepts that are absent from a document but closely 

related to ones that it mentions (Bloehdorn & Hotho, 2004; Gabrilovich & 

Markovitch, 2005; Yeh et al., 2009; Recupero, 2007), and others only consider 
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relations that are pertinent to the documents currently being compared (Hu, et al., 

2008). The decisions governing which relations should be considered and how are 

usually ad hoc. For example, Bloehdorn & Hotho (2007) expand to concepts that are 

more general than those mentioned in the document, and restrain the expansion to be 

within a certain depth in a hierarchy. Hu’s system considers several relations, 

including hierarchical and associative relations, each restricted to a certain range, and 

the formula for combining them is determined empirically through experimental 

trials.  

In contrast, our work takes explicit account of semantic relations between 

concepts, in a principled way. Related methods in the literature include ESA (explicit 

semantic analysis) (Gabrilovich & Markovitch, 2005) and its successor ESA-G (Yeh 

et al., 2009), both of which index documents with Wikipedia concepts based on full-

text analysis. ESA indexes a document with Wikipedia articles that have certain 

surface overlap with it.  ESA-G enriches ESA with hyperlink structure information by 

using an iterative random walk over Wikipedia’s hyperlink graph that is initialized 

with the Wikipedia concepts assigned to a document by ESA. Because they require 

processing the fulltext of Wikipedia articles, they are computationally more expensive 

than our method, which does not involve fulltext analysis. We compare our measure 

with these techniques in the evaluation section.  

We use both WordNet and Wikipedia to identify concepts in documents and to 

relate different concepts. Both are domain independent, yet different techniques are 

required because they have distinct structure and characteristics. We will explain how 

each is used to identify concepts in free-text documents after introduce our framework 

in the following section. 
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Framework	
  

FIGURE 1 illustrates the general process of creating and applying our document 

similarity measure. Given a document collection, we first list all the possible 

document pairs. Given each pair, the first step creates two independent 

representations by extracting words and concepts from the documents. The feature 

generation step takes the representations as input, extracts features that describe the 

resemblance between the two documents at different levels, and outputs a feature 

vector. The feature vectors for different document pairs are used to build the 

similarity measure in the training phase, and the resulting model is then applied to 

previously unseen document pairs to predict their thematic similarity.  

 

FIGURE 1 The process of creating and applying our document similarity measure. 

The following section explains the document representations. Several features 

involve measuring the semantic relatedness between concepts, thus we will first 

describe the measures we use for WordNet and Wikipedia and then introduce the 

features.  

Document	
  Representation	
  

Documents are represented at the lexical and semantic levels by the words and 

concepts they contain. This creates two independent representations, called bag-of-

words and bag-of-concepts respectively. To create the former, documents are 

segmented into tokens based on white space, paragraph separators and punctuation 
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marks. Then all words are extracted and stemmed (Porter, 1980), stopwords are 

removed, and the number of occurrences of each word is counted.  

To create the bag-of-concepts representation, the concepts in the document are 

identified. First, an index vocabulary is extracted from each concept system 

(Wikipedia and WordNet) whose entries associate concepts with lists of expressions 

that could be used to refer to it in running text (Huang, et al., 2008). For Wikipedia, 

the expressions come from the redirects and anchor phrases that point to a Wikipedia 

article, and for WordNet they are the synonyms in a synset. For example, WordNet 

associates the concept “a machine for performing calculations automatically” with 6 

expressions, computer, computing machine, computing device, data processor, 

electronic computer and information processing system; whereas Wikipedia 

associates it with more than 100, from synonyms like computer systems to common 

spelling errors like computar.  

Concepts mentioned in a document are identified in two steps: candidate 

identification and sense disambiguation. In the first, all word sequences up to the 

maximum length of the index vocabulary are extracted, provided they do not cross 

boundaries such as paragraph separators. Each sequence is matched against the 

vocabulary. A positive match connects it to the concept or concepts associated with 

that expression, which constitute the set of concept candidates. For example, pluto 

generates (at least) three concept candidates: the dwarf planet in the Solar System, the 

cartoon character, and the Roman god of the underworld. The second step 

disambiguates the intended meaning of a polysemous term and retains only the 

concept that represents this meaning.  

For Wikipedia, the disambiguation process establishes how closely a concept 

candidate relates to its surrounding context and chooses the most highly related as the 
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intended sense (Milne & Witten, 2008a). For WordNet, we simply choose the most 

common sense of a concept as its intended sense, because experimentation showed 

this to be the most effective method (Huang, 2011; Hotho, et al., 2003). In either case, 

the outcome is the bag-of-concepts representation of the document, comprising the set 

of concepts it mentions, synonyms having been mapped to the same concept and 

polysemous terms having been disambiguated as described above, along with a count 

of the number of occurrences of each concept. 

Semantic	
  Connections	
  between	
  Documents	
  

Researchers have long been aware of the redundancy, ambiguity and orthogonality 

problems (Hartigan, 1975). However, they cannot be solved using the bag-of-words 

model. The concept-based model rectifies the situation. The previous section 

explained how concepts address redundancy and ambiguity; now we focus on 

orthogonality. More specifically, we quantify how closely concepts relate to each 

other and integrate this into a document similarity measure. As a result, documents do 

not have to mention the same words or concepts in order to be judged similar.  

Concept	
  Relatedness	
  Measure	
  

Measuring semantic relatedness between concepts is a challenging research 

problem in its own right and has been studied extensively using both WordNet and 

Wikipedia (Resnik, 1995; Leacock & Chodorow, 1997; Strube & Ponzetto, 2006; 

Gabrilovich & Markovitch, 2007; Milne & Witten, 2008b). There are three general 

requirements for a concept relatedness measure to be applicable in our framework. 

First, it should be accurate, an appropriate measure of accuracy being consistency 

with human judgments of relatedness. Second, it should apply to all members of the 

concept system, simply because any concept could be encountered in practice. Third, 
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it should be symmetric. Although asymmetry may be desirable in some tasks (Tătar, 

Şerban, Mihiş, & Mihalcea, 2009), the tasks that we apply the relatedness measure to 

predominantly use symmetric relationships. Relatedness values also need to be 

normalized to the range from 0 (completely unrelated) to 1 (synonymous). 

