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Introduction
Software development proceeds as a series of

changes to a base set of software. For new projects the

base set may be initially empty. In most projects, how-

ever, there are incremental changes to an existing, per-

haps large, set of code and documentation. Developers

make changes to the code for a variety of reasons, such

as adding new functionality, fixing defects, improving

performance or reliability, or restructuring the software

to improve its changeability. Each change carries with

it some likelihood of failure.

Reducing the number of software failures is one

of the most challenging problems of software produc-

tion. It is especially important when rapid delivery

schedules severely restrict coding, inspection, and test-

ing intervals. This paper deals with one part of this

problem: predicting the probability of failure for a soft-

ware change after the coding for that change is com-

pleted. Knowing that the failure probability is high

before a software change is delivered allows project

management to take risk reduction measures, such as

allocating more resources for testing and inspection or

delaying its delivery to customers.

Our main hypothesis is that easily obtainable

properties of a software change—such as size, dura-

tion, diffusion, and type—have a significant impact on

the risk of failure. Our approach is distinct from most

failure prediction studies (described in the next sec-

tion), which focus on the properties of the code being

changed, rather than on the properties of a change

itself. Knowing which parts of the code are difficult to

change may help one decide where to concentrate

reengineering work, but the changes themselves are

the most fundamental and immediate concern in a

software project, because they are necessary to fix and

evolve the product.

In addition to the main hypothesis, we conjecture

that greater programmer experience should decrease

the failure probability and that the increased size and
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diffusion of a change should increase it. To test our

hypotheses we designed the necessary change mea-

sures, constructed a model for change failure probabil-

ity, and then tested our hypotheses by using them in

the predictive model.

From a practical perspective we are interested in

knowing if we can create failure probability models

that are useful in a commercial software project. As a

test case we created such a model for a large software

system, the 5ESS® switching system software.1 We

evaluated the predictive properties of our model and

then transformed the model into a decision support

tool. It is currently being used by the 5ESS project to

evaluate the risk of changes that are part of software

updates (SUs).

The remainder of this paper is organized as follows.

In the section immediately below, we review related

work. Next we define the terminology of software

changes and describe the data, after which we discuss

the goals and methods of our research, including the

change measures. In “Model Fitting,” we construct the

models and test our hypotheses. Then we consider the

predictive power of the model and discuss the issues

associated with applying the model in practice.

Related Work
A number of studies investigate the characteristics

of source code files with high fault potential. A com-

mon approach is to use several product measures—

determined from a snapshot of the code itself—as

predictors of fault likelihood, with code size (that is, the

number of lines of code) as the canonical fault predic-

tion measure. Studies conducted by An, Gustafson, and

Melton,2 Basili and Perricone,3 and Hatton4 relate

defect frequency to file size. An, Gustafson, and

Melton2 also used the degree of nesting to predict a

file’s fault potential. Measures of code complexity, such

as McCabe’s cyclomatic complexity5 and Halstead’s

program volume6 are other examples of product mea-

sures sometimes linked to failure rates. Empirical stud-

ies of product measures and fault rates were described

by Schneidewind and Hoffman,7 Ohlsson and Alberg,8

Shen et al.,9 and Munson and Khoshgoftaar.10

A different class of measures for modeling fault

rates uses data taken from the change and defect his-

tory of the program. Yu, Shen, and Dunsmore11 and

Graves et al.12 use defect history to predict faults, and

Basili and Perricone3 compare new code units with

those that borrow code from other places.

The software reliability literature contains many

studies13-19 that estimate the number of faults remain-

ing in a software system in order to predict the num-

ber of faults that will be observed in some future time

interval. A critique of these approaches is presented by

Moranda.20 In contrast to the preceding studies, which

attempt to identify the probability of failure or the

number of failures for a software entity, we focus on

predicting the probability of failure resulting from a

change to a software entity.

Software Changes
Most software products evolve over time because

there is a need to fix defects and extend functionality.

