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In this study, we evaluated the ability of computational
cognitive models of web-navigation like CoLiDeS and
CoLiDeS1 to model i) user interactions with search
engines and ii) individual differences in search behavior
due to variations in cognitive factors such as aging. CoL-
iDeS and CoLiDeS1 were extended to predict user clicks
on search engine result pages. Their performance was
evaluated using actual behavioral data from an experiment
in which 2 types of information search tasks (simple vs.
difficult), were presented to younger and older partici-
pants. The results showed that the model predictions
matched significantly better with the actual user behavior
on difficult tasks compared to simple tasks and with youn-
ger participants compared to older participants, especially
for difficult tasks. Also, the matches were significantly
better with CoLiDeS1 compared to CoLiDeS, especially
for difficult tasks. We conclude that the advanced capabili-
ties of CoLiDeS1, such as incorporating contextual

information and implementing backtracking strategies
enable it to predict user behavior significantly better than
CoLiDeS, especially on difficult tasks. The usefulness of
these modeling outcomes for the design of support sys-
tems for older adults is discussed.

Introduction

A typical information-seeking process on the Internet

usually begins in the context of a work task (Ingwerson &

J€arvelin, 2006) and is inherently interactive. It also involves

cognitive processes such as memory, attention, problem

solving, comprehension, and decision making (Sharit,

Hern�andez, Czaja, & Pirolli, 2008), each of which is in turn

affected by cognitive factors such as age, domain knowl-

edge, internet experience, etc. This is also the reason for the

wide variation observed in the efficiency of using the inter-

net among users.

However, the dominant methodology of evaluating infor-

mation retrieval (IR) systems that can be traced back to the

Cranfield experiments (Cleverdon, 1991), has been to com-

pute the efficiency of retrieving information that is most
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relevant to a single query, using standardized test collections

and relevance assessments. It has long been recognized that

developing new representations of documents, indexing,

ranking, and retrieval algorithms leads to only a small incre-

mental improvement in performance over previous models

(Jones, 2005). It is also known that such incremental

improvements, as evaluated by Cranfield-style TREC evalu-

ation, rarely leads to significant improvement in a user’s

information search performance (Turpin & Scholer, 2006).

What is needed instead is the “development of models of IR

which incorporate the user as an active participant in the IR

system, and which treat the person’s interaction with infor-

mation as a central process of IR” (Belkin, 2008, p. 53).

Therefore, there has been renewed interest in incorporating

user characteristics into the evaluation of information

retrieval systems (Kelly & Sugimoto, 2013; Hagen, Michel,

& Stein, 2016). However, the interaction between a user and

a search system is non-trivial and affected by many factors

(Ingwerson & J€arvelin, 2006). Using laboratory studies to

understand these relationships requires participation from

real users, who are not always available. Also, as the number

of factors in an experiment increases, the complexity of the

experiment increases and the number of experiments

required to investigate all possible relationships also

increases dramatically. This is not only expensive but also

time-consuming and difficult to scale up. Models, on the

other hand, allow us to simulate user behavior without per-

forming the experiment, which then only serves as a verifi-

cation of the model (Azzopardi, J€arvelin, Kamps, &

Smucker, 2011).

Numerous models can be found in the field of informa-

tion seeking and retrieval (ISR) that seek to understand, pre-

dict, and explain interactions of users with search systems.

These models can be classified mainly into two types: the

first type, which illustrates the search process, includes the

ASK model (Belkin, Oddy, & Brooks, 1982), the Informa-

tion Search Process (Kuhlthau, Heinstr€om, & Todd, 2008),

Ellis’s model of information-seeking behaviors (1989), and

the Berry-Picking Model (Bates, 1989); and the second type

that describes the factors that influence the search process

include the task-based information retrieval process

(Vakkari, 2001) and the ISR framework proposed by

Ingwerson and J€arvelin (2006). Both types of models are

conceptual and descriptive in nature, providing an overview

of the information-seeking process and the factors that are

likely to have an influence on it. They are useful in under-

standing the different components of an information search

process and the various stages that a user may go through.

Most importantly, they are useful for the generation of new

hypotheses and the development of more formal models.

Formal models allow us to simulate user behavior, thereby

reducing the need, effort, and cost involved in running actual

experiments.

