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The diversity of bibliometric indices today poses the 
challenge of exploiting the relationships among them. 
Our research uncovers the best core set of relevant 
indices for predicting other bibliometric indices. An 
added difficulty is to select the role of each variable, that 
is, which bibliometric indices are predictive variables 
and which are response variables. This results in a novel 
multioutput regression problem where the role of each 
variable (predictor or response) is unknown beforehand. 
We use Gaussian Bayesian networks to solve the this 
problem and discover multivariate relationships among 
bibliometric indices. These networks are learnt by a 
genetic algorithm that looks for the optimal models that 
best predict bibliometric data. Results show that the 
optimal induced Gaussian Bayesian networks corrobo­
rate previous relationships between several indices, but 
also suggest new, previously unreported interactions. 
An extended analysis of the best model illustrates that a 
set of 12 bibliometric indices can be accurately pre­
dicted using only a smaller predictive core subset com­
posed of citations, g-index, q2-index, and hr-index. This 
research is performed using bibliometric data on 
Spanish full professors associated with the computer 
science area. 

Introduction 

Bibliometric indices are quantitative metrics for assess­
ing the outputs and impacts of individual researchers. They 
constitute an objective method whose results are reproduc­
ible. The main advantage of these indices is that they can 
summarize the scientific production of an author as a set of 
figures. This can, at the same time, be a limitation because it 
removes many details from the citation records. Many 
funding agencies and promotion committees use these 
indices regularly as decision-support tools to evaluate 
research projects and researchers alike. Bibliometric indices 
are hence an increasingly important topic within the scien­
tific community. 

Many studies (Cabezas-Clavijo, Robinson-García, 
Escabias, & Jiménez-Contreras, 2013; Fu & Aliferis, 2010; 
Hirsch, 2007; Jensen, Rouquier, & Croissant, 2009; Kissin, 
2011; Levitt & Thelwall, 2011; Vieira, Cabral, & Gomez, 
2014a, 2014b) have looked at the predictive power of bib-
liometric indices in many situations: prediction of article 
impact; scientist promotions; acceptance of grant proposals; 
and future values of many bibliometric indices, among 
others. The result is that the scientific community now faces 
the challenge of selecting which from this pool of biblio-
metric indices have higher predictive power. 

Jensen et al. (2009) found that the h-index was best at 
predicting promotions within the Centre National de la 

mailto:fonsoim@gmail.com
mailto:rarmanan@gmu.edu
mailto:mcbielza@fi.upm.es
mailto:plarranaga@fi.upm.es


Recherche Scientifique (CNRS) researchers. Cabezas-
Clavijo et al. (2013) showed that the main bibliometric indi­
cators that explain the funding of Spanish research propos­
als, in most cases, are the number of papers and the number 
of papers published in first-quartile journals of the Journal 
Citation Reports (JCR). Vieira et al. (2014a, 2014b) 
assessed the power of models based on bibliometric indica­
tors for the prediction of the rankings of applicants to an 
academic position at Portuguese universities. They found 
that models composed by indicators related with the quan­
tity and impact of scientific production, impact of the 
publication source, prestige of affiliation institution, and 
collaboration provided good predictions and may help peers 
in their selection process. 

This article presents a method for identifying a core set of 
bibliometric indices for prediction purposes. This subset of 
relevant indices shows a high accuracy when predicting 
other bibliometric measures. Given a data set of bibliometric 
indices X= {X1, X2, . . . , Xn}, we tackle the task of selecting 
which subset best corresponds to predictive variables XP 

(variables with a higher predictive power) and which group 
can be considered as response variables XR, where 
dim(XP) = p, dim(XR) = r and p + r = n. The best split of 
predictive and response variables is unknown beforehand 
and needs to be investigated. The resulting predictive indices 
are very useful for prediction purposes; that is, when we 
know the relevant index values (predictive variables), 
knowledge of any index value provides no information on 
the prediction of other bibliometric indices (response 
variables). 

A wrapper analysis to evaluate all possible configura­
tions of predictor and response variables is used to reveal 
the relevant set of predictive bibliometric indices. After 
setting a specific configuration of predictive and response 
variables, we learn the statistical relationships among the 
set of bibliometric indices by means of Gaussian Bayesian 
networks (GBNs) (Geiger & Heckerman, 1994; Shachter 
& Kenley, 1989). GBNs are specific Bayesian networks 
whose variables follow a Gaussian distribution. Bayesian 
networks (BNs) (Heckerman, 1998; Jensen, 2001; 
Lauritzen, 1996; Pearl, 1988) are graphical models for rep­
resenting the probabilistic relationships among variables. 
They consist of two main components: the structure, which 
is a directed acyclic graph, for representing the depen­
dency and independency among variables (in our case, 
bibliometric indices), and a set of parameters for represent­
ing the quantitative information of the dependency. The 
learnt GBN is then used to identify how bibliometric 
indices relate to one another multivariately, that is, which 
index Xi is independent of another Xj or which index Xi is 
conditionally independent of index Xj given the value of 
a third index Xk, among others. Taking into account the 
learnt relationships among bibliometric indices, the 
response variables are predicted by means of multioutput 
(Breiman & Friedman, 1997). The goal of multioutput 
regression is to induce a model to simultaneously predict 
the response variables using the same set of predictive 

variables and accounting for the dependencies between 
them. 

The structural learning of our GBNs, given fixed values 
for XP and XR, is based on a score + search approach. This 
approach optimizes the learning of the GBN structures 
based on the distance between real and predicted response 
variable values. The optimization process searches for the 
GBN, which minimizes the fitness score. However, the 
number of possible GBNs is huge, and therefore a genetic 
algorithm (GA) (Holland, 1975) is used to explore the 
search domain of structures. Finally, the optimal structure 
provides information on which bibliometric indices have the 
highest predictive power and how they relate to one another. 

The interest and originality of our analysis is a novel 
multioutput regression problem where the role of each vari­
able (predictor or response) is unknown beforehand. To 
solve this problem, we introduce a new GBN structure learn­
ing algorithm that explores the best GBN structure that 
minimizes the distance between real and predicted response 
variable values. The resulting GBN structure reports the 
most predictive bibliometric indices. From their values, we 
could calculate accurately the values of bibliometric indices. 
The scientific community could take advantage of the 
highly accurate predictions, avoiding the tedious and 
time-consuming rocess of downloading citation records, 
organizing the nonstructured data, and computing many bib-
liometric index values. 

The remainder of the article is organized as follows. The 
section on Related Work presents related work associated 
with the structural learning of BNs, relationships between 
bibliometric indices, and the prediction of bibliometric 
indices. Multioutput Regression and GBNs briefly intro­
duces the definitions of multi-output regression and GBNs. 
In this section, we also discuss how they relate to each other. 
Learning GBNs Using GAs describes the different elements 
of the GA on which the GBN learning process is based. The 
Results section reports the results of applying our approach 
to a data set of Spanish full professors of computer science. 
It covers the data set compilation, the experimental setup, 
the optimal GBNs and a discussion on the best induced 
GBN. Finally, the results and conclusions are discussed in 
the Discussion and Conclusions section. 

Related Work 

This section reviews the state of the art regarding the 
three issues covered in this article. First, we list algorithms 
for BN structure learning. Second, we present some research 
analyzing the relationships among well-known bibliometric 
indices. Third, we review different approaches to the predic­
tion of bibliometric indices. Throughout the section, our 
proposal is compared with the reviewed work. 

BN Structure Learning 

The most difficult task in BNs is to determine their struc­
ture, that is, which node should be connected to which node. 



The task of automatically defining structure from a data set 
is called BN structure learning. There are two basic 
approaches to BN structure learning from data: algorithms 
based on constrained methods and score+search methods. 

Constraint-based methods (De Campos, 1998; 
Margaritis, 2005; Smith & Whittaker, 1998; Spirtes, 
Glymour, & Scheines, 1993) use conditional independence 
tests to identify the dependent and independent relationships 
among variables. A major weakness of these methods is that 
too many tests may have to be performed, with each test 
being built upon the results of another. This may lead to 
compound errors in structure identification. Additionally, 
increasing cardinality in the conditioning part dramatically 
reduces test reliability. Thus, most of the developed structure 
learning algorithms fall into the score+search category. This 
approach states the learning task as an optimization 
problem, and two main components (a scoring function and 
a search strategy) have to be defined. Once a score metric 
(Akaike, 1974; Cooper & Herskovits, 1992; Heckerman, 
Geiger, & Chickering, 1995; Rissanen, 1978; Schwarz, 
1978) is specified, a search method is needed to find the 
structure with the optimal score. The fitness score measures 
the quality of every candidate structure with respect to a data 
set. The number of candidate structures that can be built 
from data grows exponentially as the number of variables 
increases, so an exhaustive search is not a sensible approach 
to the problem (Chickering, 1995). Therefore, several search 
strategies may be used to iterate comparisons on reduced 
sets of structures. The K2 algorithm (Cooper & Herskovits, 
1992) is one of the best known score-based algorithms in 
BNs. It uses the marginal likelihood of the data set given the 
structure as the score to greedily learn a BN. This is a 
very active field of research, and there have been several 
new proposals (Provan & Singh, 1995; Cheng, Greiner, 
Kelly, Bell, & Liu, 2002; Blanco, Larrañaga, Inza, & Sierra, 
2004; Yehezkel & Lerner, 2009; Vidaurre, Bielza, & 
Larrañaga, 2010; Bui & Jun, 2012; Huang et al., 2013) in the 
last years. 

