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Topic ontologies or web directories consist of large col-
lections of links to websites, arranged by topic in differ-
ent categories. The structure of these ontologies is
typically not flat because there are hierarchical and
nonhierarchical relationships among topics. As a con-
sequence, websites classified under a certain topic may
be relevant to other topics. Although some of these
relevance relations are explicit, most of them must be
discovered by an analysis of the structure of the ontolo-
gies. This article proposes a family of models of rel-
evance propagation in topic ontologies. An efficient
computational framework is described and used to
compute nine different models for a portion of the Open
Directory Project graph consisting of more than half a
million nodes and approximately 1.5 million edges of
different types. After performing a quantitative analysis,
a user study was carried out to compare the most prom-
ising models. It was found that some general difficulties
rule out the possibility of defining flawless models of
relevance propagation that only take into account struc-
tural aspects of an ontology. However, there is a clear
indication that including transitive relations induced by
the nonhierarchical components of the ontology results
in relevance propagation models that are superior to
more basic approaches.

Introduction

A topic ontology or web directory is a directory of web
pages classified by topic into categories. Examples of these
ontologies are Yahoo! Directory1 and the Open Directory
Project (ODP).2 Although a regular web search is the most
common way adopted by users to find information on a
specific topic, web directories are particularly useful to navi-
gate through related topics, or when users are not sure how
to narrow their search from a broad category. Topic ontolo-
gies can help users understand how topics within a specific
area are related and may suggest terms that are useful in
conducting a search. Besides being organized by topic, web
pages classified in these ontologies have the advantages of
having annotations (such as a description) and having been
evaluated by an editor. ODP, for instance, has 20,000 vol-
unteer editors who review websites and classify them by
topic.

Although web directories were originally conceived as a
means to organize web pages to facilitate navigation by
humans, the content and structure of these directories are
increasingly being used to serve other purposes. For
instance, Google’s regular web search results are enhanced
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by information from Google Directory. ODP has been
used to train and test automatic classifiers (Biro, Benczur,
Szabo, & Maguitman, 2008; Gauch, Chandramouli, &
Ranganathan, 2009), as a starting point to collect thematic
material by topical crawlers (Chakrabarti, van den Berg, &
Dom, 1999; Menczer, Pant, & Srinivasan, 2004), as a frame-
work to understand the structure of content-based commu-
nities on the web (Chakrabarti, Joshi, Punera, & Pennock,
2002), to implement information retrieval evaluation plat-
forms (Beitzel, Jensen, Chowdhury, & Grossman, 2003;
Maguitman, Cecchini, Lorenzetti, & Menczer, 2010), to
understand the evolution of communities in peer-to-peer
search (Akavipat, Wu, Menczer, & Maguitman, 2006), to
define hierarchically informed keyword weight propagation
schemes (Kim & Candan, 2007), and to evaluate the emer-
gent semantics of social tagging (Markines, Cattuto,
Menczer, Benz, Hotho, & Stumme, 2009), among other
applications. Many of these applications rely on identifying
relevance or semantic similarity relationships between web
pages classified in ODP.

An initial analysis of the problem of defining the rel-
evance between documents classified in a topic ontology
indicates that it essentially involves the problem of identi-
fying nonobvious relationships from the ontology structure.
Identifying these relationships in topic ontologies is a chal-
lenging problem. The structure of ontologies is typically not
flat because concepts or topics can be classified according to
some taxonomic schema. Topic taxonomies contain parent–
child relationships between topics and their subtopics.
However, relationships that go beyond the parent–child hier-
archies are also common. For example, the ODP ontology is
more complex than a simple tree. Some topics have multiple
criteria to classify subtopics. The “business” category, for
instance, is subdivided by types of organizations (coopera-
tives, small businesses, major companies, etc.) as well as by
areas (automotive, health care, telecom, etc.). Furthermore,
ODP has various types of cross-reference links between
categories, so that a node may have multiple parent nodes,
and even cycles are present.

The combination of different kinds of links gives rise to
intricate relations among topics. Although some of these
relations are explicitly given by the existing links, most of
them remain implicit. Currently, ODP contains more than
one million categories, making the problem of automatically
deriving implicit relations between topics computationally
very difficult.

It is possible to define different mechanisms to derive
implicit relevance relations, giving rise to multiple compu-
tational models of relevance propagation. Once relevance
relations are derived, other important concepts can be
defined, such as measures of similarity between topics (or
between documents) in an ontology, the degree of useful-
ness of a document to a thematic context, or aboutness
relationships between queries and topics. In particular,
some widely adopted information retrieval performance
measures, such as precision and recall, are defined in terms
of relevance.

The goal of this article is twofold: (a) to present a family
of computational models to efficiently derive implicit
relevance relationships among topics from the structure
of topic ontologies, and (b) to empirically evaluate these
models, analyze their limitations, and discuss ways to over-
come them.

Background

Traditionally, the notion of relevance has been studied in
the context of probability theory. In the first attempts to
formalize relevance, such a notion was taken as equivalent to
the notion of conditional dependence, and it was subse-
quently refined mainly by Keynes (1921), Carnap (1950),
and Gärdenfors (1978) (cited in Gärdenfors, 1978). A formal
definition of relevance based on the use of a probability
measure can be defined as follows:

Definition 1 A formula a is relevant to a formula b given a
knowledge base K if and only if

P PK K Kβ α β α( ) > ( ) ( ) ≠P whenever 0,

where PK represents a probability measure given the knowl-
edge base K.

In principle, adapting this definition to determine
whether a topic ti is relevant to a topic tj in a topic taxonomy
T appears to be straightforward. The reformulation of this
definition will simply involve determining whether the prob-
ability of classifying a document under topic tj increases if
we learn that the document belongs to topic ti.

Definition 2 A topic ti is relevant to a topic tj given a topic
taxonomy T if and only if

P P PT T Tt t t whenever tj i j i( ) > ( ) ( ) ≠ 0,

where PT represents a probability measure given the topic
taxonomy T .

