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Personalized search approaches tailor search results to
users’ current interests, so as to help improve the likeli-
hood of a user finding relevant documents for their
query. Previous work on personalized search focuses
on using the content of the user’s query and of the
documents clicked to model the user’s preference. In
this paper we focus on a different type of signal: We
investigate the use of behavioral information for the pur-
pose of search personalization. That is, we consider
clicks and dwell time for reranking an initially retrieved
list of documents. In particular, we (i) investigate the
impact of distributions of users and queries on docu-
ment reranking; (ii) estimate the relevance of a docu-
ment for a query at 2 levels, at the query-level and at the
word-level, to alleviate the problem of sparseness; and
(iii) perform an experimental evaluation both for users
seen during the training period and for users not seen
during training. For the latter, we explore the use of
information from similar users who have been seen dur-
ing the training period. We use the dwell time on clicked

documents to estimate a document’s relevance to a
query, and perform Bayesian probabilistic matrix factori-
zation to generate a relevance distribution of a docu-
ment over queries. Our experiments show that: (i) for
personalized ranking, behavioral information helps to
improve retrieval effectiveness; and (ii) given a query,
merging information inferred from behavior of a particu-
lar user and from behaviors of other users with a user-
dependent adaptive weight outperforms any combina-
tion with a fixed weight.

Introduction

Personalized web search aims to better account for an

individual’s information needs than generic web search

(Goker & He, 2003; Liu & Belkin, 2015; Liu & Turtle,

2013; Shapira & Zabar, 2011). It is meant to boost retrieval

performance by reranking the results ranked by a generic

ranker for a particular user, based on a model of their previ-

ous and/or current interests. Personalized web search strat-

egies take into account both static information, for example,

the content of documents and queries, and dynamic informa-

tion, such as user behavior. Static information can reflect the

intrinsic similarity between documents and queries but may

fail to capture a user’s real-time interests, which are more

directly reflected by the user’s interactions with a search

engine. Behavioral information can help search engines tune

the ranking strategy to improve result rankings (Agichtein,

Brill, & Dumais, 2006).

So far, a notable number of approaches to search person-

alization have been proposed. The dominant approach pri-

marily focuses on content similarity between query and

document (Bennett et al., 2012; Sontag et al., 2012; White,

Bennett, & Dumais, 2010). In contrast, user behavior-based

*A preliminary version of this paper was published in the proceed-

ings of SIGIR ’14 (Cai, Liang, & de Rijke, 2014). In this extension, we

(i) extend the behavioral personalization search model introduced there

to deal with queries issued by new users for whom long-term search

logs are unavailable; (ii) examine the impact of sparseness on the per-

formance of our model by considering both word-level and query-level

modeling, as we find that the word-document relevance matrix is less

sparse than the query-document relevance matrix; (iii) investigate the

effectiveness of our behavior-based reranking model with and without

assuming a uniform distribution of users as users may behave differ-

ently; (iv) include more related work and provide a detailed discussion

of the experimental results.
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personalization has not been as well exploited for the pur-

pose of improving rankings. However, it has been shown

that incorporating user behavior information may boost the

ranking performance (Agichtein et al., 2006). For instance,

click models have been well studied for personalized search

(Chuklin, Markov, & de Rijke, 2015), where clicks with a

reasonable dwell time on a particular document may suggest

that a user favors this result (Xu, Jiang, & Lau, 2011; Yi,

Hong, Zhong, Liu, & Rajan, 2014), while it might be nonre-

levant for other users. In this study we personalize rankings

based on user behavior to address their real-time information

needs.

In addition, previous work on document ranking (Kurland

& Lee, 2004; Wang et al., 2013) often assumes that several

key aspects of users and queries are uniformly distributed.

However, users may behave differently, as some of them are

very active, frequently producing clicks on documents,

while others rarely interact with result pages. Similarly,

queries may differ, as some are associated with many docu-

ments or are often issued by users, receiving relatively more

attention from users than others. So we do not assume that

the activity of users and the attractiveness of queries are uni-

formly distributed. Such factors could affect the reranking of

documents; below, we investigate the impact of such

assumptions.

Previous research on personalized document retrieval has

found that implicitly gathered information such as long-term

browser history, query history, and click history can be used

to improve the ranking accuracy for a given user (Agichtein

et al., 2006; Kim, Hassan, White, & Zitouni, 2014). Thus, in

this paper we address the personalized web document

reranking task by considering users’ search behavior both in

the current session as well as in their previous search history.

In other words, we generate a personalized search result list

based on users’ long-term (history-based) and short-term

(session-based) search contexts.

We apply Bayesian probabilistic matrix factorization

(Salakhutdinov & Mnih, 2008a, BPMF) to estimate the rele-

vance of a document to a query and to predict the user’s

preference for a document, based on their dwell time on

clicked documents rather than the content of queries and

documents. We begin with a probabilistic graphical model

to build the relationships between a user, an issued query,

and a document to be reranked, and then define a reranking

criterion for documents conditional on a given query and a

user. We combine users’ short- and long-term behaviors in a

linear fashion, and adaptively merge information inferred

from the behavior of a specific user and information inferred

from the behaviors of other users. We answer the following

research questions:

RQ1: Does the combination of document and user informa-

tion as expressed by their short-term and long-term behav-

ior help improve the document ranking performance?

RQ2: What is the effect on document reranking of the uni-

form assumption of the distribution of users and queries in

our proposed personalized reranking model?

RQ3: Does sparseness of the relevance matrix affect docu-

ment reranking? That is, do we see a difference in perform-

ance between using the query-document matrix and using

the word-document matrix?

RQ4: For the document reranking task, what is the impact

on the performance of the trade-off between the contribu-

tion of the current searcher vs. that of other users?

We demonstrate the effectiveness of our approach to per-

sonalized document reranking by using a real-world data set

that was made available as part of the Web Search Click

Data workshop (at WSDM 2014).1 We find that combining

a user’s short- and long-term behaviors achieves higher

ranking scores than baselines for document reranking. In

addition, merging information inferred from behavior of a

particular user and information inferred from behaviors of

other users with a user-dependent adaptive weight outper-

forms any combinations of these two parts with a fixed

value. Our contributions can be summarized as follows:

1. We propose an adaptive personalized reranking model

that considers a user’s short- and long-term interaction

behaviors in which the relevance of a document to a

query and the preference of a user for certain documents

are adaptively combined for document reranking.

