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We present a novel measure for ranking evaluation,
called Twist (τ). It is a measure for informational intents,
which handles both binary and graded relevance. τ
stems from the observation that searching is currently a
that searching is currently taken for granted and it is
natural for users to assume that search engines are
available and work well. As a consequence, users may
assume the utility they have in finding relevant docu-
ments, which is the focus of traditional measures, as
granted. On the contrary, they may feel uneasy when the
system returns nonrelevant documents because they
are then forced to do additional work to get the desired
information, and this causes avoidable effort. The latter
is the focus of τ, which evaluates the effectiveness of a
system from the point of view of the effort required to the
users to retrieve the desired information. We provide a
formal definition of τ, a demonstration of its properties,
and introduce the notion of effort/gain plots, which
complement traditional utility-based measures. By
means of an extensive experimental evaluation, τ is
shown to grasp different aspects of system perfor-
mances, to not require extensive and costly assess-
ments, and to be a robust tool for detecting differences
between systems.

Introduction

Information retrieval (IR) systems are pervasive in our
society, and they are no longer perceived as technological
advances or support tools but as staples of everyday life. The
foremost examples are search engines, the main tools used
by millions of people for searching, retrieving, and access-
ing information: How many people rely on having a search

engine always available and how many think that if you
cannot find something with a search engine, it does not
exist?

Experimental evaluation (Cleverdon, 1997; Harman,
2011) has been and still is the main methodology adopted in
IR for improving its systems and, as Tague-Sutcliffe pointed
out its ultimate goal is “satisfying users not just in individual
cases, but collectively, for all actual and potential users in
the community” (Tague-Sutcliffe, 1996, p. 1). This has pro-
duced a wealth of research, ranging from lab-style evalua-
tion (Harman, 2011; Harman & Voorhees, 2005; Sanderson,
2010) to interactive IR evaluation (Kelly, 2009) and the
study of what user (search) tasks are (Ingwersen & Järvelin,
2005; Toms, 2011).

Here, we focus on lab-style evaluation and search tasks
with informational intents (Broder, 2002), which account for
the vast majority (80%) of all queries on the web (Jansen,
Booth, & Spink, 2008). In particular, we investigate how the
idea of search as a commodity leads to the definition of an
evaluation measure grasping a different angle with respect to
already existing measures.

The main measures for evaluating informational tasks—
namely, average precision (AP) (Buckley & Voorhees,
2005), cumulated gain measures, for example, discounted
cumulated gain (DCG) and its normalized version nDCG
(Kekäläinen & Järvelin, 2002), and rank-biased precision
(RBP) (Moffat & Zobel, 2008)—evaluate IR systems in
terms of the quality of the ranked list output and, to some
extent, also the user experience with the system. These mea-
sures adopt different user models all centered around the
concept of utility and basically account for the level of utility
(or gain) that a user can achieve in scanning a ranked result
list. They differ in how they compute utility and when the
total utility satisfies the user, that is, at which rank or after
how many encountered relevant documents the user is
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satisfied, as well as in how the measures take into account
user behavior and experience (Carterette, 2011; Moffat,
Thomas, & Scholer, 2013).

However, when search is considered a commodity, users
may presume that their needs will always be served by
systems, that is, they may consider systems as equivalent
when seen from the viewpoint of traditional evaluation mea-
sures, and they may focus more on whether systems impose
on them some avoidable effort to achieve a certain level of
utility.

Therefore, in this paper, we introduce the Twist (τ)
measure, which evaluates systems from the viewpoint of the
avoidable effort for their users by accounting for their
fatigue while visiting a nonideal ranking of documents.
Twist allows us to answer the question “How much did a
given utility/gain cost in terms of effort?” distinguishing
between systems that have similar utility/gain but require
different amounts of user effort to attain it. As a conse-
quence, Twist is an ideal companion to traditional utility
measures for informational tasks when you look at search as
a commodity because Twist spots those systems that make it
more difficult for their users to effortlessly benefit from
effective information retrieval functionalities.

Twist adopts a user model common to several measures
(Moffat et al., 2013), such as DCG and RBP, where the user
scans the ranked list from top to bottom until s/he stops, and
returns an estimate of the effort required to the user to
traverse the ranked list. Twist builds on the notion of docu-
ment misplacement, that is, how far a document is from its
expected position range in an ideal ranking, assuming that a
document deviating from its ideal range puts an additional
burden on the user during the visit causing avoidable effort.
More in detail, if we consider the curve where, at each rank
position, all the document misplacements up to that rank are
cumulated, Twist combines the first rank position at which
no additional effort is required with the total amount of
effort during the visit. The computation of the former
involves considering at which rank position the first zero of
the curve (if any) is; the computation of the latter involves
considering the area under the curve.

Twist fits in the conceptual framework proposed by
Carterette (2011), which defines system effectiveness, user
models, and user utility, by substituting the concept of utility
with effort: the browsing model is a sequential scan of the
list where, at each rank position, there is the same probabil-
ity of the user either stopping or going ahead to the next
rank; the document utility model is actually a document
effort model, based on the notion of document misplacement
as explained previously; and the utility accumulation model
is actually an effort accumulation model, based on the cumu-
lation of the document misplacements up to each rank posi-
tion. Note that Twist and DCG have the same browsing
model which is similar to RBP when its persistence param-
eter is set to p = 0.50. They adopt the same utility accumu-
lation model based on cumulative sum while they differ in
the document utility model which is based on the document
misplacement for Twist and on discounted gain for DCG.

We provide a straightforward and sound definition
of Twist by using basic set and function theory (Section
“Definition of the Twist Measure section”), and we formally
prove some of its properties and, based on these properties,
we introduce system archetypes that provide templates of
performance behavior in different retrieval scenarios (Run
Archetypes section). This latter aspect builds on the work by
Egghe (2008), which studied precision, recall, and other
metrics in a set of predefined retrieval scenarios because the
properties of Twist allow us to provide a finer-grain distinc-
tion for several cases.

We introduce the notion of effort/gain plots, where Twist is
plotted against traditional measures (AP, nDCG, RBP) to
help interpreting system performance not only in terms of
utility/gain but also in terms of the effort actually required to
achieve that utility/gain (Section “Effort/Gain Plots
section”).

We propose using the cumulated relative position (CRP)
curve (i.e., the curve where, at each rank position, all the
document misplacements up to that rank are cumulated), as
a visual tool both to provide a quick and intuitive idea of
system behavior and to ease the interpretation and under-
standing of plots of other rank-by-rank measures, such as
DCG (CRP as a Visual Tool section).

We conduct a thorough experimental evaluation (Experi-
ments section) with Text REtrieval Conference (TREC)1

collections to analyze:

• Correlation with other metrics: the Kendall tau correlation
analysis (Kendall, 1948; Voorhees, 2001) shows that Twist is
lowly correlated with existing metrics and confirms that it is
looking at system performances from a different point of
view;

• Pool downsampling: the analysis when pools are down-
sampled (Buckley & Voorhees, 2004; Sakai, 2007a) shows
that Twist remains stable and thus extensive, and costly
assessments are not mandatory in order to effectively compare
systems by using it;

• Discriminative power: the analysis of sensitivity (Sakai, 2006,
2012, 2014) shows that Twist is, in general, as sensitive as the
other metrics and improves in certain cases, confirming it as a
robust tool for comparing system performances.

Finally, we discuss the advantages of Twist with respect
to other related metrics (Related Metrics and Discussion
section), draw conclusions, and provide an outlook for
future work (Conclusions section).

Definition of the Twist Measure

Preliminary Definitions

In this section, we introduce some relevant concepts
regarding experimental evaluation that are necessary to
define τ. We rely on the formalization of these concepts as
introduced in (Angelini, Ferro, Santucci, & Silvello, 2014)

1http://trec.nist.gov/
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and reported here in short. However, in “Preliminary Defi-
nitions” we fully report it for completeness and support the
demonstration of the properties of the proposed measure.

Let D bet a finite set of documents; d ∈ D a document,
i.e. the basic information unit; T a finite set of topics; and,
t ∈ T a topic, that is, the materialization of a user informa-
tion need.

Let (REL, ≼) be a finite and totally ordered set of rel-
evance degrees where we call nonrelevant the relevance
degree nr = min(REL).

The ground truth function GT associates a relevance
judgment rel ∈ REL to each document d for each topic t.

The recall base RBt is the total number of relevant
documents for a given topic t, where by relevant docu-
ment is meant any document with relevance degree above
nonrelevant.

A run is a set of vectors of documents, where each vector
rt = (d1, d2, . . ., dN) of length N represents the ranked list of
documents retrieved for a topic t with the constraint that no
document is repeated in the ranked list. The relevance score
ˆ ( , , , )rt Nrel rel rel= 1 2 … associates the corresponding rel-
evance degree to each element of a run vector.

The definition of run allows us to build on the work of
Egghe (2008) who classified global curves obtained by con-
sidering traditional metrics such as precision and recall
based on the number of retrieved documents. In a binary
relevance world, he distinguished between perfect retrieval
(first return all the relevant documents, then all the nonrel-
evant), perverse retrieval (first return all nonrelevant docu-
ments, then the relevant ones), and random retrieval
(randomly returns documents without regard for their rel-
evance). Egghe (2008) also treated the special case of a

retrieval where the number of relevant documents decreases
with the number of retrieved ones; we do not explicitly
handle this scenario assuming the existence of a retrieval
density function (Guns, Lioma, & Larsen, 2012) based
on binary relevance which is out of the scope of this
article. In the following, we formally define several types
of runs by extending the binary scenarios considered in
Egghe (2008) and by modeling them in a graded relevance
context.

The perfect retrieval scenario is defined by the ideal run
it which contains the best ranking of all the relevant docu-
ments for all the topics; that is all the retrieved documents
are arranged in the vectors in descending order of relevance.

The worst run wt defines a set of permutations, all of
which consist of solely nonrelevant documents. Note that
the worst run exists only if there are at least N nonrelevant
documents in D. The worst run was not considered in Egghe
(2008) and here it is defined for the first time.

The full-scale run fst, which is an extension of the per-
verse retrieval case of Egghe (2008), contains the worst
ranking of the documents, still retrieving all the relevant
documents for all the topics; in other words, it reverses the
order of the ideal run.

Consider the following example: the set REL = {nr, pr, fr,
hr} contains four relevance degrees where nr stands for
“nonrelevant,” pr for “partially relevant,” fr for “fairly rel-
evant” and hr stands for “highly relevant” with the following
ordering nr ≼ pr ≼ fr ≼ hr; the recall base is RBt = 7; the
length of the vectors is N = 15, and there are two different
systems A and B. According to the previous definitions we
have the following vectors, where ât and b̂t are two addi-
tional vectors of two hypothetical systems “A” and “B.”

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ˆ ( , , , , , , , , , ,it hr hr fr fr pr pr pr nr nr nr nr= ,, , , , )

ˆ ( , , , , , , , , , , , , ,

nr nr nr nr

nr nr nr nr nr nr nr nr nr nr nr nr nrtw = nnr nr

nr nr nr nr nr nr nr nr pr pr pr fr fr hr hrt

, )

( , , , , , , , , , , , , , , )fs� =
ˆ̂ ( , , , , , , , , , , , , , , )
ˆ (

a

b

t

t

hr hr fr nr pr fr nr nr nr pr nr nr nr nr nr

hr

=

= ,, , , , , , , , , , , , , , )nr pr nr fr nr nr nr fr pr nr nr hr pr nr

The minimum rank min ( )it rel is the first position at
which we find a document with relevance degree equal to rel
in the ideal run while the maximum rank max ( )it rel is the
last position at which we find a document with relevance
degree equal to rel in the ideal run.

In our example, we have min ( )it hr = 1, max ( )it hr = 2,
min ( )it fr = 3, max ( )it fr = 4, min ( )it pr = 5, max ( )it pr = 7,
min ( )it nr = 8 , and max ( )it nr = 15.

Relative Position

We can now introduce the relative position (RP), which
quantifies the effect of the misplacement of relevant

documents. It was first proposed in Ferro, Sabetta, Santucci,
and Tino (2011) as a support to the creation of an inter-
active system for exploring DCG plots via the addition
of a bar visually showing the effect of the misplacement
at each rank position. It was then exploited for a visual
interactive failure analysis system as reported in Angelini,
Ferro, Santucci, and Silvello (2012b, 2014), Di Buccio et al.
(2011a, 2011b), and Ferro et al. (2011). In this paper, we
exploit RP as a stepping stone for introducing the new
Twist measure as well as formally proving some of its
properties.

Figure 1 provides an intuitive view of the functioning of
RP, relying on the previous example. In an ideal ranking,
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which is provided by the ideal run it, the “highly relevant”
documents would come first, followed by the “fairly rel-
evant” ones, then the “partially relevant” ones, and finally
the “not relevant” ones would come. Suppose now that at
rank position 2 there is a “not relevant” document, in the
area where “highly relevant” documents would be expected.
In the most optimistic view, that is, the one that minimizes
the misplacement, this document comes from the beginning
of the area of the “not relevant” documents at rank 8, which
is provided by min ( )it nr : therefore, there is a negative mis-
placement by 6 positions. Note that at rank 1 there is a
“highly relevant” document as expected, thus the misplace-
ment is zero. In a similar way, at rank position 9, there is a
“fairly relevant” document, in the area where “not relevant”
documents would be expected. Again in the most optimistic
view, that is, the one that minimizes the misplacement, this
document comes from the end of the area of the “fairly
relevant” documents at rank 4, which is provided by
max ( )it fr : Therefore, there is a positive misplacement by 5
positions.

