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ABSTRACT: This work presents how approximate solution methods were introduced in a

graduate level course of Theory of Elasticity. The three methods introduced are the finite

difference method, the finite element method, and the boundary element method. All methods

are exemplified by the problem of a thick-walled cylinder subject to internal pressure with an

axisymmetric response. Choosing a single problem to introduce the three methods

demonstrates accuracy and efficacy of each method. � 2006 Wiley Periodicals, Inc. Comput Appl

Eng Educ 14: 120�134, 2006; Published online in Wiley InterScience (www.interscience.wiley.com); DOI

10.1002/cae.20070

Keywords: elasticity; finite difference method; finite element method; boundary element

method

INTRODUCTION

This paper is the third segment in an effort by the first

author to modernize the traditional Theory of

Elasticity course. In 1993, symbolic algebra computa-

tional tools such as Macsyma [1] (substituted by

Maple [2] in 2000) were introduced in the course to be

able to solve problems that were physically more

realistic but mathematically complex. Problems

included classical problems such as the triangular

wedge with uniform load on its edge, multilayered

cylinders with shrink fitting, stresses in a connecting

rod, etc.

In 2000, this effort was followed by integrating a

single research problem [3,4] of assembling fulcrums

of bascule bridges into the classroom [5]. This

research problem had broad-based use in exemplify-

ing multiple concepts such as interference fits,

axisymmetric response problems, transformation of

strains and stresses, comparison of failure theories,

critical crack length aspects, and effect of temperature

dependent thermoelastic properties.

In the last 40 years, the use of approximation

solution methods to solve complex problems in

engineering and science has grown significantly. The

widespread availability of powerful digital computers
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and commercial computational software based on

these approximation methods with efficient solution

algorithms has made it practical. In this paper, we are

introducing the student to approximate methods of

solving elasticity problems. The purpose of this paper

is to provide elementary background on how approx-

imation solution methods work, while using a single

example to illustrate the differences between the

approaches, and discuss the accuracy and efficacy of

the methods.

The single example chosen is the classical

problem of a uniformly pressurized thick-walled

cylinder with an axisymmetric response (Fig. 1). This

problem is chosen since it is simple enough to have an

analytical solution, but complex enough such that its

approximate solutions can be generalized for pro-

blems that are more complicated.

The approximate solution methods introduced in

this paper are finite difference method, finite element

method, and boundary element method. The govern-

ing boundary-value differential equation, which is the

basic equation for exact solution, is used directly by

finite difference method (numerical approximation

solution), while the finite element method (Ray-

leigh�Ritz method) is based on the concept of total

potential energy, and boundary element method is

based on boundary integral equation.

THICK-WALL CYLINDER PROBLEM

Problem Definition

Consider a thick-walled cylinder (material properties:

Young’s modulus E, Poisson’s ratio �) of inner radius,
a, and outer radius, b, subjected to uniform internal

pressure, pi, and external pressure, po, (Fig. 1). Find

the radial displacement, u, and stress components

(radial stress, �r, and tangential stress, �y) in the

cylinder. Plane stress state is assumed.

Numerical Example Problem

For demonstrating the use of approximate solution

methods in solving the problem numerically, the

following data is used: a¼ 0.25 m, b¼ 0.5 m, pi¼
200 MPa, po¼ 0, E¼ 207 GPa, n¼ 0.3.

Mathematical Formulation

The solution of the thick-wall cylinder problem can be

found by solving the equation of compatibility in

polar coordinates, which is a fourth order partial

differential equation of Airy stress function [6], or by

using axisymmetry conditions to formulate the

problem as a second order differential equation of

displacement [7], or equivalent forms (potential

energy, integral equation, etc.). The last approach is

adopted in this paper, as it is direct and does not

require inverse or semi-inverse solution methods

[6,7]. The details of this approach are given in

Reference [7] and the relevant formulas are summar-

ized as follows. The radial strain, er, tangential strain,
ey, in terms of radial displacement, u are given as

er ¼
du

dr
ð1Þ

ey ¼
u

r
ð2Þ

The radial stress, �r, and tangential stress, �y, in terms

of radial displacement, u, are given as

�r ¼
E

1� �2
du

dr
þ �

u

r

� �
ð3Þ

�y ¼
E

1� �2
�
du

dr
þ u

r

� �
ð4Þ

The governing equation for radial displacement, u, is

given by

d2u

dr2
þ 1

r

du

dr
� u

r2
¼ 0 ð5Þ

Using Equations 3 and 4, the boundary conditions

sr(a)¼�pi and sr(b)¼�po can be rewritten as

u0ðaÞ þ �
uðaÞ
a

¼ � 1� �2

E
pi ð6Þ

u0ðbÞ þ �
uðbÞ
b

¼ � 1� �2

E
po ð7Þ

Figure 1 Pressured thick-wall cylinder problem.
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First, the exact solution is found, and then each

approximate solution method is presented through

solving the example problem. Nodal points chosen for

the three approximate solution methods are uniformly

spaced for convenience. Figure 2 shows how the nodal

points and elements are numbered.

Exact Solution

The exact solution of displacement can be found

directly by solving the governing differential equa-

tion, Equation 5, with associated boundary conditions,

Equations 6 and 7 and then substituting it into

Equations 3 and 4 give exact solution of stresses.

