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Abstract 

Knowledge proximity refers to the strength of association between any two entities in a structural form that 

embodies certain aspects of a knowledge base. In this work, we operationalize knowledge proximity within 

the context of the US Patent Database (knowledge base) using a knowledge graph (structural form) named 

‘PatNet’ built using patent metadata, including citations, inventors, assignees, and domain classifications. We 

train various graph embedding models using PatNet to obtain the embeddings of entities and relations. The 

cosine similarity between the corresponding (or transformed) embeddings of entities denotes the knowledge 

proximity between these. We compare the embedding models in terms of their performances in predicting 

target entities and explaining domain expansion profiles of inventors and assignees. We then apply the 

embeddings of the best-preferred model to associate homogeneous (e.g., patent-patent) and heterogeneous 

(e.g., inventor-assignee) pairs of entities. 
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1. Introduction 

The constituents of a knowledge base could assume various structural forms (e.g., citation network) depending 

on the relations (e.g., cited by) intended to be captured by such forms. The entities that constitute such 

structural forms could be associated using a posteriori measure of ‘proximity’ that quantifies the strength of 

structural relations. Such a measure of proximity could be termed ‘knowledge proximity’ when it is derived 

from a structural form that embodies certain aspects of a knowledge base.  

In this article, we operationalize knowledge proximity within the US patent database, wherein, the primary 

entity patent is linked to other entities such as inventors (e.g., 4074775 – “Dawn Tan”), assignees (e.g., 336083 

– “Microsoft Corporation”), domain – subsection (e.g., H01 – “Basic Electric Elements”), and domain – group 

(e.g., H01L – “Semiconductor Devices”) and various other patents through citations. Scholars have proposed 

quantitative measures for knowledge proximity that have often been utilized to associate homogenous pairs 

(e.g., inventor-to-inventor) of entities. Such measures also denote the opposite of “technological distance” or 

“knowledge distance” (Leydesdorff et al., 2014). 

While various proximity measures have been utilized to associate pairs of domains (Alstott et al., 2017b; Yan 

& Luo, 2017a), e.g., through co-citation for demonstrating analogical transfer of concepts (Luo et al., 2021), 

such measures are less applicable to heterogeneous pairs (e.g., inventor-domain) as these measures only 

capture limited aspects of the patent database through individual relations such as <patent, cite, patent>, 

<assignee, own, patent>, <domain, contain, patent>, etc. Our research, therefore, recognizes the need for a 

structural form that embodies all types of entities (e.g., patent, assignee, domain) and relations (e.g., citation, 

ownership, classification). 

As explained in Section 3.1, we capture the links among entities in the US Patent Database (1976-2020) using 

a flexible structural form – a knowledge graph that captures entities and relations as a set of facts {<head 

entity, relation, tail entity>}. We capture the following relations: <patent, cite, patent>, <inventor, write, 

patent>, <assignee, own, patent>, <group, contain, patent> and <subsection, comprise, groups>. We apply 

various embedding algorithms (Section 3.2) to the knowledge graph thus constructed to obtain embeddings of 

entities and relations. The cosine similarity between corresponding (or transformed) embeddings of entities 

denotes the knowledge proximity. In Section 4, we evaluate these embedding algorithms in terms of predicting 



target entities (〈? , 𝑟, 𝑡〉 or 〈ℎ, 𝑟, ? 〉) and explaining the domain expansion history of all inventors and assignees. 

In Section 5, we apply knowledge proximity to associate different pairs of entities and make inferences 

therefrom. 

2. Related Work 

In this section, we review the existing patent-based knowledge proximity measures (Section 2.1) and generic 

approaches to embedding knowledge graphs (Section 2.2).  

2.1. Knowledge Proximity Measures 

Leydesdorff and Vaughan (2006) propose knowledge proximity between a pair of patents as the number of 

forward and backward citations shared by these. Aharonson and Schilling (2016) vectorize patents using 9,864 

classification digits and propose knowledge proximity as the Euclidean distance. Often applied to patent 

documents (Feng, 2020; Whalen et al., 2020), Latent Semantic Analysis (LSA) involves Singular Value 

Decomposition (SVD) performed on a term-document matrix for obtaining document vectors (Deerwester et 

al., 1990). Scholars have proposed knowledge proximity as the cosine similarity between patent vectors 

obtained through LSA (An et al., 2021; Gerken & Moehrle, 2012; Yoon & Kim, 2012).  

Diestre and Rajagopalan (2012) measure knowledge proximity between a pair of assignees (e.g., Merck and 

Pfizer) as the number of overlapping patent classes jointly owned by them. Scholars have obtained vector 

representations of assignees using the distribution of patents across domains. Using such vector 

representations, they measure knowledge proximity between assignees as cosine, Pearson’s Correlation 

Coefficient (Guan & Yan, 2016), and Euclidean distance (Ahuja, 2000). 

Scholars have adopted the co-occurrence of patents (Dibiaggio & Nesta, 2005; Teece et al., 1994) or 

classification codes (Schoen et al., 2012) as knowledge proximity between a pair of domains. They propose 

vector space representation of domains (e.g., “Alloys,” C22C) using the distribution of citations across all 

domains (Kay et al., 2014; Leydesdorff et al., 2014) and subsequently propose cosine similarity as the 

knowledge proximity. Yan and Luo (2017b) systematically review and comparatively assess various domain-

domain proximity measures. 



