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We present a model that describes which fraction of the
literature on a certain topic we will find when we use n
(n = 1, 2, . . .) databases. It is a generalization of the
theory of discovering usability problems. We prove that,
in all practical cases, this fraction is a concave function
of n, the number of used databases, thereby explaining
some graphs that exist in the literature. We also study
limiting features of this fraction for n very high and we
characterize the case that we find all literature on a
certain topic for n high enough.

Introduction

The coverage of databases of the literature on a certain
topic is an important issue in information retrieval. Only in
a few cases will one database cover all the literature on
a topic. The smaller the coverage fraction is, the more
databases we will have to use in order to cover a certain
percentage of the complete literature that exists on
this topic. Thereby we can use—besides field-dedicated
databases—general databases such as, for example, the
Web of Science (WoS).

One database can cover a fraction a (or 100a%) of the
existing literature on a certain topic. A second database will
cover another fraction of the existing literature on a certain
topic, but here, in this introduction, we assume also that the
second database covers a fraction a of the existing literature
on a certain topic. However, using both databases will not
yield a fraction 2a of the sought literature since several
documents will be common to both databases.

What fraction of the existing literature on a certain topic
will be found after the use of n (= 1, 2, 3, . . .) databases?
Suppose here that all databases cover the same fraction a of
the literature on the topic (this is not very realistic but it is
the subject of this paper to extend the theory to different
fractions, from the second section onward). The argument is

as follows. The first database yields an expected1 fraction a
of the existing literature on a certain topic, hence it does not
yield the complementary fraction 1 - a of the literature.
Using a second database will not yield a fraction (1 - a)2 of
the literature. Indeed, both databases do not yield a fraction
1 - a of the sought literature, hence in both databases we
have that 1 - a is the probability to miss a document on the
topic. Due to independence we have that after the use of two
databases we missed a fraction (1 - a)2 of the sought litera-
ture. This argument can be repeated to 3, 4, . . . , n databases
yielding that after using n databases we missed a fraction
(1 - a)n of the sought literature and hence we have found a
fraction:

1 1− −( )a n (1)

of the sought literature.
This is similar to the following problem: how many

users of a certain service (e.g., a library) must be inter-
viewed to find a certain fraction of the usability problems
of that service. Similar to the above we can assume that
each user can inform us about a fraction a of usability
problems. The same argument as above yields a fraction
(1) of usability problems after interviewing n users (see,
e.g., Nielsen & Landauer, 1993, or http://www.useit.com/
alertbox/20000319.html; retrieved on January 5, 2012).

Requiring (1) to be as high as we wish (e.g., 0.9 or 90%)
yields the needed number n of databases to be used (or users
to be interviewed):

1 1 0 9− −( ) =a n .

or:

1 0 1−( ) =a n .
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1From now on we will delete the adjective “expected” and work with
these numbers as probabilities; see also the argument in the next section.
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hence:

n
a

= ( )
−( )

log .

log

0 1

1
(2)

where any logarithm can be used.
The function (1) is a concavely increasing function of n

and its limit (for n going to •) is 1, as is readily seen. This
is a partial explanation of graphs as in Hood and Wilson
(2001); see Figure 1 where several topics (indicated in the
figure) are retrieved in 1, 2, 3, . . . databases and where the
graphs indicate the percentage (fraction) of records retrieved
after the use of n = 1, 2, 3, . . . databases.

This partial explanation of Figure 1 is important in infor-
mation retrieval. It indicates how the recall increases with
the number n of used databases. As formula (1) and Figure 1
indicate, to reach a recall close to 1 requires the use of a high
number of databases and shows the inefficiency of such
searches.

However, the explanation above is partial since we
assumed that all databases yield a fixed fraction a of the
sought literature. Similarly, it is not realistic to assume that
all users of a certain service yield a fixed fraction of usability
problems. Hence, both applications need variable fractions
per database or per user. This is the topic of our paper. We
will, henceforth, use the information retrieval terminology
but the application to the detection of usability problems is
similar.

In the next section we present the general formula for the
fraction of sought literature after the use of n databases. We
prove under which conditions we have a concavely increas-
ing curve (in function of n) and we show that in the case of
Figure 1 these conditions are satisfied, hence yielding a
complete explanation of these graphs.