The exact solutions [7] of radial displacement, radial

stress, and tangential stress are obtained as

u ¼ 1� �

E

ða2pi � b2poÞr
b2 � a2

þ 1þ �

E

ðpi � poÞa2b2
ðb2 � a2Þr ð8Þ

�r ¼
a2pi � b2po

b2 � a2
� ðpi � poÞa2b2

ðb2 � a2Þr2 ð9Þ

�y ¼
a2pi � b2po

b2 � a2
þ ðpi � poÞa2b2

ðb2 � a2Þr2 ð10Þ

Solution for Example Problem

Substituting the numerical data into Equations 8�10,

the exact solution for the example problem is

u ¼ 0:2254r þ 0:1047

r

� �
� 10�3 ð11Þ

�r ¼ 66:67� 16:67

r2

� �
� 106 ð12Þ

�y ¼ 66:67þ 16:67

r2

� �
� 106 ð13Þ

Evaluating the solution at three nodal points

(inner edge, r¼ 0.25 m; mid-point, r¼ 0.375 m; and

outer edge, r¼ 0.5 m) along the radial location for

comparison, the resulted values are given in Table 1.

FINITE DIFFERENCE METHOD

The finite difference method (FDM) is a numerical

technique to solve differential equations [8]. It can be

employed to solve this problem modeled as a

boundary-value differential equation.

Boundary-Value Differential
Equation Formulation

We recall here that the problem has been already

formulated as a boundary-value differential equation,

given by Equation 5 subject to the boundary

conditions given by Equations 6 and 7.

Finite Difference Method

The range of interest, [a, b] is divided into n segments

by nþ 1 nodes numbered from 0 to n (Fig. 2). For

simple formulation, we use uniform nodal spacing,

h ¼ ðb� aÞ n= . The derivatives of the unknown

function (radial displacement) are presented as

algebraic expressions of nodal coordinates. The

relevant second-order approximation formulas are

given in Table 2. More difference approximation

formulas are available in [8].

Node 0: Approximate the first boundary condition,

Equation 6, using forward difference formula

1

2h
ð�3u0 þ 4u1 � u2Þ þ �

u0

a
¼ � 1� �2

E
pi ð14Þ

Node n: Approximate the second boundary condition,

Equation 7, using backward difference formula

1

2h
ðun�2 � 4un�1 þ 3unÞ þ �

un

b
¼ � 1� �2

E
po ð15Þ

Figure 2 Numbering of nodal points and elements.

Table 1 Exact Solution Evaluated at Nodal Points

r (m) 0.25 0.375 0.5

u (mm) 0.4750 0.3637 0.3221

�r (MPa) �200 �51.85 0

�y (MPa) 333.3 185.2 133.3

Table 2 Finite Difference Formulas for First and

Second Derivatives

Forward

difference

Backward

difference

Central

difference

df

dx

����
x¼x0

�3f0 þ 4f1 � f2

2h

f�2 � 4f�1 þ 3f0

2h

�f�1 þ f1

2h

d2f

dx2

����
x¼x0

f�1 � 2f0 þ f1

h2
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Node k (k¼ 1 . . . n� 1): Approximate the differen-

tial equation, Equation 5, using central difference

formula

1

h2
ðuk�1 � 2uk þ ukþ1Þ

þ 1

rk

1

2h
ð�uk�1 þ ukþ1Þ �

uk

r2k
¼ 0

ð16Þ

where

rk ¼ aþ kh

From Equations 14�16, we get a system of nþ 1

equations of nþ 1 nodal displacements as

n
a
� 3

2h

� �
u0 þ

2

h

� �
u1 þ � 1

2h

� �
u2 ¼ � 1� �2

E
pi

..

.

1

h2
� 1

2hrk

� �
uk�1 þ � 2

h2
� 1

r2k

� �
uk þ

1

h2
þ 1

2hrk

� �
ukþ1 ¼ 0

..

.

1

2h

� �
un�1 þ � 2

h

� �
un�1 þ

�

b
þ 3

2h

� �
un ¼ � 1� �2

E
po

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(17)

Solving this system of equations gives nodal dis-

placement in the radial direction.

Radial Stress and Tangential Stress

From Equation 3 and Table 2, nodal radial stress at all

nodal points can be presented in finite difference from as

�r;0 ¼
E

1� �2
�3u0 þ 4u1 � u2

2h
þ �

u0

a

� �
..
.

�r;k ¼
E

1� �2
�uk�1 þ ukþ1

2h
þ �

uk

rk

� �
..
.

�r;n ¼
E

1� �2
un�2 � 4un�1 þ 3un

2h
þ �

un

b

� �

8>>>>>>>>>>>><
>>>>>>>>>>>>:
Similarly, from Equation 4 and Table 2, nodal

tangential stress at all nodal points can be presented in

finite difference form as

�y;0 ¼
E

1� �2
�
�3u0 þ 4u1 � u2

2h
þ u0

a

� �
..
.

�y;k ¼
E

1� �2
�
�uk�1 þ ukþ1

2h
þ uk

rk

� �
..
.

�y;n ¼
E

1� �2
�
un�2 � 4un�1 � 3un

2h
þ un

b

� �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Once the solution of nodal radial displacement

has been found from Equation 17, nodal radial stress

and nodal tangential stress are found by using

Equations 18 and 19, respectively.

Solution for Example Problem

Consider the case n¼ 2 with uniform spacing nodal

points. The spacing between the nodes is h¼ (b� a)/

n¼ (0.5�0.25)/2¼ 0.125. The radial coordinates of

the nodal points are r0¼ a¼ 0.25, r1¼ 0.375,

r2¼ b¼ 0.5.