As noted in Figure 1, RP departs from gain-based mea-
sures such as DCG; indeed, at each rank position, the former
compares document misplacements, whereas the latter com-
pares (and discounts) gain values. Moreover, they also rely
on different scales of measurements (Krantz, Luce, Suppes,
& Tversky, 1971; Stevens, 1946): Although RP is based on
an ordinal scale, DCG can use both ordinal and ratio scales
because the weights can be assigned to the relevance degrees
and then interpreted as relevance ratios. For example, with
weights nr = 0, pr = 1, fr = 2, and hr = 3, highly relevant
documents can be interpreted as three times as relevant as
the partially relevant ones.

Definition 1. Given a run R(t), the Relative Position
(RP) is a function

RP:

( , ) ( , , , )

T D

t rp rp rp

N N

t Nt

× →
=

�
� …r rpr 1 2

where

rp

r r

rr

i i

it

t t

tj

if j j j

j j if j
t t

t[ ] =
[ ]( ) ≤ ≤ [ ]( )

− [ ]( )
0 min max

min

ˆ ˆ

ˆ << [ ]( )
− [ ]( ) > [ ]( )

⎧
⎨
⎪

⎩⎪
min

max max
i

i i

r

r r
t

t t

t

t t

j

j j if j j

ˆ

ˆ ˆ

RP points out the local and instantaneous effect of mis-
placed documents and how much they are misplaced with
respect to the ideal case it. Zero values denote documents
which are within the ideal interval; positive values denote
documents which are ranked below their ideal interval, i.e.
documents of higher relevance degree that are in a position
of the ranking where less relevant ones are expected; and,
negative values denote documents which are above their
ideal interval, i.e. less relevant documents that are in a posi-
tion of the ranking where documents of higher relevance
degree are expected. Note that the greater the absolute value
of RP is, the greater is the distance of the document from its
ideal interval; this constitutes avoidable effort put on the
user while scanning the result list.

From definition 1, it follows that in the case of the ideal
run rpit j j N t T[ ] , [ , ],= ∀ ∈ ∀ ∈0 1 ; and in the context of the
previous example, we can determine the following RP
vectors:

FIG. 1. Intuitive view of relative position. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

4 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015
DOI: 10.1002/asi

http://wileyonlinelibrary.com


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0rp

r
it = ( , , , , , , , , , , , , , , )

pp

rp
w

fs

t

t

= − − − − − − −
= − − −

( , , , , , , , , , , , , , , )

( , ,

7 6 5 4 3 2 1 0 0 0 0 0 0 0 0

7 6 5,, , , , , , , , , , , , )

( , , , , ,

− − − − + + + + + + +
= − +

4 3 2 1 0 2 3 4 8 9 12 13

0 0 0 4 0 2rpat ,, , , , , , , , , )

( , , , , , , , , , , ,

− +
= − − − + − − + +

1 0 0 3 0 0 0 0 0

0 6 2 4 1 2 1 0 5 3 0rpbt 00 11 7 0, , , )+ +

where, for example, rp ww it t t1 1 1 1[ ] = − [ ]( ) =min ˆ

it 1 8 7− ( ) = − = −min nr , rp fsfs it t t[ ] max ( [ ])15 15 15= − =�

itmax ( )15 15 2 13− = − = +hr , rp aa it t t6 6 6[ ] = − [ ]( ) =max ˆ

it
6 6 4 2− ( ) = − = +max fr , and rp bb it t t6 6 6[ ] = − [ ]( )min ˆ

it6 6 8 2= − ( ) = − = −min nr . Note that RP values at rank 2
and 9 for the bt run correspond to those shown in Figure 1.
As we can see, RP values for the considered runs (i.e., at and
bt) are all nonnegative after the recall base (i.e., RBt = 7),
whereas they can be both positive and negative before it. In
the ideal case, after the recall base there should not be any
relevant document, thus every relevant document encoun-
tered in this part of the ranking is an effect of previous
misplacements and it is assigned to a positive RP value
which represents a recovery of user efforts. On the other
hand, before the recall base the user expects to find only
relevant documents (in decreasing relevance order in the
ideal case) and thus a document misplacement in this part of
the ranking is assigned to a negative RP value representing
avoidable effort put on the user.

The previous example and the definition of RP highlight
an important point about its behavior: When documents are
placed within their expected range, each rank position looks
“equivalent”; on the other hand, when documents fall outside
their expected range, each rank position looks “different.” For
example, in the former case, putting a “highly relevant”
document retrieved by run bt either at position 1 or 2 would
give the same contribution to RP; in the latter case, putting a
“highly relevant” document retrieved by run bt at position 13
gives a bigger contribution to RP than putting it at, say,
position 9. Note that this behavior differentiates RP from
other measures such as DCG where each rank position always
looks “different” since a different discount is applied to it.

The following proposition provides closed formulas for cal-
culating the minimum and maximum of the RP of the full-scale
run and demonstrates that, for each topic, they represent,
respectively, the lower and upper bounds for the RP of any run.

Proposition 1. Let R(t) be a generic run and FS(t) be the
full-scale run. It holds:

( ) : , min( ) [min (max( ))]1 lowerbound

a

∀ ∈ =
= −

t T REL

RB
t t ti

t

rp rpfs fs

nnd

upperbound

∀ ∈ ≤

∀ ∈

h N h

t T

t t

t

[ , ], min( ) [ ]

( ) : , max(

1

2

rp rp

rp

fs r

fs )) [max (min( ))]

max (max( ))

[ , ], max

=
= −
∀ ∈

rpfs

i

t t

t

i REL

N REL

h Nand 1 (( ) [ ]rp rpfs rt t h≥

The demonstration of proposition 1 is reported in the List
of Symbols and Acronyms section in the Appendix.

According to the example above, we have that
N = 15, RBt = 7, min (max( )) min ( )i it tREL = =hr 1,
max (min( )) max ( )i it tREL = =nr 15, and max (max( ))it REL

max ( )it= =hr 2 therefore, min( ) [ ]rp rpfs fst t= = −1 7 and
max( ) [ ]rp rpfs fst t= = − = +15 15 2 13.

Cumulated Relative Position

As previously discussed, RP detects instantaneous and
local effects of relevant document misplacement at each
rank position. On the other hand, we need, for each rank
position, to account for all the avoidable effort up to that
rank position. An immediate way to achieve this result is to
compute the integral of the RP function or, in other terms
being a discrete function, its cumulative sum. This is exactly
what CRP does in the next definition. An initial version CRP
was proposed for the first time in Angelini et al. (2012a)
paired together with some visualizations to interact with it;
in this paper, we concentrate on its full formalization as well
as on thoroughly studying its properties.

Definition 2. Given a run R(t), the Cumulated Relative
Position (CRP) is a function

CRP:

( , ) ( , , , )

T D

t crp crp crp

N N

t Nt

× →
=

�
� …r crpr 1 2

where

crp rpr rt tj k
k

j

[ ] [ ]=
=

∑
1

For each position j, CRP sums the values of RP up to
position j included. From definition 2, it follows that for the
ideal run crpit j j N t T[ ] , [ , ],= ∀ ∈ ∀ ∈0 1 .

In our example, we can determine the RP vectors shown
above where, for example, crpwt [ ] ( ) ( ) ( )3 7 6 5= − + − + − =
18− ,crpfst [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )10 7 6 5 4 3 2 1= − + − + − + − + − + − + −
0 2 3 23+ + + = − , crpat [ ] ( )6 0 0 0 4 0 2 2= + + + − + + = − ,

and crpbt [ ] ( ) ( ) ( ) ( )6 0 6 2 4 1 2 13= + − + − + − + + − = − .
As in the case of other cumulated metrics such as DCG,

it is possible to provide a recursive definition of CRP:

crp
rp

crp rpr
r

r r
t

t

t t

j
j j

j j j
[ ]

[ ]

[ ] [ ]
=

=
− + >

⎧
⎨
⎩

if

if

1

1 1
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An alternative interpretation of the relation between RP
and CRP is to consider CRP as the space the system is
covering. Indeed, when CRP is moving either upwards on
the negative side or downwards on the positive side, it
indicates it is again moving toward the ideal case, by visiting
relevant documents. Moreover, in this interpretation, being
the first derivative of CRP, RP represents the speed the
system is moving backward and forward in this space
or, in other terms, the rate at which avoidable effort is
generated.

The following proposition demonstrates that, for each
topic, the minimum and maximum of the CRP in the full-
scale run represent, respectively, the lower and upper bound
for the CRP of any run.

Proposition 2. Let R(t) be a generic run and FS(t) be the
full-scale run. It holds:

( ) : , min( ) [ ]
( )

1
1

2
lowerbound

and

∀ ∈ = = − +
t T RB

RB RB
t t t

t tcrp crpfs fs

∀∀ ∈ ≤
∀ ∈

h N h

t T
t t[ , ], min( ) [ ]

( ) : , max(

1

2

crp crp

crp
fs r

fsupperbound tt t

i

i

k

k

N

RB N RBt t rel

rel REL

rel

rel

) [ ]

( )
min( ) min

= =
= − − ∑

crpfs

Δ Δ
� � (( )

[ , ], max( ) [ ]

REL
rel relk i

t th N h

°

∑

∀ ∈ ≥and 1 crp crpfs r

where Δrel i ii t trel rel= − +max ( ) min ( )i i 1.
The demonstration of proposition 2 is reported in the

Preliminary Definitions section in the Appendix.
In our example, we have RBt = 7, N = 15, Δhr = 2, Δfr = 2,

and Δpr = 3; therefore, min( ) [ ]crp crpfs fst t= = −
⋅

= −7
7 8

2
28

and max( ) [ ] ( ) (crp crpfs fst t= = ⋅ − − ⋅ + ⋅ +15 7 15 7 2 2 2 4

)⋅ = − =3 7 56 33 23.

Recovery Ratio

As discussed in the previous sections, at each rank posi-
tion, CRP indicates how far a system is from the ideal point
0. Therefore, an intuitive indicator of how well a system is
performing is the earliest rank position, if any, at which it
passes through the ideal point 0 with respect to the recall
base RBt that represents the earliest rank position at which,
in an ideal case, the system would have had the chance of
retrieving all the relevant documents.

Definition 3. Given a run R(t), the recovery ratio is a
function

ρ
ρ

: ,

,

T D

t

N

t t

× → [ ]
( )

0 1

r r�

where, given the set of the crossings of the run with respect
to the x axis

x j N j j

j
t t t

t t

r r r

r r

crp crp

crp crp

= ∈ − ≤ ∧ + ≥ ∨
≥ ∧

{ [ , ] | ( [ ] [ ] )

( [ ]

1 1 0 1 0

0 [[ ] )}j + ≤1 0

and the balance point

βr rt tRB xt= max( , min( ))

we have

ρ
βr

r
t

t

RBt=

The crossings of the run identify the positions in the
vector where the CRP crosses the x axis in either the upward
or downward direction by looking at two consecutive ele-
ments in the vector where the first is negative and the second
is not negative (or vice versa) taking this first one as cross-
point of the x axis. We have not used the condition
CRPrt j[ ] = 0 because CRP assumes discrete values and it
often does not get the actual value zero.

The balance point gets the maximum between the first of
the crossings of the run and the recall base RBt. It basically
tries to look at when the system stops moving in the negative
region of the space and passes close to the ideal point, thus
looking at the first chance the system had to stop to provide
avoidable effort to the user.

It may happen that a run never crosses the x axis. In this
case, we would have x tr = ∅ and we assume2 that min(∅)
= + ∞.

2This assumption is well founded. Let S ⊂ ℕ be a finite subset of the
natural numbers, as happens in the case of the crossings x tr . Let n ⊂ ℕ be
a natural number and let us define the minimum as a recursive function

min( )
min( )

min( )
S n

n n S

S
∪ =

<⎧
⎨
⎩

if

otherwise
where the recursion is well founded

since |S|, the size of the argument to the recursive call, is strictly smaller
than |S ∪ n|, the size of the initial input to the function. To make this
recursion terminate, we need a base case. The only base case which works
is min(∅) = + ∞. Indeed, if we assigned min(∅) to any other value v ∈ ℕ,
this would lead to unsoundness, as then min ({v + 1}) = min(∅ ∪
{ν + 1}) = ν instead of ν + 1.
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, )
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Assuming that the length of a run is greater or equal to the
recall base (i.e., N ≥ RBt), the recovery ratio estimates how
close the balance point is to the recall base RBt, where ρrt = 1
indicates a perfect ranking from the recovery ratio point-of-
view and ρrt → 0 a progressively worse ranking; ρrt → 0
when βrt → +∞. This is reflected by the recovery ratio of the
ideal run which is always one since this run corresponds to
the x axis and the balance point is always set to RBt. On the
other hand, the recovery ratio is always zero for the worst
run because the balance point is always set to infinity. In the
case of a full-scale run, the balance point is always set after
the RBt.