The evolution is accomplished by changing the source

Panel 1. Abbreviations, Acronyms, and Terms

ECMS—Extended Change Management System
EXP—developer experience
FIX—fix of a defect found in the field
IMR—initial maintenance request
IMRTS—IMR Tracking System
INT—difference in time between the last and

first delta
LA—number of lines of code added
LD—number of lines of code deleted
LOC—number of lines of code
LT—number of lines of code in the files touched

by the change
MR—maintenance request
ND—number of deltas
NF—number of files
NLOGIN—number of developers involved in

completing an IMR
NM—number of modules
NMR—number of MRs
NS—number of subsystems
REXP—recent experience
SCCS—Source Code Control System
SEXP—subsystem experience
SU—software update
URL—uniform resource locator
VCS—version control system



Bell Labs Technical Journal ◆  April–June 2000 171

code. Sets of changes are typically grouped together

into releases or generics. A release represents a new

version of software that fixes a number of defects and

adds new features. Good business practices demand

that new feature offerings and fault fixes be made

available to customers as fast as possible. However, as

software systems increase in size, the task of fre-

quently installing new releases becomes increasingly

unwieldy. SUs are used to solve that problem. The SUs

can be thought of as small releases designed to fix the

most urgent defects rapidly and, possibly, to deliver

the most lucrative features.

A logical change to the system is implemented as

an initial maintenance request (IMR). To keep it man-

ageable, each IMR is organized into a set of mainte-

nance requests (MRs), where each MR is confined to a

single subsystem. Each MR may require changes to

several source code files. A file may be changed several

times, and each change to a file is called a delta. The

delta is an atomic change to the source code recorded

by a version control system (VCS). The minimal infor-

mation associated with each delta includes the file,

developer, date, and lines changed. Very large soft-

ware releases typically cause at least one failure, even

in the most reliable software products, so it does not

make sense to predict the failure probability for an

entire release (although it is known to be close to

one). For small SUs, however, this is often not true;

the probability of failure is significantly less than one.

It is important for the project management to know

why the probability of failure is high for some changes,

so they can take appropriate action. Because SUs are

composed of IMRs, knowing which IMRs have high

failure probability is crucial, so they can either be more

thoroughly inspected and tested, or even be delayed,

until a subsequent SU. These practical considerations

lead us to study the probability of failure for IMRs,

rather than for entire SUs or releases.

Software Project
The project under study is the software for a high

availability telephone switching system (5ESS). In the

5ESS software, in addition to an annual main release,

a continual series of SUs are sent out, both to give cus-

tomers needed software fixes and to add features that

did not make it into the main release. In the 5ESS soft-

ware, the SUs are implemented by patching new and

replacement functions onto a running system. On the

running switch, the SU is loaded into a block of avail-

able memory. Vectors are set to direct the existing

code to the SU code at appropriate points. In many

cases, there is no system downtime when the SU is

patched into the running system.

Both releases and SUs consist of a number of

IMRs. IMRs go through several stages until they are

ready to be submitted. They then enter a pool of can-

didate IMRs for release. From this pool the most

urgent candidates are selected for the SU. The selected

IMRs are then built, tested, and finally released in the

SU. Our models are designed to provide failure proba-

bilities for IMRs that are in the “submitted” state. SU

failures are costly and may be a cause for customer dis-

satisfaction. Consequently, project management can

use IMR risk information to select IMRs for an SU;

build and test teams can use the same information to

decide where to spend extra resources for IMRs that

pose a high risk.

Change Data
The 5ESS source code is organized into subsys-

tems, and each subsystem is further subdivided into a

set of modules. Any given module contains a number

of source code files. Each logically distinct change

request is recorded as an IMR by the IMR Tracking

System (IMRTS). The IMRTS records the SU (or

release) number for the IMR and indicates whether

the IMR was opened to fix a defect found in the field.

The project also has an SU tracking database that lists

all the SU failures and the IMRs that caused these fail-

ures, based on a root cause analysis.

Figure 1 shows the change hierarchy and its asso-

ciated databases. Boxes with dashed lines define data

sources, such as the SU tracking database; the blue

boxes define changes; and the remaining boxes define

properties of changes. The arrows define an “is a part

of” relationship among changes—for example, each

MR is part of an IMR.

The change history of the files is maintained using

the Extended Change Management System (ECMS)21

for initiating and tracking changes; and the Source

Code Control System (SCCS)22 for managing different

versions of the files. The ECMS records information
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about each MR. Every MR is owned by a developer,

who makes changes to the necessary files to imple-

ment the MR. The lines in each file that were added,

deleted, or unchanged are recorded as one or more

deltas in SCCS. It is possible to implement all MR

changes restricted to one file by a single delta, but in

practice developers often perform several deltas on a

single file, especially for larger changes. For each delta,

the time of the change, the login of the developer who

made the change, the number of lines added and

deleted, the associated MR, and several other pieces of

information are all recorded in the ECMS database.