Node 0: Approximate the first boundary condition,

Equation 6, using forward difference formula

1

0:25
ð�3u0 þ 4u1 � u2Þ þ 0:3

u0

0:25
¼ �0:0008792

ð20Þ

Node 2: Approximate the second boundary condition,

Equation 7, using backward difference formula

1

0:25
ðu0 � 4u1 þ 3u2Þ þ 0:3

u2

0:5
¼ 0 ð21Þ

Node 1: Approximate the differential equation,

Equation 5, using central difference formula

1

0:1252
ðu0 � 2u1 þ u2Þ þ

1

0:375

1

0:25
ð�u0 þ u2Þ

� u1

0:3752
¼ 0

ð22Þ

From Equations 20�22, we obtained a system of

algebraic equations of nodal radial displacement as

�10:80u0 þ 16:00u1 � 4:000u2 ¼ �0:0008792
53:33u0 � 135:1u1 þ 74:67u2 ¼ 0

4:000u0 � 16:00u1 þ 12:60u2 ¼ 0

8<
: ð23Þ

Solving the above system of equations, the

solution of nodal radial displacement is found as

u0 ¼ 0:0005860
u1 ¼ 0:0004309
u2 ¼ 0:0003611

8<
: ð24Þ

Employing Equations 18, 19, and 24, solutions of

nodal radial stress and nodal tangential stress,

respectively, are

�r;0 ¼ �200� 106

�r;1 ¼ �126:2� 106

�r;2 ¼ 0

8<
: ð25Þ

��;0 ¼ 425:2� 106

��;1 ¼ 200� 106

��;2 ¼ 149:5� 106

8<
: ð26Þ

(18)

(19)

APPROXIMATE SOLUTION METHODS IN ELASTICITY 123



The numerical solution with n¼ 2 of the example

problem is summarized in Table 3.

Exact solution and numerical solutions with

various values of number of nodal points, n¼ 2, 3,

and 4, are given in Figure 3 for radial displacement

and Figure 4 for radial stress.

The solution plots show that the approximate

solutions approach the exact solution as the number of

nodal points increases. The boundary conditions are

also satisfied as they are incorporated directly in the

formulation of the finite difference method.

FINITE ELEMENT METHOD

The Rayleigh�Ritz method can be viewed as a form

of a finite element method (FEM) [9] where it reduces

a continuous problem to a problem with finite number

of degrees of freedom. The Rayleigh�Ritz method

[8,9] is based on the principle of stationary potential

energy [9], which states: Among all admissible

configurations of a conservative system, those that

satisfy the equations of equilibrium make the potential

energy stationary with respect to small variations of

displacement. If the stationary condition is a mini-

mum, the equilibrium state is stable.

Mathematically speaking, the Rayleigh�Ritz

method is a variational method, based on the idea

of finding a solution that minimizes a functional.

For elasticity problems, the functional is the total

potential energy. The solution must be admissible,

that is, satisfying internal compatibility (e.g.,

continuity of displacement) and essential boundary

conditions. For problems where displacements are

primary unknowns, essential boundary conditions

are prescriptions of displacement and non-essential

boundary conditions are prescriptions of stress.

Since the problem considered here (the thick-

walled pressured cylinder problem, where primary

unknown is radial displacement) has no prescription

of displacement, there is no essential boundary

condition.

Potential Energy Formulation

The cylinder is assumed in plane stress state to give

strain energy density, U0 as

U0 ¼
1

2
ð�rer þ ��"�Þ ð27Þ

and using Equations 1�4, we get

U0 ¼
E

2ð1� �2Þ
du

dr

� �2

þ2�
du

dr

� �
u

r

� �
þ u

r

� �2" #

ð28Þ

Figure 3 Radial displacement as a function of radial location (finite difference method).

Table 3 Numerical Solution, Finite Difference Method

(n¼ 2)

r (m) 0.25 0.375 0.5

u (mm) 0.5860 0.4309 0.3611

�r (MPa) �200 �126.2 0

�y (MPa) 425.2 200.0 149.5
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Total strain energy, U of the cylinder is

U ¼
Z
ðVÞ

U0dV ¼
ZL
0

Z2�
0

Zb
a

U0rdrd �dz ¼ 2�L

Zb
a

U0rdr

ð29Þ

where

L, cylinder length

Work done, W by external forces (internal and

external pressures) is

W ¼
Z
ðSiÞ

piu að Þds�
Z
ðSoÞ

pou bð Þds

¼ 2�aLpiuðaÞ � 2�bLpouðbÞ
ð30Þ

where

Si, inner cylinder surface

So, outer cylinder surface

The total potential energy of the cylinder,P is found as

� ¼ U �W ¼ 2�L

Zb
a

U0rdr � apiuðaÞ þ bpouðbÞ

0
@

1
A

ð31Þ

Rayleigh�Ritz Method

The Rayleigh�Ritz method can be outlined as follows

1. The potential energy of the system is given as

P¼P(u0,u,r).

2. Assume a trial solution of the form: u¼ f

(r,C0,C1, . . . ,Cm) where Ci’s (i¼ 0 ::m) are

unknown parameters and f is a known function.

In this paper, we consider linear piecewise

continuous functions.

3. Apply admissibility conditions to the trial solution.

If there are m� n admissibility conditions, we have

m� n equations of unknown parameters.

4. Solve the system of m� n equations for m� n

unknowns Cnþ 1 . . .Cm, and then plug them back

into the trial solution, we obtain a new trial solution

that is admissible and has fewer unknowns (n

unknowns) u¼ f(r,C0,C1, . . . ,Cn).