Space Ratio

The interpretation of CRP as space leads to two ques-
tions. First, how much “positive” and “negative” space has
the system made the user walk through as an effect of
deviations from the ideal path? Secondly, how great is that
covered space?—remembering that, in the ideal case, the
user would not waste any effort and the total space traveled
due to deviations is zero. Definition 4 answers the first
question while Definition 5 answers the second one.

Definition 4. Given a run R(t), the forward space and the
backward space are, respectively, a function

s T D s T D

t s t s

N N

t tt t
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The forward and backward space functions consider that
RP is the first derivative (speed) of CRP (space) and so the
integral of RP where it assumes either only positive or only
negative values gets the total space covered by the system
going forward and backward, respectively.

To define the space ratios, we adopt a different approach
than the recovery ratio. Indeed, in that case, we compared
the behavior of the run to the recall base which is something
independent of any given run. In the case of space we do not
have such an external reference point and we need to resort
to some specific run as the point of comparison for a given
topic; the full-scale run is the most natural candidate since it
is the one which causes the maximum avoidable effort to the
user.

Definition 5. Given a run R(t) and the full-scale run
FS(t), the forward space ratio and the backward space ratio
are, respectively, a function
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The space ratio is a function:
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is the harmonic mean of the forward and backward space
ratios.

Both the forward and backward space ratios measure how
close the space is covered by a run with respect to the space
covered by the full-scale run in the same direction. The
closer a run is to the full-scale run, the smaller the value of
the space ratios is. Indeed, the full-scale run provides us with
the maximum amount of space the system can cover in both
directions which is exactly the opposite of the ideal case in
which the system would avoid deviating in space from the
ideal path at all. Therefore, the closer a run is to the full-
scale one, the worse it is.

The forward space ratio correctly identifies the ideal run
as the best possible and the full-scale run as the worst pos-
sible but incorrectly equates the ideal case and the worst
case. On the other hand, the backward space ratio correctly
distinguishes between the ideal and worst runs and considers
the worst and full-scale runs as equivalent; this is a sensible
assumption since the worst run is actually worse than the full
scale one, never retrieving relevant documents.

It can be noted that the worst and full-scale runs are the
only two cases in which the backward space ratio assumes
exactly the value zero. This observation is exploited in the
space ratio where the product between the forward and back-
ward space ratios returns zero when the backward space
ratio is zero, thus compensating in this way the misinterpre-
tation of ideal and worst runs made by the forward space
ratio. Moreover, from a methodological point of view Ferger
(1931) and Stevens (1955), among others, point out that the
harmonic mean3 is the most suitable for ratio scales and it
gives more weight to the smaller values in a sample and this
is exactly the behavior needed to compensate for the misin-
terpretation of the forward space ratio.

Figure 2 shows the CRP curve of a typical run and of the
full-scale run to intuitively illustrate the meaning of the
recovery and space ratios. The recovery ratio basically mea-
sures how close the (first) crossing of the x axis of the CRP

3Note that the geometric mean, which gives more weight to the smaller
values in a sample as well, is more appropriate when the involved quantities
have a logarithmic relation (Stevens, 1955), which is not the case of the
space rations.
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curve is to the recall base, since a closer crossing indicates a
better run which either has lost less in the initial rank posi-
tions or has recovered faster from an initial loss. The space
ratios measure how much area there is under the RP curve,
that is, the length of the CRP curve, for both positive and
negative misplacements, where smaller values indicate
better runs which have accumulated less document mis-
placements; then, they compare it with the corresponding
values of the full-scale run, which is the worst case possible;
the closer the behavior of a run is to the one of the full-scale
run, the worse it is.

Twist

The Twist grasps the overall angle and outlook of CRP
about a run by combining the recovery and space ratios
through their arithmetic mean.

Definition 6. Given a run R(t), the Twist is a function:
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Run Archetypes

In this section, we present the plots of CRP for several
kinds of archetypal runs that illustrate the behavior of CRP
for these different categories of runs belonging to different
retrieval scenarios and, as discussed in the Preliminary Defi-
nitions section they extend the work of Egghe (2008).
Figure 3 shows the plots for the reference runs defined in the
previous section.

In particular, Figure 3A shows the plot of the ideal
run—that is, the perfect retrieval scenario of Egghe
(2008)—which, as previously stated, is always zero and

causes no effort to the user. In the previous section, we
interpreted CRP as the total space up to a given rank posi-
tion walked through by the system while progressing in
list, that is, how distant the system is at a given rank posi-
tion from the ideal point in space that represents the best
ranking. The ideal point coincides with the x axis and both
negative and positive values of CRP indicate a departure
from this point.

Figure 3B illustrates the case of the worst run—a kind of
zero recall retrieval scenario of Egghe (2008)—where only
nonrelevant documents are retrieved and the system is
departing more and more from the ideal point and it will
never be able to get back toward it, causing a major effort to
the user due to only retrieving not-relevant documents.

Figure 3C shows the case of the full-scale run—that is,
the perverse retrieval scenario of Egghe (2008)—which, in
the initial part of the rank, behaves as the worst run and then
starts to retrieve all the relevant documents, in increasing
order of relevance. This causes the system to move again
towards the ideal point, which is crossed, and then it con-
tinues to depart from it in the positive direction. The fact
that, even after crossing the ideal point, the system continues
to move away from it in the positive direction is not an
indicator of performances better than the ideal run but rather
the signal that, even though something positive is happening
because relevant documents are eventually retrieved, this is
happening (too) late in the ranking and so it will leave the
system far away from the ideal point, still in a positive
region of the space. Therefore, this archetype causes the user
the greatest effort due to both retrieving not-relevant docu-
ments and misplacing all the relevant ones in the worst
possible way.

Figure 3D–H present several archetype runs that can be
collocated in the random retrieval scenario of Egghe (2008).
Although in Egghe (2008) there is no distinction between
the curves in this scenario, CRP provides richer information
and a wider spectrum of curves, allowing us to be more
accurate in addressing this scenario.

Figure 3D and E demonstrate the sensitivity of CRP by
showing the plots for two slightly different archetypes of
excellent runs, runs able to cross the x axis once before the
recall base RBt (the vertical dotted line). The one of
Figure 3D misplaces relevant documents of different rel-
evance degrees, that is, it is a permutation of the ideal run up
to the recall base RBt. The one of Figure 3E misplaces rel-
evant documents and misses very few of them, ranking high
some nonrelevant ones instead; we can note that after the
recall base RBt, it stays constant which means it is no longer
retrieving relevant documents even if it would be possible to
retrieve the few missed ones and thus still grow after RBt.
These are both excellent runs since they commit marginal or
very few errors in the positions of the ranking up to RBt and
they recover very quickly.

Note that excellent runs cannot happen in the case of
binary relevance. Indeed, in this case, just one misplaced
relevant document causes a loss before the recall base RBt

which can be recovered only after RBt because no more

FIG. 2. Intuitive view of the recovery and space ratios. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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misplacements before RBt will in any case add zero to CRP
and so it will never go up again before RBt.

Figure 3F presents the case of the up-and-down runs
which start similar to an excellent run but before the recall
base RBt they drop down again and, eventually, stay stable.

Figure 3G and H show the plots for two different arche-
types of typical runs, meant as runs that may cross the x axis
after the recall base RBt and that represent the most common
runs found in the experimental sets. The one in Figure 3G
misplaces relevant documents with nonrelevant ones and
with ones of different relevance degrees and then, after the
recall base RBt, starts to retrieve relevant documents again
up to a positive region of the space. The one in Figure 3H is
similar to the one in Figure 3G except that, after the recall
base RBt, it does not retrieve relevant documents enough to
move up to the positive region of the space.

Recovery Ratio

Figure 4 shows how the recovery ratio ρrt changes
according to the different run archetypes we previously

discussed; it also provides the values for the balance point
βrt and the minimum of the set of crossings x tr .

As expected, in the case of the ideal run we have ρit = 1
and in the case of the worst run we have ρwt = 0; note that in
the former case the balance point βit is equal to the recall
base RBt while in the latter one it is + ∞, since the worst run
never crosses the x axis.

As far as the full-scale run is concerned, the following
proposition determines its upper bound.

Proposition 3. Let FS(t) be the full-scale run and let N be
its length. It holds:

ρfst <
1

2

where N = ωRBt with ω ≥ 3 real number.
The demonstration of proposition 3 is reported in the

Properties section of the Appendix.

A B

C D

FIG. 3. Archetypes of runs. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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As shown in Figure 4, the recovery ratio for both the
excellent and up-and-down runs is equal to 1, since they
both cross the x axis not later than the recall base RBt.

Typical runs of type A, that is, those crossing the x axis
after the recall base RBt like the one shown in Figure 3G,
may achieve a recovery ratio very close to one since the
earliest rank position at which they can recover from previ-
ous misplacements is RBt+1; note that, in this case, the
bigger the recall base is, that is, RBt → + ∞, the closer to 1
the recovery ratio will be, that is, ρrt → 1.

Typical runs of type B, that is, those never crossing the x
axis, such as the one shown in Figure 3H, have recovery
ratio ρrt = 0, as in the case of the worst run.

Summing up the discussion, the recovery ratio:

• Discriminates full-scale runs and typical runs of type A well;
• Conflates ideal, excellent (type A and B), and up-and-down

runs considering them equivalent;
• Conflates worst runs and typical runs of type B considering

them equivalent.

Space Ratio

As shown in Figure 5, in the case of excellent and
up-and-down runs, all the different space ratios tend towards
one since all these run archetypes are typically characterized
by relatively small movements forward and backward,
even if they are correctly detected as not as good as the ideal
run.

As expected, the typical runs of type A are the case in
which the space ratios can assume all the range of their
values.

When it comes to typical runs of type B, we can note that
the forward space ratio fails to recognize them and assimi-
lates them to the ideal run. On the other hand, the backward
space ratio correctly assesses their behavior. Overall, by
using the harmonic mean, the space ratio ameliorates this
situation because it weights the backward space ratio more.

The cases of ideal, worst, and full-scale runs have already
been discussed in the Definition of the Twist Measure
Section.

E F

G H

FIG. 3. (Continued)
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Summing up the discussion, the space ratio:

• Discriminates typical runs of type A and B well;
• Discriminates ideal, excellent (type A and B), and ups-and-

downs runs.

Twist

As shown in Figure 6, the Twist correctly distinguishes
between ideal and worst runs and detects excellent and
up-and-down runs as slightly less than the ideal one, even if
a little more than the space ratio alone.

The full-scale run is distinguished from the worst case
and its Twist value can range only in the lower quarter of the
possible values.

As far as typical runs of type both A and B, they are
correctly detected and the Twist of type B ones can range
only in the lower half of the possible values.

Note that other kinds of averages, such as harmonic
or geometric means, would have not worked so well.
Indeed, both of them require multiplying the two averaged
factors and this would lead again to conflating: (i) worst
runs and typical runs of type B; (ii) worst and full-scale
runs.

Empirical Analysis

The archetypes previously presented identify the main
categories into which we can classify a CRP curve. In the
following we consider four public test collections, whose
characteristics are reported in Table 1: (a) TREC 10, 2001,
Web Track (Hawking & Craswell, 2001); (b) TREC 14,
2005, Robust Track (Voorhees, 2005); TREC 20, 2011,
Web Track (Clarke, Craswell, & Voorhees, 2012); and (c)
TREC 21, 2012, Web Track (Clarke, Craswell, & Voorhees,
2013).

FIG. 4. Behavior of the crossings, balance point, and recovery ratio for the different run archetypes. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

FIG. 5. Behavior of the space ratios for the different run archetypes. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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These collections have been chosen because of their dif-
ferent characteristics, which allows us to evaluate the pro-
posed measure in a heterogeneous setting: different size of
the document corpus, large number of runs, runs of different
length, difficult topics, Web scale and real topics, shallow
pools, and different number of relevance grades. TREC 10
is a collection of English web documents with graded
relevance judgments for which a large number of experi-
ments have been submitted. The length of the submitted runs
is 1,000 documents. TREC 14 has a smaller document
corpus than TREC 10 and 50 topics with graded relevance
judgments that had been demonstrated to be difficult in
previous TREC campaigns; the length of the submitted runs
is 1,000 documents. The goal of the Robust track was to
focus research on improving the consistency of retrieval
technology by concentrating on poorly performing topics
(Voorhees, 2005). TREC 20 presents a huge multilingual
web corpus—that is, more than one billion documents—
topics are created from the logs of a commercial search
engine and it allows us to evaluate up-to-date IR systems
working on a Web scale. In the ad hoc task we consider here,
it has 50 topics with six-level relevance assessment (i.e.,
spam, not relevant, relevant, highly relevant, keyword and
navigational); we conflated the spam degree into not relevant
and keyword into the highly relevant one, thus working with

four relevance degrees. Note that with respect to previous
TREC campaigns (i.e., TREC 18 and 19) where topics were
chosen to be of medium-to-high frequency, TREC 20
attempted to work with more obscure topics, which may still
be underspecified (i.e., faceted), but should be less ambigu-
ous (Clarke et al., 2012). The length of the submitted runs is
10,000 documents, all the submitted runs were judged to
depth 25. Two types of runs were submitted to this track:
category A runs, which used the whole collection, and
category B runs, which used a subset of about 50 million
English-language pages. In the following, we consider all
the submitted runs. Last, TREC 21 has the same character-
istics of TREC 20, but it introduced 50 new topics; 25 topics
were judged to depth 30 and 25 to depth 20 (Clarke et al.,
2013). Both TREC 20 and 21 allow us to experiment with
actual shallow pools.