Despite using common structural forms (e.g., citation network), the above-reviewed approaches have specific 

means for vector representation and proximity calculation. The proximity measures lack interoperability 

across different entity types and are thus unsuitable for associating heterogeneous pairs, e.g., patent-inventor. 

Therefore, we adopt a knowledge graph approach, integrating all types of entities and relations from United 

States Patent and Trademark Office (USPTO) into a single structural form and subsequently embed the 

knowledge graph onto a unified vector space using various models as reviewed in the following section. 

2.2. Knowledge Graph Embedding Techniques 

Knowledge graph embedding or Knowledge Representation Learning (KRL) is a family of techniques that 

learn low-rank vector representations of entities and relations that capture the structure and semantics of a 

knowledge graph (Ji et al., 2021). These techniques vary according to score functions that estimate the 

plausibility of a fact <h, r, t> relative to other facts in the knowledge graph. Depending on the score functions, 

the current embedding techniques could be categorized as ‘translational distance’ and ‘semantic matching’ 

models (Zhang et al., 2020). Notable translational distance models include TransE (Bordes et al., 2013), 

TransR (Lin et al., 2015), and RotateE (Sun et al., 2019). Semantic matching models exploit similarity-based 

scoring functions, mainly including RESCAL (Nickel et al., 2011), DistMult (Yang et al., 2014), and ComplEx 

(Trouillon et al., 2016).  

Scholars have applied the above-stated models to domain knowledge graphs (e.g., clinicali) and subsequently 

utilized the knowledge graph embeddings for domain tasks. For instance, Mohamed et al. (2021) utilize the 

embeddings of biological knowledge graphs to predict drug-target interactions and polypharmacy side effects. 

Huang et al. (2019) train TransE, TransR, and TransH models using the Freebase knowledge graphs – FB2M, 

FB5M. They apply the learned embeddings to several Question Answering over Knowledge Graph (QA-KG) 

algorithms that are trained on the SimpleQuestions dataset. Abu-Salih et al. (2021)  adopt embedding methods 

to extract knowledge from social media.  

In addition to translational distance and semantic matching models, a variety of models are built using deep 

learning, specifically using Graph Neural Networks (GNN). Such models, e.g., Graph Convolutional Network 

(GCN) and its variants, are applied to graphs for supporting domain tasks like semantic relatedness 

measurement (Mao & Fung, 2020). Such models, however, learn embeddings of an entity using neighborhood 



and are largely applicable to homogenous graphs. Our work, however, requires graph embedding models for 

a heterogeneous knowledge graph constructed on patent metadata. 

3. Method 

As shown in Figure 1, we construct a knowledge graph from the US patent database by obtaining the link data 

that constitutes five types of relations. We train several embedding models using the knowledge graph thus 

constructed. We then obtain the embeddings of entities and relations that could be associated using cosine 

similarity. 

 

Figure 1. Overview of the proposed method. 

3.1. Knowledge Graph Construction 

We utilize patent metadata from USPTOii to construct a knowledge graph named ‘PatNet’ that comprises a 

set of facts {<head entity, relation, tail entity>} where entities belong to ‘patent’, ‘inventor’, ‘assignee’, 

‘group’, and ‘subsection’ and relations include ‘cite’, ‘write’, ‘own’, ‘contain’, and ‘comprise’. These entities 

and relations form the following types of facts: <patent, cite, patent>, <inventor, write, patent>, <assignee, 

own, patent>, <group, contain, patent>, and <subsection, comprise, groups>. As illustrated in Figure 2, the 

patent – ‘Reverse polysilicon CMOS fabrication’ (Patent Number – 5252504) is directly linked to the inventor 

– Tyler A. Lowrey, and the assignee – Micron Technology Inc., while being classified in the domain ‘H01L’ 

(Semiconductor Devices), which is a sub-domain of ‘H01’ (Basic Electric Elements). In addition, the patent 

has made and received multiple citations, a couple of which is indicated in Figure 2. 



 

Figure 2: Illustrating entities and relations in PatNet. 

The above relations in PatNet amount to 10,273,843 entities and 106,882,276 links. Among the entities, there 

exist 129 unique subsections given by 3-digit codes (e.g., F02), 667 unique groups given by 4-digit codes 

(e.g., A03A), 419872 unique assignees, 6037493 unique patents, and 3815682 unique inventorsiii. Among the 

relations, there exist 72,724,665 citation links, 6,236,860 own links, 15,852,086 write links, 12,067,998 

contain links, and 667 comprise links. Owing to the nature of facts, i.e., unidirectional, PatNet does not include 

cycles or two-way relations.   

3.2. Knowledge Graph Embedding 

We train the following models using PatNet: TransE_l1, TransE_l2, TransR, RESCAL, DistMult, ComplEx, 

and RotateE. We have summarized these in Table 1, wherein, h → head entity embedding, t → tail entity 

embedding, r → relation embedding, d → dimensionality of embedding, and Mr → relationship matrix, R → 

real vector space, C → complex vector space, Re() → getting the real part of the complex number, diag() → 

getting diagonal elements on a matrix, ◦ → Hadamard product. We explain the notations, score functions, and 

other limitations of these models in APPENDIX I. 