5. Substitute the trial solution into the expression of

potential energy.

6. The stationary condition for potential energy

dP¼ 0 gives

@�

@Ci

¼ 0

� �
; i ¼ 0::n ð32Þ

7. Here we have a system of n algebraic equations

with n unknowns. Solve this system of equations,

we find the unknown parameters and thus the

approximate solution for radial displacement.

8. Substitute the found solution for radial displace-

ment into Equations 3 and 4 find the approximation

solution for radial stress and tangential stress.

Linear Piecewise Continuous Solution for
Example Problem

Consider the case of n¼ 2 with uniform spacing nodal

points. The step size for locating nodal points is

Figure 4 Radial stress as a function of radial location (finite difference method).
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calculated as h¼ (b� a)/n¼ (0.5�0.25)/2¼ 0.125.

The radial coordinates of the nodal points are

r0¼ a¼ 0.25, r1¼ 0.375, r2¼ b¼ 0.5.

The displacement field is assumed to be a piece-

wise continuous function of two linear segments as

u ¼ C0 þ C1r; 0:25 � r � 0:375
C3 þ C2r; 0:375 � r � 0:5

�
ð33Þ

To make the trial solution, Equation 33, admissible, it

must be continuous at r¼ 0.375, which means

C0 þ 0:375C1 ¼ C3 þ 0:375C2; or ð34Þ

C3 ¼ C0 þ 0:375C1 � 0:375C2 ð35Þ

The trial solution, Equation 33, then becomes

u ¼ C0 þ C1r; 0:25 � r � 0:375
C0 þ 0:375C1 � 0:375C2 þ C2r; 0:375 � r � 0:5

�

(36)

Substitute Equation 36 and the given numerical

data into Equation 31, the total potential energy, P in

the cylinder is found as

� ¼ 2�Lð78:84C2
0 þ 61:50C0C1 þ 12:42C0C2

þ 16:15C2
1 þ 4:659C1C2 þ 6:912C2

2

� 0:05000C0 � 0:01250C1Þ � 109

ð37Þ

The condition that the total potential energy P is

stationary, @�
@C0

¼ 0; @�@C1
¼ 0; @�@C2

¼ 0
n o

gives a system

of algebraic equations of the unknown coefficients as

157:7C0 þ 61:50C1 þ 12:42C2 ¼ 0:05000
61:50C0 þ 32:31C1 þ 4:659C2 ¼ 0:01250
12:42C0 þ 4:659C1 þ 13:82C2 ¼ 0

8<
: ð38Þ

The unknown coefficients are found as

C0 ¼ 0:0006737
C1 ¼ �0:0008496
C2 ¼ �0:0003191

8<
: ð39Þ

Substituting Equation 39 into Equation 36, the

approximate solution for radial displacement is

u ¼ 0:0006737� 0:0008496r; 0:25 � r � 0:375
0:0004748� 0:0003191r; 0:375 � r � 0:5

�
ð40Þ

Substitute numerical data and displacement solution

from Equation 40 into Equations 3 and 4, we find the

radial and tangential stresses as

�r ¼
45:97

r
� 251:2; 0:25 < r < 0:375

32:40

r
� 94:38; 0:375 < r < 0:5

8><
>: ð41Þ

�� ¼
153:2

r
� 251:2; 0:25 < r < 0:375

108:0

r
� 94:38; 0:375 < r < 0:5

8><
>: ð42Þ

The solution of the radial displacement is

continuous, since we have forced the trial solution to

be admissible from the beginning, while the solutions

for stresses are discontinuous at the interior knot

(r¼ 0.375) between the two segments (elements). To

have reasonable results, in practice, the stress value at

the interior knot is taken as the average of two stress

values. The numerical solution with n¼ 2 of the

example problem is given in Table 4.

Exact solution and numerical solutions with

various values of number of nodal points, n¼ 2, 3,

and 4, are given in Figure 5 for radial displacement

and Figure 6 for radial stress.

The solution plots show that the approximate

solutions approach the exact solution as the number of

piecewise continuous functions increases. However,

they do not satisfy the boundary conditions of radial

stress. The assumption of piecewise continuous

solution as opposed to a continuous solution makes

computation easier for high number of segments in

the piecewise functions, but it has the drawback of the

discontinuity of stresses at the interior knots of the

piecewise continuous function.

BOUNDARY ELEMENT METHOD

The boundary element method (BEM) is a general

numerical technique for solving boundary integral

equations [10]. First, we need to formulate the

problem as boundary integral equations.

Boundary Integral Equation Formulation

We recall here that the boundary value differential

equation model of the problem as Equation 5 subject

to the boundary conditions given by Equations 6 and 7.

Integrating both sides of Equation 5 with respect to r

from a to x gives

Zx
a

d2u

dr2
dr þ

Zx
a

1

r

du

dr
dr �

Zx
a

u

r2
dr ¼ 0 ð43Þ

Table 4 Numerical Solution, Finite Element Method

(n¼ 2)

r (m) 0.25 0.375 0.5

u (mm) 0.4613 0.3551 0.3152

rr (MPa) �67.35 �68.32 �29.58

ry (MPa) 361.7 175.5 121.6
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Manipulate and rewrite the first term on the left hand

side of Equation 43 in reduced form as

Zx
a

d2u

dr2
dr ¼

Zx
a

d

dr

du

dr

� �
dr

¼
Zx
a

dðu0ðrÞÞ ¼ ½u0ðrÞ�xa ¼ u0ðxÞ � u0ðaÞ

ð44Þ

Manipulate and rewrite the second term on the left

hand of Equation 43 in reduced form as

Zx
a

1

r

du

dr
dr ¼

Zx
a

1

r
du ¼

hu
r

ix
a
�
Zx
a

u � 1

r2

� �
dr

¼ uðxÞ
x

� uðaÞ
a

þ
Zx
a

u

r2
dr

ð45Þ

Figure 5 Radial displacement as a function of radial location (finite element method).