In this context, a promising development in the late

1990s was the introduction of Information Foraging Theory

(Pirolli & Card, 1999), which provides a formal, mathemati-

cal and predictive mechanism underlying the berry-picker’s

actions. It postulates that when browsing on the web, users

take only those actions (such as clicking on a hyperlink) that

maximize their information gain in relation to the cost of

taking that action. The theory also introduces the concept of

information scent which is the (imperfect) estimate of the

value or cost of information sources represented by proximal

cues (such as hyperlinks and icons). Motivated by this the-

ory, a number of computational cognitive models of web-

navigation have been developed (Kitajima, Blackmon, &

Polson, 2000; Juvina & Van Oostendorp, 2008; Fu & Pirolli,

2007) that successfully predict user clicks when browsing

on a website (Blackmon, Mandalia, Polson, & Kitajima,

2007). Based on theories of cognitive science, the main goal

of these computational cognitive models is to use well-

tested cognitive mechanisms to characterize more complex

information search behavior in a precise and automated

way. These computational cognitive models of web-

navigation take a process view of information search and

are therefore more capable of providing opportunities to

incorporate behavioral differences due to the variations in

cognitive factors. We focus, on two important gaps in the

research on computational cognitive models of web-

navigation in this paper.

First, computational cognitive models of web-navigation

have so far been used to characterize the cognitive processes

underlying navigation behavior within websites and have

not been used to characterize the cognitive processes under-

lying user interactions with search engine result pages. Inter-

action with a search engine involves various steps:

formulation of a query, selection of one or more search

results from the search engine result page (SERP) corre-

sponding to the query, switching between websites opened

from the search results and the decision to reformulate the

query. We focus primarily on the selection of search results

step in this paper. In other words, the focus of this paper is

on predicting which search results a user would click, for a

given query and its corresponding SERP. We made first

steps by extending a cognitive model of web-navigation

called CoLiDeS (Kitajima et al., 2000) in this direction

(Karanam et al., 2015). In the current paper, we make more

progress by applying an enhanced version of CoLiDeS

called CoLiDeS1 (Juvina & Van Oostendorp, 2008) and

compare the accuracy of the predictions of both models.

Second, the capabilities of computational cognitive mod-

els of web-navigation in terms of modeling behavioral dif-

ferences due to the variations in cognitive factors have not

been fully evaluated. It is important not only to develop

models of IR that treat a person’s interaction with informa-

tion as a central process of IR, but it is also important for

such models to have the capability to explain variations in

information-seeking behavior due to individual differences

in cognitive factors. In this way, we can make predictions of

the model more precise. Of all the cognitive factors, we

focus on age for various reasons. The percentage of popula-

tion over 65 years is increasing, especially in the OECD

countries. Also, the percentage of those over 65 years who

use the Internet is rapidly increasing. Although the Internet
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is growing rapidly and transforming every aspect of our

lives, several barriers still exist for older adults to really

make it an irreplaceable part of their daily lives, as it nor-

mally is for younger adults (Slegers, van Boxtel, & Jolles,

2009). Aging is related to a decline in fluid intelligence

(such as processing speed, cognitive flexibility, attentional

control, and visuospatial span) as well as in motor skills

(Horn, 2012; Wang & Kaufman, 1993). Some of these abili-

ties are directly linked to the skills required to search and

process information from the Internet. However crystallized

intelligence increases and/or becomes stable with aging.

Crystallized intelligence involves prior knowledge, experi-

ence, and vocabulary skills. Therefore, it is generally higher

for older adults compared to younger adults. In our earlier

work (Karanam et al., 2015), we extended CoLiDeS to pre-

dict user clicks on search results. Actual user clicks from a

behavioral experiment involving eight young and nine old

participants were matched with the predictions by CoLiDeS.

We could not find any significant age-related difference in

the matches by CoLiDeS (p> .05). In this paper, we investi-

gate if the more enhanced model CoLiDeS1 would model

age-related differences better than CoLiDeS.

Cognitive Models of Web-Navigation

In this section, a detailed description of the two computa-

tional cognitive models, CoLiDeS and CoLiDeS1, is given.

Next to each model’s description, the methodology to imple-

ment and run the model on SERPs is also presented.

CoLiDeS

CoLiDeS, or Comprehension-based Linked Model of

Deliberate Search (Kitajima et al., 2000), assumes that infor-

mation seeking and navigation is driven by text-comprehen-

sion and problem-solving processes. CoLiDeS is based on the

Construction-Integration (CI) model of text-comprehension

(Kintsch, 1998). According to the CI model, comprehension

of text happens in two phases: construction phase, during

which a propositional representation of a new piece of text is

built and all possible meanings of the text elements are gener-

ated, and integration phase, during which using reader’s prior

knowledge and context, a single coherent meaning is selected

by filtering out all those representations that do not fit well to

the context. A further assumption is that the processing of

information occurs in a cyclic way. After processing a current

sentence or part of it, information is represented in episodic

memory and space is made free in working memory for proc-

essing new information (the next sentence, for instance), and

so on. CoLiDeS assumes that the processes underlying navi-

gation on the web are analogous to the processes underlying

text-comprehension. CoLiDeS divides user navigation behav-

ior into two main stages of cognitive processing: attention
cycle and action-selection cycle. The attention cycle is further

divided into two stages: parsing the webpage in high-level

schematic regions, and focusing on one of these schematic

regions. The action-selection cycle is also divided into two

stages: comprehension of screen objects (e.g., hyperlink texts)

within the focused region, and selecting the most appropriate

screen object (such as clicking on a specific hyperlink). This

process is then repeated for a new webpage that is opened by

the selected hyperlink until you reach the target page. The

focus of the modeling is on the navigation process based on

the selection and evaluation of links (the fourth phase in the

CoLiDeS model).