Researchers have also tackled the problem of BN struc­
ture learning using evolutionary algorithms. Larrañaga, 
Karshenas, Bielza, and Santana (2012) reviewed how BNs 
have been used in evolutionary algorithms. Some research­
ers (Cowie, Oteniya, & Coles, 2007; De Campos, 
Fernández-Luna, Gámez, & Puerta, 2002; Pinto, Naegele, 
Dejori, Runkler, & Sousa, 2008; Wu, McCall, & Corne, 
2010) analyzed the BN structure learning using evolutionary 
approaches, such as ant colony optimization and particle 
swarm optimization. In contrast, most investigators use GAs 
for the purpose of structure learning. In this case, Larrañaga, 
Poza, Yurramendi, Murga, and Kuijpers (1996) learnt the 
BN structure that maximizes the K2 score metric. 
Etxeberria, Larrañaga, and Pikaza (1997) searched the BN 
structure that best fits the collected data according to a 
penalized K2 criterion. Myers, Laskey, and DeJong (1999) 
extended the use of GAs for BN learning to domains with 
missing data. The search process was guided by the BDe 
(Bayesian metric with Dirichlet priors and equivalence) 

score of each network structure. Van Dijk, Thierens, and van 
der Gaag (2003) searched the BN structure that best fitted 
the collected data according to a metrics definition language 
metric. In contrast, Martínez-Morales, Garza-Domínguez, 
Cruz-Ramírez, Guerra-Hernández, and Jiménez-Andrade 
(2004) induced BNs taking advantage of the information 
provided by a combination of different scores, instead of 
applying a single one. Other researchers learnt other types of 
BNs. Tucker, Liu, and Ogden-Swift (2001) used a GA for 
searching the best dynamic BN structure (Friedman, 
Murphy, & Russell, 1998). Jia, Liu, and Yu (2005) also 
applied an immune GA for learning dynamic BN. 
Mascherini and Stefanini (2005) presented a GA to learn the 
structure of conditional GBNs (Lauritzen, 1992; Lauritzen 
& Wermuth, 1989). They used an extension of the BDe 
metric to measure the fitness of candidate structures. 

Unlike most of the research we just described that used 
discretized values, we tackle the problem of learning GBNs 
that can deal with continuous values. In contrast to the usual 
metrics, we minimize the distance between real and pre­
dicted response variable values. We make use of GAs for 
structure learning as in previous works. However, our 
approach finds the optimal structure by means of a wrapper 
analysis that outputs information on the core bibliometric 
indices. 

Relationships Between Bibliometric Indices 

Many bibliometric indices have been proposed in the lit­
erature (see Alonso, Cabrerizo, Herrera-Viedma, & Herrera, 
2009; Egghe, 2010). One of the most successful and best 
known is the h-index (Hirsch, 2005). This index combines 
productivity and visibility in a single indicator. Despite its 
advantages, the h-index has some limitations (Costas & 
Bordons, 2007): (a) It should not be used to compare 
researchers from different disciplines; (b) it depends on the 
duration of each researcher’s career; (c) it tends to underesti­
mate the achievement of researchers that have a selective 
publication strategy; and (d) it cannot distinguish between 
active and inactive researchers. To overcome the limitations of 
the h-index, different bibliometric indices have been sug­
gested in the literature (Alonso, Cabrerizo, Herrera-Viedma, 
& Herrera, 2010; Batista, Campiteli, Kinouchi, & Martinez, 
2006; Bornmann, Mutz, & Daniel, 2008a; Cabrerizo, Alonso, 
Herrera-Viedma, & Herrera, 2010; Egghe, 2006b; Jin, 2006; 
Ruane & Tol, 2008; Sidiropoulos, Katsaros, & 
Manolopoulos, 2007; Soler, 2007). 

Some studies (Bollen, Van de Sompel, Hagberg, & 
Chute, 2009; Hirsch, 2007; Leydesdorff, 2009) have exam­
ined correlations between a list of bibliometric indices using 
the Pearson coefficient. Hirsch (2007) analyzed which 
bibliometric index (h-index, number of papers, number of 
citations, and mean citations per paper) was best able to 
predict the future scientific achievement. He showed 
correlation coefficients between pairs of bibliometric values 
in order to test their predictive power. His results indicated 
that the h-index was the best bibliometric index (ρ = .89) 



for this purpose. Bollen et al. (2009) found statistically 
significant correlations between 39 measures of scholarly 
impact, although the exact values were not reported. 
Leydesdorff (2009) also showed high correlations between 
indices, especially the 5-year impact factor and article influ­
ence (ρ = .956). Other studies, such as Franceschet (2010), 
also investigated the degree of correlation between some 
typical bibliometric indices, tested using the Spearman cor­
relation. This study found strong correlations between the 
examined indices. The strongest correlation was between the 
2-year impact factor and the 5-year impact factor (ρS = .96). 
Unlike Hirsch (2007), Bollen et al. (2009), Leydesdorff 
(2009), and Franceschet (2010), who analyzed simple linear 
correlations between pairs of indices, Ibáñez, Larrañaga, 
and Bielza (2011b) learnt a BN model from bibliometric 
data, which was then used to analyze the relationships 
among triplets of indices. 

Building on this seminal work, we now model relation­
ships among bibliometric indices using GBNs, thanks to 
which we can work directly with continuous values. The 
new proposal employs GAs instead of classical network 
algorithms, such as K2, for structure learning. As an exten­
sion, new bibliometric indices are added to these models in 
order to consider some aspects not previously reported in the 
literature. 

Prediction of Bibliometric Indices 

Researchers have addressed the prediction of bibliomet-
ric indices, such as the number of documents, the number of 
citations, or the h-index, among others. For example, 
Krampen, von Eye, and Schui (2011) forecasted the number 
of documents that a researcher would produce within 10 
years in the field of psychology. They used time series 
modeled by exponential and exponential smoothing func­
tions. The predictions were based on past psychology pub­
lication frequencies. Ibáñez, Larrañaga, and Bielza (2009) 
predicted the number of citations of bioinformatics articles 
within 4 years of publication using tokens found in the 
abstracts. They used different classification paradigms as 
predictive models, namely, naïve Bayes, logistic regression, 
classification trees, and the k-nearest neighbor algorithm. 
Egghe (2006a) used the power law model to predict the 
h-index as a function of time, whereas Ye and Rousseau 
(2008) used nonlinear regression to predict the h-index of 
authors, journals, and universities. Both studies used former 
h-index values to extrapolate the h-index value in the near 
future. Acuna, Allesina, and Kording (2012) predicted 
h-index values using a linear regression with elastic net 
regularization. They used former h-index values together 
with other bibliometric measures as predictive variables to 
predict future h-index values. Finally, Ibáñez, Larrañaga, 
and Bielza (2011a, 2014) used cost-sensitive naïve Bayes 
and cost-sensitive selective naïve Bayes classifiers to predict 
the h-index of researchers and journals, respectively, from a 
set of different bibliometric indices. 

Unlike the works we just cited that predict only one 
variable, here we simultaneously predict a set of response 
variables. Given that all of them are continuous, this is a 
multioutput regression problem. More interestingly, the role 
of each variable (predictor or response) is unknown before­
hand, so the goal is to discover a core set of bibliometric 
indices (the predictors) with a higher predictive power in 
order to forecast the other bibliometric indices (the 
responses). Once the values of the predictive indices are 
known, the response index values can be predicted with high 
accuracy. 

MultiOutput Regression and GBNs 

This section first introduces the multioutput regression 
problem, which simultaneously predicts several response 
variables using the same predictive variables. It also intro­
duces the definition of GBNs. Finally, an approach to learn 
multioutput regression using GBNs is presented. 

MultiOutput Regression 

We first formally describe the multioutput regression 
problem. Let X and Y be two random vectors where X 
consists of p predictive variables and Y consists of r 
response variables. Given a set of training samples, the goal 
in multioutput regression is to learn a model which, given an 
input vector x, is able to predict an output vector y that best 
approximates (in terms of minimizing the least squared 
errors) the real output vector. Conventionally, this is 
achieved by generalizing single output regression, using a 
different regression coefficients vector to predict each 
output, that is, as shown by Equation (1): 

y = Bx + e, (1) 

where B is a px r matrix of regression coefficients, x is a 
realization of the p predictive variables, and e is a vector 
consisting of the noise for each of the r response variables. 
The noise is typically assumed to be Gaussian with a zero 
mean and uncorrelated across the r response variables. 