Figure 6 Solution of radial stress as a function of radial location (finite element method).
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Substituting Equations 44 and 45, Equation 43 becomes

u0ðxÞ � u0ðaÞ þ uðxÞ
x

� uðaÞ
a

¼ 0 ð46Þ

Integrating both sides of Equation 46 with respect to x

from a to r gives

Zr
a

u0ðxÞdx�
Zr
a

u0ðaÞdxþ
Zr
a

uðxÞ
x

dx�
Zr
a

uðaÞ
a

dx ¼ 0

) uðrÞ � uðaÞ � u0ðaÞðr � aÞ

þ
Zr
a

uðxÞ
x

dx� uðaÞ
a

ðr � aÞ ¼ 0; or

uðrÞ � u0ðaÞðr � aÞ � uðaÞ
a

r þ
Zr
a

uðxÞ
x

dx ¼ 0

ð47Þ

For Equation 47 be solved, we need to find u(a) and

u0(a). Evaluating Equation 46 at x¼ b gives

u0ðbÞ � u0ðaÞ þ uðbÞ
b

� uðaÞ
a

¼ 0 ð48Þ

Evaluating Equation 47 at r¼ b gives

uðbÞ � u0ðaÞðb� aÞ � uðaÞ
a

bþ
Zb
a

uðxÞ
x

dx ¼ 0 ð49Þ

Equations 48 and 49, together with boundary condi-

tions, Equations 6 and 7, form a system of four

equations for four unknowns, namely u(a), u0(a), u(b),
u0(b). These equations can be written in matrix form as

�
a

0 1 0

0 �
b

0 1

� 1
a

1
b

�1 1

� b
a

1 a� b 0

2
6664

3
7775

uðaÞ
uðbÞ
u0ðaÞ
u0ðbÞ

2
6664

3
7775 ¼

� 1��2

E
pi

� 1��2

E
po

0

�
Rb
a

uðxÞ
x
dx

2
6666664

3
7777775
ð50Þ

Solving Equation 50 simultaneously, we get

uðaÞ ¼ a
�ðb�aÞ ð1� �Þaþ �b½ �Pi � bPo �

Rb
a

uðxÞ
x
dx

� �

uðbÞ ¼ b
�ðb�aÞ aPi � ½ð1� �Þbþ �a�Po �

Rb
a

uðxÞ
x
dx

� �

u0ðaÞ ¼ 1
b�a

bðPo � PiÞ þ
Rb
a

uðxÞ
x
dx

� �

u0ðbÞ ¼ 1
b�a

aðPo � PiÞ þ
Rb
a

uðxÞ
x
dx

� �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð51Þ

where

Pi ¼ 1þ�
E

pi ¼ pi
2G

Po ¼ 1þ�
E

po ¼ po
2G

(
ð52Þ

Substitute Equation 51 into Equation 47 and doing

some algebraic manipulations as follows

uðrÞ� r � a

b� a
bðPo � PiÞ þ

Zb
a

uðxÞ
x

dx

8<
:

9=
;

� r

�ðb� aÞ

(
½ð1� �Þaþ �b�Pi � bPo

�
Zb
a

uðxÞ
x

dx

)
þ
Zr
a

uðxÞ
x

dx ¼ 0

) uðrÞ þ r

�ðb� aÞ �
r � a

b� a

� �Zb
a

uðxÞ
x

dx

þ
Zr
a

uðxÞ
x

dx ¼ r � a

b� a
bðPo � PiÞ

þ r

�ðb� aÞ f½ð1� �Þaþ �b�Pi � bPog

The resulted equation can be expanded and rearranged as

uðrÞ þ ð1� �Þr þ �a

�ðb� aÞ

Zb
a

uðxÞ
x

dxþ
Zr
a

uðxÞ
x

dx

¼ ð1� �Þr þ �b

�ðb� aÞ aPi �
ð1� �Þr þ �a

�ðb� aÞ bPo

or, in simpler form, as

uðrÞ þ �r þ a

b� a

Zb
a

uðxÞ
x

dxþ
Zr
a

uðxÞ
x

dx

¼ �r þ b

b� a
aPi �

�r þ a

b� a
bPo

ð53Þ

where

� ¼ 1� �

�
ð54Þ

From Equation 53, splitting the first integral over

interval [a, b] into two integrals over intervals [a, r]

and [r, b] gives

uðrÞ þ �r þ a

b� a

Zr
a

uðxÞ
x

dxþ
Zb
r

uðxÞ
x

dx

0
@

1
A

þ
Zr
a

uðxÞ
x

dx ¼ �r þ b

b� a
aPi �

�r þ a

b� a
bPo
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or, after simplifying,

uðrÞ þ �r þ b

b� a

Zr
a

uðxÞ
x

dxþ �r þ a

b� a

Zb
r

uðxÞ
x

dx

¼ �r þ b

b� a
aPi �

�r þ a

b� a
bPo

ð55Þ

Now we combine the two integral terms into one such

that Zb
a

Kðr; xÞuðxÞdx ¼ �r þ b

b� a

Zr
a

uðxÞ
x

dx

�r þ a

b� a

Zb
r

uðxÞ
x

dx; a � r � b

ð56Þ

The function K(r, x) is called the integral kernel in a

Fredholm integral equation of second kind, which

formulates the displacement problem to be shown later.

