M easuring Technological Distance for Patent M apping

Bowen Yan

SUTD-MIT International Design Centre
& Engineering Product Development Pillar
Singapore University of Technology and Design
8 Somapah Road, Singapore 487372
Email: bowen_yan@sutd.edu.sg

Jianxi Luo’

SUTD-MIT International Design Centre
& Engineering Product Development Pillar
Singapore University of Technology and Design
8 Somapah Road, Singapore 487372
Email: luo@sutd.edu.sg

" Corresponding author



Abstract

Recent works in the information science literathieve presented cases of using patent
databases and patent classification informatiorcdostruct network maps of technology
fields, which aim to aid in competitive intelligemanalysis and innovation decision making.
Constructing such a patent network requires a propeasure of the distance between
different classes of patents in the patent clasgibn systems. Despite the existence of
various distance measures in the literature, itnslear how to consistently assess and
compare them, and which ones to select for constqupatent technology network maps.
This ambiguity has limited the development and iapgibns of such technology maps.
Herein, we propose to compare alternative distameasures and identify the superior ones
by analyzing the differences and similarities ie structural properties of resulting patent
network maps. Using United States patent data ft&6 to 2006 and International Patent
Classification system, we compare 12 representdistance measures, which quantify inter-
field knowledge base proximity, field-crossing disiéication likelihood or frequency of
innovation agents, and co-occurrences of patessefain the same patents. Our comparative
analyses suggest the patent technology network ivaged omormalized co-referencend

inventor diversification likelihoodheasures are the best representatives.

Keywords. information mapping, patents, innovation, tecloggl networks, technological

distance



1. Introduction

To pursue innovation, inventors, companies &DRorganizations, cities or countries
continually diversify to explore technology fieldgferent from their past ones, or combine
their existing knowledge with those of new fields luild new technological capabilities
(Schumpeter, 1934; Dosi, 1982). Therefore, innovatcan be viewed as a process of
searching and combining knowledge across diffeteshnology fields. The variety of
technology fields together constitutes the “tecbgglspace”, in which the fields may have
different distances between each other (Teece.,el@94; Breschi et al., 2003; Kay et al.,
2014). In turn, the heterogeneous structure of tdalnology space may condition the
diversification paths or knowledge recombinatiorogpects of innovation agents (e.g.,
Thomas Edison, Google, China) with different knalge positions in the space, and
condition the development potentials of specifehtelogies (e.g., fuel cells, robots, aircrafts)

given the positions of their knowledge base invitwele technology space.

Recent studies have proposed to representettteidlogy space as a network map of
technology fields based on mining patent data (esgorff et al., 2014; Kay et al., 2014;
Nakamura et al., 2014). In such a network, a vergpresents a technology field and is
operationalized as a patent technology class. Téighted edge between a pair of vertices
denotes the distance between the vertex-represestkdology fields. One can also overlay
such a network map by highlighting a subset ofiighat are associated with a technological
design domain of interest (e.g., robotics, fuellsjelor the innovative activities of an
innovation agent (Kay et al., 2014). Fig. 1 illasas an example of the network overlaid with
a subset of highlighted fields where Google Ina haen granted US patents over time. Such
an overlay map locates the fields where a speagfent has developed innovation capabilities

and also reveals the evolution of such capabilities

Assessment of the relative network positionshef subset of fields on the overlaid map
may illuminate new fields that are proximate tonthen the technology space and present
great knowledge recombination potential with thédeiing, 2001; Nakamura et al., 2014).
Such analyses may also lead to insights on thectdiress and paths of technology
diversification of an innovation agent, e.g., firaity or country (Breschi et al., 2003; Rigby,
2013; Boschma et al., 2014), or help forecast dgweent directions and potentials of an
emerging technology, e.g., fuel cells or solar x€Kajikawa et al., 2008; Ogawa and
Kajikawa, 2015; Benson and Magee, 2013; 2015), mgitres locations of its established

knowledge base in the technology space. In genswah a map of technology fields will be



useful to aid in technology road mapping of innaatgents or technology-based industries

and forecasting development directions of emertgegnologies.
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Fig. 1. Example of the technology network map overlaid wibogle’s knowledge positiodsEach vertex
represents a 3-digit technology class defined énltiternational Patent Classification (IPC) systand its size
corresponds to the total number of patents in thesdrom 1976 to 2006. An edge between pairs dfces is
measured as inventor cross-field diversificatidellhood (see details of the measure in Section® Zection
3.2). The original network is extremely dense. Tikevork visualized here contains the maximum spantriee
(i.e., a minimal set of edges that connect alliwestand maximize total edge weights) as the bawkiptus the
strongest edges, which together make the total purob edges be twice of the vertices, as suggesyed
Hidalgo et al. (2007) for best visualization. A tex is highlighted in red color if Google had patem the
corresponding technology class in a given timequkrDetails about this network are in Section 4.1.

For such a network to adequately representdblenology space requires an appropriate
measure of the distance between different techydietls (Jaffe, 1986; Joo and Kim, 2010;
Altuntas et al., 2015). Although various distanceasures have been proposed from different
perspectives in the literature (see a review ofntleasures in Section 2), they have not been
assessed and compared using consistent critemgtodology. It is unclear which measures
are superior for the purpose of constructing tetdgynetwork maps, and which measures
are more representative of the others. This amiyiguas limited the use of technology
network maps in technology forecasting and roadaregbyses.

In this paper, we recognize that the choicentdr-field distance measures determines the
structure of the technology network to be cons&dgctwhich in turn influences the

innovation-related insights to be drawn from thémwek analysis. Following this logic, we

L Fig. 1 highlights that Google’s first patents waréPC class GO6omputingin 2003. Later, Google diversified into
additional fields. In 20086, it had patents in Hfi8ctronic circuitry HO4 electronic communicatioand HOSelectric
techniquesand G10music instruments and acousti@s addition to GO6. These new fields appear tpioximate to the
original field G06, within the core of the techngjonetwork map.



propose a strategy to use the structures of theatb¥echnology networks resulting from the
choices of distance measures as the lens or pldato@ssess and compare corresponding
measures. We also demonstrate this strategy threuglomparative analysis of twelve
alternative distance measures, by using a few n&twetrics and patent data from United
States Patent and Trademark Office (USPTO). Thesdvé measures are chosen as
representatives of the main types of distance meadu the literature. Our analyses yield
new understandings on the differences and siméardf these measures, and also shed light
on some of these measures that yield more repegsenmnetwork maps than others for
constructing technology network maps.