Table 1: Summary of knowledge graph embedding models.  

Method Entity Embedding Relation Embedding Score Function Complexity 

TransE h, t ∈ Rd r ∈ Rd −ǁ h + r – t ǁ O(d) 

TransR h, t ∈ Rd r ∈ Rk , Mr ∈ Rk×d −ǁ Mrh + r – Mrt ǁ
2 

2
 O(d2) 

RESCAL h, t ∈ Rd Mr ∈ Rd×d 
hT Mr t O(d2) 

DistMult h, t ∈ Rd r ∈ Rd hT diag(r)t O(d) 

ComplEx h, t ∈ Cd r ∈ Cd Re(hTdiag(r)t) O(d) 

RotateE h, t ∈ Cd r ∈ Cd ǁ h ◦ r − t ǁ O(d) 

 



To train the models mentioned above, we use DGL-KEiv – Deep Graph Knowledge Embedding Library and 

a server with the following configuration: 8 x NVIDIA Tesla P100-SXM2-16G GPUs and 512 Gigabytes of 

Memory. To accommodate hardware and time constraints, we set the embedding dimension to 500, preferably 

between 50 and 1000 (Hogan et al., 2021). While training, the package automatically creates negative facts 

({〈ℎ′, 𝑟, 𝑡〉} or {〈ℎ, 𝑟, 𝑡′〉}) for each positive fact (〈ℎ, 𝑟, 𝑡〉). The package trains a model such that the scoring 

function is maximized for positive facts and minimized for negative facts. Once the models are trained, we 

estimate their performances using the test dataset – 𝒟𝑡𝑒𝑠𝑡 as follows. 

4. Evaluation 

4.1. Predicting Target Entities 

We compare the above-trained models using the task of predicting target entities (〈? , 𝑟, 𝑡〉 or 〈ℎ, 𝑟, ? 〉) to assess 

whether the models capture the structure and semantics of PatNet. In the context of our work, we examine 

whether the models can predict patent, inventor, domain, or assignee in missing triples, e.g., group in which 

the new patent could be classified; i.e., identifying the missing entity in the triple <??, contain, new patent>. 

For this evaluation, we arbitrarily gather 10% of the triples in the graph 𝒟 as 𝒟𝑡𝑒𝑠𝑡, where |𝒟𝑡𝑒𝑠𝑡| =

10,688,227. For each true triple – 〈ℎ, 𝑟, 𝑡〉 in 𝒟𝑡𝑒𝑠𝑡 we generate 10,000 possible corrupt triples {〈ℎ’, 𝑟, 𝑡〉} and 

{〈ℎ, 𝑟, 𝑡’〉} by disrupting the head and tail entities. For each true triple – 〈ℎ, 𝑟, 𝑡〉 in 𝒟𝑡𝑒𝑠𝑡, we identify the rank 

(in the interval [1, 10,001]) of target entity ℎ or 𝑡 amidst the corrupt entities ℎ’ or 𝑡’ that are present in corrupt 

triples {〈ℎ’, 𝑟, 𝑡〉} and {〈ℎ, 𝑟, 𝑡’〉}.  

Based on these ranks, we compute the following metrics that are elaborated in APPENDIX II. 

1. Mean Rank (MR) is the average of the ranks of all target entities in the 𝒟𝑡𝑒𝑠𝑡. This metric lies in the interval 

[1, 10,001] and is often found to be highly sensitive to outliers whose rank is ≫ 1. 

2. Mean Reciprocal Rank (MRR) is the average inverse of the ranks of all target entities in the 𝒟𝑡𝑒𝑠𝑡. This 

metric is less sensitive to outliers and lies in the interval (0,1]. 

3. Hits@k represents the proportion of target entities in 𝒟𝑡𝑒𝑠𝑡 whose rank ≤ 𝑘. 

The higher performance of an embedding model in a link prediction task is given by higher MRR, higher 

hits@k, and lower MR. We report the above-stated metrics for all embedding models in Table 2. 



Table 2: Summary of the performances of embedding models in predicting target entities. 

 MR MRR ↓ HITS@1 HITS@3 HITS@10 

RESCAL 6.210 0.928 0.905 0.947 0.958 

ComplEx 6.254 0.911 0.879 0.938 0.955 

DistMult 6.204 0.906 0.870 0.937 0.955 

TransE_l2 6.634 0.888 0.842 0.927 0.951 

RotateE 39.027 0.762 0.687 0.819 0.886 

TransR 55.835 0.654 0.579 0.698 0.787 

TransE_l1 252.603 0.626 0.545 0.680 0.770 

While RESCAL returns the highest MRR and hits@k, we can distinguish the performances into two 

categories. The first category comprising RESCAL, ComplEx, DistMult, and TransE_l2 exhibits not only 

closer MR [6.204, 6.254], but also lies within a closer range in MRR – [0.888, 0.928]. The gap amongst these 

models is further narrowed in Hits@10 – [0.951, 0.958]. Across all metrics, the second category of models 

comprising RotateE, TransR, and TransE_l1 are quite distinguishable from the first category, which better 

captures the structure and semantics of PatNet. Given a source entity ℎ or 𝑡, the models in the first category 

can better predict the associated entity 𝑡 or ℎ through a specific relation 𝑟 that could be write, comprise, own, 

cite, or contain.  