Consider the following cases:

i) r¼ a: Equation 56 becomes

Zb
a

Kða; xÞuðxÞdx ¼ �aþ a

b� a

Zb
a

uðxÞ
x

dx ) Kða; xÞ

¼ �aþ a

b� að Þx ; 8x : a � x � b

ii) r¼ b: Equation 56 becomes

Zb
a

Kðr; xÞuðxÞdx ¼ �bþ b

b� a

Zb
a

uðxÞ
x

dx ) Kðb; xÞ

¼ �bþ b

ðb� aÞx ; 8x : a � x � b

iii) a< r< b: The function K(r, x) that satisfies

Equation 56 for all x, is defined as

Kðr; xÞ ¼

�r þ b

ðb� aÞx ; a � x � r

�r þ a

ðb� aÞx ; r < x � b

8>><
>>:

Note that the special case x¼ r can be combined

to either the first condition (a� x� r) or the second

condition (r� x� b). Here we use the former.

For simpler representations, we define a function

X as

�ðr; xÞ ¼ �ðr; x; a; bÞ ¼

a; ðr ¼ aÞ and ða � x � bÞ
b; ðr ¼ bÞ and ða � x � bÞ
b; ða < r < bÞ and ða � x � rÞ
a; ða < r < bÞ and ðr < x � bÞ

8>><
>>:

Displacement

Equation 55 is the integral equation model of the

displacement problem and can be presented as a

Fredholm integral equation of second kind as

uðrÞ þ
Zb
a

Kðr; xÞuðxÞdx ¼ f ðrÞ; a � r � b ð58Þ

where

Kðr; xÞ ¼ �r þ �ðr; xÞ
ðb� aÞx ð59Þ

f ðrÞ ¼ �r þ b

b� a
aPi �

�r þ a

b� a
bPo ð60Þ

in which, Pi, Po, �, and X(r, x) are given by Equations
52, 54, and 57.

Radial Stress

The radial stress is given as

�r ¼
E

1� �2
du

dr
þ �

u

r

� �
¼ �̂RS½uðrÞ� ð61Þ

where �̂RS is the displacement to radial stress

operator defined as

�̂RS ¼
E

1� �2
@

@r
þ �

r

� �
ð62Þ

Apply the operator �̂RS to both sides of the Equation

55, we get

�rðrÞ þ
E

1� �2
�ð1þ �Þr þ �b

ðb� aÞr

Zr
a

uðxÞ
x

dx

8<
:

þ �ð1þ �Þr þ �a

ðb� aÞr

Zb
r

uðxÞ
x

dxþ uðrÞ
r

9=
; ¼ E

1� �2

�ð1þ �Þr þ �b

ðb� aÞr aPi �
�ð1þ �Þr þ �a

ðb� aÞr bPo

� �

Rewrite the above equation, the integral equation for

radial stress is obtained as

�rðrÞ ¼
E

1� �2
fRSðrÞ �

uðrÞ
r

�
Zb
a

KRSðr; xÞuðxÞdx

8<
:

9=
;

ð63Þ

where

KRSðr; xÞ ¼
�ð1þ �Þr þ ��ðr; xÞ

ðb� aÞrx ð64Þ
(57)
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fRSðrÞ ¼
�ð1þ �Þr þ �b

ðb� aÞr aPi �
�ð1þ �Þr þ �a

ðb� aÞr bPo

ð65Þ

Tangential Stress

The tangential stress is given as

�� ¼
E

1� �2
�
du

dr
þ u

r

� �
¼ �̂TS½uðrÞ� ð66Þ

where �̂TS is the displacement to tangential stress

operator defined as

�̂TS ¼ E

1� �2
�
@

@r
þ 1

r

� �
ð67Þ

Apply the operator �̂TS to both sides of the

Equation 55 and manipulate the resulted equation

similarly as for radial stress, the integral equation for

tangential stress is found as

��ðrÞ ¼
E

1� �2
fTSðrÞ � �

uðrÞ
r

�
Zb
a

KTSðr; xÞuðxÞdx

8<
:

9=
;

where

KTSðrÞ ¼
�ð1þ �Þr þ �ðr; xÞ

ðb� aÞrx ð69Þ

fTSðrÞ ¼
�ð1þ �Þr þ b

ðb� aÞr aPi �
�ð1þ �Þr þ a

ðb� aÞr bPo

ð70Þ

Multistep Method

There are a few numerical methods for solving

ordinary integral equations. The standard multistep

method is the most straightforward one and is outlined

as follows.

1. Consider a Fredholm integral equation of second

kind as

uðrÞ þ
Zb
a

Kðr; xÞuðxÞdx ¼ f ðrÞ; a � r � b ð71Þ

2. The integral interval (a, b) is divided into n

segments by (nþ 1) points including two bound-

aries. These points are called collocation points

and the process is called collocation. Here we use

uniformly spaced collocation points, in which the

jth point has the radial coordinate as

rj ¼ aþ jh; where h ¼ b� a

n
; j ¼ 0::n ð72Þ

Note that r0¼ a, rn¼ b

3. The integral is approximated by utilizing any

integral approximation rule, such as Simpson’s

rule, Trapezoidal rule, etc. associated with the

above collocation points. For simplicity, we use

Trapezoidal rule asZ b

a

Kðr; xÞuðxÞdx

� h

2
Kðr; aÞuðaÞ þ 2

Xn�1

j¼1

Kðr; xjÞuðxjÞ þ Kðr; bÞuðbÞ
 !