The paper is organized as follows. We firstveyrthe literature on various quantitative
measures of the distance of technology fields iati&e 2. Section 3 introduces our data,
methodology and twelve distance measures. Sectrepatts and discusses results. Section 5

concludes the paper with suggestions for futurekwor

2. Literaturereview: Measures of distance between technology fields

In the literature, various technological distarmeasures have been developed, using the
information of references, classifications and mee identities in patent documents. Some
of these measures were noted as “technologicalimryX, which is direct reverse concept of
technological distance (Jaffe, 1986; Leydesdorélgt2014).

2.1 Patent reference-based measures

One strand of the measures uses patent citatformation to calculate indicators of
knowledge distance of different technology fieler instance, to construct the network map
of IPC classes, Leydesdorff et al. (2014) usedcttene similarityindexto normalize the
citing-to-cited relationships between technologssks in an aggregated citation matrix. The
angular cosine value of the two vectors of citatitnom two classes to other classes captures
the similarity of their knowledge bases. Kay et(@aD14) also used the cosine similarity as
the measure of technological distance among diffepatent categories, some of which
combine original IPC patent classes to optimizesike distribution of classes for the sake of
visualization. Indeed, Jaffe (1986) was the fiosptopose this index for technology mapping,
whereas he used it to measure the correlation leetwbe vectors representing the
distributions of firms’ patents in a set of teclogy fields.

In addition, to measure the knowledge distabegveen patents;o-citations i.e., the
number of shared forward citations of two patemtsd bibliographic coupling i.e., the
number of shared backward citations (i.e. refergnoé two patents, were popularly used



(lwan von Wartburg et al., 2005; Leydesdorff anduglaan, 2006). A co-citation index can
be further normalized over the total number oftwtes for each article, i.e., th#accard

index(Small, 1973), or over a probabilistic measurexgected co-citation counts (Zitt et al.,
2000). The formulas of co-citations or bibliograpbbupling of patents or academic articles

can be adopted to measure and indicate the distdmtifferent technology classes.

2.2 Patent classification-based measures

Scholars have also used the “co-classificatinfdrmation of patents to develop indicators
of the distance between technology classes. A pditelongs to at least one, but usually
multiple classes assigned by the patent examinérsh@ issuing offices. Using this
information, the distance between technology fields be indicated by the co-occurrence of
classification codes assigned to individual patéotuments (Engelsman and van Raan,
1994). The assumption is that the frequency in Wwiteo classes are jointly assigned to the
same patents will be high if these two classepeoeimate. This assumption is similar to the
survivor principle in economics (Stigler, 1968), which suggests thatviving firms’
behaviors are more observable in empirical dataalmse they are more efficient and thus
make firms survive and observable.

Jaffe (1986) was also the first to apply tlesine indexo measuring the distance of firms’
technological portfolios based on the symmetricatrm of the frequency of two technology
classes being jointly assigned to the same patahbelongs to the observed firms. Later, the
cosine index was adopted for the general symmetrimaccurrence matrixn which each
cell represents the total number of patents thateamsigned with both technology fields
represented by the respective row and column (Bregcal., 2003; Ejermo, 2005; Kogler et
al., 2013). Leydesdorff and Vaughan (2006) argusat the symmetrical co-occurrence
matrix contains similarity data and can be analydieelctly, whereas further normalization of
the co-occurrence matrix using the Pearson coiwelar cosine may distort the data and
generate spurious correlations.

Leydesdorff (2008) further proposed to analymeasymmetrical classification assignment
matrix, with patents as the units of analysis ahe technology classes as the column
variables, and use the cosine index to associaedlumn variables. He also found that
networks built using classification data match ppavith those generated by citation data,
and the classification data might be less usefa tto-citation data for technology network
mapping, primarily because the classifications wassigned poorly by the ISI staff. In
addition, Joo and Kim (2010) also argued that essification measures may not directly
assess the distance of technology fields and peabds create a multi-dimensional



contingency table to represent patent classifioatiata and apply the Mantel-Haenszel
common odds ratio on the table for measurement.

Furthermore, Nesta and Dibiaggio (2005), usthg typical co-occurrence matrix,
measured the deviation of the number of observéehashared between classes from the
expected number of randomly shared patents, inrdadeeveal the distance among fields,
following Teece et al. (1994) who initially devebxp this normalization method to measure
the distance between industrial fields. This measakes d-statistic form and adjusts for the
effects of class sizes. Similarly, recognizing thmeven importance of different patents and
their classes, Altuntas et al. (2015) used the ofaf@rward citations of each patent and of the
size of each technology class in terms of totaémiacount to weight each patent occurring
between a pair of technology classes, when coutli@gccurrences of the same patents in a
pair of classes.

2.3 Likelihood of diversification as measures ctalce

Another group of measures utilizes the data omlfoebssing diversification behaviors of
innovation agents (e.g., countries, regions, Gitbeganizations or inventors) to indicate the
proximity (the reverse of distance) between tecbgyplfields. In studying the product space,
Hidalgo et al. (2007) measured the proximity betwieo product categories in terms of the
likelihood for an average country to develop stroglgtive comparative advantage (RCA) in
one product category, given that it has developexhg RCA in the other. The assumption is
that this likelihood is high if the capabilitiesqueéred to produce products in one category are
similar to those required to produce another prodimcother words, the likelihood of the
diversification of countries across two productegaties may indicate the proximity of the
knowledge base of these two product categoriesctBoa et al. (2013) applied the same
proximity measure to studying the diversificatioh productive capabilities of different
regions in Spain based on export product categories

Although the studies of product space were basedxort and import data and the
custom classifications of products, their proxinmtgasure can be adapted to patent data and
patent technology classifications. For instancenahematically similar index called the
revealed technological advantage (RTA) has beerd use measure the pattern of
technological specialization of innovation ager@arftwell and Vertova, 2004; Hall et al.,
2001). Boschma et al. (2014) applied this measumalculating the likelihood of technology
diversification at the region and city levels, ars®d such a likelihood as edge weight in the

network of patent technology classes.



In parallel, Teece et al. (1994) estimated how mihehfrequencies that firms diversify in
combinations of 4-digit SIC industries deviate frarhat one would expect if diversification
patterns were random. They called it a “survivosdzhmeasure”, because their inspiration
was from thesurvivor principlein economics (Stigler, 1968), which suggests #fatient
firms survive and contribute to empirical obsergat and regularity. Following the survivor
principle, Teece et al. argued that one can obs#raefirms diversify more often across
industries that are more proximate, so that the bminof diversifying firms in a pair of
industries may indicate the distance of the indestParticularly, this measure is superior in
that it extracts the information about the trudatise in the number of empirical observations
by comparing it to the expected value under theothygsis that diversification is random and
not affected by the true distance. In doing s@adjusts for industry size such that it can be
compared consistently across industry pairs. Dedpiting initially developed to measure
industry distance, this measure can be easily dgesl to measure the distance of technology

fields, based on patent data.