2. We perform an investigation of the document ranking per-

formance affected by the assumption that user activity and

query attractiveness are uniformly distributed and find that

it does have an effect on personalized document reranking.

3. We examine how ranking performance is impacted by

sparseness when estimating document relevance to a

given query, and find that our model works better by

incorporating a word-level relevance matrix that is less

sparse than a query-level relevance matrix.

Next, we describe the related work and the details of our

proposed personalized reranking model, which is followed

by our experimental setup and the experimental results.

Finally, we conclude our work and suggest a number of

future research directions.

Related Work

In this section we summarize related work on personal-

ized web search, where information from a user’s search

context in the current session and from their long-term his-

torical search behaviors is exploited for document ranking.

Short-Term Search Context-Based Personalization

Most modern search engines return their results by

employing information not only about the query itself but

also about the user’s preferences as expressed in their cur-

rent search context, which has the potential to significantly

improve the ranking quality (Bennett et al., 2012).

The search context could be user behavior-related, for

example, the clicks and dwell time, which conveys a strong

1https://www.kaggle.com/c/yandex-personalized-web-search-challenge.
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signal for modeling a user’s recent interests. Liu, White, and

Dumais (2010) model the dwell time using a Weibull distri-

bution and bring a new approach to analyzing implicit feed-

back for personalization. Moreover, dwell time distributions

can be predicted reasonably well based on low-level page

features, which broadens the possible applications to person-

alization where log data are unavailable. In addition, dwell

time may relate to judging the result relevance to a query.

Collins-Thompson, Bennett, White, de la Chica, and Sontag

(2011) verified that reading-related user behavior features

can provide a valuable relevance signal for personalized

web search. These publications motivate us to focus on user

behavior for web search.

Regarding click-related user behavior, Bilenko and White

(2008) propose heuristic algorithms for identifying relevant

websites using the combined history of queries and clicks of

many web users. Jiang, Leung, and Ng (2011) optimize the

search results towards each user’s preferences by using

search contexts to facilitate concept-based search personali-

zation. They capture a user’s preference in the form of con-

cepts obtained by mining clicked web search results. Shen,

Tan, and Zhai (2005a) propose several context-sensitive

retrieval algorithms based on statistical language models

that combine the preceding queries and clicked documents

in a session with the current query to specify the actual

information need of a searcher. Following Shen et al., Xiang

et al. (2010) adopt a learning-to-rank framework and devise

a short-term personalization ranking model by encoding

context information as features of the model. In addition,

user clicks on the results page in a session can be embedded

into a framework for automatically weighting the relevance

labels (i.e., confidence levels) of query-document pairs

(Ustinovskiy, Gusev, & Serdyukov, 2015); these weights are

further utilized in personalized web search. Such approaches

incorporate click information with content-based search con-

text for personalization, which differs from our approach,

which solely explores user behavior information for person-

alized web search.

Another type of short-term personalization refers to

content-based search context. Shen et al. (2005b) infer a

user’s interest from their search context for personalized

search by introducing an intelligent client-side agent that

uses a related preceding query and its corresponding search

results to select appropriate terms to expand the current

query. Ustinovskiy and Serdyukov (2013) restrict their atten-

tion to the set of initial queries of search sessions. They

employ short-term browsing contents to enrich the current

query, which has the largest potential for improvement on

single-word queries. Moreover, Mihalkova and Mooney

(2009) exploit relations of the current search session to pre-

vious similarly short sessions of other users in order to dis-

ambiguate the current search query. White et al. (2010)

recover a user’s short-term interests using both browsing

and search context, where an optimal weight can be assigned

to the context in order to combine it with the current query.

Other content relates to location information. Bennett,

Radlinski, White, and Yilmaz (2011) compute location

information by using implicit user behavior and characteriz-

ing the most location-centric pages for personalization. They

find that a substantial fraction of queries can be significantly

improved by incorporating location-based features.

So far, a user’s long-term behavior has not been taken

into account to infer their preference. However, a user’s

interests expressed by their long-term historical behavior,

that is, queries and clicks, can be exploited for differentiat-

ing between particular users’ requests, which is what we

will pursue in this paper.

Long-Term Search History-Based Personalization

Ever since commercial search engines started to record

user activities in browsers, long-term browsing logs have

been used extensively to create a precise picture of the infor-

mation needs of users. Such data have become an important

resource for search personalization (Dou, Song, & Wen,

2007; Sontag et al., 2012).

The first type of long-term personalization relates to a

user’s profile. Chirita, Nejdl, Paiu, and Kohlsch€utter (2005)

personalize search by introducing an additional criterion for

webpage ranking, namely, the distance between a user pro-

file defined using ODP topics2 and the set of ODP topics

covered by each URL returned in regular web search.

Bilenko and Richardson (2011) describe a learning-driven

client-side personalization approach for advertising plat-

forms, which relies on storing user-specific information

entirely within the user’s control as user’s specific profile.

Another type of long-term personalization refers to a

user’s interactions. Tan, Shen, and Zhai (2006) exploit a

user’s long-term search history, for example, past queries,

returned documents, and clickthrough rates, and conclude

that recent history is more important than distant history,

especially for recurring queries. Matthijs and Radlinski

(2011) present a personalization approach that uses a set of

features extracted from a user’s long-term browsing history

and then use this model to rerank web search results. Sontag

et al. (2012) use a user’s long-term search history to tune

parameters of a user-specific ranking model. White, Bailey,

and Chen (2009) present a systematic study of the effective-

ness of different sources of contextual information for user

interest modeling, for example, social, historic, and user

interaction. The interest models are required to predict

short-, medium-, and long-term user interests. In these mod-

els, a user’s historical search context is used for modeling

their particular preference. However, a user’s in-session

interests, that is, the short-term context, are not exploited.

Since both a user’s short- and long-term search logs can

be recorded, it is natural to combine them for personalization

purposes. However, little is known about how these behav-

iors interact and when we should be leveraging them sepa-

rately or in combination. Bennett et al. (2012) demonstrate

that allowing the ranker to learn weights for short-term fea-

tures, long-term features, and their combination can model a

2http://www.dmoz.org
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searcher’s interests more effectively than leaving out one of

these ingredients is able to achieve. In addition, the prefer-

ence of a group of similar users has been studied by mining

their long-term history (Pan & Chen, 2013), where the inter-

ests of a current user and of other close users are considered.