(73)

4. The original integral equation, Equation 58, is now

approximated by

uðrÞ þ h

2
Kðr; aÞuðaÞ þ 2

Xn�1

j¼1

Kðr; xjÞuðxjÞ þ Kðr; bÞuðbÞ
 !

¼ f ðrÞ

(74)

5. Evaluate the approximate equation at nþ 1

collocation points (or at r¼ rk, k¼ 0 :: n), we find

nþ 1 algebraic equations where the unknowns are

the values of function u(r) evaluated at nþ 1

collocation points:

(68)

uðaÞ þ h
2
Kða; aÞuðaÞ þ

Pn�1

j¼1

hKða; rjÞuðriÞ þ h
2
Kða; bÞuðbÞ ¼ f ðaÞ

..

.

uðrkÞ þ h
2
Kðrk; aÞuðaÞ þ

Pn�1

j¼1

hKðrk; rjÞuðriÞ þ h
2
Kðrk; bÞuðbÞ ¼ f ðrkÞ

..

.

uðbÞ þ h
2
Kðb; aÞuðaÞ þ

Pn�1

j¼1

hKðb; rjÞuðrjÞ þ h
2
Kðb; bÞuðbÞ ¼ f ðbÞ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð75Þ
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Note that the index k denotes the radius where the

equation is evaluated at, while the index j denotes

the radius used in approximating the integral, but

they both refer to the same set of collocation points.

6. Solve the system of equations to find the numerical

solution for u(r).

Radial Stress and Tangential Stress

Once the numerical solution for displacement has

been found, the numerical solutions for radial stress

and tangential stress can be found by using similar

techniques of approximating integrals, noticing that

u(rj)¼ uj and s(rj)¼sj, for the Equations 63 and 68,

respectively, we get

Evaluate these two equations at nþ 1 collocation

points, noticing that u(rk)¼ uk and s(rk)¼sk, we find

the numerical solutions for radial stress and tangential

stress.

Solution for Example Problem

The integral equation for the numerical example are

found by substituting the given numerical data into

Equations 58�60 and obtained as

uðrÞ þ
Z0:5
0:25

9:333r þ 4�;ðr; xÞ
x

uðxÞdx

¼ 0:002931r þ 0:0006280; 0:25 � r � 0:5

ð78Þ

The case of n¼ 2 with uniform spaced nodal

points is considered. The integral interval, [0.25, 0.5],

is divided uniformly into two segments by three

collocation points (including the two boundaries). The

step size for locating nodal points is calculated as

h¼ (b� a)/n¼ (0.5�0.25)/2¼ 0.125. The radial co-

ordinates of the nodal points are r0¼ a¼ 0.25,

r1¼ 0.375, r2¼ b¼ 0.5. The displacement values at

collocation points are denoted as u0¼ u(0.25), u1¼
u(0.375), u2¼ u(0.5).

Approximating Equation 78 using Trapezoidal

rule, it becomes

uðrÞ þ ½2:333r þ �ðr; 0:25Þ�uð0:25Þ þ ½3:111r
þ 1:333�ðr; 0:375Þ�uð0:375Þ þ ½1:167r
þ 0:5�ðr; 0:5Þ�uð0:5Þ ¼ 0:002931r

þ 0:0006280; 0:25 � r � 0:5

ð79Þ

Evaluate Equation 79 at the three collocation points;

we got a system of three equations

1:833u0 þ 1:111u1 þ 0:4167u2 ¼ 0:001361
1:375u0 þ 2:833u1 þ 0:5625u2 ¼ 0:001727
1:667u0 þ 2:222u1 þ 1:833u2 ¼ 0:002093

8<
: ð80Þ

The solution of nodal displacement is found as

u0 ¼ 0:0004783
u1 ¼ 0:0003122
u2 ¼ 0:0003286

8<
: ð81Þ

Substitute the given numerical data into Equations

63�65, we find the integral equation for radial

stress as

�rðrÞ ¼
E

1� �2
fRSðrÞ �

uðrÞ
r

� h

2
KRSðr; aÞu0 þ 2

Xn�1

j¼1

KRSðr; rjÞuj þ KRSðr; bÞun

 !( )
ð76Þ

��ðrÞ ¼
E

1� �2
fTSðrÞ � �

uðrÞ
r

� h

2
KTSðr; aÞu0 þ 2

Xn�1

j¼1

KTSðr; rjÞuj þ KTSðr; bÞun

 !( )
ð77Þ

srðrÞ ¼ 0:8667þ 0:04286

r
� 227:5uðrÞ

r
� 30:33

Z0:5
0:25

91r þ 9Xðr; xÞ
rx

uðxÞdx

0
@

1
A� 109 ð82Þ
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The integral in Equation 82 is approximated by using

Trapezoidal rule as

Z0:5
0:25

91r þ 9�ðr; xÞ
rx

uðxÞdx

¼ 22:75r þ 2:250�ðr; 0:25Þ
r

uð0:25Þ

þ 30:33r þ 3�ðr; 0:375Þ
r

uð0:375Þ

þ 11:38r þ 1:125�ðr; 0:5Þ
r

uð0:5Þ

ð83Þ

Substituting Equation 83 into Equation 82 and then

evaluating the resulting equation at three collocation

points, we find the numerical solution for radial stress.