2.4 Other measures

In addition to the information on references, dfasgtions, and inventor identities in
patent documents, patent texts have also beenzaaty measure the distance of different
technologies and fields. For instance, Nakamural.e{2014) measured the technological
distance of patents in the sub-domains of autoraddld aircraft industries by using cosine
similarity of the vectors representing occurrenegfiencies of words in the patent titles and
abstracts of pairs of sub-domains. Fu et al. (2@i8posed a technological distance measure
as the text similarity between patents in termshef functional meanings of the verbs that
appear in the description texts of patents. Infdionaof “functional similarity” is useful,
because those different solutions or mechanismd uselifferent inventions to address

similar functions present great potential to benebined into new technologies.

Despite the variety of distance measures in tleedlitire, they have not been assessed and
compared using a consistent methodology or criteribo address this gap, this paper
presents a strategy and methodology to assess amgbace alternative measures by
investigating the similarities and differences e tstructures of their resulting technology
networks. To implement this strategy, we analyzelwes distance measures that belong to the

categories of measures reviewed in Section 2.1aid2.3, respectively.



3. Data and methodology

3.1 Data

The vertices in our technology network mapspatent classes defined in the International
Patent Classification (IPC) system, following maotkier authors who have considered IPC
classes the most suitable and stable represergatiotechnology fields (Leydesdorff et al.,
2014)2 The IPC system includes 8 broad technical domaitsch can be subdivided into,
for example, 3-digit and 4-digit level subclasseer the best visualization without losing
necessary details and resolution of the technolaggscape, we chose 3-digit classes to
represent vertices in networks. Some undefinedsetador example, “A99 - subject matter
not otherwise provided for in this section,” arecleded from the analysis. As a result, the
networks contain 121 vertices, i.e. 3-digit levEeCl classes. We use the patent data from
1976 to 2006 from United States Patent & Traden@ifice (USPTO) and NBER Patent
Data Project The data set contains 3,186,310 utility pateBésh patent is classified in one
or multiple IPC classes.

3.2 Distance measures

The literature review has shed light on at least frategories of distance measures:

1) the proximity (either similarity or relatedness)lofowledge bases of the innovation
activities in a pair of technology fields, usingqra citation data;

2) the likelihood for the same innovation agents ,(iventors, R&D organizations, or
countries) to invent technologies in a pair of teabgy fields, using data on the
successful patenting records of the agents (nevhich classes one has patents);

3) the frequency to observe the same innovation agewsiting technologies in a pair
of technology fields, using data on the succegsdténting records of the agents;

4) the frequency to observe a pair of technology $§iefebing assigned to the same
patents, using data on the co-classifications teris.

In this paper, we choose to analyze 3 specific oreasthat are most representative for

each above category, totaling 12 measures. Tatleninarizes these 12 measures that follow

respective rationales.

2 This paper focuses on comparing vertex distanasuares, so vertex definitions are fixed. Futureassh may conduct
similar analyses based on different definitionseatices, such as United States Patent Classeseaently proposed hybrid
patent categories (Kay et al. 2014; Bensen and Magdes; 2015).

3 NBER Patent Data Project website: https://sites.lgoogm/site/patentdataproject/Home



Table 1 Twelve distance measures in four different catiegor

Rationale Datarequired M easures Definitions
A: Similarity or Patent references Al: Normalized co- The count of shared citations, normalized by the
relatedness of reference count of all unique citations of patents in a pair
knowledge bases of classes
A2: Class-to-class The cosine of the angle of the two vectors
cosine similarity representing two technology classes’

distributions of citations into all patent classes
A3: Class-to-patent  The cosine of the angle of the two vectors

cosine similarity representing two technology classes’
distributions of citations into unique patents
B: Likelihood for Bibliographical B1: Inventor Minimum of the pairwise conditional
innovation agents  information of diversification probabilities of an inventor having stronger than
to diversify across inventors, likelihood average patenting records in one class, given that
fields assignees and he also has stronger than average records in the
regions other
B2: Organization Minimum of the pairwise conditional
diversification probabilities of an organization having stronger
likelihood than average patenting records in one class,

given that it also has stronger than average
records in the other.

B3: Country Minimum of the pairwise conditional
diversification probabilities of a country having stronger than
likelihood average patenting records in one class, given that
it also has stronger than average records in the
other
C: Frequency to Bibliographical C1: Inventor co- The deviation of the number of shared inventors
observe innovation information of occurrence frequency of a pair of technology classes from the expected
agents diversifying inventors, value under the hypothesis that diversification
across fields assignees and patterns are random.
regions C2: Organization co- The deviation of the number of shared inventing

occurrence frequency organizations of a pair of technology classes
from the expected value under the hypothesis
that diversification patterns are random.

C3: Country co- The deviation of the number of shared inventing

occurrence frequency countries of a pair of technology classes from
the expected value under the hypothesis that
diversification patterns are random.

D: Frequency for  Information of D1: Normalized co-  The number of shared patents of a pair of
technology fields to multiple classes classification technology classes, normalized by the number of
share same patents assigned to the all unique patents in both classes.
same patent D2: Co-classification The cosine of the angle of the two vectors
cosine similarity representing two technology classes’

distributions of shared patents with all other
technology classes.
D3: Patent co- The deviation of the number of shared patents of
occurrence frequency a pair of technology classes from the expected
value under the hypothesis that classes are
randomly assigned to patents.

The first group of measures (Al, A2 and A3) usesittiormation of backward citations
(i.e. references) of patents, which represent tieMedge inputs to innovation activities, to
measure either relatedness or similarity of knogdeldases or inputs of different classes.

Al. “Normalized co-reference”: the count of shareferences, normalized by the total

count of all unique references of patents in a pholasses, formulated as

10



Co-Reference |Ci N Cj| 1
| i CJ| 1)

where Cj and C; are the numbers of backward citations (i.e., refees) of patents in

technology classesandj; | NC| is the number of patents referenced in bothreldyy

classesi andj, and|cUC| is the total number of unique patents refexd in both

technology classasandj, respectively. It is also known as the Jaccaréxndaccard, 1901).

A2. “Class-to-class cosine similarity”: the cosimé the angle of the two vectors
representing two technology classes’ distributiasfs citations into all patent classes
(Leydesdorff, 2007), formulated as

C,C.