4.2. Assessing Domain Expansion Profiles 

Literature suggests that assignees and inventors often diversify their portfolios by exploring technological 

domains that are less distant from their prior domains (Alstott et al., 2017a). In this section, we study the 

domain expansion history of all inventors and assignees (commonly referred to as ‘agents’ henceforth) in 

USPTO to examine how well these are explainable by the proposed knowledge proximity measure. As shown 

in the synthetic example in Figure 3, let us consider an agent who holds patents in three domains – A, B, and 

C (together constituting the home domain) and could explore target domains – D, E, and F.  



  

Figure 3: Illustrating calculation of overall proximity between the home domain and a target domain. 

The likelihood of the agent entering a target domain, given by Eq. 1, is given by the average of individual 

proximities to all home domains, weighted by the number of patents in these.  

𝐷𝑜𝑚𝑎𝑖𝑛 − 𝐴𝑔𝑒𝑛𝑡 𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦(𝑎, 𝑗) =
∑ 𝜑𝑖𝑗𝑖≠𝑗 𝑎𝑖

∑ 𝑎𝑖𝑖≠𝑗
(1) 

Where 𝜑𝑖𝑗 denotes the knowledge proximity (cosine similarity between the domain embeddings) between 

domains 𝑖 and 𝑗, that belong to, respectively, home and target domains; 𝑎𝑖 represents the number of patents 

belonging to the field 𝑖 owned by the agent 𝑎. The above equation yields the values 0.1, 0.06, and 0.005 as 

proximities to the domains D, E, and F respectively. We obtain proximity percentiles according to these scores, 

i.e., 1, 0.5, and 0 to identify the closest domain. As the agent enters new domains, we mark the entry to a 

domain as its proximity percentile with respect to the instantaneous home domain. In this example, if the agent 

enters target domains in the order D-E-F, the expansion profile could be represented as (1, 1, 1), while 

indicating that the proximity measure explains the whole expansion profile.  

In a general form, the expansion profile of an agent could be written as (𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3 …), where 𝑝𝑝𝑖 stands 

for the proximity percentile of the 𝑖𝑡ℎ domain during the time of entry. As illustrated in Figure 4, the profiles 

of multiple agents could be concatenated into a combined expansion profile. While these profiles differ 



according to the embedding model, the preferred choice of model should maximize the proximity percentiles 

in the combined profile. We plot the cumulative distribution of proximity percentile for three pseudo models 

in Figure 4. 

 

Figure 4: Illustrating the comparison of different models in terms of AUC and explainability.  

The distribution represents the proportion of the expansion profile that lies above a proximity percentile. For 

instance, the data point (0.8, 1) for Model 3 indicates that the entire expansion profile has a proximity 

percentile above 0.8, which could be verified alongside. This implies that at every step of domain expansion, 

the agent has entered a domain that was ranked among the first 20% by Model 3. Such a distribution should 

enclose a higher Area Under the Curve (AUC) compared to Models 1 and 2. A preferred model should exhibit 

higher AUC with respect to individual profiles (e.g., X and Y) as well. In that regard, Model 3 exhibits higher 

AUC for both profiles, indicating an ‘explainability’ of 2/2 = 1. 

We measure AUC and explainability as the performance metrics for the combined expansion profiles of 

76,326 inventors and 15,283 assignees with at least 30 patents in the US patent database. For every agent, we 

serialize the patents according to the application date. For every patent in the sequence, we form an 

instantaneous set of home and target domainsv (refer to Figure 3 for example) and rank the target domains 

using proximity percentile. Using the next patent in the sequence, we identify the proximity percentiles of 

entered domains and append these to the expansion profile (refer to Figure 4 for example). Thus, we obtain 



the individual expansion profiles of all agents, which we then concatenate to form combined profiles for 

inventors and assignees.   

Upon computing the expansion profiles using the seven embedding models, as shown in Figure 5, we plot the 

cumulative distribution of proximity percentiles. TransE_l2 exhibits the highest AUC for the combined 

expansion profiles of both assignees and inventors, indicating better predictability at each step of domain 

expansion. As shown in Figure 6, TransE_l2 also returns the highest AUC for nearly 70% of assignees and 

inventors, which is significantly better than TransE_l1 (≈ 20%) and other models (< 10%). TransE_l2, 

therefore, shows higher explainability of combined profiles of assignees and inventors. 

 

Figure 5: Cumulative distributions (including AUC) of the proximity percentiles. 

 

Figure 6: Explainability of each model that is measured as the proportion of the number of agents (inventor 

or assignee) where the model exhibits higher AUC compared to other models. 

Based on the well-understood premise that inventors and assignees expand their portfolio by entering less 

distant domains, we compared the embedding models in terms of explaining their expansion profiles, as given 

by USPTO. TransE_l2 embeddings offer better performance in this task as well as in the task of predicting 

target entities (Section 4.1) alongside RESCAL, ComplEx, and DistMult. As the latter models exhibit poor 



AUC and explainability in this task, we could infer that TransE_l2 better captures the structure and semantics 

of PatNet while also forming meaningful associations among entities. While TransE_l2 embeddings shall be 

utilized for PatNet-related applications, it is important to note that other models could exhibit superior 

performance in specific domain task(s) that could be envisaged by scholars. 