Given a topic taxonomy T , we can assume PT t j( ) rep-
resents the prior probability that any document is classified
under topic tj. In practice, PT t j( ) can be computed for
every topic tj in an “is-a” taxonomy by counting the frac-
tion of documents stored in node tj and its descendants out
of all the documents in the taxonomy. The conditional
probability PT t tj i( ) represents the probability that any
document is classified under topic tj given that it is classi-
fied under ti, and is computed by counting the fraction of
documents stored in node tj and its descendants out of all
the documents stored in topic ti and its descendants. In
other words, PT t tj i( ) is the fraction of documents in the
subtree rooted at ti that belong to the subtree rooted at
tj. For example, if the topic Bonsai_and_Suiseki is a
subtopic of the topic Gardens (see Figure 1), then the
probability of classifying d under the topic Bonsai_
and_Suiseki is higher if we know that d is classified
under the more general topic Gardens than if no evidence
is given in advance.
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A major limitation of definition 2 is that it is not
directly applicable to general topic ontologies, such as
ODP, which are more complex than a simple tree. Given a
topic ontology O , the main difficulty of applying this defi-
nition remains in computing PO t j( ) and PO t tj i( ) because
it is insufficient to count the number of documents stored
in the subtrees rooted at ti and tj to estimate these prob-
abilities. To illustrate this issue, take, for example, the
topics Toys_and_Games and Puzzles in the ontology of
Figure 2. Although there is a clear relevance relation
between these two topics, their corresponding subtrees are
independent.

In a general topic ontology, computing PO t tj i( ) would
not only involve recognizing whether there is a “descen-
dant” or “ancestor” relation between ti and tj, it would also
involve determining whether knowing that a document is
related to topic ti would have an impact on determining
whether the document is about topic tj. In other words, we
need to find out in the first place whether ti is relevant to tj to
compute PO t tj i( ). Therefore, for the case of a general ontol-
ogy, the traditional definition of relevance relation becomes
circular.

The earlier discussion points to the idea that defining
these probabilities in terms of relevance is more natural than
defining relevance in terms of probability measures. From a
cognitive perspective, it is usually easier to grasp a relevance
relation than to estimate probability values. Moreover, even
if the probability values are given beforehand, it is possible
to arrive at a wrong conclusion because of “pure numerical
accidents” (R. von Mises, 1963, cited in Del Cerro &
Herzig, 1996).

To overcome the earlier-mentioned difficulties, we will
assume that relevance is a primitive conceptual notion. This
notion will not only capture the “is-a” relations derived from
a hierarchical ontology, but it will also take into consider-
ation the nonhierarchical components. The extension of the
notion of relevance from taxonomies to ontology graphs
raises the question of how to extend the definition of subtree
rooted at a topic for the graph case.

A “bold approach” would formulate that ti is relevant to tj

if there is a directed path in the ontology graph from ti to tj.
However, as we analyze later, this formulation of topic rel-
evance is inaccurate because the introduction of many
crosslinks in this path can lead to a loss of meaning. In
addition, allowing multiple crosslinks is infeasible because
it leads to a dense relevance relationship; that is, every topic
becomes relevant to almost every other topic. This is also not
robust because a few unreliable crosslinks would make sig-
nificant global changes to such a relevance propagation
scheme. This article focuses on analyzing strengths and
limitations of “more cautious” approaches to relevance
propagation.

Related Work

Relevance is a powerful concept used in various subdis-
ciplines within computer science, especially in artificial
intelligence and information science. This section reviews
different approaches to characterize and apply relevance,
and more specifically relevance propagation in the scope
of knowledge management, web mining, and information
retrieval.
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FIG. 1. Illustration of a portion of a topic taxonomy.
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The Study of Relevance as a Key Issue in
Information Science

There has been a diversity of efforts to study and char-
acterize the notion of relevance in information science. Most
research work centers on defining topical relevance, with the
ultimate purpose of formulating metrics for measuring the
effectiveness of information retrieval systems. An early
work (Goffman, 1964) defines relevance as a measure of the
information conveyed by a document relative to a query.

Although topicality has been the basis of relevance judg-
ments in most existing proposals (as in this article), a
number of studies have noted the inadequacy of topicality as
the only ingredient in relevance judgments. For instance,
Rees and Saracevic (1966) argue that the definition of rel-
evance should take into account concepts such as the infor-
mation conveyed by a document, the previous knowledge of
the user, and the usefulness of the information to the user.
Following this position, Barry (1994) highlights several
user-centered criteria that affect relevance judgments. These
criteria include the information content of the document, the
user’s previous knowledge, the user’s preferences, other
information and sources within the environment, the docu-
ment sources, the document as a physical entity, and the
user’s situation. A more recent work (Xu & Chen, 2006)
discusses five factors that affect relevance: topicality,
novelty, reliability, understandability, and scope. After
completing a user study, the authors noted that topicality
and novelty are found to be the most important relevance
criteria.

A more extensive review of existing literature on the
concept of relevance is out of the scope of this article. The

interested reader is referred to Mizzaro (1997), who gave an
overview of the history of relevance in the field of informa-
tion science from the 1930s to 1997. More recent reviews
can be found in Hjørland (2010) and Saracevic (2007a,
2007b).

Although the notion of relevance has been addressed by
several studies in information science, the notion of rel-
evance propagation has only been partially studied. Rel-
evance propagation becomes fundamental in the presence of
interconnected structures such as subgraphs of the web,
ontologies, citation graphs, and social networks in general.
In particular, the notion of relevance propagation is essential
for computing semantic relations between nodes arranged in
any kind of network. The following sections review research
work addressing these issues.