Cosine( j ):\/%h 2)
whereCj denotes the number of citations referred from rgaten technology classto the
patents in technology clagsk belongs to all the technology classes. The cosatee is
between [0,1] and indicates the similarity of tm@Wledge bases of two fields.

A3. “Class-to-patent cosine similarity”: the cosimé the angle of the two vectors
representing two technology classes’ distributiohgitations into specific unique patents
instead of aggregated classes. The same formu(@)aapplies, butCj now denotes the
number of citations of all patents in clas® the specific patent Measure A3 has a better

resolution than measure A2, whereas computatishgistly more complex.

The next two groups of measures, B1-B3 and C1-Qjlasly utilize the patent
information related to successful inventive behes/iof different types of agents (inventors,
organizations and countries) in terms of which s#astheir patents are assigned in. These
measures generally indicate the likelihood or fexguy that innovation agents diversify
across a pair of technology fields. We separatenth#o two groups, B and C, due to the
difference in their mathematical formulas.

B1. “Inventor diversification likelihood”: minimumof the pairwise conditional
probabilities R;j) of an inventor having strong inventing recordire class, given that this
person also has strong inventing records in theroth

R =min{ ProRTA,, |RTA, ), Prol{RTA, ; |RTA, )} 3)
where RTA, and RTA denotes inventar's revealed technological advantage in technology
classi and,.

11



e St
wherex(c,i) is the number of patents held by an invemtar technology clasg Y x(c,i) is
the number of patents held by an inventan all technology classeZ;.x(c,i) is the total
number of patents held by all inventaré classi; Y. X(C,i) is the total number of patents in
the observed data. RTAs an indicator of the relative inventive capadaifyinventorc in
classi. RTA;; > 1 means inventoc has more patents in clasas a share of the inventor’s
total patents than an “average” inventor; otherwigeRTA;; < 1. The mathematical
formulation is adopted from Hidalgo et al. (2003). high R;j value indicates a higher
likelihood for an inventor to leverage knowledgeross technology fields andj for
innovation, or to diversify personal inventive a&ttes across fields andj. To calculate this
measure, we use the unique inventor identifiersftbe Institute for Quantitative Social
Science at Harvard University (Li et al., 2014).

B2. “Organization diversification likelihood”: théormula is the same as the “inventor
diversification likelihood” above (Eq. 3 and Eq., 4xcept that the agent is now an
“organization”, which is often a company, univeysitor public R&D institute. The
organizations are identified using the “unique grsse” identifiers created by the National
Bureau of Economics Research (NBER) (Hall et &1012.

B3. “Country diversification likelihood”: the fornba is the same as the “inventor
diversification likelihood” above (Eq. 3 and Eq, éxcept that the agent is now a country.

Measures C1, C2 and C3 employ the form of a measiheh Teece et al. (1994) first
proposed to indicate the relatedness between inesistollowing the “survivor principle” in
economics. Applied to the context of technologyssks, the measure compares the
empirically observed frequency of co-occurrencesagpair of technology classes in the
patenting records of the same inventors, orgamzator countries, to the expected frequency
in a random co-occurrence situation controlledersizes of technology classes.

C1: “Inventor co-occurrence frequency”: the dewatof the empirically observed number
of inventors occurring in a pair of technology sles from the value that would be expected

when technology classes are randomly assigned/émiars. The formula is,

_Oi 4
g

A

(%)

ij
whereQj is the observed number of inventors active in betihnology classesandj, i.e.

the count of inventor-level occurrences of pateshhology classdsandj; pj andg;; are the

12



mean and variance of the expected number of invemictive in both classesandj, given
by a hypergeometric distribution. The hypoergeoinelistribution defineglj andsij as

_NiNJ
T

Hy (6)

-N . T-N,
T N,)( j

0" =L (T ﬁ) (7)

whereT is the total number of inventors having two or entechnology classehl; andN; are
the number of inventors empirically observed irhtedogyi andj, respectively. Thusj is
analogous to @-statistic. It indicates that, when the actual nemb; observed between
classesi and| greatly exceeds the expected numpgr these two technology fields are
considered highly proximate.

This measure controls for the effect of theesiof technology classes on inventor
appearances in them. If technology classes have imaentors, i.eN; (or N) is large, the
chance for inventors iNi (or Nj) to be active in clagswould be high, even if classeandj
are distant. Whed; or N; is small, one would not expect to see many co{weoges even if
classes andj are highly proximatey; estimates the co-occurrence frequency resultimg on
from the size effect but not from the effect of Whedge distance. Therefong,extracts the
information inO;; about actual distance.

C2. “Organization co-occurrence frequency”: thenfala is the same as “inventor co-
occurrence frequency” above (Eq. 5-7), exceptttaiagent is now an “organization”, which
is often a company, university, or public R&D aggnc

C3. “Country co-occurrence frequency”: the formuia the same as ‘“inventor

diversification likelihood” above (Eq. 5-7), excdpat the agent is now a country.

The last group of measures (D1, D2 and D3) usemtbemation of the co-classifications
of patents to quantify the co-occurrences of a patechnology classes in the same patents.
Co-classification means that a patent is assigoeaidre than one class. Patent examiners
based on their assessments of the inventions gatriyhe assignment activity.

D1. “Normalized co-classification”: the count ofashd patents, normalized by the total

count of unique patents in a pair of classes, féated as

N, NN,
Co-Classificatiore ‘ ! ‘ 8)

NUN|

whereN; andN; are the number of patents in technology classeslj, respectivelyjN, NN;|

is the number of shared patents in both technoldgyses andj, and|n UN;| is the total

number of unique patents in both technology clasaes;.

13



D2. “Co-classification cosine similarity”: the caosi of the angle of the two vectors
representing two technology classes’ distributiohpatents shared with all other technology
classes, formulated as

0,0,
Cosine( ):\/%jﬁ 9)
whereQj is the number of shared patents in both technottagses and,.