GBNs 

Formally, a BN is defined as a pair of elements (G, P). 
The first, G = (V(G), A(G)), is a directed acyclic graph 
defined by a set of nodes V(G) and a set of arcs among the 
nodes, A(G). The nodes represent the random variables of 
the problem, i.e., V(G)={X1, . . . , Xn}, and the arcs 
A(G) c V(G) x V(G) are the probabilistic conditional depen­
dencies. The second element of every BN, P, represents the 
joint probability distribution of (X1, . . . , Xn) within G, 
defined as Equation (2): 

n 

P(X 1 , . . . ,Xn) = \\P(Xi |n(X i)), (2) 



where Yl(Xi) represents the set of parents of Xt. A node Xj is 
a parent of another node Xt if there is an arc from Xj to Xt 

in G. 
A BN is said to be a GBN if, and only if, its associated 

joint probability distribution is a multivariate normal distri­
bution, J\ ()U, 2), with a joint probability density function 
(Equation [3]): 

f(x) = (2n)l2\L[112exp{- 1 x-n)Tlr1(x-n)\, (3) 

where x is a realization of the random variables, fl is the 
/i-dimensional mean vector, X is the n x n covariance matrix, 
|2 | is the determinant of X, and JLLT denotes the transpose of fl. 

The joint probability distribution of the variables in a 
GBN can be specified as in Equation (2) by the product of a 
set of conditional probability distributions (Equation [4]): 

f(x|n(x))~N # + X PiMj-^vi 
Xjen(Xi) 

(4) 

where fit is the unconditional mean of Xt, fy is the regression 
coefficient of Xj in the regression of Xt on its parents Ti(Xi), 
and Vi is the conditional variance of Xt given its parents. It 
can be calculated as Equation (5): 

vi = ^xt ^Xii(Xi^iKXi^Xiii(Xi), (5) 

where 2Xi is the unconditional variance of Xt, 2x.n(x) is the 
row matrix with covariances between Xt and Ti(Xi), and 
^n(Xj) is the covariance matrix of U(Xi). Finally, Figure 1 
shows an example of GBN structure and its joint probability 
distribution. 

Learning MultiOutput Regression Using GBNs 

The multioutput regression problem can be tackled using 
a GBN framework. This framework introduces an alterna­
tive parameterization of the regression model derived 
as a conditional probability model (Y|X) from the joint 
probability distribution. If, in the partition, (X, Y) X is 
the set of evidential (observed) variables and Y is the set of 

nonevidential variables, we assume a joint multivariate 
Gaussian distribution with mean vector and covariance 
matrix given by 

[I 
H'X I 

and S 
ZiXX 

^YX 

ZiXY 

2JYY 

where flx and HXx are the mean vector and covariance matrix 
of X, JLLY and HYY are the mean vector and covariance matrix 
of F, and 2*y = (LYX)T is the covariance matrix of X and Y. 

The covariance matrix, X, is of great interest in GBNs 
because its inverse matrix, the precision matrix (W = 2_1), 
captures the dependence structure of the variables of the 
problem. Anderson (2003) demonstrated that a variable Xt is 
conditionally independent of a variable Xj given the rest of 
the variables if the value Wy = 0. Previously, Shachter and 
Kenley (1989) found that given the densities of Equation (4), 
it is possible to determine the precision matrix W. They used 
the following recursive formula (Equation [6]): 

W(i + 1) 

W(i) + 

-PI 

A+1A>1 -Pi 
V/+1 

1 

V/+1 J 

(6) 

where W(i) denoted the / x / upper-left submatrix of W, /$+1 
is the /-dimensional vector of coefficients {/?//|/</}, and 
W(1) = 1/v1. 

Evidence propagation refers to the process of computing 
the probability distribution of the rest of the variables given 
some observations. Here, we follow a method presented by 
Castillo, Gutiérrez, and Hadi (1997) to perform evidence 
propagation in a GBN. Given this joint distribution, the 
conditional distribution of Y given X is multivariate Gauss­
ian with mean vector jLLY|x=x and covariance matrix X11*=* 
given by Equations (7) and (8): 

nm=x = nY + i:YX^x(x-iix), 

Z/YX^XX^XY. 

(7) 

(8) 

Finally, we note that Equations (1) and (7), and (8) are 
different parameterizations of the same regression model, 
given that B = Xyz2^ -1 

XX. 

FIG. 1. GBN structure and its joint probability distribution. 

Learning GBNs Using GAs 

GAs are stochastic search methods employed in solving 
complex optimization problems. They mimic the biological 
mechanisms of natural selection and evolution by means of 
a fitness function, which determines the ability of an indi­
vidual to survive and reproduce. GAs try to find better indi­
viduals (solutions for the given problem) by producing fitter 
descendants in a set of populations. 

GAs and GBNs are used in this article to uncover the 
subset of bibliometric indices with the highest predictive 
power of all. A wrapper analysis to evaluate all different 



FIG. 2. Steps of our genetic algorithm method. 

structures is used to accomplish this goal. Therefore, after 
setting up a specific splitting of predictive and response 
variables, we use a GA to search the optimal GBN structure, 
which minimizes the distance between real and predicted 
response variable values. The process is repeated for all 
possible configurations of predictor and response nodes. 
Figure 2 shows our GA methodology. 

Details of our implementation, such as individual codifi­
cation, fitness function, selection, crossover, mutation, and 
termination criterion, follow. 

Initial Population 

The search space of candidate solutions is represented as 
a collection of N individuals, called population. In our 
problem, individuals represent GBN structures. Each struc­
ture is described by an adjacency matrix Adj(G), which is 
the representation of the graph G = (V(G), A(G)). The adja­
cency matrix is an n × n matrix with entries aij, i, j = 1, . . . , 
n, such that aij = 1 if, and only if, an arc exists between nodes 
i and j, and aij = 0 otherwise. Using this codification, an 
individual can be transformed into a binary string (a11, . . . , 
a1n, a21, . . . , a2n, . . . , an1, . . . , ann), which maps its adjacency 
matrix in a vectorized form. 

The initial population is randomly generated. Arcs in the 
adjacency matrices are randomly drawn from a Bernoulli 
distribution with p = .5 (probability of success). If need be, 
the network structure is amended to avoid the presence of 
cycles. 

Fitness Function 

The calculation of the fitness function accounts for the 
main computational burden in a GA. An ideal fitness func­
tion should correlate closely with the goal and should be 
computed quickly. This running time is crucial given that the 
GA has to be iterated several times to produce reliable 
results in nontrivial problems. 

In our study, given an individual with p predictive 
variables and r response variables, we calculate the 

Mahalanobis distances between real and predicted values 
for the r response variables (see Equation [9]). The 
Mahalanobis distance is then used as the fitness score of 
that individual. Considering that the aim is to minimize 
that distance, the lower the fitness score, the fitter an indi­
vidual is: 

MD(y, / ) = yl(y-y')TI.£(y-y'), (9) 

where y and y are vectors representing the real and predicted 
values of the response variables and ΣYY is the covariance 
matrix of the response variables. 

We use the Mahalanobis distance as a novel fitness score 
instead of usual metrics such as K2, BIC, and AIC, among 
others. Although this is a time-consuming fitness value to 
use (because the predicted values have to be calculated 
beforehand), we select a distance-based score because our 
objective is to minimize the distance between real and pre­
dicted response variable values. We decided to use the 
Mahalanobis distance, instead of the Euclidean distance, 
because it has some advantages, that is, it takes into consid­
eration the correlations between all response variables using 
the covariance matrix, and it solves the problems of scale 
inherent in the Euclidean distance. 

Reproduction Cycle 

Parent selection criterion, crossover, and mutation opera­
tors and merging procedure are the constituents of the repro­
duction cycle in a GA. We explore the details of each part 
here. 

Selection criterion. The selection process determines 
which of the individuals from the current population will 
mate to create new individuals. In general, the fittest indi­
viduals will have higher probability of being selected as 
parents of the next population. Different strategies, such as 
proportional selection methods, ranking selection, tourna­
ment selection, and so on, are available in the literature 
(Sivaraj & Ravichandran, 2011). We use an elitist strategy, 



which chooses the best k individuals from the population as 
parents for reproduction. This strategy guarantees the 
improvement of the average and minimum value in each GA 
iteration. Thus, the best N/2 individuals from the population 
for reproduction are identified and then moved into a mating 
pool where they are combined by crossover and mutation 
operations. 

Crossover and mutation. Within crossover, N/2 parents are 
randomly mated in pairs to create N/2 new children by 
combining their genotypic information. The aim of cross­
over is to produce fitter individuals by exchanging informa­
tion contained in already good individuals (Spears & Anand, 
1991). We choose the single-point crossover operator, which 
is the most common operator and provides good results 
(Kellegoza, Toklub, & Wilsonc, 2008). Given the binary 
codification of the individuals, we randomly choose with a 
fixed probability Pc a crossover point at which the informa­
tion is exchanged. Based on this point, the strings of both 
parents are split into two segments each. The first offspring 
takes the first section from the first parent and the last part 
from the second, whereas the second offspring is formed 
conversely. 

The mutation operator introduces some extra variability 
into the population to enhance the diversity degree. It 
operates on each of the individuals output by crossover 
by producing random changes with a very small probabil­
ity. These changes may, in turn, result in new individuals 
with higher fitness scores. In our research, we use single-
point mutation: A bit from the binary string is chosen and 
flipped with a mutation probability Pm. Finally, whenever 
an offspring violates the directed acyclic graph constraint, 
the operator randomly deletes some arcs to amend 
cycles. 

Merging procedure. The last stage of the reproductive 
cycle is the generation of the new population. Again, we 
choose an elitist strategy to yield the new population of 
individuals by combining the best individuals of the previ­
ous and new generations. The main advantage of this strat­
egy is that it always preserves the best subset of individuals 
in every generation. 