Failed IMRs are identified only for the population

of IMRs that are part of the SUs. Consequently, we use

only that population of IMRs in our analysis. The pop-

ulation includes about 15,000 IMRs during a period of

ten years.

Research Goals and Methods
Our main research goal is to determine if we can

predict the probability that a change to the source code

will cause a failure based on information available

after the coding stage. Prediction at an earlier stage is

likely to be much less precise, and prediction at a later

stage would be much less useful, because fewer

options would be available to mediate the risk.

Despite extensive literature on source code com-

plexity,5,6 complexity of an object-oriented design,23

or functional complexity,24 little attention has been

devoted to studying the properties of software

changes. Belady and Lehman25 described an early

study of releases, and Basili and Weiss26 reported on

an exploratory investigation of smaller changes. We

used a subset of change measures obtained by the

SoftChange system27 from a software project’s version

control database. We grouped such measures into five

Software update

Feature

IMRIs a field fault?

IMRTS

Did it fail?

Bad IMRs

SU tracking

ECMS
Description

Delta
SCCS

Time, date File, module

Developer Number of lines
added or deleted

ECMS – Extended Change Management System
IMR – Initial maintenance request
IMRTS – IMR Tracking System

MR – Maintenance request
SCCS – Source Code Control System
SU – Software update

MR

Figure 1. 
Change hierarchy and data sources.
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classes: size, interval, diffusion, experience, and change

purpose measures. For each of these measures we

formed a hypothesis about its effect on the likelihood

of failure of a change, as described below.

Properties of Changes
The properties of change that factor into our pre-

diction include the diffusion and size of a change, the

type of change, and the programmers’ experience with

the system, as described below.

Diffusion of a change is one of the most important

factors in predicting the likelihood of failure. By diffu-

sion of a change, we mean the number of distinct parts

of software, such as files, that need to be touched, or

altered, to make the change. A large diffusion indicates

that the modularity of the code is not compatible with

the change, because several modules have to be

touched to implement the change. We expect diffuse

changes to have a higher probability of failure than

non-diffuse changes of a comparable size. The diffusion

of a change reflects the complexity of the implementa-

tion and, consequently, leads to a higher likelihood of

serious mistakes being made by programmers.

We also expect that a larger change would be

more likely to fail. The intuitive reason is that a larger

change (with a comparable diffusion) would create

more opportunities to make a mistake that would

result in a failure.

The changes for new functionality often involve

creating new functions and new source code files,

while the defect fixes are less likely to do that. As a

result, defect fixes tend to be much smaller than new

functionality changes. Because of these significant dif-

ferences, we have no reason to expect that the proba-

bility of failure would be similar for both types of

changes. Furthermore, if we assume that programmer

familiarity with the code is an important factor in pre-

venting failures, it is more likely that the fixed code

would be less familiar to the developer than the new

code he or she just wrote for a feature. If this hypothe-

sis is true, then similarly sized and diffuse fault fixes

made by programmers with similar experience would

have a higher probability of failure than the new fea-

ture changes.

Finally, programmers’ experience with a system

should increase their familiarity with it and, conse-

quently, reduce their likelihood of making a serious

mistake in a change. Of course, this inequality should

hold true only for otherwise similar changes.

To test our hypotheses, first we defined a number

of change measures and extracted them from the

product under study. Then we constructed and fitted a

predictive change failure probability model and tested

our hypotheses. Finally, we selected a parsimonious

model with high predictive power and applied it in

practice to predict the risk of failure.

Construction of Change Measures
In this work we are interested in change measures

that have three basic properties:

• The measure should be automatically com-

puted from any software project’s change

management data.

• The measure could be obtained immediately

after the coding stage to provide enough time

for risk reduction activities if the predicted risk

turns out to be high.

• The measure should reflect a property of a

change that might significantly affect the prob-

ability that a change would cause a failure.

The first point ensures that it would be possible to

extract similar measures for most software projects.

The second guarantees that a measure could be used

in practice if it turned out to be important in predicting

the probability of failure. The last point reflects the

goals of this investigation.