For WordNet concepts we use Leacock and Chodorow’s path-length measure LCH 

(Leacock & Chodorow, 1997), while for Wikipedia we use Milne and Witten’s 

hyperlink-structure measure WLM (Wikipedia Link-based Measure) (Milne & 

Witten, 2008b). They both satisfy all three requirements. They are either more 

accurate than the alternatives in terms of consistency with human judgment or as 

accurate but significantly more efficient (Strube & Ponzetto, 2006; Milne & Witten, 

2008b).   

LCH utilizes WordNet’s concept taxonomies, and defines semantic distance as the 

number of nodes along the shortest path between two concepts, normalized by the 

depth of the taxonomy. Formally, the relatedness between concepts A  and B  is 

defined as 

LCH (A,B) = ! log length(A, B)
2D

 

where length(A, B) is the number of nodes along the shortest path between A  and B  

and D  is the maximum depth of the taxonomy. If A  and B  belong to different 

taxonomies (for example A  is a noun and B  is a verb), or either concept does not 

exist in any taxonomy (for example A  is an adjective), the relatedness is set to zero.  

WLM has two components, modeling incoming and outgoing hyperlinks 

respectively. Given two Wikipedia articles A  and B , denote the sets of hyperlinks 

found within them by Aout  and Bout , and the sets of hyperlinks that are made to them 

by Ain  and Bin . WLM’s first component uses the cosine measure between Aout  and 
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Bout : 

WLMout (A,B) =
w(l, A)! w(l, B)

l"Aou t#Bou t

$

w(l, A)2
l"Aou t

$ ! w(l, B)2
l"Bou t

$
. 

Here w(l, A)  is the weight of a link l  with respect to article A , which is 0 if 

l ! A and log
W
T

 otherwise, where W  is the total number of articles in Wikipedia 

and T  the number that link to the target of l . This resembles inverse document 

frequency weighting (Manning, Raghavan, & Schütze, 2008). Incoming links are 

modeled after the normalized Google distance (Cilibrasi & Vitányi, 2007). Formally, 

WLMin(A, B) =1!
max(log Ain , log Bin ) ! log Ain"Bin
log(W )! log(min( Ain , Bin ))

 

where Ain!Bin  denotes the set of hyperlinks that link to both A  and B . WLM 

computes overall relatedness as the average of these two components. 

 

FIGURE 2 Example concept graph. 

Context	
  Centrality	
  

Next we integrate concept relatedness into a full measure of document similarity. 

A key notion is the centrality of a concept with respect to a given context, where a 

“context” is the set of concepts in a document. Centrality indicates the concept’s 

relevance to the context, and we use it to enrich the overlap-based measure. 

Concepts and their connections are represented by a weighted undirected graph 
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whose vertices are concepts and whose edges connect pairs of concepts, weighted by 

their relatedness. FIGURE 2 shows an example. When two concepts have zero 

relatedness, we create an edge with zero weight. We also create an edge from each 

vertex to itself, with a weight of 1, to cope with the situation when the graph has only 

one concept. The concepts themselves are weighted too, the weights being either 

binary—0 and 1 indicating the concept’s absence and presence respectively—or a 

numeric score reflecting how often the concept is mentioned in the context. We call 

these the binary and weighted schemes. 

We compute the context centrality of each concept within the document by 

calculating the average edge weight of its vertex in the graph. Formally, denote the 

weight of concept c  in a set of concepts C  by w(c,C)  (either  binary  or  numeric,  as  

noted  above). The centrality of c  with respect to the context C  is defined as 

CC(c,C) =

rel(c, cj ) !w(c j ,C)
c j"C
#

w(c j ,C )
c j"C
#

, 

where rel(c, cj )  is the relatedness between c  andcj . Context centrality is normalized 

between 0 and 1, and higher values indicate that the concept is closer to the center of 

the graph—i.e., more closely related to the context.  

Learning	
  Document	
  Similarity	
  

We use a total of 17 features to characterize document similarity, representing four 

different aspects: overall similarity, context centrality, strongest connection and 

concept groups. The first bases similarity on the entire bag of concepts; the second 

and third utilize the strength of semantic connections beyond the documents’ surface 

forms; and the fourth takes into account the relations between “topics,” which we 
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define as groups of closely related concepts.  

The learned similarity measure takes as input a pair of documents and produces a 

score between 0 and 1, the former indicating that the concepts in the documents are 

completely different and the latter that they are identical. The measure works in three 

steps: document representation, feature extraction and similarity calculation.  The 

first step generates the bag-of-words and bag-of-concepts representations discussed 

above; the second calculates feature values that characterize the thematic resemblance 

between documents; and the third uses a model to compute similarity according to the 

feature values. This model is first built from training data—document pairs with their 

thematic similarity rated by human raters—and then applied to previously unseen 

document pairs. It encodes how the features should be combined to best model human 

judgment.  

Next we introduce the features. Then we describe how the model is built from 

training data, and how it is applied to fresh documents.  

Features	
  

Each of the four aspects mentioned above consists of several features, reflecting the 

various perspectives the aspect encompasses. Each feature is expressed with one or 

two attributes that correspond to dimensions in the vector representing the document 

pair. The 17 features result in the 25 attributes listed in TABLE 1. These attributes 

comprise the vector that describes the similarity between a pair of documents.  

Overall	
  similarity	
  

The first feature type computes the similarity between documents based on the 

overall similarity of the entire bag of words or concepts they mention. For bags of 

words we use the cosine measure, and for bags of concepts we develop a new 
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enriched measure that takes into account semantic relations between the concepts. 

This generates two features, CosineWords and EnrichedConcepts (F1 and F2 in 

TABLE 1), each of which corresponds to one attribute. 