In Table 2, we report the CRP curve archetypes classifi-
cation for the runs of each considered test collection. We can
see that the vast majority of runs—that is, about 95% for
each collection—are classified as typical A or typical B
archetypes confirming the fact that these are the most
common CRP curves type we may encounter when evaluat-
ing a system from the effort point-of-view; the ratio between
typical A and typical B runs is unbalanced towards typical A
archetypes for all the collections, even if the difference
between the two is smaller in recent collections—that is,
TREC 20 and TREC 21—where we find up to 30% of

FIG. 6. Behavior of the Twist for the different run archetypes. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

TABLE 1. Features of the adopted experimental collections.

Feature TREC 10 TREC 14 TREC 20 TREC 21

Track Web Robust Web Web
Corpus WT10g AQUAINT ClueWeb09 ClueWeb09
# documents 1.7M 1.0M 1,040.0M 1,040.0M
# topics 50 50 50 50
# runs 95 74 37 27
Run length 1,000 1,000 10,000 10,000
Relevance degrees 3 3 4 4
Pool depth 100 55 25 30 and 25

TABLE 2. Classification of the CRP curves for the considered test
collections; note that there are no full-scale runs and that up and down and
excellent (type A and B) runs are conflated into the excellent category.

Total Ideal Worst Typical A Typical B Excellent

TREC10 4,750 0.17% 3.09% 83.87% 12.72% 0.15%
TREC14 3,700 0.00% 1.86% 80.24% 17.89% 0.00%
TREC20 1,850 0.11% 8.86% 60.70% 30.16% 0.16%
TREC21 1,350 0.00% 4.15% 64.59% 31.26% 0.00%
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typical B curves. TREC 20 and 21 also report a higher
percentage of worst curves than TREC 10 and TREC 14.
From the analysis of the CRP curve archetypes we can see
that TREC 10 presents all kinds of curve archetypes—the
full-scale is not present in any collection because it is an
abstraction—as well as TREC 20; whereas TREC 14 and
TREC 21 present mostly typical A and typical B curves
along with some worst runs.

Effort/Gain Plots

In this section we answer to the question introduced
above: “How much did a given utility/gain cost in terms of
effort?” which allows us to differentiate among runs which
look similar from a utility/gain perspective. For example,
two or more runs that have almost similar AP and thus look
almost equivalent from the utility/gain perspective may have
quite different values for Twist and thus look quite different
from the effort perspective.

Therefore, we compare the effort-based Twist measure
with four widely adopted gain-based measures, which are
AP (Buckley & Voorhees, 2005), binary preference (bref)
(Buckley & Voorhees, 2004), rank-biased precision (RBP)
(Moffat & Zobel, 2008) with persistence value set to 0.8 and
normalized discounted comulated gain (nDCG) (Kekäläinen
& Järvelin, 2002), calculated at the last retrieved document
with discount function set to log base 10 and a base 5
weighting scheme (e.g., hr = 10, pr = 5, nr = 0 for a collec-
tion with three relevance degrees); the comparison between
Twist and AP is shown in Figure 7, Twist and bpref in
Figure 8, Twist and RBP in Figure 9, and Twist and nDCG
in Figure 10.

Each figure reports four scatter plots comparing one of
the considered gain-based measures—such as AP and
DCG—and the Twist measure and the Twist measure for
each test collection presented previously. In these plots, we
draw a point for each topic of each run in the given test
collection; the x coordinate reports the Twist value, whereas
the y coordinate the gain-based measure value. Each plot
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FIG. 7. Effort/gain plot of AP against Twist for all the runs in the four test collections. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]
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shows a grid composed of four rows and four columns; the
rows correspond to the four quantiles of the gain-based
values such that the points in the lower row correspond to
runs which achieved a low overall gain, those in the second
row a medium gain, those in the third row a high gain and
those in the topmost row a huge gain. Whereas, the columns
correspond to the bounds of the Twist measure summarized
in Figure 6, where we can see that the “worst” and the
“full-scale” like runs, which translate into a huge effort for
the user, have a Twist value between 0 and 0.25. “Typical B”
runs—that is, those for which the CRP curve never crosses
the x axis thus requiring a high effort for the user—have a
Twist value always lower than 0.5. The remaining runs are
the good ones classified into the “typical A,” “excellent,” or
“ups-and-down” archetypes; we can distinguish between
good runs requiring medium effort when the Twist value is
between 0.5 and 0.75 (i.e., “typical A” run) and excellent
runs requiring low effort when the Twist value is above the
0.75 threshold.

In this way each plot is divided into 16 quadrants, each
one containing the points representing the runs classified on

an effort/gain basis. The runs lying in the diagonal quadrants
going from the lower left to the upper right are those which
are evaluated in the same way, both from the effort and the
utility/gain point-of-view; indeed, the runs in the lower left
quadrant are those with low gain-based measure and low
Twist measure, thus they require a huge effort to achieve low
gain, whereas the runs in the upper right quadrant are those
with a huge gain achieved requiring low effort. Below and
above the diagonal quadrants we find all the runs that needs
to be evaluated both from the gain and the effort point-of-
view to be correctly discriminated. As an example, the runs
in the upper left quadrant are excellent from the gain point-
of-view, but very bad from the effort perspective; in the
quadrant next to this (same row, but second column) we find
excellent runs from the gain point-of-view, but still demand-
ing considerable effort from the user. A good system should
lie in the four quadrants in the upper-right part of the plot,
where we achieve a high or huge gain demanding medium or
low effort by the user.

However, with the intent of showing the complementarity
of Twist with respect to other gain-based measures, we are

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 TREC 10, 2001, Web TREC 14, 2005, Robust

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 TREC 20, 2011, Web

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TREC 21, 2012, Web

 Effort/Gain: bpref over Twist
 b

pr
ef

 Twist

troffE woLtroffE eguH High Effort Medium Effort

troffE woLtroffE eguH troffE woLtroffE eguHtroffE muideMtroffE hgiH High Effort Medium Effort

troffE woLtroffE eguH High Effort Medium Effort

FIG. 8. Effort/gain plot of bpref against Twist for all the runs in the four test collections. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]
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here mainly interested in the runs in the four upper-left
quadrants—that is, those for which considerable effort is
required for achieving a high or huge gain; for simplicity, in
the following we call these four quadrants the “high-high
quadrants.” The runs in the high-high quadrants cannot be
properly evaluated from the utility/gain perspective alone or
from the effort perspective alone, but they need both these
aspects to correctly discriminate between good or bad runs.
In the following, we see that the percentage of runs that can
be correctly discriminated by using only a gain-based or the
Twist measure is always lower than the percentage of runs
that requires both the gain-based and the Twist measure.

In Figure 7 we see the plot of the Twist measure against
AP for the four considered collections; the behavior of the
runs is consistent across all the collections and we can
identify a concave-up trend of the points in the scatter plot.
For TREC 10 about 28% of runs lie in the diagonal quad-
rants and thus can be correctly discriminated either by AP
or Twist. Some 22% lie in the quadrant where the runs
achieve medium gain requiring a huge effort (i.e., second
row, first column) and about 6% lie in the quadrant where

they achieve huge gain requiring medium effort (i.e.,
fourth row, third column); these runs are in a gray area
where a gain-based measure or the Twist measure still can
evaluate their behavior fairly well. There are 44% of runs
that reside in the high-high quadrants and thus are consid-
ered very good if evaluated from the AP perspective only
and very bad if evaluated from the Twist perspective only.
Note that less than a quarter of the runs achieving the
highest AP values for TREC 10 (i.e., the ones in the
topmost row of the plot) requires medium or low effort by
the user and thus should be considered the best performing
runs for TREC 10.

The scatter plot of TREC 14 runs follows the same
trend of TREC 10 where only 37% of the run reside in the
high-high quadrants and thus require both AP and Twist to
be correctly evaluated. For TREC 20 the percentage of
runs lying in the diagonal quadrants is consistent with the
other collections (i.e., 26%), but about half of the runs lie
in high-high quadrants and thus cannot be correctly dis-
criminated by AP or Twist alone. Note that in this case, a
very small number of runs achieving the best AP values
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FIG. 9. Effort/gain plot of RBP against Twist for all the runs in the four test collections. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]
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demands medium or low effort by the user (i.e., less than
10%). TREC 21 follows a similar trend with a quarter of
runs lying in the diagonal quadrants and half in the high-
high quadrants. From this analysis we can conclude that
the TREC 14 Robust track presents the majority of runs
that can be correctly evaluated considering only the AP
perspective (even though they are less than half of the
total), whereas the three Web tracks (TREC 10, 20, and 21)
collections present about half of their runs in the high-high
quadrants, which require evaluation both from the AP and
the Twist perspectives.

In general, for all the collections the percentage of runs
in the high-high quadrants is higher than those in the
diagonal ones, showing that the joint use of AP and Twist
can improve our understanding of run behavior in the
majority of cases.

In Figure 8 we report the scatter plots for bpref against
Twist. We see that, as expected, these plots are very similar
to those of AP against Twist; indeed, AP and bpref are highly
correlated measures (Buckley & Voorhees, 2004) and
evaluate very similar aspects of a run. The points in the plots

of bpref are a little bit more scattered than the AP ones, but
the percentage of runs in the diagonal quadrants and in the
high-high quadrants are the same as reported previously; the
sole relevant exception is that the percentage of runs for
TREC 20 in the diagonal quadrants goes from 26% of AP
against Twist to 1.24% of bpref because many runs that were
in the diagonal for the AP against Twist plot, in this case
moved slightly upward in the gray area below the high-high
quadrants.

In Figure 9 we report the RBP over Twist scatter plots.
We can see that the points in this case are widely scattered
across the 16 quadrants grid and it is hard to recognize a
clear trend as we have done before for AP and bpref against
Twist. RBP against Twist plots follow a very similar distri-
bution of values as the previous ones. For TREC 10 we have
31% of the total runs in the diagonal quadrants and 44% in
the high-high ones. For TREC 14, 38% of the total runs are
in the diagonal quadrants and 37.4% in the high-high ones;
in this case the percentage of runs achieving the best RBP
values, which requires medium or low effort, is 10% lower
than in the case of AP and bpref. For TREC 20 one third of
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FIG. 10. Effort/gain plot of nDCG against Twist for all the runs in the four test collections. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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runs are in the diagonal quadrants (similar to AP) and half of
them are in the high-high ones. Finally, TREC 21 follows
exactly the same distribution as TREC 20 with a third of
runs in the diagonal quadrants and half of them in the high-
high ones.

For these plots as well as for the AP and bpref ones, the
percentage of runs in the diagonal quadrants is significantly
lower than those in the high-high quadrants for all the con-
sidered test collections.

In Figure 10 we report the scatter plot of nDCG against
Twist. In this case we can recognize a slightly concave-
down curve of the points rather different from the trend of
AP and bpref. We can also notice more ample quantiles
than in the previous cases. Despite these considerations,
the distribution of runs across the collections follows
exactly the same trend as in the AP against Twist and bpref
against Twist plots.

From this analysis we can conclude that three largely
adopted measures which evaluate utility/gain aspects of a
run, if taken alone, do not discriminate well for 37% up to
48% of the runs submitted to four TREC ad hoc cam-
paigns. This shows that utility is one important aspect, but
it must be weighted by also considering the avoidable
effort required.

CRP as a Visual Tool

The Twist measure is the ideal companion of the gain-
based measures because it helps to spot those systems
requiring considerable effort from the user to achieve a
certain level of gain. The CRP curve of a run can be paired
with the DCG to evaluate the behavior of a system from the
qualitative point-of-view by considering both utility and
effort aspects. Previously we discussed some effort/gain
plots showing how Twist can discriminate between equally
good runs from the utility/gain viewpoint in terms of avoid-
able effort required on the part of the user; such plots can be
the starting point for a thorough analysis of IR systems
behavior by integrating them with plots of the CRP and
DCG curves of a run as shown in Figure 11.

In Figure 11 we report the effort/gain plot of nDCG
against Twist for the TREC 10 test collection, where we
highlighted four runs belonging to the top 25% nDCG
values. All of these runs are considered good from the
utility/gain point of view, but if we take into account the
avoidable effort they require to achieve that gain we see that
they are different from each other. The CRP curve serves as
a visual aid for an in-depth exploration of the behavior of
such runs and the pairing with the DCG curve allows for a
rank-by-rank comparison in terms of effort versus gain.

Two runs created by the “jscbtawtl4” system are high-
lighted (i.e., the square and triangle) for topic 539 and topic
544. From the nDCG point-of-view both runs are in the
fourth quantile and thus they are considered to be very good,
whereas the first requires huge effort and the second only
medium effort. From the comparison between the CRP and

the DCG curves, we can see that for topic 539, DCG shows
a curve composed of several steps indicating a (slow)
growing trend, whereas CRP shows a full-scale like curve
where very few (or no) relevant documents are retrieved in
the first positions and most of the relevant documents are
found among the subsequent ranks. By looking to the DCG
plot we cannot say where there are misplaced documents
and how much they are misplaced. Furthermore, it is diffi-
cult to observe the differences in early ranks, whereas in
CRP they are easily recognizable. Indeed, we can see that in
the first twenty positions DCG remains flat whereas CRP
shows a negative trend suggesting that relevant documents
have been misplaced with nonrelevant ones. The second plot
regarding this system (i.e., plot (c) for topic 544) reports a
DCG curve with a more evident growth trend than the pre-
vious one; when this curve is compared with the CRP one,
we can see that in the first 250 ranks the system misplaces
many relevant documents and requires a certain effort by the
user to achieve the utility shown in the DCG graph.