Change diffusion or interaction measures include

the total number of files (NF), number of modules

(NM), and number of subsystems (NS) touched by an

IMR, or the number of developers involved in com-

pleting an IMR (NLOGIN). We use the following IMR

size measures: number of lines of code (LOC) added

(LA), LOC deleted (LD), and LOC in the files touched

by the change (LT). The number of MRs (NMR) and

the number of deltas (ND) reflect both the diffusion

and size of an IMR. We measured the duration of an

IMR by calculating the difference in time between the

last and first delta (INT). We also used information

about whether the change was made to fix a defect

found in the field (FIX). If the IMR was a fix, the pre-

dictor FIX is one; otherwise it is zero.

IMR experience measures are based on the aver-



174 Bell Labs Technical Journal ◆  April–June 2000

age experience of developers performing the change.

Developer experience (EXP) is determined by the

number of deltas completed by a developer in making

previous changes before the current change is started.

EXP is computed by taking a weighted geometric aver-

age over the set of developers involved in the change,

where the weights are the number of deltas con-

tributed by each developer. Two modifications of

developer experience measures are also computed:

recent experience (REXP) and subsystem experience

(SEXP). For REXP, recent deltas are weighted more

heavily than deltas performed a long time ago (the

number of deltas completed n years ago gets weight

). For SEXP, only deltas on the subsystems

that a change touches are included in calculating

developer experience. Table I summarizes the defini-

tions of these measures.

Model Fitting
Logistic regression, described by McCullagh and

Nelder,28 is a standard way to model probabilities or

proportions. Linear regression, though more com-

monly used, is not suitable, because the modeled

response must have values between zero and one. In

logistic regression, as in linear regression, one uses a

number of predictor variables and the response vari-

able, which—in contrast to linear regression—can only

range between zero and one. In our case, the response

variable is one if an IMR caused a failure, and zero

otherwise. Most predictor variables are highly skewed

and need a logarithmic transformation.

We use all change measures in the full model:

(1)

,
where , C is the intercept,

and the estimated coefficients are αi. Table II shows

the significance of the factors in the full model.

Because some predictors are strongly correlated, it

may be difficult to interpret the estimated values of the

coefficients in the full model. Model selection tech-

niques such as stepwise regression, described by

Chambers and Hastie,29 can assist in choosing the best

model. The technique proceeds by iteratively dropping

logit 1p2 5 log5p / 11 2 p26
1 a13log  REXP 1 a14log  SEXP

1a12log  EXP1 a11FIX1 a10log INT

1a9log  1LT 1 121 a8log  1LD 1 121a6log  NMR 1 a7log  1LA 1 121a3log  NF 1 a4log  NLOGIN 1 a5log  ND

logit 1P 1failure2 2 5 C 1 a1log NS 1 a2log NM

1 / 1n 1 12

Type Abbreviation Definition

Diffusion

NS Number of subsystems touched

NM Number of modules touched

NF Number of files touched

NLOGIN Number of developers involved

Size

LA Lines of code added

LD Lines of code deleted

LT Lines of code in the files
touched by the change

Diffusion ND Number of deltas
and size NMR Number of MRs

Interval INT Time between the last and
first deltas

Purpose FIX Fix of a defect found in the
field

Experience

EXP Developer experience

REXP Recent developer experience

SEXP Developer experience on a
subsystem

Table I. Summary of change measures.

Description Predictor p-value

Number of subsystems log NS 0.00

Number of modules log NM 0.00

Number of files log NF 0.02

Number of deltas log ND 0.00

Number of MRs log NMR 0.04

Number of logins log NLOGIN 0.25

Lines of code added log (LA + 1) 0.00

Lines of code deleted log (LD + 1) 0.87

Lines of code in the log (LT + 1) 0.09
touched files

Is it a problem fix? FIX 0.00

Change interval log INT 0.00

Experience of developers log EXP 0.00

Recent experience log REXP 0.56

Subsystem experience log SEXP 0.36

Table II. ANOVA for the full model.
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predictors from the full model until dropping any

remaining predictor would no longer be beneficial,

based on Mallows Cp criteria.30,31 The procedure in

this case suggested a simpler model, as follows:

(2)

Both Table II and Table III show that the coeffi-

cients for size, diffusion, purpose, and experience are

significantly different from zero, supporting our main

hypothesis that change properties do affect the proba-

bility of failure, at least in the considered project.

Our specific hypotheses on size and diffusion of

changes are also supported because the IMR failure

probability increases with the number of deltas, the

number of lines of code added, and the number of

subsystems touched. Average programmer experience

significantly decreases the failure probability. Finally,

the changes that fix field problems are more likely to

fail than other IMRs if values for other predictors are

comparable.