Level Aspect ID Feature Number of 
attributes 

Document-level Overall similarity F1 CosineWords 1 
 F2 EnrichedConcepts   1 

Concept-level Context centrality F3 MaxLocal 2 
F4 MinLocal 2 
F5 AvgLocal 2 
F6 SDLocal 2 
F7 MaxRelative 2 
F8 MinRelative 2 
F9 AvgRelative 1 
F10 SDRelative 2 

Strongest connection F11 MaxRel 1 
F12 MaxNORel 1 

Topic-level Concept groups F13 AvgGroupSize 2 
F14 MaxGroupRel 1 
F15 MinGroupRel 1 
F16 AvgGroupRel 1 
F17   SDGroupRel 1 

Total F1–F17 25 

TABLE 1 Features used for learning document similarity. 

Cosine	
  similarity	
  measure	
  

The cosine measure calculates the similarity between two documents as the cosine 

of the angle between their corresponding word vectors (Salton, et al., 1975). 

Formally, if dA
! "!

 and dB
!"!

 are the word vectors of documents dA  and dB , their 

similarity is computed as 
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cosine(dA,dB ) =
dA
! "!
!dB
!"!

dA
! "!

! dB
!"! =

w(t,dA )"w(t,dB )
t#V
$

w(t,dA )
2

t#V
$ w(t,dB )

2

t#V
$

, 

where w(t,dA )  is the weight of word t in dA —that is, the tf ! idf  weight, based on 

the number of occurrences of t  in dA —and V  denotes the size of the vocabulary of 

the document collection. Evidence from various applications shows that this formula 

effectively measures inter-document similarity (Willett, 1983; Rorvig, 1999; Lee, 

Pincombe, & Welsh, 2005). 

Like many other measures, the cosine measure does not take connections between 

features into account. Thus we only apply it to the word-based representation. Despite 

its limitations, this feature (F1) contributes to the learned measure’s robustness, 

especially in the extreme (and extremely rare) case where no concepts are detected in 

the input document. 

Semantically	
  enriched	
  similarity	
  

One way of enriching document similarity with semantic relations is to expand 

each document’s representation to include new concepts based on those it already 

mentions: both more generic concepts such as hypernyms of existing ones (Bloehdorn 

& Hotho, 2004; Recupero, 2007), and closely related concepts (Hu, et al., 2008). For 

example, FIGURE 3 shows two documents, the Wikipedia concepts identified in them 

(italicized, on the right), and the phrases in the documents that evoke the concepts (in 

bold). The documents have no concepts in common, yet the first mentions 

cardiovascular disease and the second mentions coronary heart disease, both of 

which belong to the same Wikipedia category, cardiovascular diseases. The two 

documents could be related by expanding both representations to include this 

common category. Of course, the expansion must be restricted somehow—perhaps to 
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concepts within a certain range. 

D1 By giving up smoking, losing weight, and 
becoming more active people can reduce 
their risk of cardiovascular disease two to 
three-fold, which largely outweighs the risks 
of taking the medications. 

  smoking → Tobacco smoking 
  losing weight → Weight loss 
  cardiovascular disease → 
 Cardiovascular disease 
  medications → Pharmaceutical drug 

D2 In the UK, there are 2 million people 
affected by angina: the most common 
symptom of coronary heart disease. 
Angina pectoris, commonly known as 
angina, is severe chest pain due to 
ischemia (a lack of blood, hence a lack of 
oxygen supply) of the heart muscle. 

  the UK → United Kingdom 
  angina → Angina pectoris 
  coronary heart disease → Coronary 

heart disease 
  chest pain → Chest pain 
  ischemia → Ischemia 
  blood → Blood 
  oxygen → Oxygen 
  heart muscle → Cardiac muscle 

FIGURE 3 Documents about smoking and health respectively. 

For example, the concept smoking, which is literally mentioned in document D1, 

might be expanded to include hypernyms like addiction and habits, and closely 

related concepts such as tobacco, cigarette, and nicotine. However, most of these 

expanded concepts are irrelevant for connecting document D1 with D2, which 

discusses coronary heart disease. 

An alternative approach to enriching document similarity is to focus on the 

comparison itself, and take account of the context that the comparison provides. The 

orthogonality problem when comparing two documents can be addressed by enriching 

each document with the concepts that have been identified in the other: here, 

enriching D2 with the four concepts in D1, and enriching D1 with the eight concepts 

in D2. We utilize the measures of concept relatedness explained previously to 

determine the weights of the enriched concepts. 

Given two documents, we enrich each by adding all the new concepts that are 

identified in the other. The weight of each newly added concept is based on both its 

most closely related concept in the document to which it has been added, and its 
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centrality with respect to that document. Formally, given documents dA  and dB  with 

concept sets CA  and CB , we first enrich CA  with concepts from dB  that are not 

mentioned in dA . For each such concept ce  ( ce ! CB and ce ! CA ), the first 

component—its strongest connection with CA —is denoted by ce
A , that is, 

ce
A = maxc!CA rel(ce, c) , and the second component is its centrality with CA : 

CC(ce, dA ). The enriched concept ce ’s weight in dA  is 

we (ce,dA ) = w(ce
A, dA )! rel(ce

A ,ce )! CC(ce, dA ), 

where w(ce
A, dA )  is ce ’s most related concept ce

A ’s weight in dA , which is also 

weighted with the tf ! idf scheme based on its occurrence frequencies, and rel(ce
A ,ce )  

is their relatedness. Document dB  is enriched in the same way with concepts from dA  

that are not mentioned in dB . Then the cosine measure is used with the enriched 

representations. 

Both components of a newly added concept’s weight—its strongest semantic 

connection and its context centrality with the document—are plausibly necessary. The 

former represents the most likely strength of the connection that the concept makes 

between the two documents, while the latter adjusts it according to the concept’s 

importance in the document to which it has been added. 

Context	
  centrality	
  

The second group of features characterizes the distribution of the context centrality 

values of concepts in each document. We calculate centrality with respect to two 

distinct contexts: the one surrounding a concept, which reflects how central it is to the 

document that mentions it; and the context provided by the comparison document, 

which reflects the concept’s relevance to the comparison itself. We call these local 
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and relative centrality, respectively. 