Notice the similarities of CoLiDeS model with the CI

model: first, the process of activation of knowledge trig-

gered by the hyperlink texts (construction phase) and the

maintenance of the representation of labels that have high

similarity to the goal (integration phase). Also bottom-up

and top-down processes play a role just like in text-compre-

hension (Kintsch, 2005). Next to that common is the cyclic

character of processing: construction and integration phases

for the second page and third page, and so on.

In CoLiDeS, information scent is operationalized as the

semantic similarity between the user goal and each of

the hyperlinks. Based on the semantic similarity values, the

model predicts that the user is most likely to click on that

hyperlink that has the highest semantic similarity value.

This process is repeated for every new page until the user

reaches the target page. CoLiDeS uses Latent Semantic

Analysis (LSA) (Landauer, McNamara, Dennis, & Kintsch,

2007) to compute semantic similarities. LSA is an unsuper-

vised machine-learning technique that builds a high dimen-

sional semantic space using a large corpus of documents

that represent a given user population’s knowledge and

understanding of words. The meaning of a word or sentence

is represented as a vector in that high dimensional space.

The degree of similarity between a link and the goal of the

reader is measured by the cosine value between the corre-

sponding vectors (Martin & Berry, 2007) in the high dimen-

sional space. Each cosine value lies between 11 and 21.

The closer the value to 11 is, the higher the similarity

between the two words is.

Simulation of CoLiDeS on SERPs

The methodology to run simulations of CoLiDeS on

search engine result pages has been described in detail in Kar-

anam et al. (2015). In brief, semantic similarity is computed

between the query and the title and the snippet combinations

of the search results on a SERP using LSA. The search result

with the highest LSA value is selected. This process is

repeated for all the queries of a task and for all the tasks of a

participant and finally for all the participants. We will have

then available the predictions made by CoLiDeS on the

SERPs corresponding to all the queries of all the tasks and

we can compare these with the actual selections of real partic-

ipants. Note that the CoLiDeS model can predict only one

search result per query using this methodology, whereas users

in reality click on more than one search result per query.

CoLiDeS1

CoLiDeS1 (Juvina & Van Oostendorp, 2008) shares the

main theoretical foundations of CoLiDeS and makes it more
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consistent with theoretical assumptions from work on text-

comprehension that emphasizes the role of context. For

example, when reading a text, contextual information helps

users in comprehending sentences better, especially sentences

with potentially multiple interpretations (Budiu & Anderson,

2004). Analogously, when navigating a website, users often

encounter hyperlink texts varying in their degree of ambigu-

ity. CoLiDeS1 assumes that surrounding context helps a user

in building a mental representation of the information space

being navigated. This representation in turn assists users in

locating relevant information such as hyperlinks or target

pages as well as disambiguating ambiguous hyperlink text to

grasp the intended meaning. Furthermore, it is very common

for users to backtrack and take an alternate route to find their

target information whenever they arrive at a webpage that

has no relevant hyperlinks (Cockburn & McKenzie, 2001).

CoLiDeS1 incorporates this behavior by introducing back-

tracking strategies when the semantic similarity between the

query and the goal does not increase.

According to the CI-model, context in text-comprehen-

sion is extracted from the following sources: previously read

words/sentences (but still available in working memory),

text read in the preceding reading session, and finally back-

ground knowledge, in that order. Similarly, CoLiDeS1

assumes that users make decisions to click or not to click,

not only on the basis of information that is new, that is, an

incoming new hyperlink text, but also on the basis of infor-

mation that has been accessed before, that is, hyperlinks

elaborated or clicked in the preceding session. This contex-

tual information can help in reinforcing the activation of the

appropriate semantic features or concepts, thereby steering

the selection of the right links. CoLiDeS, on the other hand,

considers only incoming hyperlink text to assess relevancy

with respect to the goal and does not incorporate any contex-

tual information. CoLiDeS1 incorporates contextual infor-

mation by retaining in memory the selected links to compute

the navigation path and path adequacy in addition to infor-

mation scent. The navigation path is the sequence of hyper-

links clicked by a user at any particular moment and path

adequacy is defined as the semantic similarity between the

user goal and the navigation path realized until a particular

moment. So, CoLiDeS1 computes the LSA value between

the navigation path and the user goal.