The model also indicates that the IMR interval has

an influence on failure probability, even after account-

ing for other factors. We speculate that the longer

interval might indicate organizational or other difficul-

ties that may arise when IMR is implemented, and

these difficulties might increase the potential for failure.

For example, if it takes an unexpectedly long time to

complete coding the change, that increase could reduce

the time and effort used for inspection and testing.

We should note that there may be other predictors

we did not measure. For example, we expect that the

number and type of installations for the SU would influ-

ence the probability of failure. When an update is sent

to a very large number of installations or to installations

that handle an extremely heavy workload, it is reason-

able to expect the probability of failure to increase.

As a caution, note that the hypotheses were con-

firmed only in a statistical sense; our statistical model

(or, indeed, any statistical model) does not prove

causal relationships. There might be a latent factor that

affects both the predictors and the response. Since the

final model is intuitive and reasonable, the possibility

of such an unknown latent factor appears unlikely.

Prediction
In practice, we need to identify the IMRs that

have a high risk of failure early enough in the devel-

opment process to be able to take appropriate preven-

tive action. Our goal is to perform the prediction

immediately after the coding is complete.

Although calculating the probability of an IMR

failure is an essential part of the prediction problem,

we need to know what range of probability values is

too high for a given delivery, so an appropriate risk

management action can be taken. Furthermore, to

manage the risk of an IMR, it is important to know

why the model predicts a high probability of failure.

We took the following steps to address these two

requirements.

First, we considered the predictive power of the

model by looking at a family of type I and type II

errors. We then chose two cutoff probabilities to classify

the IMRs into three categories: high risk, medium risk,

and normal. Finally, we constructed flags, each corre-

sponding to one predictor in the model, to indicate

why the risk was high. For example, an IMR may be

classified as having a high risk with two flags, “many

subsystems touched” and “is a field fault fix.” The 

project management and developers responsible for the

IMR then act based on the class of risk and the flags.

Predictive Power
We classify an IMR as risky if its predicted probabil-

ity of failure is above a cutoff value. Choosing a cutoff

value means attaining a balance between two factors:

• The proportion of IMRs that do not fail when

included in the SU, but are identified as risky.

This proportion is categorized as the type I

error. Such IMRs incur wasted effort in trying

to reduce their risk.

1a6log  1LA 1 12.1a3FIX 1 a4log  INT 1 a5log  EXP

logit 1P 1failure2 2 5 C 1 a1log  NS 1 a2log  ND

Description Predictor Estimate p-value

Number of subsystems log NS 0.41 0.000

Number of deltas log ND 0.10 0.000

Is it a fix? FIX 0.60 0.000

Interval log INT 0.05 0.000

Experience log EXP –0.11 0.002

Lines of code added log (LA + 1) 0.18 0.002

Table III. Coefficients for the reduced model.
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• The proportion of IMRs that do fail when

included in the SU, but are not identified as

risky, known as the type II error. Such IMRs

incur failure remediation costs and customer

dissatisfaction.

To choose an appropriate cutoff value, we need to

look at error probabilities for a range of cutoff values

and to conduct a cost-benefit analysis. The decision

may be different for different projects and for different

types of deliveries. Customers do not expect SUs or

patches to fail; consequently, the cutoff value should

be lower than it would be for large deliveries like new

releases of software. High-reliability systems (such as

the project under study) may require lower cutoff val-
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Figure 2. 
Type I and Type II errors for different cutoff values.
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ues than systems in which some failures may be toler-

ated. The decision could also be partly based on the

available resources. If the testing and inspection

resources are especially scarce at a particular time, the

cutoff value may be raised accordingly.

Figure 2 shows how type I and type II errors

depend on the cutoff value. The horizontal axis shows

the cutoff probability (increasing to the right), while

the type I and type II errors are plotted using colored

lines. The plot is produced using the model in

Equation (2) and IMR failure data for all years

between 1996 and 1999 to illustrate trends. The errors

do not change significantly for the first three years. In

1999, however, the type II error drops and the type I

error increases slightly. The change in 1999 is a result

of radical changes in the SU process designed to

increase SU quality.