Four statistics are used to describe the overall distribution of centrality values, 

minimum, maximum, average and standard deviation, and these are applied to both 

local and relative centrality to yield features F3–F6 and F7–F10 in TABLE 1. The 

distribution of local centrality reveals the cohesiveness of a document, while the 

distribution of relative centrality characterizes the overall semantic relatedness 

between the documents. For example, if two documents share similar topics, a 

considerable proportion of their concepts should have high relative centrality, 

resulting in a large average and a small standard deviation. 

 The first two features—minimum and maximum—are trivial to obtain. The 

average centrality is the mean of the centrality values of all concepts, and the standard 

deviation is computed as 

s = 1
C !1

(CC(ci,C) !CC)
2

cl"C
#  

where C  is the number of concepts in the context, CC(ci ,C)  is concept ci ’s 

centrality with respect to C , and CC  is the average context centrality of all concepts 

in C . Each feature yields two attributes except for the average relative centrality (F9), 

which is symmetric. 

Strongest	
  connection	
  

The centrality features assess relations between one concept and a set of concepts: 

for example, maximum centrality identifies which concept has the strongest overall 

relatedness to all concepts in a group.  The third group in TABLE 1 concerns one-to-

one relations, which also provide useful information about document similarity. There 

are two such features: the maximum relatedness between single concepts in the 
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documents (MaxRel, F11) and the maximum relatedness between concepts that appear 

in one document but not the other (MaxNORel, F12). The two are the same unless the 

documents have at least one concept in common, in which case MaxRel = 1. 

For example, the strongest connection between D1 and D2 in FIGURE 3 is 

between cardiovascular disease and coronary heart disease, whose relatedness value 

is 0.71. Because the two documents have no concepts in common, MaxRel = 

MaxNORel = 0.71 for this example. 

Concept	
  groups	
  

Concepts mentioned in the same document are not only related but can form their 

own structures: closely related concepts are often used together when describing a 

topic that they are all associated with. For example, a document explaining oil spill 

might mention alternative references to oil (such as petroleum, gasoline, diesel), some 

oil companies (such as Shell and BP), and oil's influence on species like seabirds and 

marine mammals. These three groups (oil spill and so on, oil companies, and wildlife 

species) each represent a more detailed aspect of the document's topic. Documents 

that share similarity in any aspect are somewhat similar to the document in question, 

and those that mention all three aspects are even more alike. 

To capture this effect we cluster concepts according to their relatedness to each 

other, combining closely related ones into the same group and separating those with 

tenuous links into different groups. Each group, like the three discussed above, 

reflects a topic or a subtopic mentioned in the document. From these we generate 

features that describe inter-document relations at the topic level, which is intermediate 

between the document and concept levels examined previously. 

Specifically, concepts are clustered to form cliques—complete subgraphs—in order 

to make the topics (or subtopics) as coherent as possible. Again, documents are 
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modeled by weighted undirected graphs with concepts as vertices. Unlike the graphs 

used to model context centrality, which connect every concept to all others, here only 

those whose relatedness exceeds a certain threshold (0.5 in used throughout this 

paper) are connected. The maximal cliques of this graph give the concept groups we 

seek. Every pair of concepts assigned to the same group exceeds this threshold, and 

no other concept can be added to any of these groups. 

For example, FIGURE 4 shows the groups with at least two concepts identified 

from D1 and D2 (FIGURE 3) with a relatedness threshold of 0.5. D1 contains just one 

group, and it is closely related to only the first of the three groups in document D2. 

Blood appears in two of D2’s groups because ischemia, cardiac muscle and oxygen 

are insufficiently related for the groups to be merged. 

 

FIGURE 4 Concept groups in the documents in FIGURE 3. 

Concepts that cannot be assigned to any group can either form a singleton—a 

group by itself—or be ignored. We call these the full and strict schemes respectively. 

For example, document D1 has one group in the strict scheme and two in the full 

scheme. Full schemes capture every aspect of a document, even the unimportant ones. 

This favors situations when two documents are highly similar: even their less 

important aspects can be alike and strongly related. In contrast, strict schemes 

highlight the most prominent aspects of a document and can reduce computation 
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overhead by avoiding relatedness computation between singleton groups. 

Several features can be derived from these concept groups. One is the average 

group size for each document (F13 in TABLE 1). As with centrality, we use the 

maximum, minimum, average, and standard deviation statistics to characterize the 

distribution of relatedness between groups (F14–F17).  

The relatedness between two concept groups is the weighted average of the 

relatedness between their member concepts. Formally, let GA = !1,...,! p{ } and 

GB = !1,...,! q{ } be the concept groups (! ) identified from documents dA  anddB .  

The relatedness between ! h  from dA  and ! l  from dB  is calculated as: 

rel(! h ,! l ) =
w(ci ,dA )" w(c j, dB )" rel(ci ,c j)

c j#! l

$
ci#! h

$

! h " ! l
, 

where !  refers to the size of group !  and is calculated as w(c,d )
c!"
# . Here, w(c,d )  

is concept c ’s weight in document d  that produces ! , and is either 1 or 0 to indicate 

the concept’s presence or absence (the binary version), or a score based on its number 

of occurrences (the weighted version). The average group relatedness is the mean of 

every possible pair of concept groups weighted by each group’s size: 

grouprel(dA ,dB ) =
rel(! h ,! l )" ! h "

! l#GB

$
! h #GA

$ ! l

! h ! l
! l#GB

$
! h #GA

$
. 

If no concept group is found for a document (in the strict scheme), the average group 

relatedness is set to −1 to differentiate this from the case where none of the groups 

are related, in which case grouprel(dA ,dB )  is zero. 
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Training	
  Data	
  

Our strategy is to build a model that uses these features to predict document 

similarity, and for this we need training data. Unfortunately, little data on manually 

rated thematic document similarity is available, and we know of only one dataset with 

a substantial number of human raters, referred to as HE50 (Lee, et al., 2005; 

Pincombe, 2004). 