Stopping Criteria 

The search is halted when a set of conditions, the stop­
ping criteria, are satisfied. Different criteria for stopping a 
GA have been developed in the literature: after a specific 
number of generations or a maximum number of evalua­
tions, if there is no improvement in the objective function, 
or when the objective function outputs a specific value, 
among others. Here, a maximum number of generations or 
no improvement over a given number of generations con­
stituted our stopping criteria. The individual with the 
highest score in the final population is considered to be the 
solution to the optimization problem. 

Results 

Data Set Compilation 

The first stage of the data collection process was to 
contact the Spanish Ministry of Education to request the list 
of full professors of computer science who were active as of 
January 1, 2010. This list includes 280 faculty members 
with their full names and affiliations. For each faculty 
member, we compiled a list of publications and citation data 
from 1973 (the first year with records) to 2010. The data 
were retrieved from the Thomson Reuters Web of Knowl­
edge (WoK). WoK contains databases specialized in jour­
nals, such as Science Citation Index and JCR, and in 
conferences such as Conference Proceedings Citation Index. 
In total, WoK indexes more than 470 computer science jour­
nals and more than 15,000 of the major computer science 
conferences. 

Although the WoK does not store all the scientific litera­
ture, it does record a very large part (Garfield, 1996). 
A careful curation of the data is needed owing to problems 
related to Spanish personal name variations in international 
databases (Ruiz-Pérez, Delgado-López-Cózar, & Jiménez-
Contreras, 2002). The records were also filtered by the pub­
lication subject. Only documents published in journals and 
conferences belonging to the seven major fields of computer 
science were finally included. According to the JCR rank­
ings, these major fields are: artificial intelligence; cyber­
netics; hardware and architecture; information systems; 
interdisciplinary applications; software engineering; and 
theory and methods. To ensure data reliability, we checked 
our final list of publications against other databases such as 
the DBLP Computer Science Bibliography, personal web 
pages, and institutional websites, among others. Finally, a 
list of bibliometric indices (documents, citations, h-index 
[Hirsch, 2005], g-index [Egghe, 2006b], hg-index [Alonso 
et al., 2010], a-index [Jin, 2006], m-index [Bornmann et al., 
2008a], q2-index [Cabrerizo et al., 2010], hr-index [Ruane & 
Tol, 2008], hi-index [Batista et al., 2006], hc-index 
[Sidiropoulos et al., 2007], and c-index [Soler, 2007]) were 
computed for each academic within the database. A short 
description of each index follows. 

X1 (documents). Associated with the number of published 
articles, it represents the output of each professor. 

X2 (citations). Total number of citations received by the 
publication portfolio of a researcher, it represents a measure 
of research visibility. 

X3 (h-index). The h-index quantifies the scientific output of 
a single researcher as a single-number criterion. It is based 
on a list of publications ranked in descending order of the 
number of citations. The value of the h-index is equal to the 
number of articles (h) in the list that have h or more citations. 
The h-index incorporates both the quantity and the visibility 
of a publication portfolio, although not always in a consis­
tent manner. 



X4 (g-index). The h-index tends to underestimate the 
achievement of researchers who have a selective publication 
strategy. This strategy is followed by researchers who 
publish fewer documents than average, but, by contrast, 
receive many citations. To avoid such bias, the g-index is 
defined as the highest rank, such that the cumulative sum of 
the number of citations received is greater than or equal to 
the square of this rank. Unlike the h-index, the g-index takes 
into account the exact number of citations received by 
highly cited articles, favoring researchers with a selective 
publication strategy. Although the g-index is better than the 
h-index in this sense, is not a fully satisfactory solution. 

X5 (hg-index). The hg-index is a combination of both the 
h-index and g-index. It aims to provide a more balanced 
view of scientific production. The hg-index of a researcher is 
defined as the geometric mean of its h-index and g-index, 
that is, 

hg-index = yjh • g, 

where h corresponds to the value of the h-index and g 
corresponds to the value of the g-index, respectively. 

Xtf (a-index). The a-index is defined as the average number 
of citations received by the articles included in the h-core, 
that is, the first h articles. This index measures the citation 
intensity of the h-core articles; however, it can be very 
sensitive to just a few articles receiving high citation counts. 

X7 (m-index). The distribution of citation counts is usually 
skewed; hence, the median is a better measure of central 
tendency. The m-index computes the median number of 
citations received by articles in the h-core. 

X« (q2-index). This index provides a more global view of 
scientific production. It is based on the geometric mean of 
the h-index, describing the number of the articles (quantita­
tive dimension), and the m-index, depicting the impact of 
the articles (qualitative dimension) 

q2-index = \h-m, 

where m corresponds to the value of the m-index. 

X9 (hrindex). The rational h-index is an extension of the 
original h-index. It reflects the number of citations needed to 
increase the h-index by one unit. Mathematically, 

hr-index = (h + 1) 
Cit(h + 1) 

2h + 1 , 

where Cit(h + 1) is the number of citations received by the 
(h + 1)-th article. 

X10 (hi-index). The individual h-index is complementary to 
the h-index and estimates the number of articles that a 

researcher would have written throughout his career with at 
least hi citations if he had worked alone. The rationale 
behind this is to measure the effective individual average 
productivity: 

hi -index 
h 

Na 

where Na is the mean number of authors in the h-core 
articles. 

Xn (he-index). The original h-index cannot distinguish 
between inactive scientists, junior scientists, and senior sci­
entists. To account for this temporal component, a score 
Sc(f) was defined for an article i based on citation counting: 

Sc(i) = y • (Y(now) - Y(i) + 1)~5 Cit(i), 

where Y(now) is the current year; Y(f) is the publication year 
of article i; Cit(i) is the total number of citations received by 
article i; /and 8 are arbitrary parameters. Using this score, 
the value of old articles gradually declines, even if they still 
receive citations. Therefore, the definition of the contempo­
rary h-index states that “a researcher has index hc, ifhc of his 
published papers get a score of Sc(i) > hc each, and the other 
papers get a score of Sc(i) <h”. 

X12 (c-index). This index measures creativity, defined as 
the generation of new scientific knowledge. Its purpose is to 
highlight articles that receive many citations and have few 
bibliographic references. This index is calculated from the 
list of citations and references of the author’s articles: 

c-index = V 
c(ni, mi) 

a,-

where c(n, rtij) = m,- — «, + 
Hi 

, Np is the total 
Ae az + Be bz 

number of published articles; ru is the number of references 
of article i; rrii is the number of citations of article i; a% is the 
number of authors of article i; z = (nii - 1)/(«,• + 5); and A, B, 
a, and b are arbitrary parameters. 

We have selected this small subset of well-known indices 
to provide a practical example using our method. The 
selected indices are very popular bibliometric indicators 
for assessing individual scientists and have an influence 
on bibliometric and scientometric research. Despite this, 
they are not the best indices for the purpose given that most 
of them are size-dependent indicators, which sometimes 
behave in a counterintuitive manner (Marchant, 2009; 
Waltman & van Eck, 2012). In this way, there are better 
bibliometric indicators, such as highly cited publications 
indicators, percentile-based indicators, field-normalized 
indicators, journal-based indicators, or collaboration indica­
tors, among others, to evaluate the research performance 
of scientists. It is not our aim to argue in favor of the selected 
indicators as good ones to assess scientists; we select 

1=1 



TABLE 1. Statistical figures of all bibliometric indices computed from the publications data set of 280 active Spanish full professors of computer science 
(years 1973–2010). 

Variables 

X1 (documents) 
X2 (citations) 
X (h-index) 
X 4 (g-index) 
X 5 (hg-index) 
X 6 (a-index) 
X7 (m-index) 
X (q2-index) 
X9 (hr-index) 
X10 (hi-index) 
X 11 (hc-index) 
X12 (c-index) 

Min 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.7 
0.1 
0.0 
0.3 

First quartile 

11.3 
17.0 
2.0 
4.0 
2.8 
5.5 
5.0 
3.2 
3.0 
0.6 
0.0 
4.4 

Mean 

34.8 
143.0 

6.0 
11.0 
8.4 

17.8 
14.0 
9.4 
7.0 
1.9 
2.0 

19.7 

Median 

21.5 
50.5 
4.0 
7.0 
5.3 

10.0 
8.0 
5.5 
9.4 
1.1 
1.0 
9.2 

Third quartile 

27.2 
145.1 

4.8 
8.8 
6.5 

14.1 
11.5 
7.2 
5.8 
1.5 
1.3 

26.4 

Max 

178.0 
4,570.0 

37.0 
66.0 
49.4 
97.5 
73.0 
52.0 
38.0 
12.7 
10.0 

908.4 

TABLE 2. Correlation coefficients among bibliometric indices computed from the publications data set of 280 active Spanish full professors. 