Risk Flags
Inspection of the error plots suggested two cutoff

values appropriate for the project. One cutoff proba-

bility was used to identify “high-risk” IMRs and

another, lower, cutoff probability was used to iden-

tify “medium-risk” IMRs. We initially used this risk

classification and the failure probability routinely to

communicate the risk information for submitted

IMRs. Almost immediately we got feedback from the

project management involved that the risk probabil-

ity and the risk class were not sufficient for the proj-

ect management to use in making appropriate

decisions. As a result we designed an additional set of

flags corresponding to each predictor in the model to

communicate the reason why the failure probability

was high.

A flag is raised if the corresponding predictor

exceeds the 95th percentile of the values. For example,

the “many subsystems touched” flag is raised for an

IMR if the number of subsystems touched is larger

than the number of subsystems touched by 95% of

IMRs. The “low developer experience” flag is raised

when the programmers’ experience is below the expe-

rience value observed in 95% of IMRs. Finally, all

defect fix IMRs have the flag “is a defect fix.”

Current Use
The methodology is currently packaged as “the

IMR Risk Assessment tool” in the 5ESS software 

project. The tool uses change summaries obtained

from the SoftChange system.26 Currently, the sum-

maries and predictions are automatically updated

three nights a week. During each update, the IMR

risk assessment tool:

• Extracts the needed change measures from the

summaries;

• Fits the logistic regression model specified in

Equation (2), based on the IMRs that have

been delivered in SUs;

• Uses the fitted model to predict the risk of all

submitted IMRs;

• Classifies all submitted IMRs into risk classes

and calculates the risk flags, as described

above; and

• Summarizes the IMR risk and other properties

on a Web page.

The project manager for the SU then inspects the high-

risk IMRs and possibly delays some for a later SU. The

developer responsible for the IMR is sent an e-mail

message with the following content (proprietary infor-

mation is changed):
The IMR Risk Assessment tool has flagged your

IMR—123456—as potentially risky to SU 25. The

enclosed URL provides a detailed explanation of

the IMR risk assessment process:

http://www.lucent.com/imrrisk/

As the developer of this IMR, please recheck your

code and the test plan to minimize the risk this

IMR poses to SU 25.

Conclusions
Our idea of predicting failure probabilities of 

changes based on the properties of the changes seems

feasible and useful. We are able to construct a model that

appeals to our intuition and apply it to the changes that

constitute 5ESS software development. The model uses

easily obtainable properties of a software change, includ-

ing its size, duration, diffusion, and type, as well as the

experience of the developer(s) who implemented it.

All the data we use to compute failure probabili-

ties is automatically obtained from the change control

system used in the 5ESS software. One could construct

Many subsystems flagIMR Risk
1123456 0.031
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a similar model for any software development project

for which the same types of data are available, as they

are likely to be for most change control systems. Even

in cases where all the data are not available, it is likely

that one could construct a useful failure probability

model. Something as simple as a quantification of

developer expertise, expressed as the number of deltas

a developer has made to the code, is a strong predictor

of change quality.

A key element in creating and statistically vali-

dating a change failure probability model is the exis-

tence of historical data that identifies which IMRs

fail when included in an SU and which do not.

Without such data we could not perform the logistic

regression needed to construct the model. This

increases the value of conducting the part of root

cause analysis that identifies the changes that caused

each failure.

Once the model is in place, the development

organization can start using it to make decisions.

Should the development organization expend

resources on remedial work to improve their confi-

dence that a change with a high probability of failure

is safe to deliver to customers in a SU? Determining

the cutoff value used to decide which IMRs receive

further scrutiny is a subjective decision about balanc-

ing development resources against customer satisfac-

tion. Setting a high cutoff value increases the

incidence of failures and angers customers; setting a

low one wastes resources. Somewhat paradoxically,

the decisions made about the cutoff value and about

how the failure probability model is used affect the

model. When all works well, the incidence of failures

drops because of the increased scrutiny of high-risk

changes. The lower failure incidence becomes part of

the historical record on which the model is based, and

the model will have to be adjusted to take the new

factor into account.

It is important to note that we worked only with

existing data in constructing the model—that is, we did

not require the collection of any additional data about

changes, and we did not perturb the change manage-

ment system. Compared to the cost of maintaining the

change management system, the incremental cost of

computing the model is negligible. Indeed, a consider-

able amount of valuable information can be derived

free from change management systems for those orga-

nizations that have the discipline to use it, as illustrated

in studies conducted by Basili and Weiss,26 Mockus et

al.,27 Graves et al.,12 Eick et al.,32 Mockus and Votta,33

Atkins et al.,34 and Siy and Mockus.35 The information

is free to those who have the data.
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