Yan, Chu, and White (2014) propose to use so-called cohort

modeling to enhance search personalization based on three

predefined cohorts, namely, topic, location, and top-level

domain preference by mining search logs. Teevan, Dumais,

and Liebling (2008) show that there is a lot of variation

across queries in the benefits that can be achieved through

personalization. Hence, they characterize queries using a

variety of features, of the query, of its returned results, and

of people’s interaction history with the query.

Generally, most previous work on personalization treats

all queries and users equally, which means that queries are

assumed to be issued uniformly regardless of their popular-

ity and that users behave similarly in spite of their activity

levels. However, some queries are more popular than others

and some may be associated with many documents. Also,

some users may behave actively when interacting with a

search engine, producing a relative number of clicks com-

pared to others. These factors are not well studied and we

hypothesize that they may affect the document ranking.

Hence, our models capture such aspects, allowing us to

examine their impact on personalization.

Approach

In this section, we formally describe the problem of docu-

ment reranking studied in this paper, which is followed by a

section discussing our personalized document reranking

model and by sections related to some practical issues.

Problem Formulation

First of all, we describe the task of Document Reranking
(DRR), which we study in this paper. Assume that the fol-

lowing are given: (i) a search session with T queries fq1; q2;
. . . ; qTg of a user u, where each query consists of a sequence

of words, for example, qi5ðwi1;wi2; . . . ;wimÞ; i51; 2; . . . ; T;

and (ii) the list of top N documents to be reranked, that is,

ðdT1; dT2; . . . ; dTNÞ, which are returned by a search engine

in response to the last query qT in the session. Then the

purpose of DRR is to return a reranked list of these N docu-

ments to the user u, where their previous short- and long-

term search behavior, for example, clicks and dwell time,

may be available. Obviously, for test sessions consisting of

only one query, no short-term search behavior is available.

The main notations used in the paper are listed in Table 1.

In the DRR task, the relationships between the user, the

query, and the URLs3 to be reranked can be simply modeled

by a graphical model, as shown in Figure 1. The user u sub-

mits a query q, in response to which the top N URLs are

returned by a search engine. Hence, our purpose is to rerank

the top N URLs in response to this query. Because the varia-

bles u and q are known before document reranking, we can

estimate the relevance of a document d to a query q issued

by a user u using a conditional probability Pðdjq; uÞ, based

on which a reranked list of the top N URLs is generated as

output.

Personalized Document Reranking Model

From the graphical model shown in Figure 1, we can

interpolate the joint probability p(u, q, d) as follows:

pðu; q; dÞ5pðuÞ � pðqjuÞ � pðdjq; uÞ: (1)

Then, the relevance of document d to query q given user u,

that is, pðdjq; uÞ, can be computed as:

pðdjq; uÞ5 pðq; u; dÞ
pðuÞ � pðqjuÞ5

pðq; ujdÞ � pðdÞ
pðuÞ � pðqjuÞ ; (2)

based on Bayes’s rule.

Obviously, for the document reranking task studied in

this paper, given a user u and a query q, the probabilities

p(u) and pðqjuÞ in Equation (2) do not affect the reranking

of documents, which results in:

FIG. 1. Probabilistic graphical model indicating the relationships

between user u, query q, and document d.

TABLE 1. Main notations used in this paper.

Notation Description

k a trade-off parameter controlling the contributions of

the document and of behavioral information of the

user for reranking

x a trade-off parameter controlling the contributions of a

user’s short- and long-term behaviors for individual

preference

T the number of queries in a session

w query term (word)

q a query consisting of a sequence of m words, i.e.,

{w1, w2,. . ., wm}

u a user

N the number of documents to be reranked given a

query

D the set of documents to be reranked given a query,

i.e., {d1, d2,. . ., dN}

d a document in D

kf number of latent features in BPMF

3We use URL as if it were interchangeable with document, repre-

sented by d.
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pðdjq; uÞ / pðq; ujdÞ � pðdÞ: (3)

Moreover, to estimate the probability pðq; ujdÞ, following

Kurland and Lee (2004), we use a linear mixture governed

by a free trade-off parameter k as follows:

pðq; ujdÞ5ð12kÞ � pðqjdÞ1k � pðujdÞ; (4)

where pðqjdÞ denotes the relevance of document d to query

q, and pðujdÞ reflects user u’s preference for document d.

Hence, based on Equations (3) and (4), we have:

pðdjq; uÞ / pðdÞ � ðð12kÞ � pðqjdÞ1k � pðujdÞÞ (5)

5ð12kÞ � pðd; qÞ1k � pðd; uÞ: (6)

For the DRR task, because the query and the user are known

before document reranking, it makes sense to represent the

ranking score pðdjq; uÞ under the condition of a given q or

u. Thus, based on Equation (6), we have:

pðdjq; uÞ / ð12kÞ � pðdjqÞ � pðqÞ1k � pðdjuÞ � pðuÞ: (7)

For the simplest case, if we further assume p(q) and p(u) to

be uniform, based on Equation (7), pðdjq; uÞ can be directly

estimated by:

pðdjq; uÞ / ð12kÞ � pðdjqÞ1k � pðdjuÞ: (8)

where the probabilities pðdjqÞ; pðdjuÞ, p(q) and p(u) are to

be estimated from the training data using Bayesian probabil-

istic matrix factorization (BPMF).

In practice, for calculating pðdjqÞ we aggregate the

behavioral information from other users, and then imple-

ment BPMF at two levels, that is, at the query-level and at

the word-level, to alleviate the sparseness problem. We

argue that the word-document relevance matrix (which is at

the word-level) should be denser than the query-document

relevance matrix (which is at the query-level). To verify

this assumption we define the sparseness of an m 3 n matrix

Xm 3 n as:

sparsenessðXm3nÞ5 12

X
i

X
j
/ðxijÞ

m3n

0
@

1
A3100%; (9)

where

/ðxijÞ5
1; if xij > 1

0; otherwise;

(
(10)

and xij is one of the entries of the input matrix X with m
rows and n columns. We find that in our experimental setup,

the sparseness of the query-document relevance matrix is

�71%, while the sparseness of the word-document rele-

vance matrix is �43%.