Vars X X X3 X4 X5 X X7 X X9 X10 X 11 X 12 

X1 
X 
X3 
X4 
X5 
X6 

X 
X8 

X9 

X10 

X11 
X 12 

1.00 0.65 
1.00 
-
-
-
-
-
-
-
-
-
-

0.78 
0.87 
1.00 
-
-
-
-
-
-
-
-
-

0.74 
0.88 
0.96 
1.00 
-
-
-
-
-
-
-
-

0.77 
0.88 
0.99 
0.99 
1.00 
-
-
-
-
-
-
-

0.52 
0.77 
0.78 
0.86 
0.83 
1.00 
-
-
-
-
-
-

0.45 
0.70 
0.71 
0.78 
0.75 
0.94 
1.00 
-
-
-
-
-

0.68 
0.86 
0.94 
0.96 
0.96 
0.90 
0.88 
1.00 
-
-
-
-

0.78 
0.87 
0.99 
0.96 
0.99 
0.78 
0.71 
0.94 
1.00 
-
-
-

0.65 
0.83 
0.93 
0.90 
0.92 
0.74 
0.67 
0.88 
0.93 
1.00 
-
-

0.69 
0.81 
0.89 
0.91 
0.91 
0.84 
0.78 
0.91 
0.89 
0.80 
1.00 
-

0.61 
0.97 
0.82 
0.83 
0.83 
0.74 
0.65 
0.81 
0.81 
0.82 
0.75 
1.00 

Note. X1 (documents), X2 (citations), X3 (h-index), X4 (g-index), X5 (hg-index), X6 (a-index), X7 (m-index), X8 (q2-index), X9 (hr-index), X10 (hi-index), 
X11 (hc-index), and X12 (c-index). 

them as variables for our GBN models. Given these vari­
ables, our goal is to simultaneously predict a set of response 
variables from a set of predictive variables where the role 
of each variable (predictor or response) is unknown 
beforehand. 

In order to give an overview of indices values, Table 1 
shows a statistical summary for each index. Note that the 
average academic publishes 34.8 documents and receives 
143.0 citation. Also noticeable is that the average h-index 
value is 6. Citation values range from 1 to 4,570 citations 
during the period, that is, there is at least one academic 
who has been cited only once, whereas other academics 
have received a much higher number of citations. The 
mean citations value (143.0) is on the right of the median 
value (50.5), which means that the distribution is skewed 
to the right. This effect is apparent for almost all 
the indices (except the hr-index). The explanation for 
this shift is that very few academics excel in terms of 
productivity, visibility, individuality, innovation, and 
contemporariness. 

Finally, Table 2 shows the correlation coefficients 
among bibliometric indices. Most of the selected biblio-

metric indices are variants, extensions, or generalizations 
of the h-index. This implies that these indices are usually 
correlated among themselves, which is corroborated by the 
mean correlation coefficient (ρ = .82) among selected 
indices. We note that documents is the index that has the 
lowest correlations, that is, there are weak correlations 
between documents and m-index (ρ = .45), documents and 
a-index (ρ = .52), and documents and c-index (ρ = .61), 
among others. In contrast, the hg-index has the highest cor­
relations, that is, there are strong correlations between 
hg-index and h-index (ρ = .99), hg-index and g-index 
(ρ = .99), and hg-index and hr-index (ρ = .99), among 
others. 

Experimental Setup 

The application of a GAmeans setting several parameters 
such as the population size, probabilities for crossover, and 
mutation or the number of allowed iterations. Its efficiency 
is thus dependent on the chosen parameters. Although 
some researchers calculate ad hoc settings for their 
specific problem, there are general suggestions that work 



consistently well for function optimization (De Jong & 
Spears, 1990; Grefenstette, 1986). In this article, we follow 
Grefenstette’s recommendations with minor changes. 

According to Grefenstette (1986), the population size 
should be 30 individuals. We reduce the number of individu­
als to 20 because our fitness function is time-consuming to 
compute. Even so, our population is sufficient to uncover the 
subset of bibliometric indices with the highest predictive 
power. Crossover probability is .9, whereas mutation prob­
ability is set at .01. We use a single-point coupled crossover 
operator and a single-point mutation operator. The algorithm 
halts after reaching 40 generations or when there is no 
improvement after five consecutive generations. 

In our study, all different structures with p predictive 
variables and r response variables are explored. Because 
the data set includes 12 bibliometric indices, there is a 
total of 4,096 (= 212) different splittings. Once the role of 
predictive and response nodes has been fixed, the GA 
searches for the optimal network structure, which minimizes 
the distance between the real and predicted values. The 
average Mahalanobis distance is used as the fitness function 
of each individual. 

In order to have a fair performance estimation, we choose 
k-fold cross-validation as the procedure for estimating the 
predictive accuracy. This method divides all cases from the 
data set into k disjoint subsets of approximately equal size. 
Each subset is used to test a model that is learned from the 
other k-1 subsets. The k fitness scores are then averaged to 
output the actual estimation (Stone, 1974). In our experi­
ments, we use a value of 5 for k in the cross-validation 
procedure. 

Optimal GBNs 

The result of our GA is a set of 11 optimal GBNs. Each 
model is associated with a different cardinality of predictive 
and response variables, that is, one predictive variable and 
11 response variables, two predictive variables and 10 
response variables, and so on. To assess the improvement 
produced by each optimal network, we first define two 
general and specific baseline values for comparison. Both of 
these baselines correspond to the Mahalanobis distances 
between predicted and real values of the response variables 
when naïve network structures are considered, that is, net­
works without arcs between nodes. 

The general baseline corresponds to the average 
Mahalanobis distance of all naïve structures with the same 
number of response variables, regardless of which variables 
they are. Conversely, the specific baseline accounts for the 
Mahalanobis distance of a naïve structure using the same 
response variables as the network used for comparison. The 
rationale behind this is to confirm that our optimal GBNs are 
better than both general and specific baselines. 

Table 3 shows the list of predictive variables of our 11 
optimal Gaussian Bayesian models, general and specific 
baseline values, and the fitness score for each of them. Note 
that particular fitness scores improve baseline values in all 

TABLE 3. Predictive variables for the identified optimal GBNs: general 
and specific baselines and fitness value for the reported model. 

Number of Optimal predictive variables General Specific Best 
predictors within each network baseline baseline fitness 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

X9 

X3, X4 

X3, X4, X11 

X2, X4, X8, X9 

X2, X5, X6, X9, X12 
X1, X2, X5, X8, X9, X12 

X2, X4, X6, X8, X9, X10, X12 

X1, X2, X3, X5, X6, X7, X10, X12 

X1, X2, X3, X5, X6, X7, X10, 

X11, X12 
X1, X2, X3, X5, X6, X7, X8, X10, 

X11, X12 

X1, X2, X3, X4, X5, X6, X7, X8, 

3.202 

3.013 

2.817 

2.612 

2.398 

2.173 

1.934 

1.675 

1.389 

1.058 

0.649 

3.145 

2.931 

2.812 

2.605 

2.335 

2.120 

1.905 

1.642 

1.377 

1.111 

0.681 

3.025 

2.680 

2.287 

1.941 

1.580 

1.228 

0.835 

0.381 

0.248 

0.111 

0.006 

Note. X1 (documents), X2 (citations), X3 (h-index), X4 (g-index), X5 

(hg-index), X6 (a-index), X7 (m-index), X8 (q2-index), X9 (hr-index), X10 

(hi-index), X11 (hc-index), and X12 (c-index). 

cases. Taking the model with two predictors as an example, 
we observe that the predictive variables are X3 (h-index) and 
X4 (g-index). The set of response variables are X1 (docu­
ments), X2 (citations), X5 (hg-index), X6 (a-index), X7 

(m-index), X8 (q2-index), X9 (hr-index), X10 (hi-index), X11 

(hc-index), and X12 (c-index). Its associated fitness (2.680) is 
lower than both baselines (3.013 and 2.931); that is, the 
predictions of the identified network clearly outperform a 
naïve model with the same number of response variables 
(3.013) and with the same splitting of variables (2.931). 

It is also of interest to compare the performance of the 
best GBNs with one another. To do so, we compute the 
fitness of the models given the data. Classical goodness-of-
fit criteria rank complex models, that is, models with more 
parameters, higher than sparse ones. Nonetheless, a model 
should only have enough parameters to give an adequate 
representation of the association structure underlying the 
data. Acriterion accounting for this trade-off between model 
complexity and goodness-of-fit is the Bayesian information 
criterion or BIC (Schwarz, 1978). BIC penalizes the com­
plexity of a model by an additional term, depending on the 
number of parameters of the model and the sample size. This 
way BIC provides a quantitative measure for model selec­
tion. We select the model with the highest BIC value. 

Table 4 collects the BIC score of each optimal GBN. The 
highest BIC value of all (-6,574.755) is achieved by the 
network with four predictive variables (X2 [citations], X4 

[g-index], X8 [q
2-index], and X9 [hr-index]). The next section 

details its full structure, conditional dependencies, and pre­
dictive performance. 

Discussion of the Best Induced GBN 

The network that performs best within its class (networks 
with four predictive variables), and also across the board, is 
composed of X2 (citations), X4 (g-index), X8 (q

2-index), and 
X9 (hr-index) as predictive variables. 



TABLE 4. Predictive variables for the identified optimal GBNs: BIC 
values for the reported model. 