5. Applications of Knowledge Proximity 

In this section, we demonstrate how PatNet embeddings could be utilized to associate homogenous and 

heterogeneous pairs of entities. For associating homogeneous pairs of entities (e.g., patent-patent), it is 

possible to directly compute the cosine similarity between the embeddings of these. For heterogeneous pairs 

(e.g., patent-inventor), however, it is necessary to transform target entities into the type of focal entity as 

follows. 

ℎ + 𝑟 ≈ 𝑡 (2) 

The above transformation denotes that the sum of embeddings of a head entity ℎ and the relation 𝑟 

approximates a tail entity 𝑡. The sum of the embeddings of assignee-X and the relation – ‘own’, for instance, 

could result in a patent-X, which is not an actual patent but a patent equivalent of assignee-X. Once the entities 

are transformed to a single type, it is possible to calculate cosine similarity between the transformed 

embeddings. Based on the types of triples in PatNet, in Table 3, we provide the guide to transforming entities 

into other types. 

 

 

 

 

 

 

 



 

Table 3: Guide to transforming target entities. The operator emb(.) refers to the embedding of the operand. 

Focal Entity 

 

Target                 

Entity 

Patent Inventor Assignee Domain – Group Domain – 

Subsection 

Patent No 

Transformation 

emb(target) – 

emb(‘write’) 

emb(target) – 

emb(‘own’) 

emb(target) – 

emb(‘contain’) 

emb(target) – 

emb(‘contain’) – 

emb(‘comprise’) 

Inventor emb(target) + 

emb(‘write’) 

No 

Transformation 

emb(target) + 

emb(‘write’) – 

emb(‘own’) 

emb(target) + 

emb(‘write’) – 

emb(‘contain’) 

emb(target) + 

emb(‘write’) – 

emb(‘contain’) – 

emb(‘comprise’) 

Assignee emb(target) + 

emb(‘own’) 

emb(target) + 

emb(‘own’) – 

emb(‘write’) 

No 

Transformation 

emb(target) + 

emb(‘own’) – 

emb(‘contain’) 

emb(target) + 

emb(‘own’) – 

emb(‘contain’) – 

emb(‘comprise’) 

Group emb(target) + 

emb(‘contain’) 

emb(target) + 

emb(‘contain’) – 

emb(‘write’) 

emb(target) + 

emb(‘contain’) – 

emb(‘own’) 

No 

Transformation 

emb(target) – 

emb(‘comprise’) 

Subsection emb(target) + 

emb(‘comprise’) + 

emb(‘contain’) 

emb(target) + 

emb(‘comprise’) + 

emb(‘contain’) – 

emb(‘write’) 

emb(target) + 

emb(‘comprise’) + 

emb(‘contain’)– 

emb(‘own’) 

emb(target) + 

emb(‘comprise’) 

No 

Transformation 

According to Table 3,  

1. Transformation is not required for the target entities of the same type as the focal entity, e.g., assignee-

assignee. 

2. The transformation could be accomplished in a single step when focal and target entities are directly 

connected by one of the relations (‘write’, ‘own’, ‘contain’, and ‘comprise’), e.g., inventor-patent. 

3. The transformation could require multiple steps when the focal and target are indirectly connected through 

more than one relation, e.g., assignee-inventor. 

Guided by Table 3, we apply the embeddings of TransE_l2 for 1) visualizing patent embeddings, 2) exploring 

the nearest neighborhood of an entity, and 3) examining a system of heterogeneous entities. Upon 

demonstrating these applications, we also speculate on various use cases for future academic and business 

tools. (Note: The TransE_l2 embeddings of all entities and relations, along with the associated data, are 

available in OneDrivevi). 



5.1. Visualizing Patent Associations (Homogeneous Pairing) 

To demonstrate how well the patent embeddings capture the classification system of USPTO, we cluster the 

embeddings of patents from various domains. Since this application involves only patents, transformation is 

not necessary. For visual clarity, we obtain patents from 20 domains (e.g., D21D) whose patent numbers range 

from 1,200 to 1,400. We apply the t-distributed stochastic neighbour embedding (T-SNE) method to reduce 

the dimensionality of patent embeddings and visualize these in a 2-D plot (Figure 7), wherein, the clusters 

primarily represent the classification scheme of the patent database. Occasionally, the patents that belong to 

the same domains have been distributed among different clusters. Such cases could potentially indicate that 

pairwise knowledge proximities among patents capture other associations like citations and ownership in 

PatNet. 

 

Figure 7: Visualizing patent embeddings across 20 domains. 

5.2. Exploring Nearest Neighborhood (Heterogeneous Pairing) 

In this application, we retrieve entities closest to a focal entity and form the nearest neighborhood. Since this 

application involves all kinds of entities, it is necessary to transform all target entities in USPTO into the type 

of focal entity. In Figure 8, for a focal entity – a patent titled “Entropy coding scheme for video coding” (Patent 

Number – 7158684), we visualize a few directly associated entities as well as indicate the knowledge 

proximity (link weights) values. Despite having no direct association, the inferred link (dashed line) weight 

of 0.717 between “Yuji Itoh” and “Ngai-Man Cheung” suggests that the embeddings capture the extended 



association between these inventors. These directly associated entities are not the closest to the focal entity, 

e.g., knowledge proximity = 0.389 to Texas Instrument Incorporated.  