At the query-level, pðdjqÞ can be directly computed by

implementing BPMF on a query-document relevance

matrix. In contrast, at the word-level, based on the assump-

tion that the words in a query are independent of each other

(Zhai & Lafferty, 2004), pðdjqÞ can be obtained by:

pðdjqÞ5pðdjw1;w2; . . . ;wmÞ5
Y
wi2q

pðdjwiÞNðwi;qÞ; (11)

where N(wi, q) is the number of words wi in query q, and

pðdjwiÞ Tab is similarly computed by implementing

BPMF on a word-document relevance matrix.

Regarding pðdjuÞ, we first implement BPMF on a user-

document preference matrix directly to obtain the distribu-

tion of user preference over documents. However, to gener-

ate the final value of pðdjuÞ in Equation (8) for document

reranking, the short- and long-term behaviors of a specific

user u are considered as a linear combination as follows:

pðdjuÞ5ð12xÞ � pðdjuÞs1x � pðdjuÞl; (12)

as suggested by Bennett et al. (2012), where pðdjuÞs indi-

cates user u’s current preference for document d expressed

by his previous behaviors in the session and pðdjuÞl denotes

user u’s overall interests in document d expressed by his

long-term behaviors in the training period.

In sum, with a query-level BPMF, the final reranking

criterion is:

pðdjq; uÞ / ð12kÞ � pðdjqÞ1k
� ðð12xÞ � pðdjuÞs1x � pðdjuÞlÞ (13)

if users and queries are assumed to be uniformly distributed.

Otherwise, meaning that we do not assume users and queries

to be uniformly distributed, we have:

pðdjq; uÞ /

/ ð12kÞ � pðdjqÞ � pðqÞ1k � ðð12xÞ � pðdjuÞs
1x � pðdjuÞlÞ � pðuÞ:

(14)

Let us turn to word-level BPMF, we would conclude:

pðdjq; uÞ /

/ ð12kÞ �
Y
wi2q

pðdjwiÞNðwi;qÞ

1k � ð12xÞ � pðdjuÞs1x � pðdjuÞl

(15)

in case we assume users and queries to be uniformly distrib-

uted, and have:

pðdjq; uÞ / ð12kÞ �
Y
wi2q

pðdjwiÞNðwi;qÞ
Y
wi2q

pðwiÞ1 . . .

. . . 1k � ðð12xÞ � pðdjuÞs1x � pðdjuÞlÞ � pðuÞ;
(16)

in case we do not assume users and queries to be uni-

formly distributed. The way in which we estimate pðdjuÞs
and pðdjuÞl is described later.
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Additionally, in practice, we have to face a user cold-start
problem, that is, how to calculate the probability pðdjuÞ if the

test query is issued by a new user in the test period for whom

no long-term search history is available from the training

period. We tackle the user cold-start problem by finding the

most similar users who submitted the same query in the train-

ing period. That is, given a test query q issued by a new user

u, we first generate a set Uc of users who submitted the same

query q in the training period by a function wu(q), that is,

Uc  wuðqÞ, then select the optimal user candidate by:

u�  arg max
ui2Uc

/ðui; qÞ; (17)

where /ðui; qÞ returns the frequency of query q issued by

user ui. Notice that if more than one user submitted the same

query q with the highest frequency when generating the opti-

mal u*, we select the user who has the most clicks. We do

not use a clustering algorithm to find similar users for a new

user because in our setting limited information of new users

is available. We resort to their short-term search context in

the current session to find similar users. Alternatively, we

directly find similar users through the submitted queries that

have been issued before by others, that is, via a query-user

bipartite graph. This approach has previously been used to

infer user’s personal search interest (Dou et al., 2007; Vol-

kovs, 2014). We address the user cold-start problem by find-

ing the most similar users who submitted the same query in

the training period.

Smoothing by Bayesian Probabilistic Matrix
Factorization

In this study we use Bayesian probabilistic matrix

factorization (Salakhutdinov & Mnih, 2008a, BPMF) to

predict the relevance of a document to a query as well

as the preference of a user for a document. Taking the

former, for instance, we first take the logarithm of the

aggregated dwell time of known query-document pairs

to dampen sharp peaks and then label the relevance for

this pair by:

min ðblg ðt110Þc; 5Þ;

where t is the aggregated dwell time, and b�c is the floor

function. In this manner, a query-document relevance matrix

RQD can be built with each entry indicating the relevance of

the corresponding document to a query. BPMF is then

applied to this query-document relevance matrix RQD to

assign a nonzero value to each entry in the original matrix.

This completes our smoothing method.

Thus, by applying BPMF we replace the original query-

document relevance matrix RQD by an approximation R�QD as:

R�QD5Q�Nq3kf
3D�Md3kf

>; (18)

where Q�Nq3kf
and D�Md3kq

> represent the query-specific and

document-specific latent feature matrix, respectively, and

Nq, Md, and kf indicate the number of queries, documents,

and latent features, respectively.

The distribution of the values R�QDði; jÞ for query i and

document j is computed by marginalizing over the model

parameters and the hyperparameters:

pðR�QDði; jÞjRQD;H0Þ5

5

ð ð
pðR�QDði; jÞjQi;DjÞ � pðQ;DjRQD;HQ;HDÞ�

�pðHQ;HDjH0Þ � dfQ;Dg � dfHQ;HDg;

(19)

where HQ 5 {lQ, RQ} and HD 5 {lD, RD} are query and

document hyperparameters; the prior distribution vectors over

the queries and documents are assumed to be Gaussian; and

H0 5 {l0, R0, W0} is a Wishart distribution hyperparameter

with R0 3 R0 scale matrix W0 (Salakhutdinov & Mnih, 2008a).