Now, if we compare this plot (plot (c), jscbtawtl4, topic
544) with the plot referring to the run highlighted with a
circle (plot (b), hum01t, topic 544), we can appreciate the
role of the CRP curve as a fundamental tool for discriminat-
ing between equally good gain-oriented runs for the same
topic. Indeed, the DCG curves are almost identical, showing
two very good runs; on the other hand, the CRP curves are
very different from each other, the first (plot(b), hum01t,
topic 544) cross the x axis after rank 900 and it is a de facto
typical B run, whereas the second crosses the x axis after
around rank 600 showing the trend of a typical A run. Fur-
thermore, the typical B-like run shows a slow growing trend
in the second part of the curve, with large parts where it stays
flat; whereas the typical A curve shows a curve that grows
constantly in the second part of the graph, meaning that it
retrieves enough relevant documents to move up in the posi-
tive region of the space.

The last plot we report (plot (d), pir1wt2, topic 504)
reports CRP and DCG for a very good run from both the
gain and the effort point-of-view. We can see that the nDCG
of this run is very close to the one reported in plot (c) (they
are both higher than 0.8) and also the DCG plots show two
positive curves even though the second grows much faster.
On the other hand, CRP is quite different; plot (d) resembles
an excellent run, whereas plot (c) a typical A run. Plot (d)
reports the CRP curve of a run which misplaces
very few documents in the first positions and that recovers
the misplacements soon enough to cross the x axis within
the first 50 ranks. Also in this case CRP complements
DCG curves adding important information for discriminat-
ing between equally good runs from the utility/gain
point-of-view.

Therefore, CRP can be exploited as a visual tool that can
be employed for supporting and improving failure analysis
(Buckley, 2004; Harman, 2008; Savoy, 2007), which is
deemed a fundamental activity in experimental evaluation
and system development. The effort/gain plots can be used
for spotting the runs that achieve equivalent utility for the
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user, but report a great variation from the avoidable effort
perspective. Once these runs have been identified, the CRP
together with the DCG curve allow for a deeper analysis of
a run by helping the researcher to understand its behavior
rank-by-rank from both the utility and the effort viewpoint.
Such a tool can be seen as an extension of visual systems
that help the researcher to perform failure analysis; in par-
ticular, the state-of-the-art Visual Information Retrieval Tool
for Upfront Evaluation (VIRTUE) system (Angelini et al.,
2014) could benefit from the CRP visual tool because it
could extend the use of RP, which is currently employed in
the system for spotting critical regions of a ranking and
grasp possible causes of a failure.

Experiments

This section compares the Twist measure with the widely
used gain-based IR measures we presented previously: AP,
bpref, RBP, and nDCG. To this purpose, we test Twist across
three dimensions by determining:

• The correlation among measures using Kendall’s Tau
(Kendall, 1948; Voorhees, 2001);

• The robustness of the measures to downsampled pools
according to the stratified random sampling method (Buckley
& Voorhees, 2004);

• The discriminative power of the measures by employing the
paired bootstrap test (Sakai, 2006, 2012, 2014).

We conducted these experiments on the four test collec-
tions described previously: TREC 10 2001 Web Track,

TREC 14 2005 Robust Track, TREC 20 2011 Web Track,
and TREC 21 2012 Web Track, whose features are reported
in Table 1 on page 19. All these collections use graded
relevance judgments. For those measures that rely on binary
relevance—namely, AP, bpref, and RBP—we adopted a
“lenient” mapping, that is, every document above not rel-
evant is considered as binary relevant.

There are systems that perform very poorly; to prevent
these uninteresting systems from affecting the experiments,
we consider only the top 75% of runs (Voorhees & Buckley,
2002; Webber, Moffat, Zobel, & Sakai, 2008) as measured
by mean average precision (MAP); see Figure 12 for the
distribution of the average values for all the considered
measures.

The full source code of the software used to conduct the
experiments is available for download4 to ease comparison
and verification of the results.

Correlations of Measures

Kendall’s Tau rank correlation estimates the distance
between two run rankings obtained by employing two dif-
ferent IR measures (Kekäläinen, 2005; Voorhees, 2001).
This method is useful to show if and how the Twist measure
derives different run rankings with respect to other mea-
sures; in related works (Sakai, 2007b; Voorhees, 2001)
Kendall’s Tau has been used to measure the correlation
between two measures by analyzing the rankings of runs

4http://matters.dei.unipd.it/

TREC 10, 2001, Web TREC 14, 2005, Robust

TREC 20, 2011, Web TREC 21, 2012, Web

FIG. 12. Distribution of the average values of the considered measures for all the employed test collections. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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they produce. Measures with correlations greater than 0.9
should be considered similar and those with “less than 0.8
generally reflect noticeable changes in rankings, and suggest
that the evaluation schemes have different emphasis” (Voor-
hees, 2001, p. 78). We study the run rankings produced by
the gain-based measures presented previously and Twist; in
previous studies (Kekäläinen, 2005; Sakai, 2007b) it has
been shown how gain-based measures such as AP, bpref, and
nDCG produce similar rankings showing a high correlation
between them.

Table 3 reports the Kendall’s Tau correlation between
the base measures; it is consistent with previous findings,
with a higher correlation between AP, nDCG, and bpref
and a lower correlation for RBP. Indeed, RBP is the
measure least correlated to the others because it is the only
one not depending on the recall base. The correlation
between AP and nDCG decreases in the case of the TREC
21 collection, where there are more grades of relevance
with respect to the other collections and this increases the
gap between the flat binary view of AP and the multi-
graded one of nDCG.

Table 4 reports the Kendall’s Tau correlations between
AP, bpref, RBP, nDCG, and the Twist measure for the four
test collections we considered.

As a general trend, Twist shows some correlation with the
utility-based measures but never very high ones, suggesting
that it takes a different perspective—the effort—with respect
to these measures, since they have different document utility
models, as discussed also in the introduction. Moreover,
extremely low correlations would have been a symptom of
possible misbehaviors of Twist (Sakai, 2014), but this is not
the case with the present values.

Twist exhibits the highest correlation with nDCG and this
can be explained by considering that (a) both are graded
measures, (b) they adopt the same browsing model and
stopping behavior, and (c) they somehow share a common
approach based on cumulating either gains for nDCG or
misplacements for Twist, which represents the document
utility accumulation model. This behavior is also consistent
with the effort/gain plots of Figure 10 which show a linear
correlation. There is only one slight exception, the case of
TREC 21, but this is probably more due to the fact that
nDCG behaves differently on this collection with respect to
the others, as will be seen below.

Twist and AP show a moderate Kendall’s Tau rank cor-
relation, highlighting the divide between binary and graded
measures and the fact that the complementary approach of
Twist based on effort can make it a good companion for AP,
the de-facto standard measure in IR. Their difference,
greater than that with nDCG, is also confirmed by the effort/
gain plots of Figure 7 that shows a nonlinear correlation.

AP and bpref are known to be highly correlated (Buckley
& Voorhees, 2004), and this is also reflected in their corre-
lation with Twist, which exhibits a similar behavior, even
though the Kendall’s Tau of bpref and Twist are generally
lower than one with AP, and the effort/gain plots of bpref in
Figure 8 are slightly more scattered than those with AP.

Finally, Twist manifests the lowest correlations with
RBP. This is consistent with the fact that RBP and Twist use
two different browsing models, where p = 0.8 in the case of
RBP indicates a more persistent user than the one entailed
by Twist. In addition, they have two completely different
document utility and document utility accumulation models,
as explained in the introduction. Moreover, this can be
explained by the fact that, unlike Twist, RBP does not take
the recall base into account at all and it is very top heavy
biased. This is further exacerbated for the TREC 20 and
TREC 21 collections where the length of the runs is ten
times the length of the runs in the other collections com-
bined with the use of very shallow pools.

Robustness of Measures to Pool Downsampling

The stratified random sampling of the pools allows us to
investigate the behavior of the Twist measure as relevance
judgment sets become less complete following the method-
ology presented in Buckley and Voorhees (2004), which is
here adapted to the case of multigraded relevance. For each
topic, a separate list of documents at each relevance grade
(not relevant, relevant, highly relevant, . . .) has been created
from the original pool; for each sampling ratio P%, we
selected X = P% × D documents at the given relevance level,
ensuring that at least 1 somehow relevant document and at
least 10 not relevant documents are selected; the first max(1,
X) documents from the random list at each relevant level
have then been selected to constitute the new reduced pool;
each smaller pool is a subset of each larger pool because we
always select from the top of the lists. We used P% = [90,
70, 50, 30, 10]. Most effectiveness measures are known to be

TABLE 3. Kendall’s Tau correlations between AP and the other
utility-based measures.

bpref RBP nDCG

AP (TREC10) 0.8506 0.6041 0.8334
AP (TREC14) 0.8390 0.7229 0.9070
AP (TREC20) 0.8498 0.5675 0.8962
AP (TREC21) 0.8461 0.5669 0.8388

Note. The reported values are statistically significant with p values well
below 1%.

TABLE 4. Kendall’s Tau correlations between Twist and the
utility-based measures.

AP bpref RBP nDCG

Twist (TREC10) 0.8144 0.8173 0.6489 0.8791
Twist (TREC14) 0.8477 0.7547 0.6051 0.9012
Twist (TREC20) 0.8254 0.8148 0.3968 0.9245
Twist (TREC21) 0.9157 0.8526 0.3684 0.82105

Note. The reported values are statistically significant with p values well
below 1%.
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“unstable for very small numbers of relevant documents”
(Buckley & Voorhees, 2004, p. 29) and also for this reason,
the bpref measure (implemented by following the definition
given in Soboroff [2006], which has empirically shown to be
robust to downsampling, has been introduced as a term of
comparison with the Twist measure.

The plots in Figure 13 show the Kendall’s Tau correla-
tions between the system rankings produced using progres-
sively downsampled pools from 100% (complete pool) to
10%. Each line shows the behavior of a measure; the flatter
(and closer to 1.0) the line, the more robust the measure. In
fact, a flat line indicates that the measure continues to rank
systems in the same relative order with different levels of
relevance judgments incompleteness.

We can see that the most robust measures are bpref and
nDCG which achieve comparable levels of robustness for all
the considered test collections. The Twist measure behaves
quite well for all the collections; for TREC 10 up to a 50%
downsampling it is as robust as bpref, AP, and RBP, whereas
at 10% it is more robust than AP and as robust as bpref. For

TREC 14, Twist is more robust than RBP for all levels of
incompleteness and it is very close to the behavior of AP. For
TREC 20, it is more robust than RBP up to 50% and they are
very close also at 10%. For TREC 21 all the measures are
very close up to 50% and then Twist is more robust than AP,
nDCG, and RBP at 30% while it behaves slightly worse than
AP at 10%.

Twist proves to be fairly robust to downsampling and in
several cases it is comparable to bpref, a measure explicitly
built with this goal. It can be used as a companion of gain-
based measures also when incomplete relevance judgments
are considered.

Discriminative Power of Measures

The paired bootstrap test implemented as described
in Sakai (2006) is used to examine the discriminative
power of a metric which is desirable because it allows the
experimenter to achieve reliable results with fewer topics
(Webber, Moffat, & Zobel, 2010). The discriminative power
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FIG. 13. Change in Kendall’s Tau correlation as judgment sets are downsampled. Each marker shows the value of the correlation between systems ranking
at progressively reduced pools. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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of a measure indicates the achieved significance level
(ASL), that is, the “proportion of statistically significant
differences one can get out of a given experimental environ-
ment and therefore a measure of how reliable a metric is”
(Sakai, 2012, p. 499). Given a test collection with a set of
runs, the discriminative power is measured by conducting a
boostrapped paired t test for every pair of runs and counting
the number of significant differences; the test also estimates
the performance Δ required in order to achieve statistical
significance at a given confidence level α.

In Figure 14 we can see the ASL curves at α = 0.05 of the
considered measures for all the employed test collections.
The curves on the left show a higher discriminative power
than the curves on the right, since they report a larger
number of system pairs achieving that value of ASL. In the
legend of the plots we report the discriminative power (i.e.,
DP) indicating the percentage of system pairs discriminated
by a measure (the higher the better) and Δ reporting the
overall absolute difference required to state that one run is
better than another with the given measure.

We can see that for TREC 10, Twist has a discriminative
power comparable to RBP and AP, whereas it is more dis-
criminative than bpref. For TREC 14, nDCG and AP are the
most discriminative measures, Twist is in the middle, being
more discriminative than both RBP and bpref. For TREC 20
and TREC 21 only nDCG is more discriminative than Twist
which behaves better than RBP, AP, and bpref for both the
collections. Twist reports low values for Δ for all the collec-
tions; in particular, for TREC 14 and TREC 20 Twist reports
the lowest value, whereas for TREC 10 AP and for TREC 21
nDCG have slightly lower values.