Semantic Similarity in Ontologies

Although we maintain that the notion of relevance is
more primitive than the notion of semantic similarity and
that the latter can be defined in terms of the former, both
notions are often used interchangeably in the literature under
the general name of “semantic relation.” Some approaches
aimed at computing measures of semantic similarity
between nodes in an ontology take a network representation
disregarding the taxonomical structure of the ontology.
Early proposals have used path distances between the nodes
in the network (e.g., Rada, Mili, Bicknell, & Blettner, 1989).
These frameworks are based on the premise that the stronger
the semantic relationship of two objects, the closer they will
be in the network representation. However, as it has been

TOP

REFERENCE SCIENCE SHOPPING
GAMES

EDUCATIONAL

RESOURCES
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FIG. 2. Illustration of a web directory graph extracted from ODP. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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discussed by several authors, issues arise when attempting to
apply distance-based schemes for measuring object similari-
ties in certain classes of networks where links may not
represent uniform distances (Jiang & Conrath, 1998; Joslyn
& Bruno, 2005; Resnik, 1995). In addition, some authors
have argued against the suitability of relying on distance
metrics when computing similarity or relevance. This is
mainly due to the fact that some properties that should hold
in a metric space are not valid for measures of similarity or
relevance. Take, for instance, the triangle inequality, which
is a defining property of metric space. The triangle inequal-
ity implies that if a is quite similar to b, and b is quite similar
to c, then a and c cannot be very dissimilar from each other.
The following example (based on William James, cited by
Tversky, 1977, p. 329) illustrates the inadequacy of this
assumption: “Jamaica is similar to Cuba (because of geo-
graphical proximity); Cuba is similar to Russia (because of
their political affinity); but Jamaica and Russia are not
similar at all.” This example fits the case of web pages and
their topics, suggesting that the triangular inequality should
not be accepted as a cornerstone of similarity or relevance
models.

Another problem associated with applying distance-
based approaches to compute relevance or similarity is that
in hierarchical ontologies, such as ODP, certain links
connect very dense and general categories, whereas others
connect more specific ones. To address this problem, some
proposals estimate semantic similarity in a taxonomy based
on the notion of information content (Lin, 1998; Resnik,
1995). In these approaches, the meaning shared by two
objects can be measured by the amount of information
needed to state the commonality of the two objects. These
proposals, however, are limited to taxonomies and, as a
consequence, do not address the question of how to estimate
relevance and semantic similarity in generalized ontologies.

The general problem of computing semantic similarity
in general ontologies such as the ODP graph has first
been addressed by Maguitman, Menczer, Roinestad, and
Vespignani (2005). The measure of semantic similarity
proposed there takes advantage of both the ontology hier-
archical (“is-a” links) and nonhierarchical (crosslinks)
components. However, a simplistic approach to relevance
propagation was taken, omitting a deep analysis of the
notion of relevance and focusing only on the notion of
similarity.

Computational models of semantic similarity do not need
to be limited to topic ontologies and web search. Identifying
relatedness relations in other ontologies requires appropriate
mechanisms to model different kinds of ontology com-
ponents and their interactions. For example, the Gene
Ontology3 has two kinds of hierarchical edges (“is-a” and
“part-of”). In contrast, the WordNet ontology4 has a much
richer typology of relations. This includes semantic relations
between synsets (synonym sets) such as hypernym,

hyponym, meronym, and holonym, as well as lexical
relations between senses of words (members of synsets)
such as antonym, “also see,” derived forms, and participle.

Relevance Propagation for Identifying Topical
Authoritative Sources

A variety of models of relevance propagation have been
applied for identifying authoritative sources in graph repre-
sentations of different domains, where graphs could repre-
sent a social network of experts, a portion of the web, a
citation network, or any kind of interconnected collection of
documents.

In the field of expert finding, a model of relevance propa-
gation that relies on building an ad hoc social network for a
given query is presented by Rode, Serdyukov, Hiemstra, and
Zaragoza (2007). The suggested framework propagates rel-
evance through the built network to identify authorities on the
required fields of expertise.Asimilar proposal is presented by
Serdyukov, Rode, and Hiemstra (2008), who used a graph
made of both document and expert nodes to identify domain
experts. This is accomplished by recognizing authoritative
nodes by means of a relevance propagation model.

Several approaches apply relevance propagation models
to identify topic-dependent authoritative web pages, a
research area known as topic distillation. For instance,
Chibane and Doan (2007) use a traditional model of infor-
mation retrieval based on content and link similarity to
propagate relevance through hyperlinks. In a similar way,
Bidoki, Ghodsnia, Yazdani, and Oroumchian (2010)
propose a content- and link-based relevance propagation
model, which is iteratively enriched by information from the
user’s behavior. Another scheme to compute the topical
authoritativeness of a web page is presented by Dai,
Davison, and Wang (2010). This scheme uses the ODP to
build a classifier for arbitrary web pages, giving rise to a new
method for authority propagation dependent on the topical
relevance between the connected pages.

An alternative topic distillation method that relies on both
content and link information is presented by Shakery and
Zhai (2003) and subsequently refined in Shakery and Zhai
(2006). In the latter work, relevance propagation through
links is based on grouping neighbors into classes. A similar
method is presented by Qin et al. (2007), who, instead of
limiting the analysis to the hyperlinks of a web subgraph,
took into account the full structure of the site maps involved
in the subgraph.

Relevance Propagation in Ontologies

More closely related to our work are those frameworks
that attempt to propagate relevance across topic ontologies.
A model of relevance propagation in topic ontologies that
takes document content into consideration is presented by
Su, Gao, Yang, and Luo (2005). In this work, an ontology is
built based on the notion of topical relevance. The resulting
ontology is then used to guide a focused crawler. The

3http://www.geneontology.org
4http://wordnet.princeton.edu
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ontology iteratively evolves, based on a relevance function
that attempts to map the content of each discovered web
page to a class in the ontology. Relevance propagation is
carried out by evolving the classes that are in the neighbor-
hood of those classes that have been updated.

Another model of relevance propagation in topic ontolo-
gies is presented by Kim and Candan (2007). This work
proposes a keyword propagation algorithm for augmenting
the description of the entries in a navigation hierarchy by
adding supplementary semantic information to the entries.
In the particular case of topic taxonomies, this information is
derived from the names and descriptions of the topics’
ancestors and descendants. The approach is then generalized
in such a way that keywords can be propagated across more
complex structures.