HE50 consists of fifty short news documents from August 2002, selected from a 

group of articles taken from the Australian Broadcasting Corporation’s news mail 

service. The documents are quite short—between 51 and 126 words—and contain a 

total of 1583 distinct words after case-folding. Assessments of word distribution show 

that they are normal English documents (Pincombe, 2004). The documents were 

paired in all possible ways, generating 1225 pairs (excluding self pairs). 

The judges were 83 students from the University of Adelaide. Document pairs 

were presented in random order, and the order of documents within each pair was also 

randomized. Students rated the pairs on an integer scale from 1 (highly unrelated) to 5 

(highly related), each pair receiving 8–12 human judgments. Judgments were 

averaged and normalized to [0,1]. FIGURE 5 shows the distribution of the normalized 

ratings. 

 

FIGURE 5 Distribution of averaged human ratings in the HE50 dataset. 

Inter-labeler consistency is assessed in terms of Pearson’s linear correlation 
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coefficient. Lee et al. show that the raters’ judgments are quite consistent throughout 

the task and with each other: on average, raters have 0.6 correlation with one another. 

This dataset has become the benchmark for evaluating document similarity measures. 

One aim is to make automated measures as consistent with humans as humans are 

among themselves, and this inter-rater consistency serves as a baseline. 

Regression	
  Algorithms	
  

We use regression algorithms to build a model that makes numeric predictions 

based on numeric values. We have experimented with several such algorithms: linear 

regression, support vector machines for regression (abbreviated SVMreg) (Smola & 

Schölkopf, 2004), the Gaussian process for regression (Rasmussen & Williams, 

2006), and these four algorithms applied with forward stagewise additive modeling 

for regression (Hastie, Tibshirani, & Friedman, 2009). Performance is measured in 

terms of consistency with human judgments. The best results were achieved with 

support vector machines using the radial basis function kernel; incorporating additive 

regression improves performance only slightly and the improvement is not 

statistically significant. Thus all the results that follow were obtained with the 

SVMreg regressor alone (with epsilon=1.0E-12, C=1.0, and gamma=0.01 for the RBF 

kernel). All attributes are first standardized to have zero mean and unit variance, 

except the class attribute—the average rated similarity.  

Evaluation	
  Strategy	
  

We evaluate the learned measure against human judgment, and we also evaluate it 

in specific applications. The former investigates whether the measure is able to 

predict thematic document similarity as consistently as humans, and also explores the 

effectiveness and predictive ability of the two concept systems—WordNet and 
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Wikipedia—and of the individual features. The latter is an important addition to 

evaluation against human judgment (Budanitsky & Hirst, 2001). It tests the measure’s 

effectiveness in different scenarios by applying it to different datasets and to 

document classification and clustering, which are both tasks that require a document 

similarity measure. This is important because the training dataset (HE50) is tiny and 

any measure learned from it will overfit unless it generalizes to other tasks and 

documents. 

Evaluation	
  Against	
  Human	
  Judgments	
  

Like other researchers, we use Pearson’s linear correlation coefficient to measure 

the consistency between the predicted similarity and the gold standard—the average 

similarity as judged by human raters. The coefficient for two samples X  and Y  with 

n values and means X  and Y  is defined as: 

r =
(Xi ! X)(Yi !Y )i=1

n
"
(Xi ! X)

2

i=1

n
" (Yi !Y )

2

i=1

n
"

. 

TABLE 2 summarizes results in the literature on this dataset. Lee et al. (2005) 

found the cosine measure with the bag-of-words representation to yield a correlation 

of 0.42 with the gold standard, with only trivial differences between different 

similarity measures (including Jaccard). Their best result was achieved using latent 

semantic analysis on a larger collection of 364 documents, also from Australian 

Broadcasting Corporation news. Document vectors are transformed to a new feature 

space consisting of the latent topics identified in the larger set, and the cosine measure 

is used with the new vectors. As TABLE 2 shows, this technique is as consistent with 

an average human rater as the raters are with themselves. None of the bag-of-words 

similarity measures approach this level. Furthermore, research has shown that 
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estimates of inter-rater consistency based on partial document sets can be over-

optimistic (Westerman, Cribbin, & Collins, 2010), which bolsters our method’s 

performance. 

TABLE 2 Performance on the HE50 dataset. 

Method 
Pearson’s 

correlation 
coefficient 

 Inter-rater (Lee et al., 2005)  0.6  

 Bag of words with cosine measure (Lee et al., 2005)  0.42  

Baselines Latent Semantic Indexing (Lee et al., 2005)  0.6  

 Explicit Semantic Analysis (ESA) (Gabrilovich & 
Markovitch, 2005) 

 0.72  

 Explicit Semantic Analysis-Graph (ESA-G) (Yeh et al.,  
2009) 

 0.77  

Our method  0.808  

Gabrilovich and Markovitch (2005) and Yeh et al. (2009) also report results on the 

HE50 dataset. Both their systems, ESA and ESA-G, represent documents as vectors 

of Wikipedia concepts and use the cosine measure; both yield a greater correlation 

with human raters than the average inter-rater agreement. These are the best-reported 

results on this dataset. These two methods and the inter-rater consistency comprise the 

three baselines for assessing our learned similarity measure. 

Evaluation	
  Setup	
  

Each document is represented in three different ways: a bag of words and bags of 

concepts based on Wikipedia and WordNet. The average bag sizes per document are 

37.1 words, 13.1 Wikipedia concepts and 39.2 WordNet concepts, for a total of 1187 

words, 492 Wikipedia concepts and 1201 WordNet concepts. 

All results reported below are averaged over five independent runs of stratified 10-

fold cross-validation, to help reduce the possibility of overfitting the learned measure 
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to the tiny HE50 dataset. In each run the regression algorithm was trained on 90% of 

the document pairs (1102 examples) and tested on the remaining 10% (123 

examples). To indicate the predictive capability of the learned model on new data, 

performance was measured on the held-out test set. Paired corrected resampled t-tests 

(Nadeau & Bengio, 2003) were used to establish statistical significance at a 

confidence level of 0.05. 