D3: “Patent co-occurrence frequency”: the deviabbthe empirically observed number of
patents occurring in a pair of technology classesifthe value that would be expected when
technology classes are randomly assigned to paténtormulas are the same as those for
inventor, organization and country co-occurrene&gdiencies, i.e. Eq. (5)-(7). But here the
variables are given new meanin@: is the number of shared patents in both clasaes|;

T is the total number of patents having two or m@ehnology classedyi andN; are the
number of patents in classeandj, respectively. D3 concerns the frequency of pateetng
assigned to a pair of classes, differing from C2,and C3 that concern the frequency of

innovation agents being active in a pair of classes

By far we have introduced 12 measures to be andlyz&ection 4. While some measures
(such as A2, B3, D2 and D3) have appeared in mtiodies of technology networks, the
others (such as Al, A3, B1, B2, C1, C2, C3 and &#&)new. Al and D1 use the formula of
well-establishedlaccard index but are new to the literature on patent netwodpping.
While A3 employs the cosine formula of A2 that hlasen used to construct patent
technology networks (Leydesdorff et al., 2014; Kal., 2014), it is new in that it considers
the distribution of citations to unique patentsthes than classes, in order to improve
measurement resolution. The formula for B1, B2 BBdfirst appeared in the studies on the
diversification of countries or regions in the puot space based on export product data
(Hidalgo et al., 200/oschma et al., 2014). To our best knowledge, thegnt paper is the
first to apply this formula to the analysis levefanventors and inventive organizations in the
context of technology and patent classes. Thus evesider Bl ifiventor diversification
likelihood and B2 ¢rganization diversification likelihogdare new to the literature.
Likewise, the formula of C1, C2 and C3 was firsteleped to measure industry relatedness
(Teece et al., 1994). Here, it is the first timattthe formula is used to measure the frequency

of innovation agents having patents in pairs oépatechnology classes.

14



3.3 Strategy of comparison

Because these distance measures deal with thegaiedine structure of the technology
space, the overall network map structures resuftmg them are expected to be similar. The
maps that exhibit the highest structural similastiwith all other maps are the best
representatives out of this set of alternative m@apsepresent the underlining technology
space. Thereforeafter the networks of the 121 IPC classes are nmtst by using the
twelve distance measures, we investigate theimser correlations/similarities in terms of
network structural properties, for example, weigsftsorresponding edges and centralities of
corresponding vertices in different networks.

To calculate the centrality of each vertex, we aewyplhe two most commonly used
network centrality metrics in graph theory, becaudetheir applicability to weighted
undirected networks. One degree centralitywhich is the sum of the weights of the edges
connected to the focal vertex. The otheeigenvector centralitywhich is the value of the
focal vertex’s respective element in the dominagémvector of the adjacency matrix of the
network (Newman, 2005). We also assess the caomelbetween vertex centralities and the
indicators of “importance” of technology classegy(etotal numbers of patents and forward

citation counts of patents in a class), in theechhology networks.

4. Reaults

Before comparing different types of networkg fivst examine the over-time changes of
each of them. Table 2 reports the Pearson coeifgief correlations of the weights of
corresponding edges in different time periods fache network. It is shown that the
correlations between networks of the same typeirbulifferent time periods are generally
high (in most cases, higher than 0.9), indicatingt hetwork changes over time are fairly
slow regardless of the choices of distance measBreh observations are consistent with the
prior study of Hinze et al. (1997) that also suggesthe stability of the network of
technology fields.

In the meantime, these two networks based asuares of the likelihood and frequency of
country-level cross-field diversification (B3 and3)Care the least stable over time, as
indicated by their lowest correlation coefficiemghe range of 0.5~0.6. For all measures, the
network based on data for the longest time perl®¥¢ to 2006) is the most correlated with
all other networks constructed using data for grgcades (e.g. 1977 to 1986, 1987 to 1996,

1997 to 2006). Therefore, in later analyses we gamu the networks constructed using our
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total patent data from 1976 to 2006, to have thetmepresentative empirical approximation
of the distance between technology fields.

Table 2 Correlation coefficients of edge weights in theneaechnology network for different time periods

Al. Normalized co-reference 1977-1986 1987-1996  1997-2006  1976-2006
1977-1986 1.000

1987-1996 0.952 1.000

1997-2006 0.894 0.951 1.000

1976-2006 0.937 0.977 0.987 1.000

A2. Class-class cosine 1977-1986 1987-1996  1997-2006  1976-2006
1977-1986 1.000

1987-1996 0.896 1.000

1997-2006 0.817 0.882 1.000

1976-2006 0.874 0.921 0.987 1.000

A3. Class-patent cosine 1977-1986 1987-1996 1997-2006 1976-2006
1977-1986 1.000

1987-1996 0.877 1.000

1997-2006 0.712 0.812 1.000

1976-2006 0.817 0.913 0.973 1.000

B1. Inventor diversification likelihood 1977-1986 801996 1997-2006 1976-2006
1977-1986 1.000

1987-1996 0.943 1.000

1997-2006 0.846 0.916 1.000

1976-2006 0.928 0.973 0.972 1.000
B2. Organization diversification likelihood 1977-18 1987-1996 1997-2006 1976-2006
1977-1986 1.000

1987-1996 0.929 1.000

1997-2006 0.864 0.938 1.000

1976-2006 0.935 0.969 0.969 1.000
B3. Country diversification likelihood 1977-1986 198996 1997-2006 1976-2006
1977-1986 1.000

1987-1996 0.592 1.000

1997-2006 0.547 0.633 1.000

1976-2006 0.654 0.752 0.819 1.000
C1. Inventor co-occurrence frequency 1977-1986 1987-1996 1997-2006 1976-2006
1977-1986 1.000

1987-1996 0.950 1.000

1997-2006 0.879 0.942 1.000

1976-2006 0.939 0.978 0.979 1.000

C2. Organization co-occurrence frequency 1977-1986 1987-1996 1997-2006 1976-2006
1977-1986 1.000

1987-1996 0.938 1.000

1997-2006 0.886 0.932 1.000

1976-2006 0.938 0.965 0.968 1.000

C3. Country co-occurrence frequency 1977-1986 1987-1996 1997-2006  1976-2006
1977-1986 1.000

1987-1996 0.541 1.000

1997-2006 0.483 0.687 1.000

1976-2006 0.606 0.746 0.889 1.000

D1. Normalized co-classification 1977-1986 1987499 1997-2006 1976-2006
1977-1986 1.000

1987-1996 0.922 1.000

1997-2006 0.654 0.741 1.000

1976-2006 0.896 0.947 0.904 1.000
D2. Co-classification cosine 1977-1986  1987-1996  712Q06 1976-2006
1977-1986 1.000

1987-1996 0.873 1.000

1997-2006 0.784 0.874 1.000

1976-2006 0.912 0.954 0.948 1.000
D3. Patent co-occurrence frequency 1977-1986 1989BK1 1997-2006 1976-2006
1977-1986 1.000

1987-1996 0.923 1.000

1997-2006 0.810 0.890 1.000

1976-2006 0.931 0.973 0.957 1.000
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To develop a general intuition about technologywork structures, we visualize these
twelve networks, using VOSviewer that was initialyeated to visualize bibliometric
networks. Leydesdorff et al. (2014) showed thalsb provides good visualizations of patent
technology networks. As an example, Fig. 2 visealithe technology network constructed
by using the measure aiventor diversification likelihoodB1). This network is also the
background map used in Fig. 1 to locate the spekifowledge positions of Google and to

reveal its innovation directions or diversificatipaths by overlaying.