 

Figure 8: Knowledge proximity in heterogeneous pairs 

Upon transforming all target entities in USPTO to inventor type, we identify those that are closest to the 

inventor – ‘Dawn Tan’ in the total PatNet embedding space. As shown in Table 4a, the closest target entity is 

the patent – 9971091, for which the focal entity – Dawn Tan, is the sole inventor. Another patent – 9671673 

of Dawn Tan, including the other inventors, is part of the neighborhood. Both patents in the neighborhood are 

assigned to the Singapore University of Technology and Design, which is also among the five closest entities 

to Dawn Tan. 

Table 4a: The top five entities closest to the focal entity – an inventor named “Dawn Tan”. 

Rank Target Entity 
Target 

Entity Type 

Knowledge 

Proximity to the 

focal entity 

Relation with the focal entity 

1 

Optical devices and methods for 

fabricating an optical device (Patent 

Number - 9971091) 

Patent 0.908 
Dawn Tan is the sole inventor of Patent 

9971091 

2 Christine Donnelly Inventor 0.896 
Dawn Tan and Christine Donnelly are co-

inventors of patent – 9671673 

3 George F. R. Chen Inventor 0.885 
Dawn Tan and George F. R. Chen are co-

inventors of patent – 9671673 

4 

Optical device for dispersion 

compensation (Patent Number - 

9671673) 

Patent 0.878 
Dawn Tan is one of the inventors of 

patent – 9671673 

5 
Singapore University of Technology 

and Design 
Assignee 0.718 

Dawn Tan’s patents 9971091 and 

9671673 are both assigned to Singapore 

University of Technology and Design 



In a similar approach, we also explore the nearest neighborhood of the patent – 9971091 (Table 4b). Among 

the five closest entities, the inventor – Dawn Tan is ranked first with a proximity = 0.892 to the focal entity. 

The knowledge proximity between the inventor – Dawn Tan, and the patent – 9971091, is indicated as 0.908 

and 0.892 in Tables 4a and 4b, respectively. The variation in proximity score is due to the difference in 

transformation adopted, i.e., the difference in the type of focal entity (inventor and patent) in these examples. 

Table 4b: The top five entities closest to Patent 9971091. 

Rank Target Entity 
Target 

Entity Type 

Knowledge Proximity to 

the focal entity (Patent – 

9971091) 

Relation with the focal entity (Patent – 

9971091) 

1 Dawn Tan Inventor 0.892 Focal patent’s inventor 

2 

Optical device for dispersion 

compensation (Patent Number - 

9671673) 

Patent 0.841 

This patent shares the same inventor 

and assignee with the focal patent and is 

also cited by the focal patent 

3 Christine Donnelly Inventor 0.801 

This inventor is also the co-inventor 

with the focal patent’s inventor but for a 

different patent 

4 George F. R. Chen Inventor 0.778 

This inventor is also the co-inventor 

with the focal patent’s inventor but for a 

different patent 

5 
Singapore University of 

Technology and Design 
Assignee 0.754 SUTD is the assignee of the focal patent 

 

In Table 4b, the patent – 9671673 is ranked as the second closest to the focal patent. While patent – 9971091 

cites patent – 9671673, these two patents also share a joint inventor (Dawn Tan), an assignee (Singapore 

University of Technology and Design), and a classification (G02B – Optical Elements, Systems or Apparatus). 

Among these associations, the assignee – Singapore University of Technology and Design, is ranked among 

the five closest entities to the patent – 9971091. A joint interpretation from the two neighborhoods (Table 4a 

& 4b) is that the retrieved entities form a tightly coupled network, involving technical collaborations and 

organizational ties. 

5.3. Examining Pairwise Proximities (Heterogeneous Pairing) 

In this section, we examine a closed system of entities comprising patents, domains, assignees, and inventors 

associated with knowledge proximity. As illustrated in Figure 9, we consider a system that includes H04L 

(group), Massachusetts Institute of Technology (assignee), Singapore University of Technology Design 

(assignee), Microsoft Corporation (assignee), Hui Ying Yang (inventor), Kristin Wood (inventor), Pablo A. 



Valdivia Y Alvarado (inventor), “Touch Screen Video Gaming Machine” (patent), and “Global Hosting 

System” (patent). 

 

Figure 9: Pairwise knowledge proximities among a heterogeneous set of entities. 

To compute the knowledge proximity values (as indicated in Figure 9), we transform all entities (based on 

Table 3) to patent equivalents. Based on the knowledge proximity values, we understand that all three 

inventors have higher proximities with “Singapore University of Technology and Design” (SUTD), which is 

closer to “Massachusetts Institute of Technology” (MIT) compared to Microsoft Corporation. This suggests 

that the assignees SUTD and MIT could potentially hold organizational ties. In addition, these presumed ties 

could be mediated by two of the three inventors who appear closer to both assignees.  