The intuition beyond this approximation is that the relevance of

a query to a document is determined by a small number of

unobserved hyperparameters. This means that taking a Bayes-

ian approach to the prediction problem involves integrating the

model hyperparameters. In addition, the use of Markov chain

Monte Carlo (MCMC) methods (Neal, 1993) for approximat-

ing relevance comes from finding only point estimates of model

hyperparameters instead of inferring the full posterior distribu-

tion over them, which results in a significant increase in predic-

tive accuracy (Salakhutdinov & Mnih, 2008a). BPMF

introduces priors for the hyperparameters, which allows the

model complexity to be controlled automatically based on the

training data (Salakhutdinov & Mnih, 2008b). In addition, as

the priors are assumed to be Gaussian, the hyperparameters can

be updated by performing a single step of EM, which finally

results in a complexity of O(Nq 1 Md) if the Gibbs sampling

count is small (Salakhutdinov & Mnih, 2008b).

Here we present a more detailed description of a single-

step EM algorithm. Suppose we have the representation of

query-document samples by a relevance matrix RQD consist-

ing of Nq queries and Md documents. We fit the parameters

of a model p(RQD, z) to the data, where the z’s are latent ran-

dom variables. The likelihood is given by:

lðhÞ5
XNq

i51

log pðRQDðiÞ; hÞ5
XNq

i51

log
X

zi

pðRQDðiÞ; zi; hÞ;

where h 5 {HQ, HD} are the parameters. As explicitly find-

ing the maximum likelihood estimates of the parameters h
may be hard (Neal & Hinton, 1999), the EM algorithm gives

an efficient method for maximum likelihood estimation by

repeatedly constructing a lower-bound on l(h) (E-step) and

then optimizing that lower-bound (M-step). For each i, given

a preassumed Gaussian distribution /ðziÞ, we have:X
i

log pðRQDðiÞ; hÞ5
X

i

log
X

zi

/ðziÞ
pðRQDðiÞ; zi; hÞ

/ðziÞ

�
X

i

X
zi

/ðziÞlog
pðRQDðiÞ; zi; hÞ

/ðziÞ
;
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based on Jensen’s inequality (Farenick & Zhou, 2007).

The E-step is:

/iðziÞ :5 pðzijRQDðiÞ : hÞ

and the M-step is:

h :5 arg max
h

X
i

X
zi

/iðziÞlog
pðRQDðiÞ; zi; hÞ

/iðziÞ

Together, these give us the maximum likelihood.

By a similar strategy, we can generate the approximations

R�WD and R�UD corresponding to the original matrix RWD

(word-document relevance matrix) and RUD (user-document

preference matrix) by marginalizing over the respective

model parameters and hyperparameters. In essence, BPMF

is used to address the problem of sparseness when inferring

the relevance distribution of documents to queries. Other

methods, such as a probabilistic matrix factorization (PMF)

approach in Salakhutdinov and Mnih (2008b), could also

deal with this sparseness issue. However, we incorporate

BPMF in our approach because BPMF can be successfully

applied to large data sets and achieves significantly higher

predictive accuracy than PMF models (Salakhutdinov &

Mnih, 2008a).

Modeling Behavior

In the DRR task, short-term behavior, more specifically,

the clicks on documents returned in response to previous

queries in the current session, may provide a strong signal of

a user’s current interest. We aggregate the contributions of

all clicked URLs in a current session to compute the proba-

bility pðdjuÞs mentioned in Equation (13) and Equation (15)

as follows:

pðdjuÞs5
X
di2Ds

xi � pðdijuÞ; (20)

where Ds is the set of clicked URLs in current search session

and

xi5
1

Zx
�

X
dj2Dsnfdig

Disðdj; dÞX
dk2Ds

Disðdk; dÞ

depends on the similarity between the clicked document di

and the document d to be reranked, where:

Zx5
X
di2Ds

X
dj2Dsnfdig

Disðdj; dÞX
dk2Ds

Disðdk; dÞ

is a normalization factor. Furthermore, Ds n fdig denotes the

subset of Ds excluding di and Dis(dj, d) returns the Euclidean

distance between di and d; documents are represented by

vectors returned by the BPMF process on a user-document

preference matrix.

Similarly, for the long-term behavior of user u, we esti-

mate the probability pðdjuÞl as follows:

pðdjuÞl5
X
dj2D

pðdjjuÞcðdj;uÞ; (21)

where c(dj, u) indicates the number of clicks of user u on

document dj. The probability pðdjuÞ can be returned by the

BPMF process on a user-document preference matrix.

Adaptive Weighting

Previous work (White et al., 2010) uses a fixed weight k
in Equation (8), that is, the same trade-off for all test users

when combining the contributions from the user and from a

specific document. This choice shows good reranking results

in the setting discussed by White et al. (2010). However, we

treat the weight differently, as different users behave differ-

ently. We propose an adaptive weight solution to assign a

specific weight k in Equation (8) to each user u in the test

period, which depends on the users in the training period

who are similar to u.

First, each user u in the training period should be

assigned an optimal k�u, which is obtained by:

k�u5arg max
k2½0;1�

MAPðu; kÞ; (22)

where the function MAP(u, k) returns the mean average pre-

cision value of all training queries from user u when chang-

ing k from 0 to 1 with step-size 0.1. Then, in the test phase,

for a seen user, we directly use this value k�u in Equation

(22) to calculate the final ranking score based on Equation

(8). However, for an unseen user u, we first find their closest

user u* by Equation (17) and then select a group G of Nu

users who are most similar to u*. Finally, we assign an

adaptive weight:

k0u5
X
ui2G

ai � k�ui
(23)

to this unseen user u, where:

ai5
1

Za
�

X
uj2Gnfuig

Disðuj; u
�ÞX

uk2G
Disðuk; u�Þ

depends on the similarity between ui in group G and u*,

while:

Za5
X
ui2G

X
uj2Gnfuig

Disðuj; u
�ÞX

uk2G
Disðuk; u�Þ

is a normalization factor, and k�ui
is the optimal weight of ui

learnt from the training period. Again, users are represented

by the latent vectors returned by applying BPMF on a user-

document preference matrix.
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In the next section we examine the effectiveness of our

behavior-based document reranking method on a real-world

query log data set and compare it to previously proposed

methods.

Experimental Setup

In this section, we describe the data set used in our

experiments, the metrics and baselines used for compari-

sons, as well as the experimental settings.