In the end, Twist shows a good discriminative power;
being always comparable to the one of the most used gain-
based measures.

Related Metrics and Discussion

The novel Twist measure presented in this paper has
several advantages when compared with previous metrics
aimed at evaluating informational search intents—that is,
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FIG. 14. Achieved significance level (ASL) curves based on paired bootstrap hypothesis tests for all test collections. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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the user wants to find as many relevant documents as pos-
sible without wasting time on analyzing not-relevant
documents (Broder, 2002). In the preceding section, we
compared Twist with popular measures having similar pur-
poses such as AP, bpref, RBP, and nDCG. In this section we
discuss the differences between Twist and its predecessors.
As stated in the Introduction, and as it will emerge from the
following discussion, all these measures are centered around
the idea of utility, measuring the level of utility provided to
the user and reducing it in the case of nonoptimal rankings,
whereas Twist revolves around the idea of search as a com-
modity and avoidable effort for the user.

It is out of scope for this paper to consider navigational
tasks, the goal of which is to return a specific document to
the user (Broder, 2002), and thus the main metrics for evalu-
ating them—expected reciprocal rank (ERR) (Chapelle
et al., 2011), normalized cumulative utility (NCU) (Sakai,
Robertson, & Newswatch, 2008), and P + (Sakai, 2012)—
are not presented here.

Although AP does not handle graded relevance, it is
worth considering as the starting point for other metrics
which extend it and at the same time exploit its robustness.
The main limitation of AP is that “it is based on the assump-
tion that retrieved documents can be considered as either
relevant or nonrelevant to a user’s information need” (Rob-
ertson, Kanoulas, & Yilmaz, 2010, p. 603). Furthermore, as
pointed out in Carterette, Kanoulas, and Yilmaz (2012, p.
116), AP “while interpretable in terms of an implicit user
model, was originally defined in the absence of any under-
lying model of user interaction with the retrieved ranking of
documents.” For this reason, several extensions have been
proposed in the literature. One of the principal ones is
described in Robertson (2008) and Sakai et al. (2008); it is
based on a user model considering users scanning a ranking
list and stopping when a relevant document is found. A
uniform distribution across all the relevant documents is
assumed allowing for the calculation of a utility value for
each document. In this context, AP can measure the expected
utility of a ranking list for the considered population. This
was improved in the definition of graded average precision
(Robertson et al., 2010), which adopts a probabilistic user
model defining to what “extent documents of different rel-
evance grades account for the effectiveness score” (Robert-
son et al., 2010, p. 604). (Kekäläinen & Järvelin, 2002)
propose a similar extension of AP to “generalized AP” to
handle graded relevance assessments.

Buckley and Voorhees (2004) proposed bpref, which is
highly correlated with AP when full relevance assessments
are available and is yet more robust when the relevance
assessments are reduced (Sakai & Kando, 2008). bpref as
well as AP does not handle graded relevance judgments and
it is based on the idea of measuring “the effectiveness of a
system on the basis of judged documents only” (Buckley &
Voorhees, 2004, p. 26). bpref has been described as “robust
in the face of incomplete relevance information” (Buckley &
Voorhees, 2004, p. 26), thus it is the most important measure
to compare with when we deal with incomplete relevance

judgments. In the Experiments we noted that bpref is one of
the more robust measures (overcome only by nDCG for
some collection) and that Twist is comparable to it (for
TREC 10 Twist is even more robust than bpref).

RBP (Moffat & Zobel, 2008) is a metric that addresses
this very limitation; it is defined by starting from the obser-
vation that a user has no desire to examine every item in a
ranking list. The idea is that a user progresses from a docu-
ment to the other with probability p and, conversely, ends
her/his examination of the list at a point with probability
1 − p. This assumption allows for the definition of user
models representing patient and impatient user populations
by varying the probability p as DCG does by exploiting
different document weighting schemas and log bases for the
discounting function. The current definition of the Twist
measure is parameter-free—as AP is—and it constitutes the
main building block for an effort-oriented measure that can
be extended in order to model different user populations as
DCG and RBP do. As an example, patient and impatient
users could be modeled by weighing document misplace-
ments where RP values are boosted or discounted by tuning
one or more parameters based on document relevance
degrees, weighting schemas and/or rank positions. In this
way it would be possible to distinguish the behavior of a
single user and the expected behavior of a user population.

On the other hand, we have shown (see Figure 14), in line
with Sakai and Kando 2008), that RBP has a low discrimi-
native power if compared to other gain-based measures and
to Twist for evaluation with complete relevance assess-
ments. With high values of p (i.e., p = 0.95) RBP has a high
discriminative power, but it is not stable when downsampled
pools are employed, whereas Twist has been proven to strike
a good balance between sensitiveness and robustness to
incomplete judgments. Unlike Twist, RBP does not depend
on the recall base and independence from it is a feature of
the metric because it allows for evaluation also with incom-
plete relevance judgments (Moffat & Zobel, 2008). On the
other hand, this aspect can turn out to be a weakness because
RBP “may give a very low score even to an ideal ranked
output: the fact that it does not rely on recall implies that it
denies the very existence of an ideal ranked output” (Sakai
& Kando, 2008, p. 453).

RBP shares some similarities with the DCG and nDCG
(Järvelin & Kekäläinen, 2002; Moffat & Zobel, 2008),
because for any rank examined, it gives an estimate of the
(normalized, discounted) cumulated gain as a single figure
no matter what the recall base size. Cumulated gain metrics
are not heavily dependent on relevant documents found late
in the ranked order since they focus on the gain cumulated
from the beginning of the result up to any point of interest.
The discounted versions realistically weigh down the gain
received through documents found later in the ranked
results.

From a qualitative point of view, the CRP curves indicate
upward and downward swings depending on the misplace-
ments in document ranking. However, the gain values of
DCG grow monotonically unless negative gain values
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(proposed by Keskustalo, Järvelin, Pirkola, & Kekäläinen
[2008]) are used. Like the CRP, the normalized versions
compare the ranking quality to each topic’s entire recall base
allowing statistical comparability. Both the CRP and the
CG-based metrics with negative weights address the issue of
suboptimal ranking of search results but in different ways.
The CRP indicates suboptimal ranking directly through the
CRP curve; when this curve deviates from the x axis (rep-
resenting the ideal ranking), ranking is suboptimal and less
relevant documents are retrieved earlier than they should be.
The CG-based metrics do not directly address ranking opti-
mality but cumulate gain and loss (or negative gain),
whereas CRP quantifies the misplacements and thus, the
suboptimality of a ranking.

In summary, the Twist measure explicitly handles
graded relevance and takes into account document mis-
placements either too early or too late given their degree of
relevance and the ideal ranking. The CRP curve, from
which Twist is derived, can be analyzed rank-by-rank and
to determine if a document is ranked too early or too late
(i.e., deviation from the ideal) from the graphical—that is,
by examining the plot—and the quantitative point of
view—that is, the Twist measure. The differences between
Twist and the other measures are highlighted by the low
correlations reported in the Experiments section; no other
metric explicitly weights the document misplacements in a
ranking and this fact directly reflects on the low correlation
between them.

Conclusions

In traditional test collection-based evaluation, the evalu-
ation task is simplified by abstracting away users, their
situations and tasks; this neglects user experiences caused
by browsing sequences of nonrelevant or suboptimal
documents. In this work, we have argued that nowadays
search is considered as a commodity and that many users
require high quality documents but simultaneously
risk losing (some of) them due to the limited number of
ranks inspected when users become weary. In this context,
it is important to provide novel metrics that are more sen-
sitive than the traditional ones in expressing the effects of
document misplacements (with respect to the ideal) at any
rank.

To this end, we developed a novel measure—the Twist
τ—which explicitly addresses these aspects and presents
good properties of robustness to shallow pool and discrimi-
native power. We believe that, in modern large and increas-
ingly complex environments, the proposed metric should be
employed whenever possible, because it provides an ideal
companion to traditional measures, allowing us to under-
stand not only which systems provide high utility/gain to the
user but also at what price.

In future work, we will investigate how Twist behaves
when not only ordinal scales are used but also interval
and ratio ones, i.e., when instead of using the relevance
degrees, relevance weights are used to amplify document

misplacement. We foresee the definition of a weighted
version of the Twist measure that will allow us to model
different user populations.

We also plan to conduct a deeper investigation of the
Twist measure. As suggested by Tague-Sutcliffe (1992), sta-
tistical significance tests play a key role in experimental
evaluation and, considering the effort/gain plots, they could
be applied to understand whether and when significant dif-
ferences in a gain/utility-based measures such as AP or
nDCG correspond or not to significant differences in the
Twist measure both within the same quadrant and across
different quadrants.

Moreover, we would like to investigate how Twist is
related to other approaches for taking user effort into
account. More specifically, the time spent by a user in car-
rying out an information access task is usually considered as
an indicator of the effort required of her/him (Ingwersen &
Järvelin, 2005; Järvelin, 2013). This will also call for studies
that explore the correlation between Twist and actual user
behavior to understand to what extent the effort reported by
Twist is a good predictor of the user’s way of interacting
with the ranked result list. It would be interesting to know
whether there is a correlation between Twist and the effort
measures in an interactive user study as, for example, has
been done by Smucker and Jethani (2010) to relate human
performance in information access with the precision
measure. In this respect, another avenue is to explore
whether it is possible to make Twist a time-calibrated
measure, as for example do Smucker and Clarke (2012a,
2012b) by substituting the notion of rank with the notion of
time.

Acknowledgments

The authors would like to express their gratitude to
Giuseppe Santucci and his research group for the valuable
discussions and alternative viewpoints which ended up with
the formulation of the CRP stemming from his original
intuition of RP as a means for creating an interactive visu-
alization tool for IR experimentation. A special thanks goes
to Giorgio Maria Di Nunzio and Stefano Mizzaro who thor-
oughly analyzed the pros and cons of the early formalization
of CRP and to Fabrizio Sebastiani for useful discussions.
The authors owe a special thanks to Marco Ferrante, Maria
Maistro and Grant Olney Passmore for their mathematical
tips.

The PROMISE network of excellence5 (contract n.
258191), the CULTURA project6 (contract no. 269973) proj-
ects, and the PREFORMA project7 (contract no. 619568), as
part of the 7th Framework Program of the European Com-
mission, have partially supported the reported work.

5http://www.promise-noe.eu/
6http://www.cultura-strep.eu/
7http://www.preforma-project.eu/

24 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015
DOI: 10.1002/asi

http://www.promise-noe.eu/
http://www.cultura-strep.eu/
http://www.preforma-project.eu/


References

Angelini, M., Ferro, N., Järvelin, K., Keskustalo, H., Pirkola, A., Santucci,
G., & Silvello, G. (2012a). Cumulated relative position: A metric for
ranking evaluation. In T. Catarci, P. Forner, D. Hiemstra, A. Peñas, & G.
Santucci (Eds.), Information access evaluation. Multilinguality, multi-
modality, and visual analytics. Proceedings of the Third International
Conference of the CLEF Initiative (CLEF 2012) (pp. 112–123), Lecture
Notes in Computer Science (LNCS) 7488. Heidelberg, Germany:
Springer.

Angelini, M., Ferro, N., Santucci, G., & Silvello, G. (2012b). Visual inter-
active failure analysis: Supporting users in information retrieval evalua-
tion. In J. Kamps, W. Kraaij, & N. Fuhr (Eds.), Proceedings of the Fourth
Symposium on Information Interaction in Context (IIiX 2012; pp. 195–
203). New York, NY: ACM Press.

Angelini, M., Ferro, N., Santucci, G., & Silvello, G. (2014). VIRTUE: A
visual tool for information retrieval performance evaluation and failure
analysis. Journal of Visual Languages and Computing, 25(4), 394–413.

Broder, A. (2002). A taxonomy of Web search. SIGIR Forum, 36(2), 3–10.
Buckley, C. (2004). Why current IR engines fail. In M. Sanderson, K.

Järvelin, J. Allan, & P. Bruza (Eds.), Proceedings of the 27th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2004) (pp. 584–585). New York, NY:
ACM Press.

Buckley, C., & Voorhees, E.M. (2004). Retrieval evaluation with incom-
plete information. In M. Sanderson, K. Järvelin, J. Allan, & P. Bruza
(Eds.), Proceedings of the 27th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (SIGIR
2004) (pp. 584–585). New York, NY: ACM Press.

Buckley, C., & Voorhees, E.M. (2005). Retrieval system evaluation. In D.K.
Harman & E.M. Voorhees (Eds.), TREC. Experiment and evaluation in
information retrieval (pp. 53–78). Cambridge, MA: MIT Press.

Carterette, B., Kanoulas, E., & Yilmaz, E. (2012). Evaluating web retrieval
effectiveness. In D. Lewandowsky (Ed.), Web search engine research,
library and information science (pp. 105–138). Bingley, UK: Emerald
Group Publisher Limited.

Carterette, B.A. (2011). System effectiveness, user models, and user utility:
A conceptual framework for investigation. In W.-Y. Ma, J.-Y. Nie, R.
Baeza-Yaetes, T.-S. Chua, & W.B. Croft (Eds.), Proceedings of the 34th
Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR 2011) (pp. 903–912). NewYork,
NY: ACM Press.