No. of predictors 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 

Predictive variables 

X9 
X3, X4 

X3, X4, X11 

X2, X4, X8, X9 
X2, X5, X6, X9, X12 

X1, X2, X5, X8, X9, X12 
X2, X4, X6, X8, X9, X 1 0 , X12 

X1, X2, X3, X5, X6, X7, X10, X12 

X1, X2, X3, X5, X6, X7, X10, 
X11, X12 

X1, X2, X3, X5, X6, X7, X8, X10, 
X11, X12 

X1, X2, X3, X4, X5, X6, X7, X8, 

BIC values 

-7,783.949 
-7,028.680 
-7,020.569 
-6,574.755 
-7,106.992 
-6,816.705 
-6,871.926 
-6,933.521 
-6,655.728 

-7,232.618 

-8,037.581 
X10, X11, X12 

Note. X1 (documents), X2 (citations), X3 (h-index), X4 (g-index), X5 

(hg-index), X6 (a-index), X7 (m-index), X8 (q2-index), X9 (hr-index), X10 

(hi-index), X11 (hc-index), and X12 (c-index). 

Network structure. Figure 3 illustrates the network struc­
ture using blue circles for the predictive variables and red 
circles for the response variables. Blue arcs correspond to 
arcs between predictive variables, whereas red arcs corre­
spond to arcs between response variables. Finally, arcs from 
predictive to response variables are in black. 

We examine a set of centrality measures in order to 
analyze the graphical characteristics of the network in 
Figure 3. Centrality degree is defined as the number of arcs 
incident upon a node. Degree is often interpreted in terms of 
the opportunity for influencing any other node. We define 
two separate measures of centrality degree: indegree 
and outdegree. A node’s indegree is the number of arcs 
directed to the node, and outdegree is the number of arcs 
that the node directs to others. Therefore, indegree is the 
number of parents, whereas outdegree is the number of 
children. The centrality degree (CD) values are: CD(X1) = 5; 
CD(X2) = 5; CD(X3) = 7; CD(X4) = 10; CD(X5) = 8; 
CD(X6) = 6; CD(X7) = 7; CD(X8) = 7; CD(X9) = 8; 
CD(X10) = 6; CD(X11) = 7; and CD(X12) = 6. Note that the 
g-index (X4) has a great influence on other indices: It pres­
ents the highest centrality degree (2 + 8 = 10). Also worth 
mentioning is that indices such as hr-index (X9) and hi-index 
(X10) show opposite structures, that is, hr-index (X9) has no 
parents but eight children, whereas hi-index (X10) depends on 
six parents but has no children. At the other end of the scale, 
documents (X1) and citations (X2) show the lowest centrality 
degree with a value of 5, suggesting that they have very little 
influence on the other indices. 

Focusing on the potential relationship between strong 
correlation coefficients and network structure, we observe 
that strong correlations are not a problem for the method 
presented. A potential high correlation coefficient does not 
imply an arc among correlated variables in our GBN. In this 
way, Table 2 shows strong correlations between the 
hg-index and hr-index (ρ = .99) and between the h-index and 
hi-index (ρ = .93), which are not presented as arcs in 

Figure 3. In contrast, the weak correlation between docu­
ments and the m-index (ρ = .45) is presented as an arc in 
Figure 3. The presence of arcs does not depend on potential 
strong correlations; it depends on our GA, which looks for 
the optimal structure that minimizes the distance between 
real and predicted response variable values. 

Dependencies among indices. Based on the definitions of 
the indices (see earlier section on Data Set Compilation), it is 
clear that some of them can be expressed according to the 
values of other indices. For example, the hg-index could be 
expressed in terms of h- and g-index values. Also, the 
q2-index can be defined according to h- and m-index values. 
This is corroborated by the dependencies in the network. The 
h-index (X3) and the g-index (X4) are parent nodes of the 
hg-index (X5) in the network structure of Figure 3, and 
the h-index (X3) and the m-index (X7) are children of the 
q2-index (X8). 

Besides revealing dependencies already present in the 
index definitions, the GBN discovers dependencies that are 
related to, but not directly derived from, but related to index 
definitions. Taking the arc from hr-index to h-index (X9 X3) 
as an example, we note that the information about hr-index 
influences the density function of the h-index, as expected in 
the hr-index, an extension of h-index. 

The arc between the a-index and m-index, (X6 X7) in 
Figure 3 is an example of a dependency that is initially 
expected. Remember that the a-index represents the average 
number of citations received by the articles included in the 
h-core, whereas the m-index represents the median number of 
citations received by the articles in the same h-core. There­
fore, both refer to citations of articles in the h-core. 

Other dependencies, such as the arcs between documents 
and the h-index (X1 X3), citations and the h-index (X2 
X3), g-index and citations (X4 X2), or g-index and h-index 
(X4 X3), are not immediately apparent from the definitions. 
Nevertheless, they have been reported to show a high level of 
correlation (Bornmann, Wallon, & Ledin, 2008b; Costas & 
Bordons, 2008; Schreiber, 2008). There are other network 
dependencies, for example, g-index and hc-index (X4 X11), 
and hc-index and hi-index (X11 X10), which cannot be linked 
to the individual definitions. However, previous works have 
pointed out similar correlations (Franceschet, 2009). 

Conversely, the network included some unexpected arcs. 
In this way, the GBN reported probabilistic dependencies 
between the a-index and the hi-index (X6 X10), the m-index 
and the hc-index (X7 X11), and the q2-index and the c-index 
(X8 X12). 

Conditional independencies among indices. GBNs are a 
powerful tool not only for capturing dependencies, but also 
for identifying conditional independencies among variables. 
Here, we address Markov network properties with the aim of 
discovering such independencies among the nodes of the 
best induced network. The local Markov property states that 
any node Xi in a BN is conditionally independent of its 
nondescendants given the values of its parents. It can be 



FIG. 3. Best GBN structure. Each node represents: X1 (documents); X2 (citations); X3 (h-index); X4 (g-index); X5 (hg-index); X6 (a-index); X7 (m-index); 
X8 (q2-index); X9 (hr-index); X10 (hi-index); X11 (hc-index); and X12 (c-index). Blue nodes correspond to predictive variables (XP), whereas red nodes 
correspond to response variables (XR). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.] 

expressed as I(Xi, nondescendants(Xi) | Π(Xi)). With respect 
to a whole network, the global Markov property states that 
any node Xi is conditionally independent of any other node 
given the values of its Markov blanket (MB). The MB of a 
node includes its parents, its children, and its children’s 
parents. Thus, I(Xi, non-MB(Xi) | MB(Xi)). 

Table 5 lists conditional independencies between the bib-
liometric indices of the network in Figure 3. The list is 
derived from the local and global Markov properties. This 
network identifies conditional independencies in accord with 
index definitions, as well as other conditional independencies 
that are hidden in such definitions. Taking the hg-index as an 
example, we find that, given citations, h-index, g-index, and 
q2-index, the hg-index is independent of documents and the 
hr-index. This suggests that when we know the values of 
citations, the h-index, g-index, and q2-index, the value of 
documents provides no information on the value of the 
hg-index. Focusing on the q2-index, we note that it is condi­
tionally independent of the hi-index given its MB, which 

includes h-index and m-index, among others. Some other 
reasonable conditional independency relationships are also 
listed in Table 5. 

However, there are other conditional independencies that 
are not obvious. According to the definition of the a-index, it 
is reasonable to expect that it is dependent on documents 
and citations. Nevertheless, our model shows that the a-index 
is conditionally independent of documents and citations, 
given the h-index, g-index, hg-index, and hr-index. Similarly, 
one might expect a dependency relationship between 
citations and documents, but the model suggests that the 
relationship is of conditional independency given g-index. 
Remember that the conditional independencies between 
indices encoded in our GBN indicate a probabilistic, not a 
causal, relationship. 

Predicting bibliometric indices. Now, we inspect the 
probabilistic component of the network in Figure 3 and what 
the effect of knowing the values of some variables has on the 



TABLE 5. Conditional independencies among bibliometric indices derived using local and global Markov properties in the GBN of Figure 3. 

Index is conditionally independent of given 

documents 
documents 
citations 
citations 
h-index 
g-index 
hg-index 
a-index 
a-index 
m-index 
m-index 
q2-index 
hi-index 

hc-index 
hc-index 
c-index 
c-index 

citations, q2-index 
hc-index 
documents, q2-index, hr-index 
a-index, hi-index 
m-index, hi-index, hc-index, c-index 
hi-index 
documents, hr-index 
documents, citations, q2-index, hc-index 
citations, hc-index 
citations, h-index, hr-index, hc-index 
h-index 
hi-index 
citations, h-index, g-index, q2-index, 

hc-index 
documents, h-index, a-index, m-index 
documents, h-index, a-index, hi-index 
documents, h-index, hg-index, a-index 
h-index 

g-index, hr-index 
citations, h-index, g-index, hg-index, a-index, m-index, q2-index, hr-index, hi-index, c-index 
g-index 
documents, h-index, g-index, hg-index, m-index, q2-index, hr-index, hc-index, c-index 
documents, citations, g-index, hg-index, a-index, q2-index, hr-index 
documents, citations, h-index, hg-index, a-index, m-index, q2-index, hr-index, hc-index, c-index 
citations, h-index, g-index, q2-index 
h-index, g-index, hg-index, hr-index 
documents, h-index, g-index, hg-index, m-index, q2-index, hr-index, hi-index, c-index 
documents, g-index, hg-index, a-index, q2-index 
documents, citations, g-index, hg-index, a-index, q2-index, hr-index, hi-index, hc-index, c-index 
documents, citations, h-index, g-index, hg-index, a-index, m-index, hr-index, hc-index, c-index 
documents, hg-index, a-index, m-index, hr-index, c-index 

citations, g-index, hg-index, q2-index,hr-index 
citations, g-index, hg-index, m-index, q2-index, hr-index, c-index 
citations, g-index, m-index, q2-index, hr-index, hc-index 
documents, citations, g-index, hg-index, a-index, m-index, q2-index, hr-index, hi-index, hc-index 

TABLE 6. Evidence propagation results using the GBN of Figure 3 as the 
inference tool. 