While Xbox is one of the projects of Microsoft Corporation, it is not uncommon to assume that the patent 

“Touch Screen Video Gaming Machine” could be closer to Microsoft Corporation than the patent “Global 

Hosting System.” Contrary to popular opinion, Figure 9 informs that Microsoft Corporation specializes in 

network architectures more than gaming consoles. This observation is also consistent with the proximity 



between Microsoft Corporation and the group – H04L that denotes the transmission of digital information. 

These inferences could help perceive organizations, their members, and possible collaborations. 

6. Conclusions and Future Work 

In this article, we have operationalized knowledge proximity within the context of the US Patent database that 

comprises various entities such as patents, inventors, assignees, and domain classifications. We integrated 

patent metadata from USPTO into a single knowledge graph called PatNet that comprises 106,882,276 triples 

that constitute five types of relations: <patent, cite, patent>, <inventor, write, patent>, <assignee, own, patent>, 

<group, contain, patent> and <subsection, comprise, groups>. We trained seven graph embedding models 

using PatNet and identified that RESCAL, DistMult, ComplEx, and TransE_l2 exhibit satisfactory 

performance in terms of predicting target entities (〈? , 𝑟, 𝑡〉 or 〈ℎ, 𝑟, ? 〉). In terms of explaining the expansion 

profiles of all assignees and inventors, TransE_l2 exhibits higher AUC and explainability. Based on the 

results, we applied TransE_l2 embeddings to cluster patents, retrieve the nearest neighborhood of a focal entity 

and examine a system of heterogeneous entities.  

Our method is limited in the following aspects that indicate potential research opportunities for the future 

development of our work. 

• Knowledge graphs consume higher memory compared to the link tables in the patent database while 

lacking the sufficient infrastructure to reduce run time.  

• Compared to traditional representations like regular networks, the knowledge graph representation is 

relatively challenging to comprehend and explain (using network properties). 

• The current knowledge proximity may be less applicable to highly focused studies, as proximity is based 

on all entities and relations in USPTO. Learning the embeddings by conducting training on the desired 

subset of PatNet could alleviate this issue. 

• The facts in PatNet are captured without relative importance, e.g., in the facts <inventor1, write, patent1> 

and <inventor2, write, patent1>, the relation write carries a similar level of importance irrespective of the 

inventor contributions. 

• Since PatNet is restricted to USPTO, it would be extended to other patent databases, research articles, and 

other technical publications.  



The approach to measuring knowledge proximity, based on PatNet and the knowledge graph embeddings, 

enables homogenous and heterogeneous associations among inventions, people, organizations, and 

technological fields, as demonstrated using various examples in this article. Such associations also help 

perceive these entities and make inferences thereupon. Knowledge proximity could thus be utilized as a 

fundamental instrument for the development of various patent-related applications and eventually contribute 

to data-driven innovation, business, and policy intelligence (Luo, 2022; Sarica et al., 2020). 

APPENDIX I 

TransE and Its Extensions 

Translation-based embedding model (TransE) is a representative translational distance model that represents 

entities and relations as vectors in the same vector space of dimension ℝ𝑑, where d is the dimension of the 

target space with reduced dimension. TransE performs the linear transformation of vectors by adding a relation 

r to a head h to approximate the tail t in a knowledge graph triplet fact. 

ℎ + 𝑟 ≈ 𝑡 (1) 

For example, if ℎ𝑃𝑎𝑡𝑒𝑛𝑡_1 = 𝑒𝑚𝑏(′𝑃𝑎𝑡𝑒𝑛𝑡_1′), 𝑟𝑏𝑒𝑙𝑜𝑛𝑔𝑠_𝑡𝑜 = 𝑒𝑚𝑏(′𝑏𝑒𝑙𝑜𝑛𝑔𝑠_𝑡𝑜′), 𝑡𝐻04𝐿 = 𝑒𝑚𝑏(′𝐻04𝐿′), 

then ℎ𝑃𝑎𝑡𝑒𝑛𝑡_1 + 𝑟𝑏𝑒𝑙𝑜𝑛𝑔𝑠_𝑡𝑜 should approximate 𝑡𝐻04𝐿. The scoring function of TransE is negative distance 

between ℎ + 𝑟 and 𝑡: 

𝑓 = −‖ℎ + 𝑟 − 𝑡‖1
2

(2) 

TransE_l1 and TransE_l2 are two extensions of TransE. TransE_l1 uses L1 regularization that is calculated 

as the sum of the absolute values of the vector, while TransE_l2 uses L2 regularization that is calculated as 

the square root of the sum of the squared vector values. 

TransR 

Both TransE and TransR are called translational distance models as they translate the entities, relations and 

measure distance in the target vector spaces. Different from TransE that embeds entities and relations into a 

same dimensional vector space, TransR separates entity space from relation space where ℎ, 𝑡 ∈ ℛ𝑘 and 𝑟 ∈

ℛ𝑑. A projection matrix 𝑀 ∈ ℛ𝑘∗𝑑 is learned for each relation to project the entities to the relation space. The 



projection matrix 𝑀𝑟 allows TransR to deal with the relation that is not 1-to-1 as each 𝑀𝑟 captures the features 

of a certain relation. Similar with TransE, TransR uses the same scoring function of measuring the Euclidean 

distance between ℎ + 𝑟 and 𝑡 in certain relation space, ℎ𝑟 = ℎ𝑀𝑟 and 𝑡𝑟 = 𝑡𝑀𝑟, more normally, 𝑓𝑟 = −∥ ℎ𝑟 +

𝑟 − 𝑡𝑟 ∥1

2

. 