Data Set

The data set for this study consists of anonymous logs of

users provided by the Personalized Web Search Challenge.4

This challenge is a part of the Web Search Click Data work-

shop (WSCD 2014),5 in which participants are required to

rerank documents of each SERP originally returned by the

search engine according to the personal preferences of each

user. The evaluation relies on clicks and dwell time, which

has been widely used in state-of the-art research on search

personalization (Xu et al., 2011; Yi et al., 2014). The logs,

collected for 1 month, contain a unique user identifier, a

search session identifier, a query identifier, the top-10 URLs

returned by the search engine for that query, and the dwell

time on clicked results. The training period covers the first

27 days in the data set and the last 3 days constitute the test

period. Users with more than 20 queries during the training

span are kept in order to have a rich long-term search history

of users. In addition, only sessions with multiple queries are

kept for testing in order to have access to the short-term

behavior of users in our test set. All test queries are required

to have been issued in the training period to obtain the

ground truth (relevance of documents to queries). Table 2

lists the statistics of the processed data set.

The ground truth we use is obtained as follows. To deter-

mine the relevance of a document to a query, we aggregate

all dwell times on the document given this query. Figure 2

shows that the majority of the logarithmic aggregated dwell

time on documents given a query is smaller than 6. Thus, we

generate relevance labels by:

relevance min ðblg ðt110Þc; 5Þ;

where t is the aggregated dwell time, and b�c is the floor

function. By doing so, we assign a positive judgment 5

(highly relevant) grade to clicked documents given a query

whose logarithmic dwell time units are not shorter than 5.

We also assign a grade 4, 3, and 2 (relevant, normally rele-

vant, and slightly relevant, respectively) corresponding to

documents with clicks whose logarithmic dwell time units

are between 4, 3, 2, respectively, and a grade equal to 1

(irrelevant) to documents with no clicks or clicks whose log-

arithmic dwell time units are strictly less than 1.

Using dwell time on clicked documents to infer their rele-

vance to a given query is widely used in web search (e.g.,

Cai, Liang, & de Rijke, 2014; Kim et al., 2014; Xu et al.,

2011; Yi et al., 2014), where typically the relevance label is

assigned based on a fixed time span, for example, 30 sec-

onds. However, in our approach we use an aggregated dwell

time on clicked documents to indicate the relevance to a

given query because this scheme is based on long-term

observation and could be insensitive to noise. In other words,

our scenario takes the dwell time from a large population of

users and could reflect the intrinsic relevance of a document

to a given query. We first take the logarithm of the aggre-

gated dwell time of a known query-document pair to dampen

sharp peaks and then label the relevance for this pair; this

approach has also been used previously (Cai et al., 2014).

Metrics

For evaluation, we report our performance in terms of

MAP, P@5, NDCG@5, and NDCG@10; we use the tre-

c_eval script for ranking evaluation as provided by TREC.6

Statistical significance of observed differences between

the performance of two approaches is tested using a two-tail

TABLE 2. Statistics of the processed data set.

Variable Training Test

# log records 6,113,430 1,773,167

# queries 449,079 119,328

# unique queries 69,597 69,597

# query terms 318,253 318,253

# unique query terms 43,162 43,162

# documents 5,215,272 1,354,184

# unique documents 231,671 126,756

# unique users 168,863 89,328

FIG. 2. Ratio of logarithmic aggregated dwell time on documents.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

4https://www.kaggle.com/c/yandex-personalized-web-search-challenge.
5http://research.microsoft.com/en-us/um/people/nickcr/wscd2014/ 6http://trec.nist.gov/trec_eval/.
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paired t-test and is denoted using �/� for significant differ-

ences at level a 5 .01, or �/� at level a 5 .05.

Models Used for Comparison

We write ComP to refer to our proposed reranking model

with a fixed value of k (see Equation [8]) and use aComP to

denote our proposal with an adaptive value of k, with the

adaption governed by Equation (22) and Equation (23),

respectively.

We compare the results generated by our proposed mod-

els to: (i) those originally returned by the search engine,

denoted SE; (ii) those reranked by the current user’s personal

preference (Rendle, Freudenthaler, Gantner, & Schmidt-

Thieme, 2009), denoted BPR; (iii) those reranked by the

preference of a group of similar users and of the current user,

denoted as GBPR, where following (Pan & Chen, 2013), we

set the tradeoff q 5 0.6, which means 60% of the contribu-

tion to the user’s preference for a document is from the user

group and the rest is from the current user. In addition, the

size of the group is set to 5 because under these settings

GBPR works relatively better than others. Table 3 provides

an overview of the reranking models used in the paper.

Reports from the three winners in the Kaggle Challenge

are available. The winners all focus on feature engineering

rather than ranking algorithms. In addition, because of lim-

ited space, the participants did not provide the details of the

features used nor how they are computed (Masurel, Lefevre-

Hasegawa, Bourguignat, & Scordia, 2014; Song, 2014).

Some features descriptions are totally missing, such as the

session features in Masurel et al. (2014). In Volkovs (2014),

although the formulas of most used features are provided,

how to generate the final ranking score is missing: The

approach is based on an aggregated model, which incorpo-

rates several learning models with model-specific weights.

(The participants pointed out that their paper should not be

considered as proper research [Masurel et al.] but as an engi-

neering report). For the reasons just given, it is hard to repro-

duce the top-performing methods. Instead, we select other

alternatively related methods dealing with similar tasks as

our baselines to compare (e.g., Pan & Chen, 2013; Rendle

et al., 2009). These two baseline approaches rank documents

based on user behaviors rather than on the exact content of

documents and queries, which is similar to our scheme used

in this paper, that is, user behavior-based personalization. In

addition, these two approaches both consider personalization

for document ranking and achieve good performance.

Hence, they can be taken as state-of-the-art approaches that

rank documents only by considering user behavior.

Settings and Parameters

The search engine initially returns a list of the top-10

URLs, that is, N 5 10; we use a fixed k 5 0.5 in our ComP

model to answer RQ1–RQ3 and then study its impact on the

document ranking for RQ4. Following Cai et al. (2014) and

Salakhutdinov and Mnih (2008b), the number of latent fea-

tures in BPMF is set to 10, that is, kf 5 10. In order to derive

a user’s long-term preference, that is, pðdjuÞl in Equation

(21), we use at most 10 unique documents clicked by user u.