Semantic similarity is here cosine (NP, Q), where NP is

the vector of the navigation path and Q is the vector of the

query of the user. Both are vectors in an existing semantic

space. The semantic similarity is computed between these

two vectors. A Dutch semantic space was built using a cor-

pus of 70,000 Dutch articles (60% news and 40% medical

and health) and constructed using Gallito (Jorge-Botana,

Olmos, & Barroso, 2013). More details of the steps involved

in the construction of a semantic space can be found in Kar-

anam and Van Oostendorp (2016a).

Only if the information from an incoming hyperlink

increases in information scent is it considered for selection.

If it does not increase in information scent, path adequacy is

checked. If path adequacy increases, then the incoming

hyperlink is selected, although it does not increase in infor-

mation scent. In other words, first semantic similarity is

evaluated based on information scent, and only when it is

not satisfying, a more effortful evaluation of the context is

performed by checking path adequacy.

If path adequacy does not increase, a latent impasse is

said to have occurred and CoLiDeS1 invokes backtracking
strategies: that is, backtracking to other regions within the

same page and eventually to the previously visited pages.

Therefore, on a webpage, CoLiDeS1 gives the highest acti-

vation or priority to local information or the incoming new

hyperlink text followed by contextual information such as

previously clicked hyperlinks (these were hyperlinks that the

user thought could be relevant). CoLiDeS1 stops when the

user declares the current page is the page with the target

information. CoLiDeS, on the other hand, stops and declares

an impasse when a page has no relevant hyperlinks. Solu-

tions to impasses are only described and not computationally

modeled. CoLiDeS1 overcomes the limitations of CoLiDeS

by including contextual information and modeling back-

tracking strategies and solving impasses. Note that the

behavior of CoLiDeS1 and CoLiDeS will be exactly the

same if information scent continues to increase on every

page.

When both CoLiDeS and CoLiDeS1 were tested on real

navigation in websites, CoLiDeS1 was found to not only

locate the target page more often than CoLiDeS, but was

also found to reach closer to the target page than CoLiDeS

whenever the target page was not located (Karanam, Van

Oostendorp, & Fu, 2016). Also, by comparing selections

made by users with the selections that CoLiDeS1 would

have made for a set of tasks on a mockup website, Juvina

and Van Oostendorp (2008) found that CoLiDeS1 was able

to predict 54.9% of actual user clicks, slightly better than

CoLiDeS, which could predict 46.9% of actual user clicks.

These results support the assumptions made by CoLiDeS1

that users make use of context from previously selected

hyperlinks to choose the next hyperlink. Please note that

CoLiDeS1 so far has not been used to model any form of

interaction with a search engine.

Simulation of CoLiDeS1 on SERPs

It is possible to model and predict multiple user clicks per

query using CoLiDeS1 because of its capability to imple-

ment backtracking strategies. We assume that a user would

explore more than one search result per query only if s/he is

not satisfied with the information from the search result that

was chosen first. Therefore, the underlying assumption is

that a user clicks on a search result, explores the website cor-

responding to it, and backtracks to the search result page to

explore other search results. Starting from the second search

result, CoLiDeS1 keeps track of the contextual and histori-

cal information by computing path adequacy. To keep the

simulation simple, we model only the user clicks on a SERP

and ignore the clicks within the websites opened from the
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SERP. For each query and the corresponding SERPs logged

in the behavioral data, seven steps are followed:

a. Compute the semantic similarity between the query and

the title and the snippet combination of a search result.

b. Repeat this for all the remaining titles and snippets on a

SERP. The title and snippet combination with the highest

semantic similarity value with the query is selected.

c. Assuming that the information was not found in the

search result selected in (b), the search result with the

next highest semantic similarity is chosen.

d. Starting from the selection in (c), path adequacy is com-

puted as follows: the semantic similarity is computed

between the query and the title and snippet combinations

of all the search results selected by the model so far.

e. If path adequacy increases, the next best search result

from (c) is selected.

f. If path adequacy does not increase, steps (c–d) are

repeated, until a search result that increases path ade-

quacy is found or all the search results are exhausted. If

all search results are exhausted, the model decides to

reformulate.

g. Finally, repeat this process for all the queries of a task

and for all the tasks of a participant and finally for all the

participants.

After running the main simulation steps (a–g), we have

available the predictions made by CoLiDeS1 on all the

queries of all the tasks and we can compare these with the

actual selections of real participants. In the next section, we

look at some of the experimental literature on the influence

of age on information search performance.