In the third section we study limiting problems of this
formula for the fraction of sought literature. We give neces-
sary and sufficient conditions for this formula (function of n)

to go to 1 for n going to •. Only in this case we can be as
close as we want to retrieving 100% of the sought literature,
if we use enough databases. An example where this is the
case and an example where this is not the case is given. The
paper closes with some final remarks and suggestions for
further research.

The Fraction of Sought Literature After the Use
of n Databases

Let us have a nonspecified number of databases that we
can use for retrieving documents on a certain topic. The
order in which we use these databases is important in prac-
tice but is not specified at this moment. We come back to this
issue later on in this section.

We denote by ai (0 < ai < 1) the expected2 fraction of
sought documents in database i = 1, 2, 3, . . . . Here we
assume that when we use database i, we can retrieve the
complete fraction ai of sought documents (otherwise the
value ai is reduced. which is not important at this stage). In
analogy with the argument yielding formula (1), we now
have that, using only database 1, there is a fraction 1 - a1 of
sought documents that is not retrieved. After using the first
two databases we have a fraction (1 - a1)(1 - a2) of sought
documents that is not retrieved (due to independence). After
using the first n databases we hence have a fraction
(1 - a1)(1 - a2) . . . (1 - an) of sought documents that is not
retrieved. Consequently, after using the first n databases we
hence have a fraction:

f a a an i
i

n

1
1

1 1, ,…( ) = − −( )
=

∏ (3)

2As in the previous section, we will henceforth delete the adjective
“expected” and work with these numbers as probabilities; see also the
argument below.

FIG. 1. Distribution of records from 13 search statements shown as percentage of records retrieved over the number of databases searched (Hood &
Wilson, 2001).
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of sought documents that is retrieved, where 1
1

−( )
=

∏ ai
i

n

denotes the product (1 - a1)(1 - a2) . . . (1 - an).
As one of the referees pointed out, the above argument is

not completely correct (as is the one that proves (1)) and can
be made more correct by considering expected values. This
can be done as follows. Let S be the set of the literature on
a topic and A(j) be the subset covered by database j, j = 1, 2
. . . . Denote by B(j) the complement of A(j). For each
element w ∈ S and each n = 1, 2 . . . , define the indicator
function I(w, n) = 1 if w is included in at least one of the first

n databases (i.e., if w A j
j

n

∈ ( )
=1
∪ ) and I(w,n) = 0 otherwise

(i.e., if w B j
j

n

∈ ( )
=1
∩ ). The function I is a random variable of

which we want to know the expected proportion in the first
n databases (as in (3)).

This is:

P I w n

P I w n

P w B w B w B n

P w

;

;

, , ,

( ) =[ ]
= − ( ) =[ ]
= − ∈ ( ) ∈ ( ) ∈ ( )[ ]

= −

1

1 0

1 1 2

1

…

∈∈ ( )( )

= − −( )

=

=

∏

∏

B i

a

i

n

i
i

n

1

1

1 1

by the assumed independence of compilation of different
databases. Hence, we refind (3).

Note: One of the referees remarked that the above
model assumes that “every item in the literature has the
same chance of being included in a particular database as
any other item.” This is not assumed in the above model. It
is clear that some sought documents have a higher chance
of being included in a database than others. But that does
not prevent us from assuming that ai is the (expected) frac-
tion of sought documents in database i. In fact, we simply
extend the well-established model (1) of Nielsen and
Landauer (1993).

Function (3) generalizes function (1) and it will turn out
that it does not always have the property that it increases
concavely nor that is goes to 1 for n going to •. The latter
problem will be studied in the next section on the limit-
ing properties of f(a1 . . . an) for n going to •; the former
property will be studied here. We have the following
proposition.

Proposition 1 The function f(a1 . . . an) is always increasing
and is concave if and only if, for every n = 2, 3. . . .

a a a an n n n− − <− −1 1 0 (4)

Proof The function f(a1 . . . an) clearly increases (strictly)
since 0 < an < 1 for all n = 1, 2, . . . . It is concave (in n, with
fixed ai-values) if and only if, at each n = 2, 3, . . . , we have
that:

f a a f a a
f a a a f a a

n n

n n

1 1 1

1 1 1 2

, , , ,
, , , ,

… …
… …

( ) − ( )
< ( ) − ( )

−

− −
(5)

where we define f(a1 . . . an-2) = 0 for n = 2 (the starting point
of f when zero databases are used). But (5) boils down to, for
n = 3, . . .