The earlier two propagation schemes relate to our
approach in attempting to model relevance propagation
through topic ontologies. However, differently from our own
framework, these proposals propagate content (e.g., key-
words or keywords’ weights) between pairs of neighbor
entries rather than propagating relevance relations between
topics across an ontology. As will be presented in the
Discussion section, we contend that our proposal could be
used to enhance content propagation frameworks for topic
ontologies as the ones reviewed in this section.

Representing the Structure of a Web
Directory Graph

A web directory graph is a directed graph of nodes rep-
resenting topics. Each node contains objects that represent
documents (web pages). A web directory graph has a hier-
archical (tree) component made by “is-a” links and nonhi-
erarchical components made by crosslinks of different
types.

For example, the ODP ontology is a directed graph
G = (V, E), where V is a set of nodes representing topics
containing documents, and E is a set of edges between nodes
in V, partitioned into three subsets, T, S, and R, such that T
corresponds to the hierarchical component of the ontology,
S corresponds to the nonhierarchical component made of
“symbolic” crosslinks, and R corresponds to the nonhierar-
chical component made of “related” crosslinks.

Figure 2 shows a simple example of a web directory
graph extracted from ODP. In this graph, the set V contains
topic nodes such as Reference, Education, School_
Safety, Labs_and_Experiments, and so on. The subset
T corresponding to the hierarchical component of the
web directory graph contains edges such as (Top,Refer-
ence), (Reference,Education), (Education,School_
Safety), and so on. In this example, there is a “symbolic”
edge (Science_Fairs,Science) and two “related”
edges (Labs_and_Experiments,Science_Fairs and
Science,Puzzles).

As a starting point, we say that topic ti is relevant to topic
tj if there is an edge of some type from topic ti to topic tj. In
the web directory graph from Figure 2, we can say that the

topic Education is relevant to the topic School_Safety,
or that the topic Labs_and_Experiments is relevant to the
topic Science_Fairs, among other examples.

However, to derive implicit (indirect) topic relevance
relations, transitive relations between edges should also be
considered. An analysis of some examples leads us to con-
clude that although relevance relations are consistently pre-
served through hierarchical links, it is necessary to impose
certain constraints on how the nonhierarchical links can
participate in the transitive relations. Allowing an arbitrary
number of crosslinks is infeasible because it would relate
each topic to almost every other topic. Take, for example, the
portion of ODP shown in Figure 2. In this example, there is
a path involving three edges between topics Reference/
Education/School_Safety/Labs_and_Experiments
and Games/Puzzles, but the relevance of the first topic
to the second one is questionable. On the other hand, there
are other indirect paths that preserve relevance, as is the
case for the path of length three between Shopping/
Toys_and_Games and Games/Puzzles/Jigsaws.

The question addressed here is the following: Can we
automatically derive nonobvious relevance relations among
topics? Our goal is to impose certain constraints on how
crosslinks can participate in each path in such a way that we
capture the nonhierarchical components of a web directory
graph while preserving meaning.

To build our computational models of relevance propa-
gation, we start by numbering the topics in V as t1, t2, . . . , tn,
and by representing the web directory graph structure by
means of adjacency matrices. Boolean matrices T, S, and R
are used to codify the explicit relevance relations as
described next. The matrix T is used to represent the hier-
archical structure of an ontology. Matrix T codifies edges in
T and is defined as Tij = 1 if (ti, tj) ∈ T and Tij = 0 otherwise.
The nonhierarchical components corresponding to the
“symbolic” and “related” edges of the ODP graph are rep-
resented by matrices S and R, respectively. Matrix S is
defined so that Sij = 1 if (ti, tj) ∈ S and Sij = 0 otherwise. The
matrix R is defined analogously, as Rij = 1 if (ti, tj) ∈ R and
Rij = 0 otherwise.

Models of Relevance Propagation

Having codified the different components of the ODP
graph as matrices T, S, and R, we proceed to address the
question of how these matrices can be used to capture the
notion of relevance. Before presenting the different models
of relevance propagation, we review the notions of
union and composition of binary relation, and how these
operations can be implemented as Boolean operations on
matrices.

Boolean Operations on Matrices

We have already stated that relevance relations will be
codified as Boolean matrices. To effectively compute new
relations from existing ones, we have to take advantage of
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the existing theory that connects operations on relations with
operations on matrices. We briefly review these connections.

• Union of binary relations: Given binary relations rA and rB,
the union rA � rB can be computed as

A B∨ ,

where A and B are the matrix representations of rA and rB, respec-
tively. The Boolean addition operation ⁄ on matrices is defined as
[A ⁄ B]ij = Aij ⁄ Bij.
• Composition of binary relations: Given binary relations rA

and rB, the composition rA � rB can be computed as

A B⊗ ,

where A and B are the matrix representations of rA and rB, respec-
tively. The Boolean product operation ƒ on matrices is defined as
[ ] ( )A B A B⊗ = ∧ij k ik kj� .

A Model Induced by Explicit Relevance Relations

Consider the logical ⁄ operation on matrices, and let M1

be computed as follows:

M T S R I1 = ∨ ∨ ∨ ,

where I is the identity matrix. Matrix M1 is the adjacency
matrix of graph G augmented with 1s on the diagonal.
Although matrix M1 accounts for all the explicit relevance
relations existing in ODP, it fails to capture many indirect
relevance relations that result from applying transitive clo-
sures or combining relations of different types. Model M1

will be the most conservative of the proposed models.

Models Induced by the Transitive Closure on the
Hierarchical Component

We use the Boolean product of matrices to recursively
define T(r) as follows. Let T(0) = I and T(r+1) = T ƒ T(r).

Matrix T(r) codifies all the paths of length r between
topics. We define the reflexive and transitive closure of T,
denoted T*, as follows:

T T* =
=

∞
( )

r

r

0

.�

Matrix T* codifies all the paths (of any length) existing
between pairs of topics following “is-a” links. Because there
is a finite number of topics, matrix T* can be computed in a
finite number of steps. In this matrix, Tij* 1= if tj belongs to
the the topic subtree rooted at ti, and Tij* 0= otherwise.