Effect of Aging on Information Search

Much behavioral research has already been conducted on

how age-related decline in cognitive abilities influence per-

formance on an information search task. Older adults are

known to generate fewer queries, use fewer keywords per

query, reformulate less, spend longer time evaluating the

search results, spend more time evaluating the content of

websites opened from SERPs, switch less often between

SERPs and websites, and find it difficult to reformulate

unsuccessful queries (Dommes, Chevalier, & Lia, 2011; Pak

& Price, 2008; Queen, Hess, Ennis, Dowd, & Gr€uhn, 2012).

However, under certain conditions, older adults can adapt

their search and navigation strategies exploiting their higher

crystallized knowledge to compensate for their decreased

fluid capabilities (e.g., Chin, Anderson, Chin, & Fu, 2015).

For example, a recent study by Chevalier, Dommes, and

Marqui�e (2015) looked at the three important phases in an

information search process: planning (dividing a problem

into subproblems, formulating the first query), evaluating

(assessing the relevance of search results and information at

hand in general), and controlling (modifying the query and

search strategy if required). They found significant differ-

ences in the amount of time allocated to the three phases of

information search in relation to age and task difficulty.

Younger adults were found to control their strategy more

than older adults, enabling them to perform better especially

at difficult and impossible tasks. In contrast, older adults

spent a lot of time to evaluate results and information at

hand instead of modifying their unsuccessful strategies.

In another study (Chin et al., 2015), it was found that

there are significant age differences in the amount of resour-

ces allocated to exploration (number of search results

opened for any given query) phase and exploitation (number

of websites and hyperlinks within the websites opened from

search results for any given query) phase of an information

search process. Older adults were found to do less explora-

tion and more exploitation in terms of spending longer time

and viewing more information compared to younger adults.

They even found that the older adults were adaptive in

adjusting the two processes depending on the difficulty of

the task.

Research Questions and Hypotheses

The research questions of our study were:

1. Would the more advanced model CoLiDeS1 predict

user clicks on a SERP better than CoLiDeS (RQ1)? We

hypothesize that, because of its enhanced capabilities,

such as incorporating contextual information and imple-

menting backtracking strategies, the modeling perfor-

mance of CoLiDeS1 would be better than that of

CoLiDeS (Hyp1). If so, search behavior of users would

be matched better by CoLiDeS1 compared to CoLiDeS

and would lend more evidence to the assumptions made

by CoLiDeS1.

2. Following up on RQ1, assuming that the modeling per-

formance of CoLiDeS1 is better than that of CoLiDeS,

would this enhanced performance be more prominent for

difficult tasks (RQ2)? Difficult tasks demand users to

explore multiple search results and switch often between

SERPs and websites. We hypothesize that, because of

the enhanced capabilities of CoLiDeS1, it would predict

user behavior better than CoLiDeS, especially under dif-

ficult task conditions. Under easy task conditions, both

models would perform equally (Hyp2).

3. Previous literature has shown an interaction effect

between age and task difficulty on actual search perfor-

mance of users (Karanam et al., 2015; Chevalier et al.,

2015). However, in our recent study (Karanam et al.,

2015), we did not find any such interaction effects of age

and task difficulty on the number of matches between

actual user clicks and predictions of CoLiDeS. In this

paper we reexamine this issue using behavioral data

from a more elaborate experiment (RQ3). For difficult

tasks, usually the answer is not easily found in the snip-

pets of the search engine results and often users have to

evaluate information from multiple search results and

websites. Younger adults are known to click more, refor-

mulate more, and switch more often between SERPs and

websites than older adults when performing difficult

tasks, which enables them to perform better on difficult

tasks (Chevalier et al., 2015; Karanam et al., 2015). We

therefore expect a similar age X task difficulty interac-

tion in the model predictions, that is, we expect that the
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models would match the search behavior of younger

adults much better than that of the older adults, espe-

cially for difficult tasks (Hyp3).

The next section briefly describes the details of an experi-

ment (which is fully reported in Karanam & Van Oosten-

dorp, 2016b) conducted to collect actual user data and

provides a brief summary of the behavioral outcomes to

check if they are in line with earlier outcomes from aging-

related literature. Next, the main issues of the study, that is,

modeling user clicks on SERPs and modeling age-related

differences in user clicks on SERPs are reported.

Experiment

Method

Participants. Twenty-four young participants (16 males

and 8 females) ranging from 18 to 31 years (M 5 22.7,

SD 5 3.31), and 24 older participants (14 males and 10

females) ranging from 65 to 88 years (M 5 73.58,

SD 5 6.74) participated in the study.

Material

The experiment was conducted with 12 simulated infor-

mation search tasks (Borlund & Ingwersen, 1997): six sim-

ple and six difficult, all from the domain of health. For

simple tasks, participants in most cases could find the

answer easily either in the snippets of the search engine

results or in one of the websites referred to by the search

engine results. For difficult tasks, users had to frame queries

using their knowledge and understanding of the task; the

answer was not easily found in the snippets of search engine

results and often they had to evaluate information from mul-

tiple websites. The tasks were all presented in Dutch in a

counterbalanced order.