For an adaptive k0u in Equation (23), following Salakhutdi-

nov and Mnih (2008a), we select a group of similar users

with Nu 5 5, that is, jGj55.

In addition, from previous work (Bennett et al., 2012; Cai

et al., 2014), we know that the parameter controlling the

contributions of a user’s short-term and long-term behavior

when estimating their preference for a document does affect

the document ranking performance. Hence, as a sanity
check, we report the results of our ComP model in Table 4
when x varies from 0 to 1 with steps of 0.1 to select an opti-
mal value of x for later experiments. It is clear from Table 4
that the performance shows very minor differences when the
weight x in Equation (13) changes; it reaches a peak at
x 5 0.3. In addition, a small value of x, for example,
x 5 20.2, often results in better performance than a large
value of x, for example, x 5 20.8, which is consistent with
previous findings (Bennett et al., 2012), where in web search
better performance can be achieved when more attention is
paid to short-term behavior rather than long-term behavior
of a searcher. Therefore, we use x 5 0.3 in our model in
later experiments.

Results and Discussion

In this section we compare the results of our models with

those of the baselines, and then examine the impact on

TABLE 3. An overview of reranking models compared in this paper.

Model Description Source

SE The original ranking. Search engine

BPR User preference Bayesian

personalized ranking.

(Rendle et al., 2009)

GBPR Group preference based

Bayesian personalized ranking.

(Pan & Chen, 2013)

ComP Personalization method reranks

results of SE with a

fixed k 5 0.5 in Equation (8).

This paper.

aComP Personalization method reranks

results of SE with an

adaptive k in Equation (8).

This paper.

TABLE 4. A sanity check to determine an optimal value of x for later

experiments by varying x from 0 to 1 manually.

x MAP p@5 NDCG@5 NDCG@10

0.0 .4018 .2814 .3756 .5013

0.1 .4153 .2956 .3812 .5108

0.2 .4186 .3014 .3867 .5167

0.3 .4207 .3082 .3921 .5208

0.4 .4201 .3069 .3894 .5183

0.5 .4204 .3075 .3903 .5192

0.6 .4183 .3011 .3855 .5154

0.7 .4172 .2981 .3824 .5138

0.8 .4144 .2926 .3794 .5086

0.9 .4137 .2918 .3767 .5042

1.0 .4003 .2789 .3723 .4980

Note. The best performer in each column is boldfaced. (Settings:

query-level BPMF and uniform assumption of user.)
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ranking performance of the distribution of users and of the

level where BPMF works (queries vs. words), respectively.

Finally, we zoom in on the relative importance of user and

document for personalized ranking.

Performance of Ranking Models

In this section we compare the performance of various

models in Table 3. Our models, ComP and aComP, work

based on the uniform assumption of user and on the query-

level BPMF. We report the results in Table 5. Notice that

the NDCG scores here are somewhat lower than those

obtained at the personalized web search challenge7 after sub-

mitting the rankings. This could be due to differences in (i)

generating the ground truth or in (ii) processing the data for

our experiments.

As we can see from Table 5, among the three baselines

the group preference-based personalized ranking approach,

that is, GBPR, performs best, indicating that close users may

behave similarly in web search. Compared to BPR, where

only the preference of the current user rather than a group of

similar users is considered for personalization, GBPR

reports higher scores in terms of all four metrics, MAP,

P@5, NDCG@5, and NDCG@10. Generally, user prefer-

ence does indeed help to boost the ranking performance. For

instance, GBPR and BPR present notably better results than

the original ranking of the search engine, that is, SE, show-

ing near 7.2% and 5.4% improvements in terms of MAP

over SE, respectively. Below we only use GBPR as a base-

line for comparisons with our model.

However, by considering a user’s short- and long-term

behavior, our ComP model can further improve the perform-

ance over GBPR. For instance, ComP achieves a near 3%

improvement in terms of MAP over GBPR. The improve-

ments in terms of all four metrics are significant at the

a 5 .05 level. We believe that these improvements are due

to the following: (i) ComP considers the relevance of a

document for a query (see Equation [8]) as well as user pref-

erence for document ranking, while GBPR only incorporates

the latter; (ii) ComP exploits both a short-term and long-

term user behavior, whereas user preference in GBPR is

based only on a user’s long-term history. Regarding aComP,

which optimizes the trade-off k in Equation (13) for each

user, it achieves slight improvements over ComP. In particu-

lar, it reports less than 1% improvement over ComP but

more than 4% improvement over GBPR in terms of

NDCG@5. Similar findings are obtained for the other met-

rics. It is worth noting that aComP presents a significant

improvement over GBPR at level a 5 .01 in terms of

NDCG@5, but at level a 5 .05 in terms of the other metrics.

In other words, compared to other models, aComP can

return the most relevant results early in the ranked list, for

example, in the top five.

In absolute terms, the NDCG scores generated by our

models are lower than those produced by the winners of the

Kaggle Challenge, from which we obtained the data for our

experimental evaluation. For instance, according to the chal-

lenge leaderboard,8 the default ranking baseline achieves an

NDCG@10 of 0.7913, while the team winning the third

prize in the competition achieves an NDCG@10 of 0.8047.

Both NDCG scores are higher than ours (e.g., an

NDCG@10 of 0.5226 reported in Table 5). However, the

scores are not comparable, for two reasons: (i) In our setup

we use 5-point scales to estimate the relevance of a query to

a document while the Kaggle Challenge uses 3-point scales.

Our setup allows us to make more fine-grained distinctions;

(ii) The scenarios for generating the relevance labels are dif-

ferent, as we use the aggregated dwell time for a particular

pair of a query and a document from the entire history while

the competition uses the interaction in a single session.

Effect of Uniform Distributions

In this section we examine the performance of aComP

with and without making the uniform distribution assump-

tion about users and queries, which works by incorporating

the query-level BPMF. We report the results in terms of four

metrics at various query positions in a session as well as the

average scores, in Figure 3.

Generally, as shown in Figure 3, the assumption of uni-

form distributions of users and queries does affect the per-

formance of aComP, as it performs better without making

the assumption, although the differences are not statistically

significant. In particular, without the assumption, aComP

shows more than 1% improvement in terms of P@5 over

aComP with the assumption but less than 1% improvement

in terms of other metrics.