Similarly, substituting the given numerical data

into Equations 66�68, we found the integral equation

for tangential stress as

The integral in Equation 84 is approximated by using

Trapezoidal rule asZ0:5
0:25

91r þ 30�ðr; xÞ
rx

uðxÞdx

¼ 22:75r þ 7:500�ðr; 0:25Þ
r

uð0:25Þ

þ 30:33r þ 10:00�ðr; 0:375Þ
r

uð0:375Þ

þ 11:38r þ 3:750�ðr; 0:5Þ
r

uð0:5Þ

ð85Þ

Substitute Equation 85 into Equation 84 and then

evaluate the resulting equation at three collocation

points, we find the numerical solution for hoop stress.

The results are summarized in Table 5.

Exact solution and numerical solutions with

various values of number of nodal points, n¼ 2, 3,

and 4, are given in Figure 7 for radial displacement

and Figure 8 for radial stress.

The solution plots show that the approximate

solutions approach the exact solution as the number of

collocation points increases. The boundary conditions

are also satisfied.

CONCLUSIONS

Three approximation solution methods have been

introduced through a single application example that

can help teaching the basic ideas of these methods.

Figure 7 Radial displacement as a function of radial location (boundary element method).

��ðrÞ ¼ 0:8667þ 0:1429

r
� 68:24uðrÞ

r
�30:33

Z0:5
0:25

91r þ 30�ðr; xÞ
rx

uðxÞdx

1
A� 109

0
@ ð84Þ

Table 5 Numerical Solution, Boundary Element

Method (n¼ 2)

r (m) 0.25 0.375 0.5

u (mm) 0.5860 0.4309 0.3611

�r (MPa) �200 �27.91 0

�y (MPa) 336.0 164.0 136.0
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Based on the examples, the student can apply the

solving schemes for this problem with higher degree

approximations, or different trial solutions, or differ-

ent rules of approximating derivatives and integrals.

They can also attempt other physical problems with

the same techniques. Some of these problems include

a two-dimensional beam with a rectangular cross-

section and concentrated axial load to illustrate St.

Venant’s principle. The Maple programs for the three

methods are available at http://www.eng.usf.edu/

�kaw/class/elasticity/

ACKNOWLEDGMENTS

The symbolic and numerical computations for this

paper were performed by using MapleTM. Maple and

Maple 9 are registered trademarks of Waterloo Maple

Inc. This material is based upon work supported

partially by the National Science Foundation under

Grant No. 0126793 and 0341468. Any opinions,

findings, and conclusions or recommendations

expressed in this material are those of the author(s)

and do not necessarily reflect the views of the National

Science Foundation.

REFERENCES

[1] Macsyma. See http://www.symbolicnet.org/systems/

macsyma.html.

[2] Maple 9.0, Advancing Mathematics. See http://www.

maplesoft.com.

[3] G. H. Besterfield, S. Nichani, A. K. Kaw, and T. Eason,

Full-scale testing of trunnion-hub-girder assemblies for

bascule bridges, ASCE J Bridge Eng 8 (2003), 204�211.

[4] G. H. Besterfield, A. K. Kaw, S. Nichani, B. Ratnam,

T. Cherukara, and M. Denninger, Assembly procedures

of a trunnion-hub-girder for bascule bridges, Theor

Appl Fracture Mech 40 (2003), 123�134.

[5] A. K. Kaw, G. H. Besterfield, and S. Nichani,

Integrating a research problem in a course in applied

elasticity, Int J Mech Eng Educ 32 (2004), 232�242.

[6] S. P. Timoshenko, and J. N. Goodier, Theory of

elasticity, McGraw-Hill, New York, 1970.

[7] A. C. Ugural, and S. K. Fenster, Advanced strength

and applied elasticity, 3rd ed., Prentice�Hall PTR,

New York, 1995.

[8] A. P. Boresi, and K. P. Chong, Approximate solution

methods in engineering mechanics, Elsevier Applied

Science, New York, 1991.

[9] R. D. Cook, D. S. Malkus, and M. E. Plesha, Concepts

and applications of finite element analysis, 3rd ed.,

Wiley, New York, 1989.

[10] W. S. Hall, The boundary element method, Kluwer

Academic Publishers, New York, 1994.

Figure 8 Radial stress as a function of radial location (boundary element method).

APPROXIMATE SOLUTION METHODS IN ELASTICITY 133



BIOGRAPHIES

Autar K. Kaw is a professor of mechanical

engineering and Jerome Krivanek Distin-

guished Teacher at the University of South

Florida. He is the author of the textbook—

Mechanics of Composite Materials, CRC-

LLC Press. With major funding from the

National Science Foundation, he is devel-

oping award winning web-based resources

for an undergraduate course in Numerical

Methods. He is the recipient of the 2004

CASE Florida Professor of the Year and the 2003 ASEE Archie

Higdon Distinguished Mechanics Educator Award. His current

scholarly interests include development of instructional technolo-

gies, integrating research in classroom, thermal stresses, computa-

tional mechanics, and mechanics of nonhomogeneous nanolayers.

Son H. Ho is a doctoral student in the

Department of Mechanical Engineering at

the University of South Florida. He re-

ceived his bachelor’s degree with honors in

1995 from the Ho Chi Minh City Uni-

versity of Technology, Viet Nam, and

worked there as a research engineer for

6 years. He received his master’s degree in

2004 from the University of South Florida.

He is skilled in scientific computer pro-

gramming with Maple and Matlab.

134 KAW AND HO