Because we have observed that relevance relations
are consistently preserved through the “is-a” links, it is
reasonable to compute the closure T* and augment it with
the matrices representing the “symbolic” and “related”
links. This gives rise to our second model of relevance
propagation:

M T S R2 = ∨ ∨* .

In this new model, topic ti is relevant to topic tj if: (a) there
is a path from topic ti to topic tj involving “is-a” links only,
or (b) there is a “symbolic” or “related” link from topic ti to
topic tj. Model M2 is a conservative model in the sense that
it propagates relevance through the hierarchical component
of the ODP graph only, whereas the participation of
crosslinks is restricted to explicit (direct) relevance
relations.

A question that arises next is whether crosslinks can be
included in indirect paths while preserving meaning. We
have observed earlier (Figure 2) that relevance is often lost if
an arbitrary number of crosslinks is added to a path. There-
fore, for the relevance propagation models to be plausible,
certain constraints should be imposed.

Below we formulate a family of plausible models of
relevance propagation, which result from extending the pre-
vious models.

Models Induced by Propagating Crosslinks Throughout
the Taxonomy

A simple way to incorporate crosslinks into the model is
by propagating them upward or downward through the tax-
onomy. If we want to propagate relevance relations induced
by crosslinks toward the root, we obtain the following model
of relevance:

M T S R I3 = ⊗ ∨ ∨( )* .

Alternatively, if we propagate relevance relations induced by
crosslinks toward the leaves of the taxonomy, we obtain the
following model:

M S R I T4 = ∨ ∨( )⊗ *.

Finally, we can propagate relevance relations induced by
crosslinks throughout all the taxonomy, but allowing a
single crosslink in each path. This results in the following
model:

M T S R I T5 = ⊗ ∨ ∨( )⊗* *.

In a previous work, model M5 of relevance propagation has
been applied in the computation of semantic similarity mea-
sures with good results (Maguitman et al., 2005).

Another question that arises is whether relevance rela-
tions should be symmetric. The hierarchical component of
the ODP graph (i.e., “is-a” links) codifies relevance relations
from a parent topic to a child topic that in most of the cases
are nonsymmetric. In the meantime, because duplication of
URLs is disallowed, “symbolic” links are a way to represent
multiple memberships, for example, the fact that the
pages in topic Shopping/Toys_and_Games/Science also
belong to topic Science/Educational_Resources/
Science_Fairs. Therefore, “symbolic” links also codify
parent–child relationships, which, as is the case with “is-a”
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links, are generally nonsymmetric. On the other hand,
“related” links appear to codify symmetric relevance rela-
tions. Consequently, a new model of relevance can be for-
mulated by making the “related” links bidirectional. This is
achieved by extending the set of crosslink matrices with RT,
that is, the transpose of R, resulting in the following model
of relevance propagation:

M T S R R I T6
T= ⊗ ∨ ∨ ∨( )⊗* *.

Alternative models can be obtained by imposing additional
constraints or by relaxing some. In general, “related” links
appear to be weaker than the other types of links. We can
reflect this in a new model that results from disallowing the
downward propagation of “related” links:

M T S I T T R R I7
T= ⊗ ∨( )⊗[ ]∨ ⊗ ∨ ∨( )[ ]* * * .

A generalization of M7 is M8, where both “symbolic” and
“related” links are allowed to simultaneously participate in
the same path:

M T S I T R R I8
T= ⊗ ∨( )⊗ ⊗ ∨ ∨( )* * .

There is a plethora of ways in which these models can be
constrained or amplified. For example, we could allow up to
n “symbolic” links, as is shown in the following generaliza-
tion of M8:

M T T S I T R R I9
T= ⊗ ∨ ∨( ) ⊗ ⊗ ∨ ∨( )* *n .

Figure 3 shows possible relevance paths from a source to
a target node according to the different models. Various
models have been considered, but the ones discussed earlier
capture the most interesting or salient aspects of the notion
of relevance propagation analyzed in this article.

Analyzing the Models

Quantitative Comparison

The proposed models were computed for the ODP ontol-
ogy. The portion of the ODP graph we have used for our
analysis consists of 571,148 topic nodes (only the World
and Regional categories were discarded). The following
table shows the size of the components of the graph used in
our analysis.

Component Size

V 571,148 nodes
T 571,147 edges
S 545,805 edges
R 380,264 edges

To quantitatively compare the different models, we
looked at the number of relevance relations between pairs of
topics induced by each model. This comparison is shown in
Table 1.

The above comparison table reveals a wide variation in
the number of relevance relations induced by each model.

T (taxonomy edge) 

S  (symbolic edge) 

R  (related edge)

M1 M2 M3 M4 

M5 
M6 M7 M8 

T* (taxonomy closure) 

source node

target node 

M9 

FIG. 3. Possible paths from source node to target nodes in different models of relevance propagation. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]
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In addition, we computed the number of differences among
the models, and observed that for some pairs of models, such
as M6 and M9, the number of differences is as large as
177,799,003.

Qualitative Analysis

Having observed that the models produced quantitatively
different characterizations of the notion of relevance, we
proceeded to perform an analysis of the quality of the rela-
tions induced by each.

An important theoretical observation is that the set of
models forms a partial order under the relation “Mm � Mn if
and only if [Mm]ij = 1 implies [Mn]ij = 1 for all i, j.” The
resulting partial order is depicted in Figure 4 and can be
easily shown to hold by analyzing the definition of each
model, as well as the definitions of the ⁄ and ƒ operators.5

To dig deeper into the qualitative aspects of each model,
we implemented the visualization tool shown in Figure 5.

This tool was used in combination with the computed matri-
ces to identify cases in which models disagreed regarding
the existence or absence of a relevance relation between
pairs of topics. Once conflicting topics were identified in the
models, the visualization tool allowed us to visualize these
topics and the set of web pages associated with them. This
helped us to address the problem of which models produce
the most accurate characterization of the notion of
relevance.