Procedure

Participants first did a demographic questionnaire in

which they were asked details about their age, gender, famil-

iarity with search engines (on a Likert scale of 1[A bit] to 4

[Very Much]), and computer experience (number of years).

They were next presented with three tests: a computerized

version of a Dutch vocabulary test, adapted from the Hill

Mill Vocabulary (HMV) test (Raven & Court, 1998), and a

fluid intelligence test: a computerized version of the Trail

Making Test (TMT Part B) (Strauss, Sherman, & Spreen,

2006). The score on the vocabulary test (24 items) gives us

an indication of the amount of crystallized intelligence and

the score on the trail making test gives us an indication of

the amount of fluid intelligence. We measured the time

taken to finish the test correctly. They were next presented

with a prior domain knowledge test on the topic of health

with 12 multiple-choice questions. A correct answer was

scored 1 and a wrong answer was scored 0. They were then

presented with 12 information search tasks (six simple and

six difficult) in a counterbalanced and randomized order.

Participants were first shown the task and then directed to

the home page of Google’s search engine and were not

allowed to use any other search engine.

Measures on Information Search

Task-completion time. Task-completion time was com-

puted from the moment of opening a browser and typing in

the first query to the moment of answering the question.

Number of clicks. The number of clicks is the total num-

ber of clicks made by a participant for each task. This

includes the clicks made on the search results as well as the

clicks made on websites opened from the search results.

Accuracy. Accuracy was measured as 1, 0.5, or 0 depend-

ing on whether the participant’s answer was correct (in

which case the score is 1) or partially correct (in which case

the score is 0.5) or wrong (in which case the score is 0).

Number of reformulations. Number of reformulations is

the total number of unique queries that a user could come up

with for each task in the process of answering it (e.g., if par-

ticipant added, deleted keywords, or created new ones, we

counted them as reformulations of query).

Results

Briefly, the results show that the difficult tasks took sig-

nificantly longer to complete, significantly more clicks were

made, were answered significantly less accurately than sim-

ple tasks, and significantly more reformulations were made

than simple tasks. With regard to age-related differences, we

found significant main effects and interaction effects

between the search performance of young and old partici-

pants in this experiment. Younger adults were found to be

significantly faster in completing the tasks, especially the

simple ones. Younger adults clicked on significantly more

search results than older adults, especially when solving dif-

ficult tasks. Younger adults were significantly more accurate

than older adults. Younger adults reformulated significantly

more than older adults, especially when performing difficult

tasks. In a more general way, older adults were less efficient

than younger adults, one of the reasons could be their lower

fluid abilities. These results were largely in line with the out-

comes of previous studies (Chevalier et al., 2015; Chin

et al., 2015; Dommes et al., 2011; Pak & Price, 2008; Queen

et al., 2012) and therefore provided a strong foundation to

the main contributions of this study.

Modeling

The queries from the behavioral experiment were used to

run simulations of CoLiDeS and CoLiDeS1. We evaluated

the performance of the models by computing the number of

matches between the model predictions and the actual user

clicks for each query and its corresponding SERP.
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Evaluation of Model Performance

A repeated-measures analysis of variance (ANOVA)

with age as the between-subjects variable, task difficulty and

model as within-subjects variables, and mean number of

matches per task as dependent variable was conducted. As

shown in Figure 1, the main effect of task difficulty was sig-

nificant, F(1,46) 5 16.66, p < .001. The mean number of

matches was significantly higher for difficult tasks as com-

pared to simple tasks. The main effect of model was signifi-

cant, F(1,46) 5 89.64, p < .001. The mean number of

matches was significantly higher for CoLiDeS1 as com-

pared to CoLiDeS. The main effect of age was also signifi-

cant, F(1,46) 5 12.42, p < .001. The mean number of

matches was significantly higher for young participants

compared to old participants. The interaction of task diffi-

culty and age was significant, F(1,46) 5 6.72, p < .05. The

mean number of matches was significantly higher for young

participants compared to old participants when they per-

formed difficult tasks. The interaction of model and task dif-

ficulty was significant, F(1,46) 5 10.43, p < .005. The

number of matches was significantly higher with CoL-

iDeS1, especially for difficult tasks. The interaction of

model and age was not significant (p > .05). The interaction

of model, task difficulty, and age was also not significant (p
> .05).

Summarizing the outcomes of modeling, the model pre-

dictions matched significantly better with the actual user

behavior on difficult tasks compared to simple tasks. Also,

the model predictions matched actual behavior of young par-

ticipants significantly better compared to the actual behavior

of old participants, especially for difficult tasks. We also

found that CoLiDeS1 matched actual user behavior signifi-

cantly better than CoLiDeS, especially for difficult tasks.