These networks are almost fully connected, mast of the edges have extremely small
values, indicating long distance between most $ieltherefore, to visually reveal its main
structure, we filter the network to contain onlg thaximum spanning tréas the skeleton
plus the strongest edges, which together makeotakriumber of edges be twice that of the
vertices. Hildago et al. (2007) suggested thissthoél of edge filtering as a rule of thumb for
good network visualization. Fig. 2 is such a fé@rnetwork. It exhibits a heterogeneous
structure, with six communities of technology feldlentified by the Louvain community
detection method (Blondel et al., 2008). The hefeneity, instead of homogeneity, of the
structure of technology networks justifies it agad lens or protocol for the comparison of

alterative networks.

CO07-Organiec Chemistry
-
C12-Biochemistfy & Genetic Eng
AB1-Medical & Hygiene
A g
CO1»Inorgaujc'Chemistry !
BO1-Physical‘ag CheMmical Proce

C11-Fat, Oil & Wax Prt;zessing

C02-Wategidreatment B32-Layergd Products

A23-Food@rocdésing @ )
‘ ©  B20.Plagtgs-Working HO1-Electric Elements
RA-Combustior#Apparatyg & Fo HO5-Electric Techniques
DO06-Textites Treatment
. F24-Heatingi& Ventilating
E21-Drilling & Mining

B65-Filamentary Material Handl

G11-Information Storage

DO1-Threads or Fibres & ¢ .
G06-Computing

D02-Yarns or Rope Finishiogy 1opacce
F04-Pumps

F16-Machine Elements

B26-Hand Qutting Tools
DO03-Weaving
A43-Faotwear

BB0-Vehicles in General
F41-Weapons

Fig. 2 The technology network using the inventor divécation likelihood as distance measure. Vertexssize
correspond to the total patent counts in respetii@patent classes; vertex colors denote diffesemmunities.

4 A maximum spanning tree (MST) only keeps thosengtest edges that minimally connect the netwoidk ant
tree. The MST for the network in Fig. 2 contains #irongest 120 edges that connect all 121 veiitites tree.
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4.1 Correlation of edge weights between differativorks

To compare the structures of the 12 networlesfivgt investigate the Pearson correlation
coefficient between the edge weights of correspangairs of technology classes in different
networks (see Table 3). In Table 3, we underlireehighest correlation coefficient between
each measure and any other measures, and alsa thpoaverage of the correlation
coefficients of one measure with all other 11 measuln respective categories (A, B, C and
D), the networks using the measures nbrmalized co-reference(Al), inventor
diversification likelihood(B1), inventor co-occurrence frequen€f1) andco-classification
(D1) are the most correlated with all other typési@works. This result suggests, Al, B1,
C1 and D1 lead to the most representative netwarkteir respective groups.

Table 3 Correlation coefficients of edge weights betwesahhology networks (1976-2006)

Al A2 A3 Bl B2 B3 C1 c2 C3 D1 D2 D3
Al 0.541 _0.857/ 0.915 0.785 0.178 | 0.792 0.723 0.14% 0.736 0.453 0.587
A2 0.541 0.661) 0.482 0.414 0.021 0.592 0460 D.1D.454 0.446 0.490
A3 0.857 _0.661 0.814 0.664 0.142| 0.775 0.622 0.083 0.734 0.35063%0.
Bl 0.915 0.482 0.814 0.840 0.20§ 0.827 0.737 0.191 _ 0.836.398 0.666
B2 0.785 0.414 0.664 0.840 0.389 0.703___0.86®.371 | 0.609 0.431 0.522
B3 0.178 0.021 0.142 0.205 0.389 0.259 0.288 0428139 0.171 0.228
C1 0.792  0.592 0.77%5 0.827 0.703 0.289 0.714 0.13a736 0.451 _0.898
Cc2 0.723  0.460 0.622 0.737 __0.8660.288 | 0.714 0.413| 0.529 __0.4890.522
C3 0.145 -0.119 0.083 0.191 0.371__ 0.4280.134 0.413 0.085 0.133 0.112
D1 0.736  0.454 0.734 0.836 0.609 0.139 0.736 0.529.085 0.238 0.735
D2 0.453  0.446 0.350 0.398 0431 0.171 0.451 0.480.133 | 0.238 0.279

D3 0.587  0.490 0.63% 0.666 0.522 0.228__ 0.898®.522 0.112 | 0.735 0.279

Average | 0.610 0.404 0.576 0.628 0.599 0.223 0.6265780 0.180 | 0.530 0.349 0.51¢

* Distance measures: (Al) normalized co-referen(@®) class-to-class cosine similarity; (A3) classpatent cosine
similarity; (B1) inventor diversification likelihogdB2) organization diversification likelihood; (B8ountry diversification
likelihood; (C1) inventor co-occurrence frequend@2] organization co-occurrence frequency; (C3) cquoroccurrence
frequency; (D1) normalized co-classification; (@®)classification cosine similarity; (D3) patent@ocurrence frequency.

In particular, among all the pairwise correlas, the correlation coefficient (=0.915) for
the pair of A1 and B1 is the highest. This may s strong effect of the technological
distance of a pair of fields on the likelihood foventors to diversify across fields or to
combine knowledge of these fields to generate meritions. In the meantime, this effect of
knowledge distance on diversification patternsessér for organizations and the least for
countries. The networks based ocountry diversification likelihoodB3) andcountry co-
occurrence frequencyC3) are the least correlated with networks inugrdA based on
knowledge distance measures as well as all othevonles. That is, thesurvivor principle
may not explain technology diversification pattewfscountries A country may survive
many inefficient diversification choices and belwasiacross distant fields, as long as their
resources are abundant enough to ensure survivebnitrast, individual inventors must learn

and master relevant knowledge of a technology fialdbrder to invent there. Thus the
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diversification patterns of inventors, as measurgdl1 and C1, are strongly constrained by
the knowledge distance of different fields, as mead by Al.