Relevance is a highly subjective concept (Bailey et al.,
2008; Burgin, 1992). After an initial pilot experiment, we
observed low levels of agreement in relevance judgments
between the human evaluators. To further complicate the
task of evaluating the different models, we noticed that even
for the same judge, a relevance relation that existed at a
certain point of time may disappear later, or vice versa.
Despite these discrepancies, for a good number of pairs of
topics, there was a clear agreement concerning the existence
or absence of an implicit relevance relation. For example, in
Figure 2, the existence of an implicit relevance relation
between the topic Shopping/Toys_and_Games and the
topic Games/Puzzles/Jigzaw is unquestionable, yet only
models M5 and M6 capture this relation. In contrast, there is
not a clear relevance relation between the topics Society/
Organizations/Students and Arts/Art_History/
Movements/Impressionism in Figure 6 despite the fact that
the less conservative models (M5, M6, M7, M8, and M9)
would indicate the existence of such a relation.

Instances similar to the one illustrated in Figure 6 are
pervasive in ODP. This highlights the fact that less conser-
vative schemes of relevance propagation are not robust
because a few unreliable crosslinks make significant global
changes to the relevance propagation models. On the other
hand, the most conservative schemes are incomplete, and
hence unable to derive many useful relevance relations
induced by the less conservative ones.

Validation by User Study

To evaluate the accuracy of some of the proposed models,
we carried out an experiment to compare two of the most
promising of them. The purpose of this experiment was
twofold: (a) to determine whether one of the analyzed
models is more accurate than the other and (b) to highlight
the importance of incorporating relevance relations that go
beyond the basic models.

This evaluation was carried out by performing a user
study that involved 32 volunteer human subjects. Each par-
ticipant was shown a sequence of 30 triplets of websites
belonging to a main topic and two potentially related topics.
The selection of these topics is explained later in this
section. For every shown triplet, an image associated with
the main topic was presented on the top of the screen and
two images associated with the potentially related topics
were presented below. The two images were randomly dis-
played one at the left and the other at the right side of the
screen to avoid favoring one particular model. Only the

5Furthermore, this is consistent with the models computed using the
ODP graph.

TABLE 1. Quantitative comparison of the models.

Model
Number of
relations

M1 = T ⁄ S ⁄ R ⁄ I 2,068,364
M2 = T* ⁄ S ⁄ R 5,502,581
M3 = T* ƒ (S ⁄ R ⁄ I) 7,072,930
M4 = (S ⁄ R ⁄ I) ƒ T* 71,443,444
M5 = T* ƒ (S ⁄ R ⁄ I) ƒ T* 170,573,370
M6 = T* ƒ (S ⁄ R ⁄ RT ⁄ I) ƒ T* 174,534,253
M7 = [T* ƒ (S ⁄ I) ƒ T*] ⁄ [T* ƒ (R ⁄ RT ⁄ I)] 14,177,359
M8 = T* ƒ (S ⁄ I) ƒ T* ƒ (R ⁄ RT ⁄ I) 16,915,322
M9 = T* ƒ (T ⁄ S ⁄ I)n ƒ T* ƒ (R ⁄ RT ⁄ I) with n = 4 37,609,462

M1 

M2 

M3 M4 

M5 

M6 

M7 

M8 

M9 

FIG. 4. Partial order on the set of models.
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images of the selected websites were shown, and no infor-
mation about the corresponding topics was given. The par-
ticipants were given the possibility of navigating the sites.
For each shown triplet, the users were asked to decide which
of the candidate web pages was more related to the main
page by selecting one of the following options:

• The page on the left is more related than the page on the right
to the main page.

• The page on the right is more related than the page on the left
to the main page.

• Both are equally related.
• Neither is related.

The language of the websites selected for the experiment
was restricted to English; therefore, the participants were
required to have proficiency in this language. An example of
a question presented at the experiment is shown in Figure 7.

Model selection. The selection of the most promising
models was conducted by considering those ones that were
less conservatives, without reaching too bold models. The

FIG. 5. Screenshot of the visualization tool developed to navigate the ODP hierarchical component. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

TOP

SOCIETY
ARTS

ART HISTORY

T (taxonomy edge)

S (symbolic edge)   

…..

ORGANIZATIONS

STUDENT

ACADEMIC

COMPETITIONS

MOVEMENTS

IMPRESSIONISM

FIG. 6. A questionable relation in ODP. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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goal was to highlight the transitive relations between topics,
avoiding too many steps that involved cross-reference links,
such as is the case in M9. Another important aspect that was
considered for the selection was that most of the remaining
models should be included in the selected ones (e.g., M7 is
contained in both M6 and M8, whereas M5 is contained
in M6). The performed pilot study aided the selection
process, by leading to the identification of useful relevance
relations that were present in less conservative models
but absent in the most basic models. Figures 8 and 9
illustrate examples of such relations. For instance, M6

induces a relevance relation between the topics Science/
Physics/Instruments_And_Supplies and Science/
Instruments_And_Supplies/Laboratory_Equipment/
Glass_Products_And_Accesories. However, most of the
proposed models are unable to identify this relation. Simi-
larly, M8 infers a relevance relation between the topics
Business/Energy_And_Environment/Oil_And_Gas

and Science/Earth_Sciences/Products_And_Services/
Consulting, which is not identified by the rest of the com-
puted models.

Taking into account the above considerations, the
selected models were the following:

• M6 = T* ƒ (S ⁄ R ⁄ RT ⁄ I) ƒ T*
• M8 = T* ƒ (S ⁄ I) ƒ T* ƒ (R ⁄ RT ⁄ I)

Setting up the experiment. Once M6 and M8 were selected
as the most promising candidate models, the next task was
to isolate topic triplets (t1, t2, t3) that satisfy the following
conditions:

• The main topic t1 must have at least one related topic accord-
ing to M6 and another related topic according to M8.

• The topic t2 must be related to t1 according to M6 but not
according to M8.

FIG. 7. Example of a triplet shown to users on the experiment. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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• The topic t3 must be related to t1 according to M8 but not
according to M6.

An example of a triplet satisfying these conditions is
presented in Table 2.