The age-related differences (both in the behavioral outcomes

and in the modeling outcomes), which we could not find in

our earlier work (Karanam et al., 2015), were found in the

current experiment, probably because it is based on more

participants and more tasks as compared to our earlier exper-

iment and therefore has more statistical power.

Conclusions and Discussion

We focused on two important gaps in the research on com-

putational cognitive models of web-navigation in this study.

First, computational cognitive models of web-navigation

have not been used to characterize the cognitive processes

underlying user interactions with search engine result pages.

Second, the capabilities of computational cognitive models of

web-navigation in terms of modeling behavioral differences

due to the variations in cognitive factors such as aging have

not been evaluated. Our earlier work (Karanam et al., 2015)

could not find significant age-related differences in user

clicks on SERPs, probably due to the low number of partici-

pants (eight young and nine older participants). Also, the ear-

lier study involved only one computational cognitive model:

CoLiDeS. In this study, we extended two computational cog-

nitive models of web-navigation, CoLiDeS and CoLiDeS1,

to predict which search result a user would click given a

query and its corresponding SERP. We compared the ability

of the CoLiDeS and CoLiDeS1 models to predict age differ-

ences in user clicks on search engine result pages.

A behavioral experiment with older and younger adults

was conducted using simple and difficult tasks (Karanam &

Van Oostendorp, 2016b). Analysis of the search performance

in terms of task-completion time, clicks, accuracy, and num-

ber of reformulations showed that the results obtained were

largely in line with the outcomes of previous studies on aging

effects (Chevalier et al., 2015; Chin et al., 2015; Dommes

et al., 2011; Pak & Price, 2008; Queen et al., 2012). Real user

queries from this behavioral experiment were used subse-

quently to run simulations of CoLiDeS and CoLiDeS1.

Analysis of model performance showed that CoLiDeS1

matched actual user behavior significantly better than

FIG. 1. Mean number of matches (and standard errors) with (a) CoLiDes and (b) CoLiDes1 in relation to age and task difficulty. [Color figure can

be viewed at wileyonlinelibrary.com]
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CoLiDeS (Hyp1). This confirmed our first hypothesis. The

main reason why CoLiDeS1 seems to perform much better

than CoLiDeS is because of the fact that CoLiDeS1 gives

importance not only to the local cue, that is, the incoming

new search results, but also to the global context, that is, the

query and the search results already clicked in the preceding

session. Also, CoLiDeS1 is able to go back, if necessary, to

already visited pages, change route, and explore a new path

to find the target page (see Karanam et al. (2016) for a visual

illustration). In other words, the assumption that CoLiDeS1

made about users basing their decisions to select a particular

hyperlink/search result not only on semantic relevance with

the goal but also on whether an incoming hyperlink/search

result is consistent with the hyperlinks/search results selected

in the past or not, seems to be true. CoLiDeS, on the other

hand, always focuses on current information and does not uti-

lize any historical information. It is only capable of linear for-

ward search.

We also found that CoLiDeS1 matched actual user behav-

ior significantly better than CoLiDeS, especially on difficult

tasks (Hyp2). This interaction between model and task com-

plexity can be explained by the fact that CoLiDeS1 is more

capable of simulating behavior demanded by difficult tasks

(more queries, more clicks, and more switches between SERPs

and websites, etc.) and therefore it is able to predict user

behavior, particularly on difficult tasks, better than CoLiDeS.

Lastly, we also found evidence for our third hypothesis.

The model predictions matched significantly better with the

actual behavior of young participants compared to old par-

ticipants, especially for difficult tasks (Hyp3). This interac-

tion between age and task difficulty is probably because

difficult tasks by definition require integration of informa-

tion from multiple sources, which in turn requires more

queries, more clicks on the SERPs generated by the queries,

more switches between SERPs and websites, and overall

more detours. Younger adults, owing to their higher fluid

capabilities and lower switching costs, are more capable of

performing all the above activities better than older adults.