Variables 

Predictive 
citations 
g-index 
q2-index 
hr-index 
Responses 
documents 
h-index 
hg-index 
a-index 
m-index 
hi-index 
hc-index 
c-index 

Example 1 

Evidences 
853.0 
28.0 
19.4 
15.9 

Predicted 
74.8 
14.9 
20.4 
43.5 
24.4 

5.1 
4.0 

78.9 

Real 
73.0 
15.0 
20.5 
42.9 
25.0 

3.9 
5.0 

80.6 

Example 2 

Evidences 
163.0 

12.0 
10.2 
8.9 

Predicted 
44.4 

8.0 
9.8 

14.4 
12.6 
2.7 
1.8 

15.4 

Real 
43.0 

8.0 
9.8 

14.0 
13.0 
1.6 
1.0 

14.8 

Example 3 

Evidences 
10.0 
3.0 
2.4 
2.8 

Predicted 
14.1 
1.9 
2.4 
4.1 
3.6 
0.5 
0.4 
2.4 

Real 
13.0 
2.0 
2.4 
3.0 
3.0 
0.4 
0.0 
2.8 

others. In doing so, we use evidence propagation to compute 
the probability distribution of other variables given the avail­
able evidence. Using the values of the predictive variables, 
that is, citations (X2), g-index (X4), q2-index (X8), and 
hr-index (X9), the GBN is able to predict the (expected) 
values of the response variables: documents (X1); h-index 
(X3); hg-index (X5); a-index (X6); m-index (X7); hi-index 
(X10); hc-index (X11); and c-index (X12). 

Table 6 presents three inference examples. It shows the 
evidence values for the predictive variables and the predic­
tions made by the network in Figure 3 for the response 
variables. These predictions are the mean vector (jU™=x) of 
the conditional distribution of Y given X, which is computed 
with Equation (7). The real values of the response variables 
are also shown for comparison against predictions. Three 
different examples ranging from high, medium, and low 
values are set as evidence. 

In example 1, we fix citations = 853, g-index = 28, 
q2-index = 19.4, and hr-index = 15.9. After setting the evi­
dence, we compute the predicted values of the response 
indices. Results in Table 6 show that predicted values are 
very close to real values. Regarding documents, h-index, and 
hg-index, we observe that predictions are 74.8, 14.9, and 
20.4, whereas the real values were 73.0, 15.0, and 20.5, 
respectively. In example 2, values of citations = 163, 
g-index = 12, q2-index = 10.2, and hr-index = 8.9 are set as 
evidences. Predictions are again very close to actual values. 
Remarkably, predicted and real values are equal for h-index 
and hg-index. Last, example 3 sets citations = 10, 
g-index = 3, q2-index = 2.4, and hr-index = 2.8. Given these 
values, differences between real and predicted values are 
also slight. 

Discussion and Conclusions 

Bibliometric indices are presently an increasingly impor­
tant topic for the scientific community. Many bibliometric 
indices have been developed in order to consider previously 
uncovered aspects. In this context, some researchers have 
recently turned their attention to the predictive power of 
bibliometric indices in many situations. The result is that the 
scientific community now faces the challenge of selecting 
from this pool of bibliometric indices those that have higher 
predictive power. 

A review of the literature presents some recent works 
(Vieira et al., 2014a, 2014b) that analyzed the success of 
models based on bibliometric indices in predicting the rank­
ings of applicants to academic positions at the university. As 
with our work, they learned different models to assess the 
predictive power of bibliometric indices. Their rank-ordered 
logistic regression models were composed by indicators 
related to the quantity and impact of scientific production, 
impact of the publication source, prestige of affiliation insti­
tution, and collaboration. Unlike our multioutput regression 



approach, they only predict a response variable. Also, they 
did not face the problem of selecting the role (predictor or 
response) of each variable. Finally, their results suggested 
that the models could predict the result of peer review with 
a reasonable degree of accuracy. 

Unlike these studies, we present a novel method to 
uncover a relevant core subset of indicators for prediction 
purposes given a set of bibliometric indices. The selected 
bibliometric indices are popular indicators to evaluate indi­
vidual scientists and also have an influence on the scientific 
community. Despite this, most of them are size-dependent 
indicators, which sometimes behave in a counterintuitive 
way because of the inconsistencies associated with the 
mechanism used to aggregate publication and citation sta­
tistics into a single number. This article does not argue in 
favor of the selected indicators as the best bibliometric 
indices to evaluate research performance; we select them as 
an example of GBN variables in order to give a practical 
example using the proposed method. 

Given a data set of bibliometric indices, we tackle the task 
of selecting which subset best corresponds to predictive 
variables and which group can be considered as response 
variables. The goal is to simultaneously predict a set of 
response variables fromasetof predictive variablesby means 
of multioutput regression. This results in a novel multioutput 
regression problem where the role of each variable (predictor 
or response) is unknown beforehand. 

Having split predictive and response variables, we learn a 
GBN structure to identify relationships among bibliometric 
indices and for prediction purposes. GBN structure learning 
is based on a GA, which optimizes the distance between real 
and predicted response variable values. The best network is 
the one that minimizes the Mahalanobis distance between 
real and predicted values and has the highest BIC value 
among the 11 optimal models with different cardinality. 
Although we conducted an exhaustive analysis to evaluate 
all possible configurations of predictive and response vari­
ables in order to identify the relevant predictive core set of 
bibliometric indices, a GA could be used for exploring the 
search domain of different configurations of predictive and 
response variables. 

In our specific problem with full professors, our findings 
provide information on which subset of bibliometric indices 
has the highest predictive power. We observe that the bib-
liometric core is composed of citations, the g-index, the 
q2-index, and the hr-index. This means that when we know 
the values of these bibliometric indices, the values of the 
other eight indices can be predicted with a high degree 
of accuracy. Analyzing its structure, we notice that it 
matches many expected dependencies among indices. In 
addition, the model is able to discover new knowledge when 
combined with the index definitions and sheds light on 
unreported conditional (in)dependencies between the 
indices. 

Finally, the proposed method does not require any spe­
cific values of predictive and response variables. Also, it is 
not affected by specifications, such as the number of obser-

vations or variables of the data set. In this way, the method 
can be applied to any data set. Obviously, the results usually 
depend on the selected data set. Despite this, we believe that 
similar bibliometric indices relationships could be also 
learnt using different data sets. 

In the future, we intend to build alternative models using 
different BN induction algorithms. It would also be worth­
while to extend the domain of our data collection to overseas 
researchers and professors alike. These new models could 
also incorporate other bibliometric indices in order to cover 
a larger part of the bibliometric domain. 
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Appendix 
In this appendix, we provide a small, practical example 

on how to perform the calculations of GBNs and GAs. 
Given a set of predictive variables X= {A, B} and response 
variables Y= {C, D}, we learn a GBN using a GA. This GA 
explores different GBN structures and selects the best GBN 
structure that minimizes the distance between real and pre­
dicted response variable values. All steps required to achieve 
the above goal are detailed here. 

GA—Initial Population 

The first step of a GA consists of the initialization of 
possible solutions. The initial population of our GA (20 
individuals) is randomly generated from a Bernoulli distri­
bution. Each individual of the population represents a GBN 
structure described by an adjacency matrix. The entries aij of 
the adjacency matrix represent arcs among nodes, such that 
aij = 1 if, and only if, an arc exists from node i to node j, and 
aij = 0 otherwise. Here, we show some examples of adja­
cency matrices. 

Individual-1 

0 0 1 1 

0 0 0 1 

0 0 0 0 

0 0 0 0 

Individual-3 

0 0 0 1 

0 1 1 1 

0 0 0 0 

0 0 1 0 

0 

Individual-2 

0 1 1 1 

0 0 1 1 

0 0 0 1 

0 0 0 0 

Individual-20 

0 1 0 1 

0 0 1 0 

0 0 0 1 

0 0 0 0 



Once the population is generated, the following GA steps 
improve initial individuals through repetitive application of 
the selection, crossover, and mutation operators. 

GA—Fitness Function 

The next step is to compute a fitness score (in our case, 
the Mahalanobis distance between real and predicted 
responses) for each individual of the population using Equa­
tion (9). The complexity of this function lies in the calcula­
tion of the predicted values because it is necessary to learn 
the parameters of a GBN given a fixed structure and then 
forecast the predicted values given specific evidences. For 
the sake of simplicity, we only show how to compute the 
fitness score associated with Individual-1. 