RESCAL, DistMult and ComplEx 

RESCAL is a bilinear model that uses vectors to represent entities, matrices to represent relations, and a 

custom scoring function to capture the internal interactions of triples. RESCAL captures the structure 

information of the knowledge graph by using a three-dimensional tensor 𝒳 that models pairwise interaction 

between entities. 𝒳𝑖𝑗𝑘 contains the fact between the 𝑖𝑡ℎ entity and the 𝑗𝑡ℎ entity under the 𝑘𝑡ℎ relation. Value 

of 𝒳𝑖𝑗𝑘 is defined as: 

𝒳𝑖𝑗𝑘 = {
1  if (𝑒𝑖, 𝑟𝑘, 𝑒𝑗) holds 

0  if (𝑒𝑖, 𝑟𝑘, 𝑒𝑗) does not hold 
(3) 

For a graph with many entities, 𝒳 can be sparse and asymmetrical. RESCAL decomposes each layer of 𝒳 to 

capture the inherent graph structure in the form of a latent vector representation of the entities and an 

asymmetric square matrix that captures the relationships. The decomposition progress is defined as follow: 

𝒳𝑘 ≈ 𝐴𝑅𝑘𝐴⊤, for 𝑘 = 1, … , 𝑚 (4) 

where 𝐴 is an 𝑛 × 𝑟 matrix of latent component representation of entities, and the asymmetrical 𝑅𝑘 is an 𝑟 × 𝑟 

square matrix that represents the interaction for 𝑘𝑡ℎ predicate entity in 𝒳. 𝑚 is the number of entities and 

relations respectively. 𝐴 and 𝑅𝑘 are computed through minimizing the distance between 𝒳𝑘 and 𝐴𝑅𝑘𝐴⊤. 

RESCAL uses a similarity-based scoring function that measures the credibility of facts by matching the 

underlying semantics of entities and the relations contained in the vector space representation. The scoring 

function is bilinear. 

𝑓(𝐴, 𝑅𝑘) =
1

2
∑ (𝒳𝑖𝑗𝑘 − 𝐚𝑖

𝑇𝑅𝑘𝐚𝑗)
2

𝑖,𝑗,𝑘

(5) 



where 𝑎𝑖 and 𝑎𝑗 are the 𝑖𝑡ℎ and 𝑗𝑡ℎ rows of A and thus are the latent-component representations of the 𝑖𝑡ℎ and 

𝑗𝑡ℎ entity. RESCAL is easy to overfit. The complexity will be high as the dimension of the relation matrix 

increases, making it difficult to apply to large-scale knowledge graphs.  

DistMult uses the diagonal matrix to represent the relationship matrix, reducing the number of parameters of 

the bilinear model to the same as TransE. However, DistMult oversimplifies the RESCAL model. It can only 

solve the symmetrical relations in the knowledge graph. ComplEx extends DistMult to the complex number 

space, so it can solve both symmetric and asymmetric relations at the same time. 

RotateE model 

Inspired by Euler decomposition, the RotateE model maps entities and relations to a complex vector space 

and defines each relation as a rotation from the head to the tail entity. Given a triplet (ℎ, 𝑟, 𝑡), 𝑡 = ℎ ∘ 𝑟 , where 

ℎ, 𝑟, 𝑡 ∈ ℂ𝑘 are the embeddings of the head, relation, and tail in the complex vector space separately, and ∘ is 

the Hadamard product. For each set of (ℎ𝑖, 𝑟𝑖, 𝑡𝑖),  the following relationship is expected. 

𝑡𝑖 = ℎ𝑖𝑟𝑖, where ℎ𝑖, 𝑟𝑖, 𝑡𝑖 ∈ ℂ, and |𝑟𝑖| = 1 (6) 

The scoring function of RotateE measures the angular distance and is defined as: 

𝑓𝑟(ℎ, 𝑡) = ∥ ℎ ∘ 𝑟 − 𝑡 ∥ (7) 

Because RotateE remains linear in time and memory, it can be extended to a large knowledge graph. 

APPENDIX II 

Three standard metrics are used to evaluate the embedding quality, including Mean Reciprocal Rank (MRR), 

Mean Rank (MR), and Hit ratio with cut-off values n = 1, 3, and 10. MRR is the average of the reciprocal 

ranks of results for a sample of queries Q. Its value ranges from 0 to 1 as the best. It is given as: 

MRR =
1

|𝑄|
∑

1

rank𝑖

|𝑄|

𝑖=1

(1) 

where 𝑟𝑎𝑛𝑘𝑖 refers to the rank position of the positive triplet for the 𝑖𝑡ℎ query. 



MR measures the average rank of all correct entities with a lower value representing better performance. It is 

given as: 

MR =
1

|𝑄|
∑ rank𝑖

|𝑄|

𝑖=1

(2) 

Hits@k describes the fraction of true entities that appear in the first k entities of the sorted rank list. Its value 

lies in (0,1] where closer to 1 is better. It is given as: 

hits@k =
1

|𝑄|
∑ 𝕀

|𝑄|

𝑖=1

[rank𝑖 ≤ 𝑘] (3) 
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