We further plot and visually compare the distribng of edges by weights of the 12
network maps in Fig. 3. The networks using groum@asures and the networks using B1
and B2 as well as D1 measures exhibit negative rexq@l distributions. In particular, the
high skewness of the A1, A2 and A3 networks indisahat very most technology fields are
indeed highly distant from one another. Thus, tkelihood for inventors to diversify across
most pairs of technology fields must be also lichit€his is reflected in the similarly skewed

distribution of edges in the network usimgentor diversification likelihoodB1).
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Fig. 3 Distributions of edges by weights of the technglaogtworks using 12 alternative measures.
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In group B, as we expand the scope of the iation agents from inventors (B1) to

organizations (B2) and then to countries (B3), thean values of inter-field distance

decreases (i.e. proximity increases) and the skesvioé the distribution decreases. This

increasing normality from B1 to B3 may also sugdbatcountriesmay make mor@aormal

decisions of cross-field diversifications, witholking strongly constrained by inter-field

knowledge distance whose distributions are higklswaed. In addition, the distributions of

C1, C2, C3 and D3 all exhibit the form of normadtdbutions, despite varied skewness. This

similarity may result from their shared mathemdtiftamation that normalizes empirical

observations with corresponding random scenarios.

4.2 Correlation of vertex centralities between diffarantworks

We also investigate the correlation between degnekeeigenvector centralities of the same

set of 121 vertices in different networks. In Tab#ga) and 4(b), we underline the highest

correlation coefficients between each measure aydother measures, and also report the

average of the correlation coefficients of each sneawith all other 11 measures. For both

types of centrality metrics, within group A, thetwerks usingnormalized co-referenc@\1)

andclass-to-patent cosine similariA3) are far more correlated with all other netksthan

class-to-class cosine similarityA2), although A2 is popularly used in the litenat
(Leydesdorff et al., 2014; Kay et al., 2014).

Table 4(a) Correlations of vertex degree centrality betweehitelogy networks (1976-2006)

Al A2 A3 Bl B2 B3 C1l C2 C3 D1 D2 D3
Al 0.236 _0.914 | 0.910 0.539 -0.179| 0.101 0.496 0.047 0.837 0.338 -0.521
A2 0.236 0.474 0.168 0.051 -0.369 0.132 0.119 34.83 0.277 0.131 -0.107%
A3 0.914 0.474 0.833 0502 -0.192 0.201 0.453 -0.003__0.844.265 -0.419
B1 0.910 0.168 0.833 0.760 -0.06 0.295 0.709 0.241 0.819.273 -0.361
B2 0.539 0.051 0.502| 0.760 0.38 0.493 _ 0.87®.514 | 0.493 0.156 0.018
B3 -0.179 -0.369 -0.194 -0.062 0.380 0.242  0.149 43®.| -0.126 -0.064 0.309
C1 0.101 0.132 0.201 0.295 0.493 0.242 0.496 0.380.049 0.285 _0.734
Cc2 0.496 0.119 0.453 0.709 _ 0.8760.149 0.496 _0.560| 0.390 0.230 0.033
C3 0.047 -0.334 -0.003 0.241 0.514 _ 0.4350.387 0.560 -0.029 0.194 0.286
D1 0.837 0.277 0.844 0.819 0.493 -0.126 -0.049 (®.39-0.029 0.043 -0.632
D2 0.338 0.131 0.265| 0.273 0.156 -0.0p4 0.285 0.230.194 | 0.043 0.044
D3 -0.521 -0.107 -0.419 -0.361 0.018 0.309__ 0.734€.033 0.286 -0.632 0.044

Average | 0.338 0.071 0.352 0.417 0.435 0.048 0.3024100 0.209 0.261 0.172 -0.056
Table 4(b) Correlations of vertex eigenvector centrality beswéechnology networks (1976-2006)

Al A2 A3 Bl B2 B3 Cl Cc2 C3 D1 D2 D3
Al 0.285 _0.826| 0.891 0.418 -0.278| -0.041 0.472 -0.001__ 0.3910.293 0.046
A2 0.285 0.502 0.284  0.053 -0.41 -0.167 0.159 38.8 0.165 0.101 -0.061
A3 0.826 _0.502 0.801 0.437 -0.17 -0.342 0.44 0.038 0.368 0.199 .06®
B1 0.891 0.284 0.801 0.671 -0.17 -0.138 0.701 0.164 0.260.234 0.106
B2 0.418 0.053 0.437| 0.671 0.39 -0.212 0.872.478 | 0.014 0.09 0.112
B3 -0.278 -0.41 -0.17 -0.171 0.39 -0.307 0.128 D.41-0.088 -0.088 -0.123
C1 -0.041 -0.167 -0.342 -0.138 -0.212 -0.3p7 0.008.101 | -0.619 0.281 _ 0.786
Cc2 0.472 0.159 0.44 0.701 _ 0.8720.128 | 0.004 _0.534| -0.088 0.198 0.282
C3 -0.001 -0.338 0.038 0.164 0.478__0.4110.101 0.534 -0.296 0.209 0.292
D1 0.391 0.165 0.368| 0.267 0.014 -0.088 -0.619 8&.0-0.296 -0.246 -0.86§
D2 0.293 0.101 0.199| 0.234 0.09 -0.088 0.281 0.198.209 -0.246 0.378

20




D3 0.046 -0.061 -0.066 0.106 0.112 -0.1p3 0.78®©.282 0.292 | -0.868 _0.378

Average | 0.300 0.052 0.27¢ 0.346 0.302 -0.064 -0.099337 0.145| -0.091 0.150 0.080

Within group B, the networks usingnventor diversification likelihood(B1l) and
organization diversification likelihoo(B2) are far more correlated with other netwotkan
country diversification likelihoodB1). In group C, the network usingrganization co-
occurrence frequencfC?2) is the most correlated with other types diwoeks, in contrast to
the analysis of edge weight correlations (see T&)lehat suggests the network using
inventor co-occurrence frequen¢g1l) is the most correlated one from group C. Tdwalits
of group D networks are mixed across the analysdeg@ree and eigenvector centralities, and
the correlations of group D networks with othemeaks are generally weak.

In the meantime, we find a few negative cotretacoefficients in Table 4. The negative
correlations between group A networks (based onwleunige distance) andountry
diversification likelihood B3) andcountry co-occurrence frequen(@3) may suggest that, it
is more often for countries to diversify into omebine knowledge of less central fields in the

technology space, implying broad exploration.

In brief, based on the analysis of pairwisemoek vertex centrality correlations, A1 and

A3, B1, B2, and C2 lead to the most representatetezork maps.