Limitations

One of the main limitations of this study is that it did not

explore the possibility of factors other than age such as edu-

cational background or crystallized intelligence (Pak & Price,

2008), past experience with the Internet (Crabb & Hanson,

2016); fluid ability (Crabb & Hanson, 2016; Dommes et al.,

2011) could be the real reasons for the observed age-related

behavioral differences in the experiment. We now discuss

briefly each factor in relation to our study. We can rule out

the possibility of at least one factor, that is, educational back-

ground or crystallized intelligence, as there was no significant

difference between the scores of younger and older adults on

both the prior domain knowledge test and the Hill Mill

Vocabulary test. However, self-reported ratings indicate that

older adults (M 5 2.63, SD 5 1.01) are significantly less

familiar with search engines than younger adults (M 5 3.75,

SD 5 0.68) t(46) 5 4.52, p < .001. Also, older adults took

significantly longer to finish the fluid intelligence test

(t(46) 5 5.13, p < .001) than younger adults, indicating that

they had significantly lower fluid abilities compared to youn-

ger adults. Two separate analyses, first with the self-reported

ratings on familiarity with search engine as a covariate and,

second, with the scores on fluid intelligence test as a covariate

were conducted. In both analyses, the main effect of age was

still found to be significant (p < .05) for three out of four

dependent variables (clicks, accuracy, and reformulations),

indicating that prior experience with search engines and fluid

ability were not important factors. However, we agree

completely that not age per se, but the underlying and corre-

lated cognitive and motor abilities are responsible for the

effects found (Trewin et al., 2012).

A second limitation concerns assumptions in our model-

ing. Our aim in this work was to investigate to what extent

the CoLiDeS and CoLiDeS1 models, without making any

extra modeling changes, are able to simulate user interac-

tions with search engines. We also made certain assumptions

to simplify modeling. We modeled only one step involved

in interacting with a search engine, that is, selecting a search

result, given a query and its corresponding SERP. This step

is very similar to selecting a hyperlink, given a set of hyper-

links and user goal. Therefore, the cognitive processes

underlying navigation within a website and the cognitive

processes underlying clicking on a search result are similar.

That is, in the context of web-navigation, first the process of

activation of knowledge is triggered by the hyperlink texts

(construction phase) and then the representation of labels

that have high similarity to the goals are maintained (inte-

gration phase). Similarly, in the context of interacting with a

search engine, first the process of activation of knowledge is

triggered by the title and snippet combinations of the indi-

vidual search results (construction phase) and then the repre-

sentation of labels that have high similarity to the goals are

maintained (integration phase). Also bottom-up and top-

down processes play a role just like in text-comprehension

(Kintsch, 2005) both in the context of web-navigation and in

the context of a search engine. Next to that, common is the

cyclic character of processing: construction and integration

phases for second page and third page, and so on in the con-

text of web-navigation and 2nd query and 3rd query and so

on in the context of a search engine. In the context of web-

navigation, the hyperlinks clicked in the past influence the

selection of an incoming new hyperlink. Similarly, in the

context of a search engine, the search results clicked before

influence the selection of an incoming new search result.

However, interacting with a search result involves many

other activities, such as generation of a query, reformulation

of a query, for which there is no equivalent in the web-

navigation context. These steps require further experimenta-

tion and theoretical development.

Future Directions

In the current study, our aim was to investigate to what

extent the CoLiDeS and CoLiDeS1 models, without
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making any modeling changes, are able to simulate age-

related differences in user interactions with search engines.

We present here some preliminary ideas to modify two dif-

ferent parameter values in the CoLiDeS1 model that can

directly reflect age differences. The first idea concerns the

number of search results that are explored. In the current

study we allowed the model to explore all 10 search results

of a SERP before deciding to reformulate. In reality, it is

known that not all search results are evaluated by users

before reformulating. Moreover, the study by Chin et al.

(2015) found that older adults do more exploitation (number

of websites and hyperlinks within the websites opened from

search results for any given query) and less exploration

(number of search results opened for any given query) com-

pared to younger adults. In order to simulate this age-related

difference in the amount of exploration performed by youn-

ger and older adults, one can imagine a parameter that con-

trols how many search results are explored. Setting a higher

value to this parameter will simulate the behavior of younger

adults more closely (more clicks, more switches between

SERPs and websites) and setting a lower value to this

parameter will simulate the behavior of older adults more

closely (fewer clicks and fewer switches between SERPs

and websites). The second idea concerns the needed LSA

similarity value of the search results with the query, which

gives an estimate of the relevancy of the search result with

respect to the query. By setting a minimum threshold value

of this parameter in the model, one can simulate whether or

not a search result is clicked. By varying this threshold

value, one can simulate different user behaviors.

Implications for System Design

Besides their theoretical value, computational cognitive

models also have a practical value. They have been success-

fully used to generate automatic and online support for navi-

gation within websites (Van Oostendorp & Juvina, 2007;

Karanam, Van Oostendorp, & Indurkhya, 2011; Van Oos-

tendorp & Aggarwal, 2015). The current research can lead

to applications in developing support tools for interaction

with a search engine. In subsequent research one can exam-

ine the influence when both types of support are combined.

In summary, we made two main contributions in this

paper: first, we extended cognitive models of web-navigation

CoLiDeS and CoLiDeS1 to model not only the second phase

of information search (navigation within websites) but also

the first phase of information search (interaction with a search

engine, more precisely the step of selecting a search result

from a SERP corresponding to a query). Second, we evalu-

ated the performance of the two models on predicting age-

related differences in the above task.
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