Learning the GBN Parameters The GBN is defined as a 
pair of elements: the structure represented by the selected 
adjacency matrix (see Figure 4) and its joint probability 
distribution, which can be specified by the product of a set of 
conditional probability distributions, that is, 

f(a, b, c, d) = f(a)f(b)f(c\a)f(d\a, b) 

where 

f(a) ~ N(}1A, vA) f(c\a) ~ AfQiC + PAC(a - fiA), vC) 

f(b) ~ Af(jiiB, vB) f(d\a, b) ~ M{{1D+ PAD(a- J1A) + PBD(b- J1B), vD) 

The parameters involved in this representation are 
/LLT = (JLLA, \XB, HC HD), VT = (vA, vB, vC, vD) and f? = (PAC, PAD, 

/3BD). These values can be computed from the training data. 
The first vector represents the mean values of variables, the 
second vector includes the conditional variance of a variable 
given its parents (they can be calculated using Equation [5]), 
and the third vector represents the regression coefficients 
between variables. For JUA = JUB = JUC = JUD = 0.00, 
vA = vB = vC = vD = 1.00, PAC = 1.00, PAD = 0.20, and 
PBD = 0.80, we get the following conditional probability 
distributions: 

f(a) ~ A/̂ O.OO, 1.00) f(c\a) ~ AT (a, 1.00) 

f(b) ~ A/̂ O.OO, 1.00) f(d\a, b) ~ ^(0.20a + 0.80b, 1.00) 

The GBN model can be also defined by the mean vector 
and the covariance matrix X. In order to calculate the cova-

riance matrix, we first calculate its inverse matrix, the W 
precision matrix, using Equation (6). After four iterations, 
we get 

1 

vA 

W 

PAC PAD PADPBD ~PAC ~PAD ] 

vC 

PBDPAD 

vD 

~PAC 

vC 

-PAD 

vD vD 

i plD 

vB vD 

0 

-PBD 

vC 

0 

1 

vC 

vD 

PBD 

vD 

0 

1 

D D 

Finally, with the number above, we have 

2.04 0.16 -1.00 

0.16 1.64 0.00 
W 

2 

0.20^ 

0.80 

-1.00 0.00 1.00 0.00 

-0.20 -0.80 0.00 1.00 J 

1.00 0.00 1.00 0.20 \̂ 

0.00 1.00 0.00 0.80 

1.00 0.00 2.00 0.20 

0.20 0.80 0.20 1.68 J 

Exact Evidence Propagation in GBN 

Once the GBN is induced, we predict the response variables 
values using Equations (8) and (9). These equations require 
the submatrices of the covariance matrix X, the mean vector 
of predictive variables fix, the mean vector of response vari­
ables jUy, and the evidences x associated with the predictive 
variables. In the example, given the evidence xT = (A = 1.00, 
B = 3.00), the response variables yT = (C, D) are calculated 
as follows: 

p = IIY+^YX^XX(.X-Ilx) 

FIG. 4. GBN structure of Individual-1. 

o.oo^ n.oo o.oovi.oo o.ooy1 

O.OoJ + [o.20 0.8oJ[o.OO 1.00 J 

fixxn f o.ooy 
t3.00Jt0.00J J 
l .CXTj 

2.60J 

— 2JYY — ^YX^XX^XY 

f2.00 0.20^ fl.00 

1,0.20 1.68J 1,0.20 fi.oo o.ooy Vi.00 
[o.oo 1.00J [o.oo 
fl.00 0.00^ 

1,0.00 1.00 J 

0.00^ 

0.80J 
0.20^ 

0.80J 
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After computing these equations, we conclude that vari­
able C follows a Gaussian distribution J\f (1.00,1.00), 
whereas variable D follows a distribution J\f (2.60,1.00), 
given the evidences A = 1.00 and B = 3.00. Thus, the vector 
of predicted values is y'T = (C = 1.00, D = 2.60). 

Mahalanobis Distance as Fitness Score 

The Mahalanobis distance between real and predicted response 
variable values is used as the fitness score for each individual of 
the search population in the GA. This function (see Equation 
[9]) requires three parameters: the covariance matrix of the 
response variables and two vectors representing the real and 
predicted values of the response variables. Given the vector of 
actual values for the response variables, yT = {C = 1.00, 
D = 2.50}, the vector of predicted values y'T = {C= 1.00, 
D = 2.60}, and the covariance matrix of the response variables, 
the Mahalanobis distance (MD) can be calculated as 

MD(y, / ) = y(y-y)Zy1 ( j -y ' ) 

'1.00 

v2.50 

'1.00 

v2.50 

0.07761505 

1.00 

2.60 

1.00 

2.60 

2.00 0.20 

0.20 1.68 

The value just shown represents the Mahalanobis dis­
tance related to one case of the testing set. The final fitness 
score of Individual-1 corresponds to the mean value of all 
Mahalanobis distances associated with the testing cases. 

The processes of inducing the GBN model, propagating 
new evidences, and calculating the Mahalanobis distance is 
repeated for all individuals within the population, achieving 
a fitness score for each of them. 

GA—Selection Criterion 

After computing the fitness scores of the current population, 
we proceed to select which individuals will mate to create 
new individuals. We use an elitist strategy, which chooses the 
best N/2 individuals from the population for reproduction. 
Considering that the aim is to minimize the distance between 
real and predicted response variable values, the lower the 
fitness score, the fitter an individual is. Given the fitness 
scores of the current population, the selected individuals are: 

Individual 

Individual-l 
Individual-4 
Individual-7 
Individual-8 
Individual-11 
Individual-12 
Individual-l 5 
Individual-18 
Individual-19 
Individual-20 

Fitness 

0.12 
0.51 
0.48 
0.22 
0.09 
0.21 
0.43 
0.26 
0.43 
0.11 

Selected 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Individual 

Individual-2 
Individual-3 
Individual-5 
Individual-6 
Individual-9 
Individual-10 
Individual-l 3 
Individual-14 
Individual-16 
Individual-17 

Fitness 

0.85 
0.72 
0.61 
0.82 
1.32 
0.97 
0.74 
0.63 
0.88 
1.05 

Selected 

No 
No 
No 
No 
No 
No 
No 
No 
No 
No 

Finally, the 10 selected individuals (parents) are moved 
into a mating pool where they are combined by crossover 
and mutation operations. 

GA—Crossover and Mutation 

The selected parents are randomly mated in pairs to 
create 10 new children by combining their genotypic infor­
mation. Given the codification of the parents as strings, we 
randomly choose, with a fixed probability, a crossover point 
at which the information is exchanged. This is called single-
point crossover. Based on this point, the strings of both 
parents are split into two segments each. The first offspring 
takes the first section from the first parent and the last part 
from the second, whereas the second offspring is formed 
conversely. Here, we show how the crossover operator in the 
pair formed by Individual-1 and Individual-20 works. 

Individual-l 

(0 0 1 1^ 

0 0 0 1 

0 0 0 0 

,0 0 0 0y 

(a11, a12, a13, a14, ^2 1 , • • • , ^42, ^43, ^ 4 4 ) 

Individual 

(0 1 0 1\ 
0 0 1 0 

0 0 0 1 

0 0 0 0) 
u42, w 43, ^44 

(0, 0, 1,1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) (0, 1, 0,1, 0, 0, 1, 0, 0, 0, 0,1, 0, 0, 0, 0) 

Assuming a crossover point in the eighth bit, new offspring 
are 

(0, 0,1,1, 0, 0, 0,1, 0, 0, 0,1, 0, 0, 0, 0) 

(0,1, 0,1, 0, 0,1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

Finally, the mutation operator introduces some extra vari­
ability into the new offspring by random changes on a low 
probability basis (mutation probability). A bit from the off­
spring binary strings is randomly chosen and flipped in the 
example. That is, 

First offspring Second offspring 

(0, 0, 1, 1, 0, 0, 0,1, 0, 0, 0, 1, 0, 0, 0, 0) (0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

First mutated offspring Second mutated offspring 

(0, 0, 1,1, 0, 0, 1,1, 0, 0, 0, 1, 0, 0, 0, 0) (0, 0, 0,1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

GA—Merging Procedure 

Once the new individuals are generated, their fitness 
score is also calculated. After that, an elitist strategy yields 
the new population of individuals by combining the 20 indi­
viduals from the previous population with the 10 new ones. 
Only the top-ranked 20 individuals are moved into the new 
population. 

GA—Stopping Criteria 

The GA finishes when a set of conditions are fulfilled. 
Here, reaching 20 generations or no improvement over 
five sequential generations constitutes our stopping criteria. 

T 



The individual with the lowest fitness score in the final 
population is considered to be the solution to the optimiza­
tion problem, that is, it is the GBN that minimizes the 
distance between real and predicted response variable values 
using {A, B} as predictive variables and {C, D} as response 
variables. 

The same process is run using all different combina­
tions of predictive and response variables. After reaching 
all different solutions, the result is a set of three optimal 
GBNs. Each model is associated with a different 

combination of predictive and response variables, that is, 
one predictive variable and three response variables, two 
predictive variables and two response variables, and, 
finally, three predictive variables and one response vari­
able. From these optimal solutions, only the best GBN 
model is retained. The BIC value is used to quantitatively 
assess which of the models to retain. The resulting model 
is expected to uncover the best core set of relevant indices 
with the highest predictive power in forecasting bibliomet-
ric indices. 