1 1 1 1

1 1 1 1

1 1

1

1

1

1

− −( ) − + −( )

< − −( ) − + −( )

= =

−

=

−

=

∏ ∏

∏

a a

a a

j
j

n

j
j

n

j
j

n

j
j

n−−

∏
2

or

1 1
1

1

1
1

2

−( ) < −( )
=

−

−
=

−

∏ ∏a a a aj n
j

n

j n
j

n

or

1 1 1−( ) <− −a a an n n

from which (4) follows. This condition is also found if n = 2
(using that f(a1 . . . an-2) = 0). � Cases in which (4) are valid
are many.

(1) Requirement (4) is valid if the sequence (an)n=1,2,. . . is
decreasing. This is the case in Figure 1: per search, data-
bases are used in decreasing order of their fraction of
sought documents (see Hood & Wilson, 2001, p. 1246,
search procedure (3)). So Proposition 1 gives a full
explanation of the shapes of the curves in Figure 1—the
small deviations of the concavity in the curves are due to
the fact that an information retrieval process is a sample
in the sought documents.

(2) If the ai-values are large (i.e., close to 1), then for every
n = 2, 3, . . . , an ª an-1 and an-1an ª 1 making (4) valid.
Here any order in which the databases are used yields a
concave function f(a1 . . . an). This case will occur often
in practice for the following reasons. When trying to
retrieve documents on a certain topic one uses only data-
bases in the field of this topic or general databases (such
as the WoS). In both cases the fraction of the sought
documents in these databases is high. Make a distinction
with the fraction of the documents in the database
sought, which is usually low but these are not the
ai-values: they are the fraction of the sought documents
that are in database i. This is common sense: a math-
ematical topic will not be searched in, for example, a
medical database and vice versa.

(3) There are even cases where the sequence (an)n=1,2,. . .

is increasing and where (4) is valid. Example: take

a
n

n
n =

+ 1
for all n = 1, 2,. . . . Then the sequence

(an)n=1,2,. . . increases strictly but condition (4) is valid:

a a a a
n

n

n

n

n

n

n

n

n n

n n

n n n n− − =
+

−
−

−
−

+

=
+ −

+( )
<

− −1 1

2

1

1 1

1
1

1
0
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since n � 2 in condition (4). Here

f a a a

n

n

n j
j

n

1
1

1 1

1 1
1

2
1

2

3
1

1

, ,…

…

( ) = − −( )

= − −⎛
⎝⎜

⎞
⎠⎟ −⎛

⎝⎜
⎞
⎠⎟ −

+
⎛
⎝⎜

⎞
=

∏

⎠⎠⎟

= − ⋅
+

1
1

2

1

3

1

1
…

n

a concave function of n. Indeed,

f a a f a a

n n

n

n n1 1 1

1
1

2

1

3

1

1
1

1

2

1

3

1

1

2

1

3

1
1

1

, , , ,… …

… …

…

+( ) − ( )

− ⋅
+

− + ⋅

= ⋅ −
nn

n

+
⎛
⎝⎜

⎞
⎠⎟

= ⋅
+

1

1

2

1

3

1

1
…

which is decreasing in n and hence f(a1 . . . an) is concave
in n.

(4) However, not every increasing sequence (an)n=1,2,. . . yields
a concave f(a1 . . . an). Indeed, take n = 3, a1 = 0.1,
a2 = 0.2, a3 = 0.3. Then condition (4) is not satisfied:

a a a a3 2 2 3 0 3 0 2 0 3 0 2 0− − = − − ( )( ) >. . . .

and indeed:

f a1 0 1( ) = .

f a a1 2 1 1 0 1 1 0 2 0 28, . . .( ) = − −( ) −( ) =

f a a a1 2 3 1 1 0 1 1 0 2 1 0 3 0 496, , . . . .( ) = − −( ) −( ) −( ) =

Hence f is not concave since 0.496 - 0.28 = 0.216 >
0.28 - 0.1 = 0.18. In fact, f is even convex in this case.

Limiting Properties of the Function

f a a an i
i

n

( , , ) ( )1
1

1 1… =
=

- -∏ for n = 1, 2, . . .