4.3 Correlations of vertex centrality, popularitpgdhimpact in different networks

The relative network positions of technologglds in the total technology space may
affect their relative popularity (i.e. attractinginovation activities) and impact (i.e.
influencing future innovation activities). For iasce, for the technology classes that are
strongly connected to many other classes (i.e. bmgftrality in the technology network),
innovation agents from many other fields may ernfwyease to diversify into them, resulting
in a large number of patents. Innovation agenthighly central fields can also see many
innovation opportunities via leveraging and recamrig knowledge from many other fields
strongly connected to their own. Thus, the relatieéwvork positions of technology classes in
terms of centralities may predict their relative pontance. Herein, we compare such

predictabilities of the 12 networks.

We focus on two indicators of the importance oéehnhology field: popularity and impact.
Popularity of a technology field is measured by thial number of all patents in its patent
class from 1976 to 2006. Impact of a field is meeduby the number of total forward

citations of all patents in the field, i.e. the rhen of later patents that cite a focal patent.
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Forward citation count of a patent has been foortoetan effective indicator of the economic
impact of the patent in a number of prior studiatbért et al., 1991; Hall et al., 2005;
Harhoff et al., 1999; Lee et al., 2007; Trajtenhet§90). We calculate Spearman rank
correlations between vertex centralities and pogylampact indicators of the 121
technology classes in each of the 12 networks,usecd is more appropriate for the purpose
of investigating if more central vertices are amsore important ones. Results are shown in
Table 5.

Table 5. Rank correlations of vertex centralities, forwaithtion counts and patent counts in differentuoeks.

Degree Centrality Eigenvector Centrality
Networks
# of future citations # of patents # of future tdas # of patents
Al 0.859 0.857 0.875 0.874
A2 -0.036 -0.036 -0.027 -0.025
A3 0.654 0.657 0.546 0.550
B1 0.776 0.773 0.782 0.782
B2 0.300 0.296 0.281 0.278
B3 -0.279 -0.278 -0.277 -0.275
C1 -0.024 -0.032 0.290 0.275
Cc2 0.284 0.280 0.292 0.289
C3 -0.126 -0.123 -0.129 -0.125
D1 0.738 0.741 0.694 0.701
D2 0.312 0.304 0.310 0.300
D3 -0.841 -0.845 0.547 0.531

Among all 12 networks, the one usingrmalized co-referencéAl) yields the highest
correlations of vertices between their network radittes and total patent counts as well as
forward citation counts. Al is followed by the netks usinginventor diversification
likelihood (B1), normalized co-classificatiofD1) andclass-to-patent cosine similariA3),
in terms of the predictability of vertex centradion actual importance. In these networks, it
is highly likely that more central technology clessre also more popular and impactful ones.

None of other networks than Al, B1, D1 and A3 pdegi a correlation coefficient greater
than 0.5.

4.4 Brief summary of findings

We have analyzed different kinds of correlagianterms of edge weights, vertex centrality
and importance, among the 12 technology networkgrder to explore how similar each
network is with other networks. We paid speciakmtiobn to the networks that have the
highest overall correlations with all other netwar&pecifically, the measuresmdrmalized
co-referencgAl) andinventor diversification likelihoodB1) lead to network maps that are
consistently the most correlated with other netwpii terms of edge and vertex properties

of the networks, and also provide the best coioelat between network centrality and
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importance indicators of technology classes. Thete/orks are the best representatives of

the technology space from this set of 12 candidiéenatives compared in this study.

A few findings on additional measures are naomhy. First, in group Agclass-to-class
cosine similarity (A2) performs the worst in various correlation lgsas, although it is
popularly used for constructing network maps ofpatechnology classes in the literature.
Class-to-patent cosine similaritfA3) follows the same formula of A2 but uses ahleig
resolution of data, and is highly correlated with. An some cases of our analysis, A3 is no
worse than Al. Second, the networks usgmintry diversification likelihoodB3) and
country co-occurrence frequend{C3) are the least correlated with the networkegus
measures in group A. Furthermoneyentor co-occurrence frequen{g1l), organization co-
occurrence frequencyC2) andnormalized co-classificatioD1) perform well in some of

our correlation analyses, but not always.

5. Conclusion

This paper contributes to the research to devehapamalyze patent technology network
maps to explore technology diversification and klemlge combination opportunities, and
thus support technology forecasting and road mapmractices. A main challenge to
developing reasonable technology network mapsesathbiguity in the choice of measures
of the distance between various technology fietd¢he total technology space. To address
this challenge, we have proposed a strategy tosassed compare alternative measures
through analyzing the overall structures of thesgulting networks, because the structures of
technology networks condition the strategic insgthtat can be potentially drawn for road-
mapping and forecasting analyses but are affegtédeochoices of distance measures.

We implemented the strategy in a comparative arsabystwelve distance measures, by
correlating the edge and vertex properties of thesulting networks based on network
structural properties. These twelve measures wkosen to represent the most common
types of distance measures that have been proposed literature. These measures had not
been previously compared via a consistent quangtatethodology. Particularly, our
analyses in all cases consistently suggest the uresaf normalized co-referencand
inventor diversification likelihoodead to network maps that are the most similaltother
maps. That is, these two measures lead to rehatiliel most representative technology maps
in our comparative set of twelve.

The contribution of the present paper lies prinyanil promising and demonstrating the

strategy to assess alternative distance measurasabyzing the correlations or similarity of
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the overall network structures resulting from thaseasures. For a consistent comparison of
alternative distance measures, we utilized IPCgii-diasses to represent technological fields
and operationalize the vertices in the networksviiNg forward, the same network-based

comparative strategy and analysis that we have dstraded here can be also be carried out
on alternative definitions of vertices (represegtiachnology fields) and categorizations of

patents, such as USPC (United States Patent Gtassih), CPC (Cooperative Patent

Classification), and the hybrid patent categoriesppsed by Kay et al. (2014) and Benson
and Magee (2013; 2015)to see which distance measures lead to the repstgentative

maps. We consider this a promising avenue for éutesearch.

Also, we only compared twelve distance measurethofigh they are representative,
additional measures exist in the literature. Reteas may also propose new types of
measures in future. Therefore, future work may cama@ broader set of existing and new
measures. In addition, the present analyses onjemize of a few simple graph theory
metrics to analyze the correlations of the networnksterms of their structures, for
demonstrating our proposed distance measure cosopastrategy based on network analysis.
More sophisticated network analysis methods camapied to this kind of analysis. For
instance, one can investigate and compare the caomymstructure of alternative patent
technology networks, using community detection atgms. Eventually, we aim to
investigate how to effectively use the technologtwork maps to explore knowledge
combination opportunities for innovation and tedogy diversification directions of

individual inventors, technology companies, citesl countries.
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