It is worth noting that the performance of aComP shows

little fluctuation as the query position changes, as shown in

Figure 3. However, it achieves its peak performance when

the query position is 4. The performance of aComP increases

monotonously as the position of test queries increases from

2 to 4. But later, the performance drops slowly. This obser-

vation can be explained by the fact that in long search ses-

sions users may change their search intent from their

TABLE 5. Performance comparison.

Method MAP p@5 NDCG@5 NDCG@10

SE .3817 .2829 .3611 .4621

BPR .4023 .2926 .3731 .4973

GBPR .4092 .2981 .3778 .5024

ComP .4207~ .3082~ .3921~ .5208~

aComP .4243~ .3107~ .3955~ .5226~

Note. The best performer in each column is in boldface. Statisti-

cally significant differences between the results of our models and those

of the best baselines, which are underlined, are indicated. (Settings used:

x 5 0.3.)

7https://www.kaggle.com/c/yandex-personalized-web-search-challenge/

details/evaluation.

8https://www.kaggle.com/c/yandex-personalized-web-search-challenge/

leaderboard
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FIG. 3. Performance of the aComP model with and without making the uniform assumption of users and queries, tested at different query positions.

(Settings used: x 5 0.3.) [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

FIG. 4. Performance of the aComP model, with BPMF at the query-level and word-level, tested at different query positions. (Settings used:

x 5 0.3.) [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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original ones as their needs have been (partially) addressed

by previous queries and clicked documents. However, we

still find that aComP works better in long sessions than ses-

sions with only a single previous query, as aComP achieves

higher scores at query position 5 (or >5) than at position 2:

more rich context in the current search session can help

detect a user’s intents and generate reasonable rankings.

Zooming in on BPMF at Different Levels

Following the earlier discussion, we run aComP work

without the uniform assumption and then implement BPMF

at different levels to examine the impact of sparseness on

the ranking performance. We report the scores at different

query positions (see Figure 4).

Clearly, the problem of sparseness in BPMF affects the

performance of aComP. In particular, aComp favors incor-

porating word-level BPMF, as it performs better than using

query-level BPMF. For instance, word-level BPMF based

aComP reports around 1.6% improvements over query-level

BPMF based aComP in terms of MAP and P@5 scores. We

believe that this can be attributed to the difference between

the sparseness of word- or query-document relevance matrix

as query-document relevance matrix is more sparse than the

word-document relevance matrix in our data set, which has

been reported. Hence, with more valuable information avail-

able on judging relevance, for example, of query-document

pairs, the aComP model performs better.

Impact of Contribution Weight k

Finally, we take a closer look at the impact of the free

parameter k in Equation (8) that governs the relative contri-

bution of the current searcher and of other users to the over-

all performance of our reranker. For simplicity, we report the

results of the ComP model for various values of k in Table 6,

integrating query-level BPMF and making the uniform

assumption of users and queries. Notice that a larger value of

k indicates that behavioral information from current user

makes a bigger contribution to the overall performance.

As shown in Table 6, generally, the ComP model with a

big value of k (>0.5) shows better performance than with a

small value of k (<0.5). It achieves its peak performance for

k 5 0.7. Interestingly, the component of current user contrib-

utes more than that of other users under our personalized

web search settings. Therefore, in web search, paying more

attention to individual preference could further enhance a

user’s search experience by providing a personalized rank-

ing given a query. However, compared to the result of

aComP that was presented in Table 5, ComP with a fixed

tradeoff k still loses the comparison. The aComP model

boosts the ranking performance by slightly improving 0.3%,

0.4%, 0.2%, and 0.2% for MAP, P@5, NDCG@5, and

NDCG@10, respectively, over the best ComP with a fixed

k 5 0.7. It seems that aComp is relatively close to ComP

with k 5 0.7. Hence, we conclude that merging behavioral

information of current user and of all users together is help-

ful to document reranking, especially with an optimal weight

controlling the contribution of each part, and paying more

attention to behavioral information of current user can gen-

erate a better personalized ranking given a query.

Conclusion

In this paper we studied user behavior for personalized

web search. In particular, user’s short- and long-term search

behaviors are integrated for reranking documents initially

returned by a search engine. Bayesian probabilistic matrix

factorization (BPMF) is applied at various levels to derive

the relevance of documents to queries. In addition, we adap-

tively merge information inferred from behaviors of a spe-

cific user and information inferred from behaviors of other

users with a user-dependent weight for reranking documents.

Our experimental results show that: (i) reranking perform-

ance is indeed affected by assuming that users and queries

are uniformly distributed; (ii) BPMF works better at the

word-level than at the query-level when estimating document

relevance to a query; and (iii) for a document reranking task,

behavioral information of a specific user contributes more

than information derived from the behavior of other users.

Together, these findings make an important step towards uni-

fying prior work on personalization and could be incorpo-

rated with content-based personalized approach.

As to limitations of this work, we implemented our

ComP and aComP models for the document reranking, both

with and without making the (joint) assumption that users

and queries are uniformly distributed. However, we can split

these two assumptions. In addition, here we only focus on

the last query for document reranking, based on the data

available to us; if sufficient data are available, we can handle

all queries in a session.

As to future work, we plan to run our model on other

query log data sets, where the ground truth, that is, the rele-

vance of documents to a query, is provided. In addition, we

plan to incorporate our work into a learning to rank frame-

work by exploring useful features to improve search person-

alization. We could also undertake an investigation on the

assumption by using a learning to rank approach.

TABLE 6. Performance of the ComP model under different settings of

a fixed k � (0, 1) with step-size 0.1.

Trade-off k MAP P@5 NDCG@5 NDCG@10

k 5 0.1 .4104 .2951 .3792 .5094

k 5 0.2 .4130 .2986 .3814 .5117

k 5 0.3 .4163 .3027 .3851 .5140

k 5 0.4 .4185 .3053 .3897 .5182

k 5 0.5 .4207 .3082 .3921 .5208

k 5 0.6 .4218 .3087 .3923 .5212

k 5 0.7 .4232 .3095 .3946 .5217

k 5 0.8 .4219 .3091 .3935 .5214

k 5 0.9 .4211 .3088 .3924 .5186

Note. The result of the best performer is boldfaced. (Settings

used: x 5 0.3.)
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