Overall	
  Consistency	
  with	
  Human	
  Judgment	
  

Our best model achieved an average correlation of 0.808 with the human ratings, 

ranging from 0.66 to 0.88.  FIGURE 6 plots the similarity predicted by the best 

learned measure, using the Wikipedia-concept-based document representation, against 

that of human raters, and the ideal case would be a diagonal line from (0,0) to (1,1). 

The high correlation is apparent: its value of 0.808 exceeds both the inter-rater 

consistency and the state-of-the-art result obtained by Yeh et al. (2009). The upper 

right and lower left corners show that the learned measure agrees particularly well 

with human judgment on highly similar and highly dissimilar document pairs. Most 

points are concentrated at the lower left corner, because in this small dataset most 

documents have different topics. In fact, each document has an average of only 3.1 

other documents whose manually rated similarity exceeds 0.5. 

 

FIGURE 6 Correlation between predicted similarity and that of human raters. 
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WordNet	
  Versus	
  Wikipedia	
  

The learned measure’s correlation with human judgment is only 0.611 using the 

WordNet-based concept model, suggesting that Wikipedia concepts and the WLM 

concept relatedness measure are more effective than their WordNet counterparts in 

this task, and that Wikipedia’s world knowledge is more relevant to thematic 

document similarity than WordNet’s lexical knowledge. While the WordNet model 

did little better than people (0.6, see TABLE 2), it roundly outperforms the bag-of-

words representation using cosine similarity (0.42).  

Predictive	
  Power	
  of	
  Individual	
  Features	
  

The predictive power of an individual feature is assessed from the performance of 

the regression model learned from that feature alone. TABLE 3 shows the individual 

predictability of the 17 features when Wikipedia concepts are used, along with some 

combinations.2 

The difference between F1 and F2 indicates that the new representation is more 

discriminative than the bag-of-words model with the usual cosine measure—which is 

remarkable, because there are more than twice as many distinct words as there are 

concepts. Furthermore, F2’s improvement over F1 is statistically significant. 

The context centrality section of TABLE 3 shows that relative centrality is far 

more informative than local centrality, with a dramatic difference in the performance 

of both individual features and their combinations (LocalCentralityCombined and 

RelativeCentralityCombined).  

Local centrality focuses on the quality of an individual document. It is a measure 

of how homogenous a document is; of how much it follows a single thread. Relative 

centrality, in contrast, focuses on the relation between two documents; on whether 
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they talk about closely related topics. Intuitively, relative centrality was always going 

to be the more useful measure. After all, our end goal is to measure the relatedness 

between two documents. This is born out in TABLE 3, where minimum relative 

centrality on its own approaches the performance of ESA (0.7 vs. 0.72 correlation). 

TABLE 3 Predictive value of individual features (using Wikipedia concepts). 

Aspect ID Feature Pearson’s correlation 
Binary Weighted 

Overall similarity F1 CosineWords 0.57 
F2 EnrichedConcepts   0.717 0.710 

Context 
centrality 

F3 MaxLocal −0.039 −0.001 
F4 MinLocal −0.043 0.038 
F5 AvgLocal 0.374 0.045 
F6 SDLocal 0.022 0.004 
 LocalCentralityCombined 0.155 0.174 
F7 MaxRelative 0.691 0.685 
F8 MinRelative 0.703 0.707 
F9 AvgRelative 0.327 0.320 
F10 SDRelative 0.679 0.657 
 RelativeCentralityCombined 0.725 0.711 

  CentralityCombined 0.774   0.759  
Strongest 
connection 

F11 MaxRel 0.62 
F12 MaxNORel 0.643 

  MaxRelatednessCombined 0.688 
   Strict Full Strict Full 
Concept groups F13 AvgGroupSize 0.176 0.137 0.176 0.137 

F14 MaxGroupRel 0.655 0.481 0.655 0.489 
F15 MinGroupRel 0.002 0.001 0.001 0.001 
F16 AvgGroupRel 0.664 0.608 0.674 0.665 
F17   SDGroupRel 0.474 0.618 0.451 0.624 
 GroupRelatednessCombined 0.7 0.689 0.703 0.718 

Overall F1-F17 0.808 0.799 0.805 0.801 
However, local centrality can still make a contribution. Imagine comparing three 

news stories, two of which discuss the cargo-ship Rena running aground off the coast 

of New Zealand, while the third places this in the broader context of other threats to 

local wildlife. All three documents are related, but for the third this is diluted by the 
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presence of other threads of discussion.  This distinction is captured by local 

centrality. Consequently the CentralityCombined measure (with correlation of 0.774 

and 0.759) performs better than relative centrality alone. 

The “strongest connection” section of TABLE 3 shows that both these features 

strongly predict document similarity regardless of whether the binary or weighted 

representation is used. We do not consider the weakest concept connection—the 

minimum concept relatedness—because it barely correlates with human judgment (in 

fact, it is usually zero). 

The distinction between the strict and full schemes—whether stray concepts that 

cannot be assigned to any groups are treated as singletons—affects all features in the 

“concept groups” section of TABLE 3, so their results are shown separately. All 

results were obtained using a relatedness threshold of 0.5 for creating concept cliques. 

The first feature—the averaged size of concept groups in each document (F13)—does 

not involve a concept’s number of occurrences in a document, so the binary and 

weighted schemes produce the same result. The minimum relatedness between 

concept groups (F15) contributes little, because even documents with similar topics 

usually mention some unrelated concepts, giving it a value close to zero. The average 

size of concept groups is not effective either, especially when compared with the other 

three features (F14–F17). As with the local centrality features, this is probably 

because it describes characteristics of the document itself, while the others target 

relations between documents. 

All features except the first (F1, the bag-of-words representation) involve concepts 

and utilize the relatedness between them. If no concept is identified in a document, all 

their values are missing, and the model relies on F1 to make a prediction. 
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Removing	
  Less-­‐Informative	
  Features	
  

Five features stand out as significantly less informative than the others: the three 

local centrality features (F3, F4 and F6), the average concept group size (F13), and 

the minimum relatedness between concept groups (F15). Excluding these reduces the 

space from 17 features and 25 attributes to 12 features and 17 attributes. TABLE 4 

compares the performance of the model trained before and after removing these 

features. 