This is an important issue. More specifically, we are
interested in when

lim , ,
n

n i
i

f a a a
→∞ =

∞

( ) = − −( ) =∏1
1

1 1 1… (6)

in other words when

1 0
1

−( ) =
=

∞

∏ ai
i

(7)

If (6) is the case we are in a situation that, when using
sufficient databases, we can reach (almost) complete cover-
age of the sought documents. Note that this is the case for all
searches in Figure. 1 of Hood and Wilson (2001). We will,

however, see that (6) (or (7)) is not always valid. In case (6)
(or (7)) is not always valid, we have that:

lim , ,
n

nf a a
→∞

( ) <1 1… (8)

and in this case, no matter how many databases we are search-
ing, we will never come close to complete coverage of the
sought documents. In the sequel we will give an example of
both cases: one where we have (6) and one where we have (8).
Note that in the special case (1) we always have (6), which
shows that our extension of f to formula (3) has its merits.

First we will give some definitions on convergent or
divergent products. They can be found in Apostol (1974)
(p. 206–209). We limit our definitions to the case studied
here.

Definition 1 Denote by pn the product

p an i
i

n

= −( )
=

∏ 1
1

(9)

Then we say that this product converges if there exists a
number p � 0 such that lim

n
np p

→∞
= . The number p is then

denoted

p ai
i

= −( )
=

∞

∏ 1
1

(10)

If p p
n

n= =
→∞

lim 0 we say that the product diverges to 0
(hence the case (7) or (6), the most interesting case since we
are able to retrieve most documents on the topic by taking n
high enough).We can give a characterization of convergent
or divergent products of the form (10) by quoting a Theorem
in Apostol (1974), p. 209.

Theorem 1 Since all ai satisfy ai < 1, we have that the

product 1
1

−( )
=

∞

∏ ai
i

converges if and only if the series ai
i=

∞

∑
1

converges. This represents the case (8), hence where we are
not able to come close to a complete coverage of the sought
documents (no matter how many databases that are used).
Complete coverage (as in (6)) is hence possible using the
next Theorem, which follows immediately from Theorem 1.

Theorem 2 We have that the product 1
1

−( )
=

∞

∏ ai
i

diverges

(hence where (7) or (6) is valid) if and only if the series

ai
i=

∞

∑
1

diverges.A divergent series ai
i=

∞

∑
1

means in practice

that the fractions ai must be “large enough” so that each
database has “enough” coverage of the sought documents in
order to make a complete coverage (6) possible. A conver-

gent series ai
i=

∞

∑
1

means in practice that the fractions ai are

too small, preventing complete coverage. We give an
example of each case.

Example 1 Let a
i

i =
+
1

1
, i = 1, 2, . . . . Hence ai

i=

∞

∑
1

diverges and, according to Theorem 2, 1 0
1

−( ) =
=

∞

∏ ai
i

(i.e.,

diverges), so (6) and (7) are valid and complete coverage of
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the sought documents is (in the limit) possible. We can
verify this directly. We have, for every n = 1, 2, . . .

1 1
1

1 1

1

11 1 1

−( ) = −
+

⎛
⎝⎜

⎞
⎠⎟ =

+
⎛
⎝⎜

⎞
⎠⎟ =

+= = =
∏ ∏ ∏a

i

i

i n
i

i

n

i

n

i

n

So

1 0
1

−( ) =
=

∞

∏ ai
i

and hence

lim , , lim
n

n
n

f a a
n→∞ →∞

( ) = −
+

⎛
⎝⎜

⎞
⎠⎟ =1 1

1

1
1…

Since f a a
n

n
n1

1
, ,…( ) =

+
we can illustrate “how fast” we

approximate the 100% coverage. Take, for example, n = 10

databases, then we can cover
10

11
0 9> . , hence more than

90% of the sought documents.

Example 2 Let a
i

i =
+( )
1

1 2
, i = 1, 2, . . . . Now we have

that ai
i=

∞

∑
1

is convergent and hence the product 1
1

−( )
=

∞

∏ ai
i

is convergent (i.e., is �0). This means that (8) is valid and
that we cannot approximate complete coverage of the sought
documents. We can here, concretely, calculate what fraction
of the sought documents can be covered. We have, for every
n = 1, 2, . . .