Chapelle, O., Ji, S., Liao, C., Velipasaoglu, E., Lai, L., & Wu, S.-L. (2011).
Intent-based diversification of web search results: Metrics and algo-
rithms. Information Retrieval, 14(6), 572–592.

Clarke, C.L.A., Craswell, N., & Voorhees, H. (2012). Overview of the
TREC 2011 Web track. In E.M. Voorhees & L.P. Buckland (Eds.), The
20th Text REtrieval Conference Proceedings (TREC 2011) (pp. 1–8),
Special Publication 500-295. Washington, DC: National Institute of
Standards and Technology.

Clarke, C.L.A., Craswell, N., & Voorhees, H. (2013). Overview of the
TREC 2012 web track. In E.M. Voorhees & L.P. Buckland (Eds.), The
21st Text REtrieval Conference Proceedings (TREC 2012) (pp. 1–8),
Special Pubblication 500-298. Washington, DC: National Institute of
Standards and Technology.

Cleverdon, C.W. (1997). The Cranfield tests on index languages devices. In
K. Spärck Jones & P. Willett (Eds.), Readings in information retrieval
(pp. 47–60). San Francisco, CA: Morgan Kaufmann Publisher, Inc.

Di Buccio, E., Dussin, M., Ferro, N., Masiero, I., Santucci, G., & Tino, G.
(2011a). Interactive analysis and exploration of experimental evaluation
results. In M.L. Wilson, T. Russell-Rose, B. Larsen, & J. Kalbach (Eds.),
Proceedings of the First European Workshop on Human-Computer Inter-
action and Information Retrieval (EuroHCIR 2011) (pp. 11–14).
Retrieved from http://ceur-ws.org/Vol-763/

Di Buccio, E., Dussin, M., Ferro, N., Masiero, I., Santucci, G., & Tino, G.
(2011b). To re-rank or to re-query: Can visual analytics solve this
dilemma? In P. Forner, J. Gonzalo, J. Kekäläinen, M. Lalmas, & M. de
Rijke (Eds.), Multilingual and multimodal information access evaluation.

Proceedings of the Second International Conference of the Cross-
Language Evaluation Forum (CLEF 2011) (pp. 119–130), Lecture Notes
in Computer Science (LNCS) 6941. Heidelberg, Germany: Springer.

Egghe, L. (2008). The measures precision, recall, fallout and miss as a
function of the number of retrieved documents and their mutual interre-
lations. Information Processing and Management, 44(2), 856–876.

Ferger, W.F. (1931). The nature and use of the harmonic mean. Journal of
the American Statistical Association, 26(173), 36–40.

Ferro, N., Sabetta, A., Santucci, G., & Tino, G. (2011). Visual comparison
of ranked result cumulated gains. In S. Miksch & G. Santucci (Eds.),
Proceedings of the Second International Workshop on Visual Analytics
(EuroVA 2011) (pp. 21–24). Goslar, Germany: Eurographics
Association.

Guns, R., Lioma, C., & Larsen, B. (2012). The tipping point: F-score as a
function of the number of retrieved items. Information Processing and
Management, 48(6), 1171–1180.

Harman, D.K. (2008). Some thoughts on failure analysis for noisy data. In
D. Lopresti, S. Roy, K. Schulz, & L. Venkata Subramaniam (Eds.),
Proceedings of the Second Workshop on Analytics for Noisy unstruc-
tured text Data (AND 2008) (pp. 1–1). New York, NY: ACM Press.

Harman, D.K. (2011). Information retrieval evaluation. San Rafael, CA:
Morgan & Claypool Publishers.

Harman, D.K., & Voorhees, E.M. (Eds.). (2005). TREC. Experiment and
evaluation in information retrieval. Cambridge, MA: MIT Press.

Hawking, D., & Craswell, N. (2001). Overview of the TREC-2001 Web
track. In E. Voorhees & D.K. Harman (Eds.), The Tenth Text REtrieval
Conference (TREC 2001) (pp. 61–67), IST Special Publication 500-250.
Washington, USA: Department of Commerce, National Institute of Stan-
dards and Technology.

Ingwersen, P., & Järvelin, K. (2005). The turn: Integration of information
seeking and retrieval in context. Heidelberg, Germany: Springer.

Jansen, B.J., Booth, D.L., & Spink, A. (2008). Determining the informa-
tional, navigational, and transactional intent of web queries. Information
Processing and Management, 44(3), 1251–1266.

Järvelin, K. (2013). User-oriented evaluation in IR. In M. Agosti, N. Ferro,
P. Forner, H. Müller, & G. Santucci (Eds.), Information retrieval meets
information visualization—PROMISE winter school 2012, revised tuto-
rial lectures (pp. 86–91), Lecture Notes in Computer Science (LNCS)
7757. Heidelberg, Germany: Springer.

Järvelin, K., & Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR
techniques. ACM Transactions on Information Systems, 20(4), 422–446.

Kekäläinen, J. (2005). Binary and graded relevance in IR evaluations-
comparison of the effects on ranking of IR systems. Information Pro-
cessing and Management, 41(5), 1019–1033.

Kekäläinen, J., & Järvelin, K. (2002). Using graded relevance assessments
in IR evaluation. Journal of the American Society for Information
Science and Technology, 53(13), 1120–1129.

Kelly, D. (2009). Methods for evaluating interactive information retrieval
systems with users. Foundations and Trends in Information Retrieval,
3(1–2), 1–224.

Kendall, M. (1948). Rank correlation methods. UK: Griffin.
Keskustalo, H., Järvelin, K., Pirkola, A., & Kekäläinen, J. (2008). Intuition-

supporting visualization of user’s performance based on explicit negative
higher-order relevance. In T.-S. Chua, M.-K. Leong, D.W. Oard, & F.
Sebastiani (Eds.), Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2008). New York, NY: ACM Press.

Krantz, D.H., Luce, R.D., Suppes, P., & Tversky, A. (1971). Foundations of
measurement. Additive and polynomial representations (Vol. 1). New
York, NY: Academic Press.

Moffat, A., & Zobel, J. (2008). Rank-biased precision for measurement of
retrieval effectiveness. ACM Transactions on Information Systems,
27(1), 1–27.

Moffat, A., Thomas, P., & Scholer, F. (2013). Users versus models: What
observation tells us about effectiveness metrics. In A. Iyengar, Q. He, J.
Pei, R. Rastogi, & W. Nejdl (Eds.), Proceedings of the 22nd International
Conference on Information and Knowledge Management (CIKM 2013)
(pp. 659–668). New York, NY: ACM Press.

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015 25
DOI: 10.1002/asi

http://ceur-ws.org/Vol-763/


Robertson, S. (2008). A new interpretation of average precision. In T.-S.
Chua, M.-K. Leong, D.W. Oard, & F. Sebastiani (Eds.), Proceedings of
the 31st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2008). New York, NY:
ACM Press.

Robertson, S.E., Kanoulas, E., & Yilmaz, E. (2010). Extending average
precision to graded relevance judgments. In F. Crestani, S.
Marchand-Maillet, E.N. Efthimiadis, & J. Savoy (Eds.), Proceedings of
the 33rd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2010). New York, NY:
ACM Press.

Sakai, T. (2006). Evaluating evaluation metrics based on the bootstrap. In
E.N. Efthimiadis, S. Dumais, D. Hawking, & K. Järvelin (Eds.), Pro-
ceedings of the 29th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 2006). New
York, NY: ACM Press.

Sakai, T. (2007a). Alternatives to bpref. In W. Kraaij, A.P. de Vries, C.L.A.
Clarke, N. Fuhr, & N. Kando (Eds.), Proceedings of the 30th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2007) (pp. 71–78). New York, NY: ACM
Press.

Sakai, T. (2007b). On the reliability of information retrieval metrics based
on graded relevance. Information Processing and Management, 43(2),
531–548.

Sakai, T. (2012). Evaluation with informational and navigational
intents. In A. Mille, F.L. Gandon, J. Misselis, M. Rabinovich, & S. Staab
(Eds.), Proceedings of the 21st International Conference on
World Wide Web (WWW 2012) (pp. 499–508). New York, NY: ACM
Press.

Sakai, T. (2014). Metrics, statistics, tests. In N. Ferro (Ed.), Bridging
between information retrieval and databases—PROMISE winter school
2013, revised tutorial lectures (pp. 116–163), Lecture Notes in Computer
Science (LNCS) 8173. Heidelberg, Germany: Springer.

Sakai, T., & Kando, N. (2008). On information retrieval metrics designed
for evaluation with incomplete relevance assessments. Information
Retrieval, 11(5), 447–470.

Sakai, T., Robertson, S., & Newswatch, I. (2008). Modelling a user popu-
lation for designing information retrieval metrics. In T. Sakai, M.
Sanderson, N. Kando, & M. Sugimoto (Eds.), Proceedings of the Second
Workshop on Evaluating Information Access (EVIA 2008) (pp. 30–41).
Tokyo, Japan: National Institute of Informatics.

Sanderson, M. (2010). Test collection based evaluation of information
retrieval systems. Foundations and Trends in Information Retrieval, 4(4),
247–375.

Savoy, J. (2007). Why do successful search systems fail for some topics. In
Y. Cho, Y. Wan Koo, R.L. Wainwright, H.M. Haddad, & S.Y. Shin (Eds.),
Proceedings of the 2007 ACM Symposium on Applied Computing (SAC
2007) (pp. 872–877). New York, NY: ACM Press.

Smucker, M.D., & Clarke, C.L.A. (2012a). Stochastic simulation of time-
biased gain. In X. Chen, G. Lebanon, H. Wang, & M.J. Zaki (Eds.),
Proceedings of the 21st International Conference on Information and
Knowledge Management (CIKM 2012) (pp. 2040–2044). New York,
NY: ACM Press.

Smucker, M.D., & Clarke, C.L.A. (2012b). Time-based calibration of effec-
tiveness measures. In W. Hersh, J. Callan, Y. Maarek, & M. Sanderson
(Eds.), Proceedingds of the 35th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (SIGIR
2012) (pp. 95–104). New York, NY: ACM Press.

Smucker, M.D., & Jethani, C.P. (2010). Human performance and retrieval
precision revisited. In F. Crestani, S. Marchand-Maillet, E.N.
Efthimiadis, & J. Savoy (Eds.), Proceedings of the 33rd Annual Interna-
tional ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR 2010). New York, NY: ACM Press.

Soboroff, I. (2006). Dynamic test collections: Measuring search effective-
ness on the live Web. In E.N. Efthimiadis, S. Dumais, D. Hawking, & K.
Järvelin (Eds.), Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2006). New York, NY: ACM Press.

Stevens, S.S. (1946). On the theory of scales of measurement. Science, New
Series, 103(2684), 677–680.

Stevens, S.S. (1955). On the averaging of data. Science, New Series,
121(3135), 113–116.

Tague-Sutcliffe, J.M. (1992). The pragmatics of information retrieval
experimentation, revisited. Information Processing and Management,
28(4), 467–490.

Tague-Sutcliffe, J.M. (1996). Some perspectives on the evaluation of infor-
mation retrieval systems. Journal of the American Society for Informa-
tion Science, 47(1), 1–3.

Toms, E. (2011). Task-based information searching and retrieval. In I.
Ruthven & D. Kelly (Eds.), Interactive information seeking, behaviour
and retrieval (pp. 43–59). London, UK: Facet Publishing.

Voorhees, E. (2001). Evaluation by highly relevant documents. In D.H.
Kraft, W.B. Croft, D.J. Harper, & J. Zobel (Eds.), Proceedings of the 24th
Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR 2001) (pp. 74–82). New York,
NY: ACM Press.

Voorhees, E.M., & Buckley, C. (2002). The effect of topic set size on
retrieval experiment error. In K. Järvelin, M. Beaulieu, R. Baeza-Yates,
& S. Hyon Myaeng (Eds.), Proceedings of the 25th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2002) (pp. 316–323). New York, NY: ACM Press.

Voorhees, H. (2005). Overview of the TREC 2005 robust retrieval track. In
E.M. Voorhees & L.P. Buckland (Eds.), The 14th Text REtrieval Confer-
ence Proceedings (TREC 2005) (pp. 11–20), Special Publication 500-
266. Washington, DC: National Institute of Standards and Technology.

Webber, W., Moffat, A., Zobel, J., & Sakai, T. (2008). Precision-at-ten
considered redundant. In T.-S. Chua, M.-K. Leong, D.W. Oard, & F.
Sebastiani (Eds.), Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2008). New York, NY: ACM Press.

Webber, W., Moffat, A., & Zobel, J. (2010). The effect of pooling and
evaluation depth on metric stability. In T. Sakai, M. Sanderson, W.
Webber, N. Kando, & K. Kishida (Eds.), Proceedings of the Third Inter-
national Workshop on Evaluating Information Access (EVIA 2010) (pp.
7–15). Kyoto, Japan: National Institute of Informatics.

Appendix

Preliminary Definitions

Let D be a finite set of documents; d ∈ D a document,
i.e. the basic information unit; T a finite set of topics; and,
t ∈ T a topic, i.e. the materialization of a user information
need.

Definition 7. Let REL be a finite set of relevance degrees
and let ≼ be a total order relation on REL so that

( , )REL �

is a totally ordered set.We call nonrelevant the relevance
degree nr ∈ REL such that

nr = min( )REL

Being a finite totally ordered set, the set of relevance
degrees admits the existence of a minimum and a maximum.