Discarding uninformative features is advantageous in most cases, although the 

differences are not statistically significant. TABLE 4 also shows that stray concepts 

are better ignored rather than treated as singleton clusters: the strict schemes 

outperform the full schemes and the improvements in both cases are statistically 

significant. Yet the difference between the two strict schemes—binary and 

weighted—is not significant. 

TABLE 4 Performance of the reduced feature set on HE50. 

Evaluation	
  in	
  Document	
  Classification	
  and	
  Clustering	
  

In addition to the previous evaluation, we tested the learned measure in two 

applications: document classification and document clustering. Both benefit from an 

accurate measure of inter-document similarity. 

In this evaluation, the full HE50 dataset is used to train the regression model, 

instead of using 10-fold cross-validation as before. This is safe because we are now 

testing the outcome on previously unseen data. The model is built with the binary 

Features (and their number of attributes) 
Binary Weighted 

Strict Full Strict Full 

Full: F1–F17 (25) 0.808 0.799 0.805 0.801 
Reduced: F1–F2, F5, F7–F12, F14, F16–F17 (17)  0.808 0.8 0.807 0.8 
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strict scheme and the reduced feature set—12 features and 17 attributes. 

TABLE 5 Statistics of the four experimental datasets. 

Dataset Categories Documents Category Size  

SmallReuters 30 1658 55.3 
NewsSim3 3 2938 979.3 

NewsDiff3 3 2780 926.7 
Med100  23 2256 98.1 

Test	
  Data	
  

We create four datasets from standard corpora whose thematic components are 

already labeled for evaluating classification and clustering performance.3 The first 

three, SmallReuters, NewsSim3 and NewsDiff3, contain short news articles and 

newsgroup posts covering diverse topics, while the last, Med100, contains medical 

papers from MEDLINE and is thus domain-specific. Each dataset has different 

properties, topic domains and difficulty levels. TABLE 5 shows summary statistics.4 

Evaluation	
  of	
  Document	
  Classification	
  

Document classification is the task that automatically classifies a document into 

categories that are already known. There exist many classification methods, and we 

test the learned measure with instance-based classifiers (Aha, Kibler, & Albert, 1991), 

which predict the class of a test instance based on its closest (i.e. most similar) 

neighbor(s) in the training set, and thus require an accurate inter-document similarity 

measure. We use the standard k-nearest-neighbor classifier, denoted by kNN.  

Classification performance is measured with the  measure widely used in 

information retrieval. Let != !i,...,!m{ }  denote the set of classes in the dataset. 

Given a class ! i , precision(! i )  and recall(! i )  are defined as: 
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P(!i ) =
# documents in class !i  that are classified as !i

# documents that are classified as !i

, 

R(!i ) =
# documents in class !i  that are classified as !i

# documents in class !i

.  

The F1  measure is the harmonic mean of the two:  

F1 =
2P(! i)R(! i )
P(! i )+R(! i )

 

The overall F1  measure is the weighted sum of F1  over all classes L1,..., Lm{ } in the 

dataset:  

F1 =
! i

N
F1(! i )

!i"#

$ , 

where ! i  is the number of documents in class  ! i  and N is the total number of 

documents in the dataset. 

Overall	
  Performance	
  

We performed ten runs of 10-fold cross-validation with kNN on each dataset, and 

report the average classification performance. The best number of nearest neighbors 

in the range 1–10 was determined using leave-one-out cross-validation (Aha, et al., 

1991). 

TABLE 6 Performance of the learned measure in document classification. 

 Word Cosine Learned measure 

SmallReuters 0.881 0.924*   4.9% 
NewsSim3 0.860 0.833*    −3.2% 

NewsDiff3 0.971 0.976∗ 0.5% 

Med100 0.515 0.591*    14.8% 

*  statistically significant improvement/degradation 
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TABLE 6 compares the learned measure (using Wikipedia concepts) with the 

baseline method—the usual bag-of-words representation—and shows, using a paired 

t-test, whether or not the difference in performance is statistically significant. It 

achieves significant improvement on two datasets—SmallReuters and Med100. One 

possible reason why it fails to show improvement on the two newsgroup datasets is 

that NewsSim3 and NewsDiff3 contain only three classes and have many training 

examples—over 800 per class in each fold. This makes it more likely for a test 

instance to share considerable surface overlap with one of the training examples. 

Varied	
  Training	
  Set	
  

To investigate the impact of the likelihood that testing documents share surface 

overlap with training documents on classification performance, we varied the 

proportion of training examples from 5% to 95% in increments of 5%, and used the 

remaining examples for testing. Each of the 19 trials was run 10 times, with different 

training sets. The order of the training examples was randomized, and the best number 

of neighbors was sought as described above. 

 

(a) SmallReuters 
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(b) Med100 

 

(c) NewsSim3 

 

(d) NewsDiff3 

FIGURE 7 Learning curves for the four datasets. 

FIGURE 7 shows the clear advantage of the learned measure for small training 

sets, particularly with NewSim3 (FIGURE 7c) and NewsDiff3 (FIGURE 7d). This 

suggests that it might be helpful when there is little overlap (of words or concepts) 

between the training and test examples, because the semantic connections between 
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concepts can effectively relate documents with similar topics but different surface 

forms.  

Advantages of the learned measure are more consistent on the SmallReuters and 

the Med100 datasets. This is because the categories in the NewsSim3 and NewsDiff3 

datasets are much larger: each category has about 900 documents on average. This 

means that taking 5% of the documents for training will result in about 45 training 

documents for each category, which is equivalent in size to taking 80% of the 

SmallReuters dataset and 45% of the Med100 dataset as training data. This indicates 

that the learned measure is particularly beneficial for problems with small training 

sets, which is important in practice because obtaining labelled training data is often 

expensive.  