Using matrix notation, the topic triplets (t1, t2, t3) are
required to satisfy the following condition:

M M M M6 8 6 8t t t t t t t t1 2 1 2 1 3 1 3, , , , .[ ]∧ ¬ [ ]∧ ¬ [ ]∧ [ ] (1)

TOP

SCIENCE

INSTRUMENTS
AND SUPPLIES

T (taxonomy edge)

S (symbolic edge)    

R (related edge)

PHYSICS

INSTRUMENTS

AND SUPPLIES

EDUCATIONAL

LABORATORY

EQUIPMENT

GLASS PRODUCTS

AND ACCESORIES

FIG. 8. Example of a useful relation existing in M6 but absent in the other analyzed models. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

TOP

BUSINESS SCIENCES

T (taxonomy edge)

S (symbolic edge)    

R (related edge)

…..

EARTH

SCIENCES
ENERGY AND

ENVIRONMENT

OIL AND
GAS

CONSULTING

GEOPHYSICS

PRODUCTS
AND SERVICES

CONSULTING

PRODUCTS

AND SERVICES

CONSULTING

FIG. 9. Example of a useful relation existing in M8 but absent in the other analyzed models. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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The first step for identifying these triplets was to isolate
those relations that were present in one model but not in the
other. This was done by applying the logical minus operator
on the models’ matrices as follows:

• Candidate relations from M6: M6\M8 = M6 ∧ ¬M8.
• Candidate relations from M8: M8\M6 = M8 ∧ ¬M6.

This allowed us to identify sets of candidate relations
from each model. The number of candidate relations in
M6\M8 was 159,926,121 (i.e., nonzero elements in the
resulting matrix), whereas the number of candidate relations
in M8\M6 was 2,307,190. The resulting candidate relation
matrices allowed us to isolate a sequence of triplets (t1, t2, t3)
satisfying condition 1. This was accomplished by searching
for row indices t1 and column indices t2 and t3 such that both
the (t1, t2)th entry of M6\M8 and the (t1, t3)th entry of M8\M6

were nonzero.
With the purpose of making the experiment more accu-

rate, we selected five main topics, each one associated with
six triplets, resulting in a total of 30 triplets. In this manner,
we also avoided imposing an excessive cognitive load on the
human subjects who performed the experiment, by having
them focus on a new main topic only after six triplets were
shown. This method was similar to the one adopted by
Maguitman et al. (2005). Besides, each triplet was required
to have active associated web pages, appropriately repre-
senting the topics’ contents. Hence, the selection of such
triplets was not a trivial task due to various factors, such as
the disappearance of some websites during the development
of the experiment. A vital piece for the triplets selection
process was the visualization tool (Figure 5) mentioned
earlier, which allowed us to fast check the existence and
operation of websites associated with the selected topics.
Figure 7 depicts the triplet shown in Table 2.

Results. The average time spent per user on performing the
experiment was approximately 20 minutes. We obtained the

number of answers for each of the four possible options
shown with every triplet. Figure 10 shows these results
grouped by user, and Figure 11 shows the same results
grouped by triplet. The data set used to carry out this experi-
ment as well as the individual answers given by each user
are available online at http://ir.cs.uns.edu.ar/downloads/
relevance_propagation_experiment_dataset.xls.

Table 3 shows our first analysis grouping the answers by
user. From this analysis we can see that the confidence
intervals (CIs) for the mean number of answers associated
with M6 and M8 do not overlap. At first sight, we could
assume that this analysis points M6 as a better relevance
propagation scheme. However, if we look at the overlapping
of the CIs for the answers associated with each of the four
options, we cannot say that there is a statistically significant
difference. Thus, even when the means for M6 and M8

answers are different, there is not a statistically significant
difference that justifies the choice of one model over the
other because of the low significance of differences with the
other answers.

If we consider only the existence or absence of a relation
on each answer according to the user criterion, the results
are quite different. We did this by grouping the answers that
indicate the existence of some relevance relation between
the main topic and any of the topics of the evaluated models
for each user. These answers are the first three options on
each triplet: “The one on the left,” “The one on the right,”
and “Both are equally related.” Then we calculated the per-
centage of answers that reflect the existence of a relevance
relation and compared it with the percentage of answers that
reflect no relation (i.e., the fourth option). This comparison
is shown in Table 4. The chart illustrating the total percent-
ages of answers for each of the four options is shown in
Figure 12, whereas the chart with the totals for the grouped
options according to the second analysis is shown in
Figure 13.

These results indicate that there is a statistically signifi-
cant difference between the means of the two groups, given
that the CIs do not overlap, with a significance level of 5%
(95% of confidence level). As a consequence, we have
enough statistical evidence to conclude that the relevance
relations determined by the evaluated models are consistent
in many cases according to the users’ criterion and can be
taken into account for the computation of semantic similar-
ity between websites. In other words, the basic models are
insufficient to reflect useful relevance relations that could be
contributed by some of the less conservative models.

Discussion

The earlier analysis leads us to conclude that although some
models are better predictors than others of the existence or
absence of relevance relations, none of them is flawless. This
points to the fact that despite being a key concept in artificial
intelligence and information science, relevance is a fuzzy
and subtle notion, difficult, if not impossible, to formalize
using structural aspects only.

TABLE 2. Example of a triplet used in the evaluation.

Model URL Topic

Both www.idesam.umu.se/english/about/
subjects/archeology/?languageId=1

Science
Social_Sciences
Archaeology
Topics

M6 www.hps.cam.ac.uk/starry/kepler.html Top
Science
Astronomy
History
People
Kepler,_Johannes

M8 www.ualberta.ca/~nlovell/index.html Top
Science
Social_Sciences
Archaeology
Archaeologists
Bioarchaeologists

2250 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—November 2013
DOI: 10.1002/asi

http://ir.cs.uns.edu.ar/downloads/relevance_propagation_experiment_dataset.xls
http://ir.cs.uns.edu.ar/downloads/relevance_propagation_experiment_dataset.xls
http://www.idesam.umu.se/english/about/subjects/archeology/?languageId=1
http://www.idesam.umu.se/english/about/subjects/archeology/?languageId=1
http://www.hps.cam.ac.uk/starry/kepler.html
http://www.ualberta.ca/~nlovell/index.html


Despite these limitations, our analysis indicates that there
is a clear increase in the amount of useful information
inferred when the less conservative models (such as M6 or
M8) are used to identify implicit relevance relations. This
analysis provides new insight into the problem of computing
semantic similarity measures for general ontologies, high-
lighting the benefits of taking advantage of both the hierar-
chical and nonhierarchical components of these ontologies.