Definition 8. Let D be a finite set of documents and T a
finite set of topics. The ground truth is a function

GT :

( , )

T D REL

t d rel

× →
�
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Definition 9. The recall base is a function

RB

GT

:

|{ | ( , ) min( )} |

T

t RB d D t d RELt

→
= ∈

�
� �

Note that usually the size of the set of documents is much
much larger than the recall base for any given topic, i.e.
|D| ⪢ 2RBt, ∀t ∈ T.

Definition 10. Given a natural number N ∈ ℕ+ called the
length of the run, a run is a function

R :

( , , , )

T D

t d d d

N

t N

→
=� …r 1 2

such that ∀t ∈ T, ∀j, k ∈ [1, N] | j ≠ k ⇒ rt[j] ≠ rt[k] where
rt[j] denotes the j-th element of the vector rt, vectors start
with index 1, and vectors end with index N.

Definition 11. Given a run R(t) = rt, the relevance score
of the run is a function:

ˆ :

( , ) ˆ ( , , , )

R T D REL

t rel rel rel

N N

t t N

× →
=r r� …1 2

where

ˆ [ ] ( , [ ])r rt tj t j= GT

It is worth noting that, in general, the relevance score
function is not injective since two different run vectors
for two different topics may map to the same vector of
relevance degrees; this is also intuitive from the fact that
|D| ⪢ |REL| ⇒ |D|N ⪢ |REL|N and so there are many more
vectors of documents than vectors of relevance degrees.

Definition 12. The ideal run I(t) = it, where N ≥ RBt, is a
run which satisfies the following constraints

1 1

2

( ) ∀ ∈ ∈[ ] [ ]( ) ( ) =

( )
recall base , { , GT , min } |

o

: t T j N t j REL RBt ti �

rrdering , , , |: ∀ ∈ ∀ ∈[ ] < ⇒ [ ]± [ ]t T j k N j k j kt t1 i i

Condition (1) ensures that all the relevant documents are
retrieved in the ideal run while condition (2) guarantees that
they are in descending order of relevance. Note that the ideal
run actually defines a whole set of permutations of the docu-
ments with the same relevance degree.

From Definition 12 it follows that, for each topic t ∈ T,
the relevance score of the ideal run ît is a monotonic
non-increasing function by construction. Therefore, the
maximum of the function is at j = 1 and it is equal to
ˆ [ ] max( )it REL1 = and the minimum is at j = N and it is equal
to ˆ [ ] min( )it N REL= .8

Definition 13. The worst run W(t) = wt, where N ≥ RBt,
is a run which satisfies the following constraint

∀ ∈ ∀ ∈[ ] ⇒ [ ] = ( )t T j N j RELt, , min1 ŵ

The worst run defines a set of permutations, all of which
consist of single nonrelevant documents. Note that the worst
run exists only if there are at least N nonrelevant documents
in D.

Definition 14. The full-scale run FS(t) = fst, where
N ≥ 2RBt, is a run which satisfies the following constraints

( ) : , { [ , ] ( , [ ]) min( )} |

( )

1 1

2

recall base GT∀ ∈ ∈ =t T j N t j REL RBt tfs �

oordering: , , [ , ] | [ ] [ ]∀ ∈ ∀ ∈ < ⇒ °t T j k N j k j kt t1 fs fs� �

Condition (1) ensures that all the relevant documents are
retrieved in the full-scale run while Condition (2) guarantees
that they are in descending order of relevance starting from
the end of the vector. It is called full-scale run since it
produces the minimum and maximum values of RP and CRP
for a run of length N. It reverses the order of the ideal run,
that is ∀t ∈ T, ∀j ∈ [1, N] ⇒ fst[j] = it[N − j + 1].

From Definition 14 it follows that, for each topic t ∈ T,

the relevance score of the full-scale run fs� t is a monotonic
non-decreasing function by construction. Therefore, the
maximum of the function is at j = N and it is equal to
fs� t N REL[ ] max( )= and the minimum is at j = 1 and it is

equal to fs� t REL[ ] min( )1 = .

Definition 15. Given the ideal run I(t) and a relevance
degree rel ∈ REL such that ∃ ∈[ ] [ ] =j N j relt1, | î , the
minimum rank and the maximum rank are, respectively, a
function

min :

, , min , |

i

i i
t rel T D REL

t rel j N j rel

N

t t

( ) × × →

( ) ∈[ ] [ ] ={ }( )
+�

� 1 ˆ

mmax :

, , max , |

i

i i
t rel T D REL

t rel j N j rel

N

t t

( ) × × →

( ) ∈[ ] [ ] ={ }(
+�

� 1 ˆ ))
The minimum rank is the first position at which we find

a document with relevance degree equal to rel while the
maximum rank is the last position at which we find a docu-
ment with relevance degree equal to rel in the ideal run. Note
that, by construction, we have: min (max( ))it REL = 1;
min (min( ))it REL RBt= +1; max (min( ))it REL N= ; and,
given a relevance degree rel REL∈ strictly above min(REL)
and below any other relevance degree, i.e.
rel REL rel REL rel REL rel RELi i∈ ∧ ∀ ∈ ≠| min( ) , min( )�

rel reli⇒ � , max ( )it rel RBt= .
8For the sake of accuracy, instead of max(REL), which is the maximum

relevance degree possible, we should consider the maximum relevance
degree actually present in the ground truth for a given topic, since it may
happen that not all topics have documents for each relevance degree. This
can be expressed as maxt = max GT(t, d), d ∈ {d ∈ D}|GT(t, d) ≻
min(REL)}. However, this difference does not impact the following results
and so, with a slight abuse of notation, we will continue to use max(REL)

instead, for the sake of simplicity. Moreover, this problem does not apply to
min(REL) since we can safely assume that each topic has at least a “not
relevant” document.
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Properties

This appendix reports the proof of propositions presented
in Section “Definition of the Twist Measure”.

Relative Position The following is the proof of Proposition
1 which provides the upper and lower bounds for RP.

Proof. We separately demonstrate each condition.

Condition 1. The lowest value possible for RP is given
by the biggest misplacement of a “not relevant” document in
the position of the first “most relevant” document, that is
the position j RELt= min (max( ))i where a run gets the
value rpr it tj j REL[ ] min (min( ))= − . By construction, this
is the case of the full-scale run where j = 1 and
fsr it t RB RBt t[ ] min ( ) ( )1 1 1 1= − = − + = −nr .

Condition 2. The highest value possible for RP is given
by the largest misplacement of a “most relevant” document
in the position of the last “not relevant” document, that is the
position j RELt= max (min( ))i where a run gets the value
rpr it tj j REL[ ] min (max( ))= − . By construction, this is
the case of the full-scale run where j = N and
fsr it tN N REL[ ] max (max( ))= − . □

Proposition 1 shows us that the range of RP for a
run rt is, typically, not balanced around zero since
the absolute value of its upper bound max( )rpfst

can be bigger than the absolute value of its lower
bound min( )rpfst . Indeed, in general, it holds
N REL RB N RELt tt− ≥ − ⇔ −max (max( )) max (max( ))i i

RBt≥ since N ≥ 2RBt and max (max( ))it REL RBt≤ ; they are
equal only in the case of binary relevance when
max (max( ))it REL RBt= and of runs of length when
N = 2RBt. Therefore, RP usually may have larger absolute
values in the positive region than in the negative one; this is
also intuitive from the fact that the misplacement of a “not
relevant” document in the interval of the relevant ones up to

RBt is usually smaller than the misplacement of a relevant
document in the interval of the “not relevant” ones from
RBt + 1 up to N ≥ 2RBt.

Cumulated Relative Position

The following is the proof of Proposition 1 which provides
the upper and lower bounds for CRP.

Proof. We separately demonstrate each condition.

Condition 1. The lowest value possible for CRP of a run
is achieved when all the “not relevant” documents are
ranked up to the recall base, i.e. when any relevant document
is missing in the first positions of the ranking up to RBt. This
is exactly the case of the full-scale run which leads to:

crp rpfs fs it t

t

t

t

RB k k RELt
k

RB

k

RB

[ ] [ ] [ min (min( ))]= = − =

=

= =
∑ ∑

1

1

1

2

[[ ( )] ( )

( )
(

k RB RB RB k

RB RB
RB

t
k

RB

t t
k

RB

t t
t

t t

− + = − + + =

= − + +

= =
∑ ∑1 1

1

1 1

RRB RB RBt t t+
= −

+1

2

1

2

) ( )

where (1) comes from the definition of RP and the fact all
the “not relevant” documents up to RBt are above their ideal
interval and so we are in the case k RELt< min (min( ))i ; and,
(2) comes from a previous observation which noted that
min (min( ))it REL RBt= +1.

Condition 2. The highest value possible for CRP of a run
is achieved when relevant documents are retrieved in the
interval of the ranking corresponding to “not relevant” docu-
ments and the more relevant the documents are the more
they are placed towards the end of the vector. This is exactly
the case of the full-scale run which leads to:

crp rp rp rpfs fs fs fst t t

t

t

t

N k k k
k

N

k

RB

k RB

N
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1 1
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k
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= − +
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2

1

0
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N RB
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k N RB

N
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RB RB
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1 1
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where (1) splits the definition of RP in its three different
intervals—above, ok, below—and (2) substitutes the corre-
sponding values; (3) applies at the first interval—the
upper one—the results just demonstrated for Condition 1;
(4) substitutes the index of the sum with p = k − (N − RBt)
to make it more explicit; and, (5) considers that

∑ = − +k N RB
N

t
t t k1 max ( [ ])i fs� corresponds to sum, for each rel-

evance degree above “not relevant,” the total number of
documents with that relevance degree multiplied by its
maximum rank. This can be reformulated by noting that the
total number of documents with a given relevance degree
can be written as Δrel i ii t trel rel= − +max ( ) min ( )i i 1 and the
maximum rank of a given relevance degree can be written as
the sum of the total number of documents for all the rel-
evance degrees above “not relevant” and up to the given one,
that is ∑rel REL

rel rel
relk

k i
k�min( )

�
Δ . □

Both propositions 1 and 1 show how the lower bounds of
RP and CRP are only functions of the recall base RBt while
the upper bounds depend on the recall base RBt, the length of
the run N, and the intervals for the different relevance
degrees.

Recovery Ratio

The following is the proof of Proposition 1 which provides
the upper bounds for the recovery ratio of the full scale run.

Proof. By construction, the first position in the ranking at
which the full-scale run retrieves a document with the
smaller relevance degree above “not relevant” is
j = N − RBt + 1 and that is also the first chance that CRP has
to become positive, if it gains enough, otherwise the cross-
ing may happen later on, if it happens at all.

If there was no crossing, by definition of recovery ratio,

we have ρfst = <0
1

2
.

Otherwise, the crossing for the full-scale run is at
N − RBt + 1 + k = (ω − 1)RBt + 1 + k where k = 0, 1, . . .,
RBt − 1 allows us to look for a crossing up to the last rank
position. By definition of recovery ratio, we have

ρ
ωfst

RB

N RB k

RB

RB k
t

t

t

t

=
− + +

=
− + +1 1 1( )

. Ab absurdo,

suppose that, in this case, it holds that ρfst ≥
1

2
, so:

RB

RB k
RB RB k

RB k

t

t
t t

t

( )
( )

( ) ( )

ω
ω

ω
− + +

≥ ⇔ ≥ − + +

⇔ − ≤ − +
1 1

1

2
2 1 1

3 1

The left hand side is always greater than or equal to zero,
since ω ≥ 3 and RBt ≥ 0; the right hand side is always strictly
less than zero, since k ≥ 0; so the inequality is never satis-

fied. Therefore, it must be ρfst <
1

2
.

List of Symbols and Acronyms

This appendix reports the list of symbols and acronyms used
throughout the paper.

List of Symbols

Symbol Description

t Topic
T Set of topics
d Document
D Set of documents
rel Relevance degree
REL Set of relevance degrees
hr Higly relevant relevance degree
fr Fairly relevant relevance degree
pr Partially relevant relevance degree
nr Not relevant relevance degree
GT Ground truth
RBt Recall base of topic t
rt Run for topic t
wt Worst run for topic t
fst Full-scale run for topic t
it Ideal run for topic t
N Length of the run
min ( )it rel First position at which we find a document with relevance

degree equal to rel in the ideal run for topic t
max ( )it rel Last position at which we find a document with relevance

degree equal to rel in the ideal run for topic t
ρ Recovery ratio
x tr Set of the crossings of the run with respect to the x axis
βrt Balance point of run rt

s+ Forward space
s− Backward space
σ+ Forward space ratio
σ− Backward space ratio
σ Space ratio
τ Twist measure

List of Acronyms

Acronym Description

AP Average Precision
bpref Binary Preference
CRP Cumulated Relative Position
DCG Discounted Cumulated Gain
ERR Expected Reciprocal Rank
IR Information Retrieval
MAP Mean Average Precision
NCU Normalized Cumulative Utility
nDCG normalized Discounted Cumulated Gain
RBP Rank-Biased Precision
RP Relative Position
TREC Text REtrieval Conference
VIRTUE Visual Information Retrieval Tool for Upfront Evaluation
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