Evaluation	
  of	
  Document	
  Clustering	
  

Clustering is another important technique in practical data mining. Document 

clustering is the task that automatically analyzes the relations among documents and 

organizes them to form thematically coherent structures—clusters of documents that 

share similar topics. We tested two commonly used algorithms: hierarchical 

agglomerative clustering with group-average-link (Manning, et al., 2008) and k-

means (Hartigan, 1975). Performance is measured in terms of goodness of fit with the 

existing categories in the dataset using the normalized mutual information (NMI) 

measure. For each dataset, the number of clusters being sought equals to the number 

of categories. Each cluster is labeled by the most frequent category in that cluster.  

Let ! = "1,..., "k{ } and ! = "1,...," m{ } denote the set of clusters and categories 

respectively. The NMI measure is defined as: 

NMI (!,") = I (!;")
[H (!)+H (")] / 2

, 
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where I  is the mutual information between the set of clusters and the set of 

categories, formally:  

I (!;") =
#i$% j

N
log

N # i$% j

#i % j% j

&
# i

& . 

Here, N  is the total number of documents in the dataset, H  is the entropy, and 

H (!)  is defined as: 

H (!) = "
#i
N
log

# i
N#i

$ , 

and the same for H (!) . Unlike other common measures for cluster quality, such as 

purity and inverse purity, NMI is independent of the number of clusters and can be 

used to measure the overall structural fitness of a clustering with respect to the 

categories (Manning, et al., 2008). 

It is worth noting that the standard k-means algorithm represents a cluster by its 

centroid, and this representation differs from a normal document—for example, it has 

a non-zero value for every word or concept mentioned in any document in that 

cluster. Instead, we represented a cluster by its members, and measure its similarity to 

another document or group of documents by taking the average similarity with all 

member documents. 

TABLE 7 shows the results. The learned similarity measure is very effective, and 

outperforms the baseline on every dataset. This is particularly remarkable in three 

respects. First, the training dataset is tiny—it only contains 50 documents—yet the 

learned measure can be effectively applied to larger corpora. Second, documents in 

the training dataset are significantly shorter than those in the experimental datasets—

37 words compared to over 100 on average—yet the learned measure remains 

effective. Third, documents in the training dataset come from different sources and 
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cover different topics from those in the clustering dataset, which demonstrates that the 

learned measure is both generic and robust. 

TABLE 7 Performance of the learned measure in document clustering. 

 Hierarchical k-means 

Word 
Cosine 

Learned 
measure 

Word 
Cosine 

Learned 
measure 

SmallReuters 0.588 0.696*   0.687 0.792*    

Med100 0.276   0.365*   0.209   0.348*  
NewsSim3 0.027 0.167*   0.008 0.298*   
NewsDiff3 0.180 0.613*    0.149 0.724*   

*  statistically  significant  improvement 

The learned measure gains most on the NewsDiff3 dataset. This is because 

Wikipedia concepts are thematically dense descriptors—they provide topic-related 

information—while some words merely reflect lexical features and are common to 

documents with different topics. For example, adverbs and adjectives like 

significantly and beautiful rarely provide topic-related information. When the 

documents have very different topics, concepts can retain the main thematic features 

of a document and discard the unimportant lexical features, thus make the distinction 

even more prominent, which facilitates clustering.  

Computational	
  Complexity	
  

Computational complexity mainly comes from two steps: the creation of document 

representations (i.e. bag of words and concepts) and application of the learned 

measure based on the representations. The first step is in general linear to the lengths 

of the two documents. Let w  and c  denote the average number of words and 

concepts found in a document. The overall complexity of the second step is quadratic 
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to the number of concepts and linear to the number of words. The Cosine similarity 

measure is linear: !(w)  and !(c) . Both the local and relative centrality measures are 

quadratic: !(c2 ) . For the concept group features, we use the Bron-Kerbosch 

algorithm (Bron & Kerbosch, 1973) to find the maximal cliques, which has a !(c)  

time complexity for sparse graphs. In practice, concept relatedness can be cached so 

as to speed up the computation of centrality measures. In practice, it usually takes a 

couple of seconds to predict for a pair from the experimental datasets.  

Computational complexity of the training phase also contains two parts: the 

creation of document representations and training the regression model. The latter 

depends on the computational complexity of the regression method that is used, but is 

generally negligible with the amount of labeled training data that we deal with. As an 

indicative result, in our experiments training took less than one second with 17 

attributes and 1225 training documents. 

Conclusion	
  

We have developed a novel method for learning an inter-document similarity 

measure from human judgment. It overcomes the redundancy, ambiguity and 

orthogonality problems that plague traditional methods of computing document 

similarity by using concepts instead of words as document descriptors and taking the 

semantic connections between concepts into account. The measure predicts similarity 

more consistently with average human raters than human raters do between 

themselves, and also outperforms the current state of the art on a standard dataset. 

Furthermore, both the features used for describing document similarity and the 

machine learning technique used to build the model are generic. The resulting 

measure applies to documents from different sources and topic domains, and 
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improves performance when classifying and clustering these documents: in the former 

case in particular when only a small amount of training data is present per class.  

It is no surprise that concepts are better thematic descriptors of text than words. 

During the 1980s, researchers began to develop formal concept systems like WordNet 

to facilitate computer processing of natural language text, but success was limited and 

the bag-of-words model still prevails in practice. With the advent of Web 2.0 and the 

birth of collaboratively constructed, informal, yet comprehensive online 

encyclopedias such as Wikipedia, the use of concepts and their relations began to 

attract increasing attention as a replacement for words and other lexical features. 

Our results provide strong support for why people should be encouraged to 

abandon the old models and methods. We have developed an alternative that is based 

on concepts, and have demonstrated that it is general and effective. The new method 

is not confined to the classification and clustering tasks tested here, but applies 

wherever text must be analyzed and organized according to its topics.  

The results of this research are available in the form of an open source toolkit 

called Katoa  (knowledge assisted text organization algorithms) that implements the 

concept-based document representations generator using WordNet and Wikipedia, 

and the similarity measure learned from human judgment.5 
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