1 1
1

1

2

1

3

4

1
2

1

2

2
1

−( ) = −
+( )

⎛
⎝⎜

⎞
⎠⎟

=
+
+( )

⎛
⎝⎜

⎞
⎠⎟

=

= =

=

∏ ∏

∏

a
i

i i

i

i
i

n

i

n

i

n

⋅⋅ ⋅ ⋅ ⋅ ⋅
+
+( )

= ⋅ ⋅ ⋅ ⋅ ⋅
+

8

9

15

16

24

25

35

36

48

49

2

1

3

2

4

3

5

4

6

5

7

6

8

7

1

2

2
…

…

n n

n

n

nn

n n

n

n

n

⋅
+
+( )

=
+
+

2

2

2

1

1

2

2

1

and hence 1
1

21

−( ) =
=

∞

∏ ai
i

. This also implies that

lim , ,
n

nf a a
→∞

( ) =1
1

2
…

so that we certainly do not cover at least 50% of the sought
documents (no matter how many databases we will use).

This is due to the small coverage a
i

i =
+( )
1

1 2
of the sought

documents of each database i = 1, 2, . . . . This example
shows the interest in the general model (3) above the limited
model (1) where always

lim , , lim , , lim
n

n
n n

nf a a f a a a
→∞ →∞ →∞

( ) = ( ) = − −( )⎡⎣ ⎤⎦ =1 1 1 1… …

Note that in both examples f(a1 . . . an) is concavely increasing
since the sequence (ai)i=1,2. . . decreases and by Proposition 1.

Remark Since all ai satisfy ai < 1, we have that conver-

gence of ai
i=

∞

∑
1

also means absolute convergence. This also

means that the series ai
i=

∞

∑
1

converges unconditionally, that

is, it converges in any order of the databases i. More exactly,
let p denote any permutation of the natural numbers, that is,
a function whose domain is the natural numbers and whose
range is the natural numbers and which is a bijection.

Then convergence of ai
i=

∞

∑
1

implies convergence of a i
i

π ( )
=

∞

∑
1

(see, e.g., Apostol, 1974, Theorem 8.32, p. 196) and hence,

by Theorem 1, the product 1
1

−( )( )
=

∞

∏ a i
i

π converges (and

is equal to 1
1

−( )
=

∞

∏ ai
i

). Similarly, if ai
i=

∞

∑
1

diverges, then

a i
i

π ( )
=

∞

∑
1

, diverges and hence, by Theorem 2, the product

1
1

−( )( )
=

∞

∏ a i
i

π diverges (i.e., its value equals 0). This means

that the coverage of sought documents, in the limit, is not
influenced by the order in which we use the databases. Of
course, for every finite n = 1, 2, . . . , the values of f(a1 . . . an)
are determined by the used order of the databases.Note:
Considering an infinite number of databases is, of course,
only a theoretical issue. Yet our results on complete/
incomplete coverage (Theorems 1 and 2) yield insight in the
finite case where there are n databases (n: natural number
and high).

Conclusions and Suggestions for
Further Research

In this paper we studied the topical coverage of multiple
databases. We showed that, when ai (0 < ai < 1) denotes the
fraction of the sought documents (on a certain topic) of the
ith database, we cover a fraction

f a a an i
i

n

1
1

1 1, ,…( ) = − −( )
=

∏

of the sought documents on a certain topic. We showed that
in most practical cases this function is concavely increasing
in n.

We also showed that the limiting case (for n going
to •) does not always yields a complete coverage

lim , ,
n

nf a a
→∞

( ) =( )1 1… of the sought documents. This is only

so if and only if the series ai
i=

∞

∑
1

diverges.

Examples of complete coverage lim , ,
n

nf a a
→∞

( ) =( )1 1…

and incomplete coverage lim , ,
n

nf a a
→∞

( ) <( )1 1… are given
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and we also showed that this is independent of the order in
which we use the databases.

We underline that these generalizations of the simple
model (1) (originating from the idea of identifying
a fraction of the usability problems associated with a given
service) are also meaningful to this application. Indeed,
it is much more likely that different users will give a dif-
ferent number of usability problems and hence model
(1) is not applicable but model (3) and its applications
must be used. Further research on this application (which
is outside the field of information retrieval) would be
interesting.

We would also welcome other new areas of application of
this theory. In this context we could think of applications in
the area of shopping in more than one supermarket or in the
diffusion of information in several documents (e.g., reviews,
books, etc.) on a certain topic.
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