As it has been proposed by Maguitman et al. (2005), the
semantic similarity between two topics, ti and tj, in an ontol-
ogy graph can be computed using an information-theoretic
approach as follows:

σ G
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The probability PO tk( ) represents the prior probability that
any document is classified under topic tk. Once a model of
relevance propagation M has been computed, PO tk( ) can be
naturally estimated in terms of model M as
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where |tj| is the number of documents directly associated
with topic tj, and |U| is the total number of documents in the
ontology. The conditional probability PO t ti k( ) represents
the probability that any document will be classified under
topic ti given that it is classified under tk, and it can also be
estimated in terms of model M as follows:
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Equations 2 and 3 are in accordance with the arguments
presented in the Background section, where we claim that
relevance is a primitive conceptual notion and suggest that
defining PO t j( ) and PO t tj i( ) in terms of relevance is more
natural than defining relevance in terms of these probability
measures.
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FIG. 10. Number of answers for each option per user. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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There are a number of ways in which the proposed
models of relevance propagation can be improved. For
instance, the less conservative models could be combined
with mechanisms that prevent them from deriving relevance
relations between two topics unless an analysis of the topics’
content suggests a connection between them. This analysis

could be based on the text describing the topics, which is
available in ODP. Another source of content are the features
of the websites associated with the topics, such as the text,
the outgoing links, the incoming links, or a combination of
all of them.

Another possible improvement is the extension of the
proposed models to fuzzy models of relevance propaga-
tion. Different types of edges have different roles, and one
way to distinguish these roles is to assign them weights.
Then the weight wij ∈ [0, 1] for an edge between topic ti

and tj can be interpreted as an explicit measure of the
degree of membership of tj in the family of topics rooted at
ti. The Boolean product of matrices ƒ will need to be
replaced by some fuzzy operator to propagate relevance.
For example, we could use the MaxProduct fuzzy compo-
sition operator (Kandel, 1986) defined on matrices as
follows:

[ ]A B A B� ij
k

ik kj= ⋅( )max .

The element M[ti, tj] resulting from propagating relevance in
the new fuzzy models will be interpreted as a fuzzy rel-
evance relation of topic ti to topic tj. For certain weighting
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FIG. 11. Number of answers for each option per triplet. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE 3. First analysis of the experiment data.

Answer n Mean Standard deviation 95% CI

M6 32 28.65% 8.99% 25.53–31.76
M8 32 20.31% 8.61% 17.33–23.29
Both 32 15.94% 8.71% 12.92–18.95
Neither 32 35.10% 12.64% 30.72–39.48

TABLE 4. Second analysis of the experiment data.

Answer n Mean Standard deviation 95% CI

Related (M6, M8 or both) 32 64.90% 12.64% 60.52–69.28
Not related (neither) 32 35.10% 12.64% 30.72–39.48
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schemes, the distance between two topics in the directory
will have an impact on their relevance value.

Finally, it is important to distinguish the propagation
of relevance relations from the propagation of keywords
(and keywords’ weights) through a topical structure. Two
approaches for keyword propagation (Kim & Candan, 2007;
Su et al., 2005) were reviewed in the Related Work section.
In these approaches, keywords are propagated through
topics following the hierarchical component of a topic direc-
tory or to neighbor topics. We contend that the propagation
mechanism could be extended, guided by our models of

relevance propagation. In other words, more complex
propagation schemes can be implemented if content is
propagated from topic ti to topic tj whenever M[ti, tj] � 0 for
a given model M.

Conclusions

This article addresses the problem of inferring relevance
relations between topics in a web directory graph by looking
at structural features of the graph only. We proposed nine
different models of relevance propagation and computed

28.65%

20.31%15.94%

35.10%

M_8

M_6

Both

Neither

FIG. 12. Percentage of answers for each option. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

64.90%

35.10%

Existence of a
relation

Absence of a
relation

FIG. 13. Percentage of answers comparing the existence of a relevance relation (coming from M6, M8, or both) with the nonexistence of a relevance
relation. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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them for a huge graph consisting of more than half a million
nodes. This resulted in a challenging computational task, for
which we implemented dedicated efficient algorithms. The
resulting models were compared from both a quantitative
and qualitative perspective. In addition, a user study was
carried out to compare two of the most promising models.

Although some models appear to better approximate the
notion of relevance than others, certain general difficulties
appear to rule out the possibility of defining precise models
of relevance propagation by considering structural aspects
only. This result has interesting practical and theoretical
consequences as many existing methods attempt to identify
implicit semantic relations in network representations by
looking only at the structure or topology of the network
(e.g., Pedersen et al., 2004; Rada et al., 1989). This calls for
the investigation and development of mechanisms that inte-
grate structural aspects with other aspects (such as content
or other contextual aspects) to derive enhanced models of
relevance propagation.

In this sense, structure and content analysis can be use-
fully integrated in two ways. First, the proposed structural
models of relevance propagation can be enhanced by taking
content into consideration. Second, existing models of
content propagation such as the ones proposed by Su et al.
(2005) and Kim and Candan (2007) (discussed in the
Related Work section) can be reformulated to propagate
keywords and their weights through new paths induced by
the models of relevance propagation.

To our knowledge, this is the first attempt to model the
problem of propagating relevance relations in a web direc-
tory graph. The applicability of the proposed models of
relevance propagation to the area of artificial intelligence
and information science is extensive and multifarious.
Because much of a reasoner’s knowledge can be expressed
in terms of relevance relations, a computational model of
relevance propagation is a useful tool for the design of
commonsense reasoning and information-seeking systems.
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